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Abstract

Schelling (1969, 1971a,b, 1978) considered a simple model with individual agents
who only care about the types of people living in their own local neighborhood. The
spatial structure was represented by a one- or two-dimensional lattice. Schelling
showed that an integrated society will generally unravel into a rather segregated
one even though no individual agent strictly prefers this. We make a first step to
generalize the spatial proximity model to a proximity model of segregation. That
is, we examine models with individual agents who interact ’locally’ in a range
of network structures with topological properties that are different from those of
regular lattices. Assuming mild preferences about with whom they interact, we
study best-response dynamics in random and regular non-directed graphs as well
as in small-world and scale-free networks. Our main result is that the system
attains levels of segregation that are in line with those reached in the lattice-based
spatial proximity model. In other words, mild proximity preferences can explain
segregation not just in regular spatial networks but also in more general social
networks. Furthermore, segregation levels do not dramatically vary across different
network structures. That is, Schelling’s original results seem to be robust also to
the structural properties of the network.
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1 Introduction

Segregation has been for some time one of the most important socio-political and public

economic issues in the USA, and has increasingly become one also in many Western-

European countries. As segregation has increasingly been recognized as one of the most

important public policy issues in countries such as the UK, the Netherlands, France, and

Germany, various countries have started evaluating and questioning the effectiveness of

decades of integration policies (see, e.g., Baldwin and Rozenberg (2004), and Commissie

Blok (2004)). The widely accepted view is that these policies have essentially been failures

as integration simply did not happen. As Trevor Phillips, chairman of the Commission

for Racial Equality in the UK, puts it: “we are sleepwalking our way to segregation”

(Phillips, 2005). The main objective of this paper is to improve our understanding of this

issue.

The prevalent form of integration policy in countries such as the UK and the Nether-

lands has been one of promoting multiculturalism by focusing on the individual citizens’

preferences1. The idea was that by promoting openness and tolerance with respect to

diversity one would allow integration to take place.

Individual preferences are exactly what the spatial proximity model of Schelling (1969,

1971a,b, 1978) focuses on. Schelling considered a simple model with individual agents

who only care about the types of people living in their own local neighborhood. The

spatial structure was represented by a one- or two-dimensional lattice. Schelling showed

that an integrated society will generally unravel into a rather segregated one even though

no individual agent strictly prefers this. This segregation is due to the spontaneous

dynamics of the economic forces, with all individuals following their incentives to move

to the most attractive locations. In doing so, they create externalities for other people,

who will respond to their changed incentives, etc.

The preferences considered in the spatial proximity model are said to be mild, as

everybody would be happy in a perfectly integrated society2. Pancs and Vriend (2005)

1This focus can be explained by the practical difficulties with other policy measures aimed at inte-
gration (see Pancs and Vriend (2005) for details).

2As this occurs without any of the individuals involved explicitly designing this outcome, the sleep-
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examined the robustness of the spatial proximity model. They showed that the model

can be further simplified (rendering the individual preferences even more salient as an

explanatory variable of segregation), and that these proximity preferences may be even

more extreme in favor of integration. This focus on mild individual preferences or prefer-

ences that even favor integration is not to say that institutional constraints or racism may

not hinder integration. But what the model shows is that even without such obstacles

one should perhaps expect segregation. It seems that any integration policy must be

based on a good understanding of these spontaneous dynamics.

The idea that people care about their spatial proximity can be justified by the fact

that this is where people mow their lawn, where their children play outside, where they

do their shopping, and where they park their car. The social environment is, however,

not limited to this spatial proximity. People also interact through networks of friends,

relatives, and colleagues, and through virtual communities on the internet. And they are

likely to have preferences with whom they do this, just as they have preferences about

their spatial proximity. Similarly, segregation need not necessarily occur at the spatial

(neighborhood) level. One might conceive people who are socially segregated despite

being spatially integrated3.

Therefore, in this paper we will make a first step to generalize the spatial proximity

model to a proximity model of segregation. That is, we will examine models with in-

dividual agents who interact ‘locally’ in a range of network structures with topological

properties that are different from those of regular lattices, while having mild preferences

about with whom they interact. We stick to standard assumptions as far as types and

preferences are concerned, and we study best-response dynamics. Apart from the socio-

political interest in this, this seems also intellectually interesting as, after all, a lattice

is just a special type of network, and we may want to know whether mild proximity

preferences can explain segregation also in more general types of networks.

The paper is organized as follows. In Section 2 we present the model. Section 3

walking metaphor may seem appropriate.
3This appeared to be the case with some of the recent terror suspects in the Netherlands and the

UK.
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discusses in more detail the classes of networks that we consider in our analysis. The

various indices used to measure segregation in social networks are introduced in Section

4. Section 5 contains our analysis of the model, including a sensitivity analysis of the

parameter setup. Finally, Section 6 concludes.

2 The Model

Consider a society composed of N agents who can locate themselves in one of the M ≥
N ≥ 3 available locations. Each location can contain at most one agent. Locations can

be connected or not. We model locations and connections through a non-directed graph

(NDG) G composed of M nodes and a collection of non-directed edges linking any pair of

nodes. Edges are described by the (symmetric) M × M sociomatrix W = {wkh}, where
wkk = 0 ∀k = 1, ..., M and wkh = whk = 1 if and only if there is an edge connecting

nodes k and h, and zero otherwise. We define the “neighborhood” Vk (or the “interaction

group”) of a node k as the set of nodes that node k is linked to:

Vk = {h ∈ IM : wkh = whk = 1}, (1)

where IM = {1, ...,M}.
We suppose that each node is empty (i.e., it does not contain an agent) with proba-

bility θ ∈ (0, 1), while it is occupied with probability 1− θ. Therefore, on average, there

are N = (1− θ)M agents in the society. Each agent can be one of two types, say −1 and
+1. Time is discrete, and time ticks are labeled by t = 0, 1, 2, ....

Agents have standard, binary, Schelling-type preferences: they are happy if and only

if the relative frequency of agents of their own type is greater or equal than 0.50 in their

neighborhood. More formally, if node i is occupied by an agent of type s ∈ {−1,+1} at
time t:

uit = uit(s) =



1

0

if xit(s) ≥ 0.5

otherwise
, (2)
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where uit = uit(s) is the utility of agent i (of type s) at time t and xit(s) is the current

relative frequency of agents (i.e., filled nodes) of type s in Vi
4.

The initial state of the system is characterized by: (i) an instance of the network

structure, i.e., a graph G0 = {IM ,W0} (more on that below); (ii) an allocation of agents
and types across the M available nodes. The initial allocation of agents and types across

the M nodes is drawn uniform randomly. Thus, at t = 0, each node i ∈ IM will be either

empty or occupied. If it is occupied, this will be either a −1 or a +1 agent, each with
probability 0.5. Thus, in the society there will be, on average, N/2 agents of type −1
and N/2 agents of type +1.

The dynamics is as follows. At each t > 0, an agent is drawn at random (and

independently) from IN = {1, ..., N}. This agent checks every available node in the

network G0, i.e., his current node plus all empty nodes, and computes the utility that he

could earn at each of these nodes. The agent chooses the node that provides the highest

achievable utility level. Agents resolve ties by randomizing among all nodes providing

the same maximal utility level.

Notice that we assume no inertia in the agents’ choices. That is, the agents’ current

locations do not bias their choices (e.g., because of moving costs). We also assume that

agents can move to any empty node in the network, i.e., there are no information or

moving constraints or costs. In Section 5.3 we will study the effect of removing these

assumptions.

3 Network Structures

To investigate the scope of proximity preferences explaining segregation, we do not con-

strain the graph G0 to be a lattice-type of network. Instead, we explore a number of

classes of NDGs characterized by very different structural and topological properties.

This allows us to investigate how segregation levels, emerging out of the best-response

dynamics described above, may depend on the type of network. We study six classes

4In line with Pancs and Vriend (2005), we assume that the utility associated to an empty neighbor-
hood is zero.
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of NDGs: two-dimensional lattices with Von-Neumann neighborhoods (2D-VN ), two-

dimensional lattices with Moore neighborhoods (2D-M ), regular NDGs (REG), and ran-

dom (RAND), small-world (SW) and scale-free (SF ) NDGs. We now discuss each of

these network structures in more detail.

1. Two-dimensional boundary-less lattices with Von-Neumann neighbor-

hoods (2D-VN). The two lattice-type of networks are considered to benchmark

our analysis against the standard Schelling model. The difference between these

two classes of lattices lies in the metrics employed to compute the distance among

any two nodes. Neighborhoods are accordingly defined as containing all nodes that

lie within a certain integer interaction radius r ≥ 1. In the 2D-VN lattice, the

“Manhattan” metrics is used and neighborhoods of radius r ≥ 1 have a “diamond”

shape. That is, if any node h has coordinates (xh, yh), the distance is defined as:

δ(k, k′) = |xk − xk′|+ |yk − yk′|, (3)

where k and k′ are any two nodes. We avoid singularities in the lattice by placing

nodes on a torus. A node’s neighborhood is thus defined as:

Vk(r) = {h = 1, ..., M : δ(k, h) ≤ r}, (4)

where r is the neighborhood radius. Notice that the degree dk of any node k, i.e.,

the number of inward (and outward) links to (and from) k, is:

dk(r) = |Vk(r)| = 2r(r + 1). (5)

See Figure 1, panel (a), for an example of the shape of Vk(r) for r = 1 in the

case of 2D-VN. Notice that the links actually in place in a 2D-VN lattice with

r > 1 differ from those present in the lattice (with r = 1). In fact, any agent

is connected through additional direct links with all agents placed 2, ..., r steps

away. For example, if r = 2, the agent placed in the node (x, y) is not only linked
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(a) 2D-VN: r=1 (b) 2D-M: r=1 

Figure 1: An Example of Neighborhood Shapes with 2-Dimensional Von-Neumann (2D-VN) and Moore
(2D-M) lattices for r = 1

with the agents placed in (x − 1, y), (x+ 1, y), (x, y − 1), (x, y + 1) (whose links with

(x, y) are present in the lattice), but also with agents placed two steps away in the

underlying lattice.

2. Two-dimensional boundary-less lattices with Moore neighborhoods (2D-

M). In this case, the lattice is endowed with the “spherical” metrics, which entails

“box-shaped” neighborhoods:

δ(k, k′) = max{|xk − xk′ |, |yk − yk′|}, (6)

where k and k′ are any two nodes. Again, we avoid singularities in the lattice by

placing nodes on a torus. Here, the degree dk of any node k is:

dk(r) = |Vk(r)| = 4r(r + 1), (7)

where Vk(r) is defined as in (4). Notice that given any interaction radius r ≥ 1,

2D-M lattices have neighborhoods twice as large as those of 2D-VN lattices. An

alternative way to put this (for the case r = 1) is to say that the 2D-VN lattices

have only lateral (horizontal and vertical) links, whereas the 2D-M lattices have all

diagonal links in place as well. An example of the shape of Vk(r) for r = 1 in the

case of 2D-M graphs is reported in Figure 1, panel (b), where such additional links

for the agent concerned are shown with dashed lines.

As happens with 2D-VN lattices, also here for r > 1 there are additional links in

7



place. For example, for r = 2, also agents that would be two steps away from each

other in the 2D- M lattice with r = 1 are directly linked.

3. Regular NDG (REG). Two-dimensional lattices are regular NDGs, i.e., NDGs

where all nodes hold the same number of edges (i.e., have the same degree). Lat-

tices, however, possess further spatial homogeneity and symmetry properties, such

as invariance to roto-translation, i.e., all neighborhoods are invariant up to a trans-

lation in space and/or a rotation around their center. Therefore, the third class of

NDG we explore is the one of regular NDGs, which are simply defined as NDGs

where all nodes have the same degree d, but do not necessarily satisfy the addi-

tional spatial homogeneity and symmetry properties that lattices do. At time t = 0,

we choose at random a regular NDG of degree d using the algorithm proposed by

Steger and Wormald (1999). Under this routine, regular graphs of degree d are

(approximately) generated uniformly at random.

4. Random NDG (RAND). We, then, discard the hypothesis of regularity, by

considering the class of random NDGs. Given an average degree equal to (M −
1)p, we generate the graph by allowing each edge to be in place, independently of

all other edges, with a probability p. Therefore, unlike in regular NDGs, nodes

will generally have different degrees. In fact, the degree distribution is symmetric,

appears to be quite dispersed over the support {0, ..., M − 1}, and has average
degree d = (M − 1)p.

5. Small-World NDG (SW). Next, we consider two additional NDG classes that,

due to their close relationships with empirically observed social and economic net-

works (for an introduction, see, e.g., Barabási (2003)), have received an increasing

attention over the last decade. First, we study small-world NDGs (SW). The main

features of SW networks (Watts, 1999, 2003) are that they tend to have a small

“path- length” (i.e., average distance between any two nodes) and a large “clustering

coefficient” (i.e., likelihood that any two neighbors of an agents are also neighbors

of each other). To generate a small-world NDG, we start from a two- dimensional
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boundary-less lattice with Von-Neumann neighborhoods as in 1. above, for a certain

value of r. Then, each edge (h, k) is independently rewired to a randomly chosen

node, say k′, outside Vh(r) with some probability β ∈ (0, 1). In case of rewiring,

the edge (h, k) is deleted and replaced by the new edge (h, k′). If β is close to one

and M is very large, this procedure yields a random NDG. Otherwise, the degree

distribution will be symmetric, centered around 2r(r + 1) but less dispersed than

the one associated to a random NDG. In the results presented, we employ β = 0.55.

6. Scale-Free NDG (SF). Finally, we consider scale-free NDGs (SF ). A scale-free

NDG has a skewed, power-law degree distribution, with few nodes holding a large

number of edges (i.e., the hubs of the network) and many nodes with few edges.

To build a SF graph, we employ a standard “preferential attachment” procedure

(Barabási and Albert, 1999), starting withM0 nodes linked through a 2D-VN lattice

with r = 1 (and thus an initial degree d = 4). One node at a time is added until

a size M is reached. In any step, the additional node is allowed to form 4 links.

Each new link is formed by choosing one of the existing nodes with a probability

proportional to its current degree. The larger the initial number of nodes, the

smaller is the degree heterogeneity (the less skewed the degree distribution). The

underlying assumption of this setup is that any node can hold at no cost any

arbitrarily large number of nodes (as M increases). When a SF network is in place,

there is a small set of agents that hold a large number of links, while all the others

hold a small number of links. Thus, the degree distribution is skewed to the right,

with a relatively small average and a fat right tail. As expected, the average degree

of a SF network generated from an initial node size M0 tends to have always the

same average degree. Moreover, this average degree is not monotonically increasing

in M0. In fact, our analysis shows that the following (approximate) relation holds:

d � 0.00003 · M3
0 − 0.0062 · M2

0 + 0.3485 · M0 + 3.1916. (8)

5See Watts and Strogatz (1998) All our results are not altered if one tunes β in the range of small-
world graphs.
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Hence, D grows for M0 ≤ 39 and decreases for M0 ≥ 40.

Given a certain class within this range of networks, we need to specify the system-

and network-specific parameters. System parameters are M (number of nodes) and θ

(average percentage of empty nodes). Network specific parameters characterize – given

the class of networks to be implemented – the set of possible networks from which the

one actually in place will be drawn (see Table 1).

Parameters
Network System Network-specific Node degree
2D-VN r d = 2r(r + 1)
2D-M r d = 4r(r + 1)
REG (M, θ) d d

RAND p d = (M − 1)p
SW r d = 2r(r + 1)
SF M0 See (8)

Table 1: Network Classes and System Parameters: M : Number of Nodes; θ average percentage of empty
nodes; d: Graph Average Degree; r: Interaction Radius; p: Link Probability; M0: Initial Number of
Nodes in a preferential-attachment graph formation mechanism.

Table 1 also shows how the node degrees depend on the chosen network-specific pa-

rameter values. When we compare segregation levels in networks from different classes,

we will keep the system parameters and the average node degree constant across the

networks considered. We achieve this by tuning the network-specific parameters. Thus,

the values for the radius r in the 2D-VN and 2D-M lattices, the probability p in the

random graphs, the radius r in the starting lattice for the small world networks, and M0

in the scale-free networks are all chosen such that the ensuing (average) node degrees d

match those considered for the other network classes. In other words, implicitly the only

network-specific parameter to be considered is the (average) node degree d.

In the lattice-case (i.e., 2D-VN and 2D-M), the initial graph is automatically defined

once one specifies the interaction radius r (and consequently the degree d). In all other

cases, given a choice for the network class and for the network-specific parameters of that

class (e.g., the degree d in a regular graph), each time we draw G0 (uniform) randomly

from the set of all possible graphs belonging to that class and with the given network-

specific parameters (e.g., all regular graphs with degree d).
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4 Measuring Segregation in Social Networks

A number of indices have been suggested in the literature to measure segregation when the

agents are located on generic NDGs (see, e.g., Freeman, 1972; Mitchell, 1978; Freeman,

1978; Fershtman, 1997; Echenique and Fryer, 2005, and references therein). We mainly

employ two indices. The first one is Freeman’s segregation index (FSI) (Freeman, 1972,

1978), see the Appendix for details. The rationale underlying the computation of the

FSI is that if a given agent-attribute (in our case the type +1 or −1) does not matter for
social relationships (i.e., for the link structure as described by G0), then the links among

the agents should be distributed randomly with respect to that attribute. Therefore,

suppose we observe a given allocation of agent types across the M nodes, connected

through the NDG G0. Let us, then, split the agents in two groups according to their type

and, for each type, let us count the number of cross-group links (i.e., the number of links

connecting any pair of agents of different types), as well the number of within-group links

(i.e., the number of links connecting any pair of agents of the same type). This gives us

a 2 × 2 contingency table whose generic entry lxy gives us the number of links between

type-x and type-y agents in G0. Similarly, one can compute the expected contingency

table for a random allocation of agent types on G0. The difference between the number of

cross-group ties expected by chance and the number of observed ties (divided by expected

ones) gives us the FSI. The index ranges between −1 and 1, with the highest segregation
level obtained when there are no cross-group links in place.

Second, we compute the more sophisticated (but less intuitive) “spectral” segregation

index (SSI) for social networks recently proposed by Echenique and Fryer (2005). The

index has two remarkable properties: (i) it disaggregates at the level of individuals and

types (that is, one can compute the extent to which each single individual – or a given

type – is segregated in the society); (ii) the level of segregation of any individual increases

linearly with the level of segregation of his neighbors. Notice that the FSI does not possess

this “linearity” feature. In fact, the FSI counts indiscriminately any within- and cross-

group link among any two agents belonging to a cluster of connected agents of the same

type. The SSI, on the other hand, takes into account the fact that agents located close to
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the fringe of such a cluster are less segregated that those near its center. More formally,

the SSI associated to a given type s ∈ {−1,+1} is defined as the largest eigenvalue of
the sub-matrix obtained from the sociomatrix W0 by considering only the rows and the

columns associated to the nodes whose current type is s. In our analysis, we report the

average SSI, computed over the two types s ∈ {−1,+1} and suitably rescaled to have an
index ranging in the unit interval (see the Appendix for details)6.

5 Analysis of the Model

In this section, we present an analysis of our model for a society of M = 100 nodes.

Initially, we set the average percentage of empty nodes θ = 0.3, and for any given network

class we choose the network-specific parameters. Section 5.2 presents a sensitivity analysis

across the parameter space as described in Table 1. Our analysis will take the form of a

Monte Carlo (MC) analysis. The procedure is as follows.

For each choice of network class and network-specific parameters we generate a number

of independent runs. For each run, where necessary, we randomly select a specific instance

of the network class, and we generate an initial allocation of agents and types across

the network uniformly at random. We, then, let the best-response dynamics run, and

collect system statistics when either segregation measures or the configuration of types

across the M nodes have reached a steady-state7. This typically happens well before

T = 50000 time-steps with probability one. We independently repeat this exercise 1000

times, computing the Monte Carlo (MC) average and standard deviation for the relevant

measures. Since across-run variability turns out to be very small (across-run standard

deviations are of an order of magnitude of 10−5) and MC distributions appear to be

6We also check our results against a number of alternative segregation indices, such as those proposed
in Fershtman (1997) and Freeman (1978), and some of those originally developed in the lattice-case
(see Pancs and Vriend, 2005). In particular, we compute the mix deviation index (MD), defined as
the absolute deviation between a 50-50 neighborhood and the current frequency of like agents in the
neighborhood, averaged over all agents. Our results are not qualitatively altered if one considers these
additional segregation measures.

7Notice that whenever the system does not seem to converge to a stable configuration of types across
the M nodes, a cyclical behavior is typically observed with agents who keep switching among a small
sets of locations. In these cases, segregation levels do converge to stable levels well before the system
begins cycling.
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Figure 2: Average Freeman’s Segregation Index
(FSI) v. Network Classes. Average Degree d = 4.
Parameters: M = 100, θ = 0.3. MC Sample Size
= 1000.
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Figure 3: Average Freeman’s Segregation Index
(FSI) v. Network Classes. Average Degree d = 8.
Parameters: M = 100, θ = 0.3. MC Sample Size
= 1000.

symmetric, we report below MC averages of segregation measures only.

5.1 Some Benchmark Results

The main question we are interested in here is whether mild proximity preferences can

explain segregation also in more general network structures, e.g., when the underlying

network is not necessarily a proxy of geographic space but it rather has structural prop-

erties that make it resemble more a social network. Secondly, we also want to know

whether segregation levels emerging in non-lattice NDG vary across different families of

networks, and if so, how.

To begin answering these questions, we compare MC averages of the FSI and SSI in

the benchmark case θ = 0.3 where agents are placed in one of our six different classes of

NDGs (see Table 1). Initially, we restrict our attention to network-specific parameters

implying NDGs with (average) degree d ∈ {4, 8}. This allows us to compare non-lattice
NDGs directly with either a 2D-VN lattice or a 2D-M lattice with r = 1 (and thus d = 4

or d = 8).

As Figures 2 - 5 show, segregation levels are rather similar in all network classes con-

sidered. Lattice-type networks seem to display a higher average FSI, but this effect is

weaker for the SSI. This means that once one takes into account “linearity” in segregation
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Figure 4: Average Spectral Segregation Index
(SSI) v. Network Classes. Average Degree d = 4.
Parameters: M = 100, θ = 0.3. MC Sample Size
= 1000.
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Figure 5: Average Spectral Segregation Index
(SSI) v. Network Classes. Average Degree d = 8.
Parameters: M = 100, θ = 0.3. MC Sample Size
= 1000.

(that is, an individual’s segregation level increases with that of his peers), little differ-

ence in segregation can be detected across different network structures8. The structural

properties of the network do not seem to engender a strong impact on segregation levels

attained in the long- run by the system.

To put the values of the segregation indices found into perspective, we make the fol-

lowing two observations. First, for each network class and combination of network-specific

parameters, we compare the values of the FSI and SSI obtained through best-response

dynamics with the distribution of values for these indices over the set of all possible allo-

cations of agents and types acrossM = 100 nodes (keeping θ = 0.3 as above). We numeri-

cally generated proxies for these “theoretical” distributions by computing our segregation

indices over 100,000 random allocations of agents and types for each given network class

and network-specific parameters. Consider, for example, the FSI distributions (similar

results hold also for SSI). The resulting simulated “theoretical” distribution of the FSI

appears to be symmetric around 0. The corresponding MC distributions obtained by

running our model lie clearly to the right of the simulated “theoretical” distributions (see

8According to standard statistical tests for the difference between two means, all reported values
are not statistically different. Notice, however, that one can make any pair of average segregation levels
statistically different by sufficiently increasing the MC sample size. Therefore, we do not report statistical
tests for the difference between any two average indices.
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Figure 6: FSI levels generated by the model (solid
line) v. FSI Simulated Theoretical Distribution
(dashed line). Network: 2D-M lattice with r = 1
(d = 8). Parameters: M = 100, θ = 0.3. Sample
Sizes: Model = 1000; Simulated Index Distribu-
tion = 100,000.
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Figure 7: FSI levels generated by the model (solid
line) v. FSI Simulated Theoretical Distribution
(dashed line). Network: Regular lattice with d =
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100,000.

Figures 6 and 7 for the case of the FSI in 2D-M and REG networks with degree d = 8)9.

Second, the average “mix deviation” index reaches – in both lattice and non-lattice

networks – levels that are similar to those obtained for lattices in Pancs and Vriend

(2005). For example, Pancs and Vriend (2005) find an average mix deviation level of 0.19

for a 2D-M lattice (without boundaries) for r = 1 and θ = 0.2. In our 2D-M setup, we

find a similar mix-deviation level, i.e., 0.23. Furthermore, we find that for corresponding

parameter values (i.e., θ = 0.2 and d = 8), the mix deviation reaches 0.21 in REG and in

RAND graphs, and drops to 0.18 in SF graphs. Finally, if we employ 2D-VN lattices or

SW graphs (with r = 1 and thus d = 4) the MD respectively attains values of 0.27 and

0.22 respectively.

5.2 Sensitivity Analysis: Empty Spaces and Connectivity

The findings of the last section show that proximity preferences can explain segregation

in a wide range of networks. In this section we turn to a sensitivity analysis of the model.

We are interested in assessing how, for each given class of networks, segregation levels

depend on the particular parametrization as far as the average percentage of the empty

nodes (θ) and the connectivity of the network (measured by its average degree d) are

9All densities have been estimated using a normal kernel with a 0.20 bandwidth.
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concerned. Therefore, we consider a range of different values of θ and d, and compute

MC averages of the FSI and SSI over 1000 independent runs for each combination of

parameter values. Figure 8 shows the SSI against average degree d for various fractions

of empty nodes θ, with each panel concerning one of the network classes considered10 11.

— Figure 8 about here —

We see that segregation levels are decreasing with the average degree in every network

class, and for any value of θ. Very high segregation levels are attained by the system

when the society is poorly connected and there is a small percentage of empty nodes. As

the connectivity increases, segregation becomes somewhat less pronounced, but even in

very connected societies, segregation levels remain significantly higher than the expected

level for random allocations.

— Figure 9 about here —

Figure 8 also shows that the SSI decreases with the percentage of empty nodes. This

is, however, not true for the FSI. The FSI, unlike the SSI, declines for small values of θ and

then remains fairly stable in each given network class. Figure 9 presents a comparison of

FSI and SSI against θ for the case of small-world networks. This difference seems due to

the linearity taken into account by the SSI. That is, only if one measures segregation by

taking into account the structure of emerging clusters, does a higher percentage of empty

nodes negatively affect the measured segregation levels. This means that the larger the

degrees of freedom the agents have in their moving choices, the less the society ends up in

“thick” segregated clusters, where many agents are “far” from the fringe. When θ is very

large, the society tends to be segregated in less structured clusters, with many agents

located on the “border” between clusters of agents of the same type and an empty space.

That is why the FSI does not detect large drops of segregation levels even for large values

of θ.

10For the scale-free networks, we employed values for M0 ∈ {9, 16, 25, 36}, which implies approximate
average node degrees d ∈ {5.82, 7.36, 8.50, 9.11}.

11Similar results are obtained also for the FSI.
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5.3 Sensitivity Analysis: Inertia and Local Moves

In the basic model presented in Section 2, agents choose pure best- responses. That is,

if an agent is drawn at time t to revise his current state, he constructs his choice set,

which includes his current location plus all vacant locations, and choose the best option

in this set, randomizing in case the best-response is not unique. Although our analysis

shows that mild proximity preferences alone are sufficient to explain segregation in a wide

range of general network structures, it may be interesting to analyze whether additional

constraints on the individual behavior lead to different segregation levels.

Therefore, we first examine the effect of introducing inertia in individual decisions.

Suppose that at time t > 0 the s-type agent located in node i is drawn at random from

IN = {1, ..., N}. With inertia, this agent stays put if there is no vacant location that he
would strictly prefer to his current location. The idea of inertia is based on the implicit

modelling assumption of some small costs of moving (smaller than the smallest possible

difference in satisfaction between any two locations, but otherwise arbitrarily small).

Notice that under the inertia rule, satisfied agents will never move.

Second, we restrict the choices of the individual agents to local-moves-only. With

local-moves-only the agents’ moves are restricted to the agents’ direct neighborhoods

only. Suppose the agent drawn, say the one located in node k, considers to move. He

checks every node that is currently empty in his interaction group Vk only, and then

behaves as in the basic model as far as his decision is concerned. This can be based either

on the additional assumption of moving costs that increase with the distance travelled

in the network such that they are greater than the greatest possible improvement in

utility derived from the neighborhood for any move beyond the current neighborhood,

or on some information costs preventing agents to observe anything that is outside their

current neighborhood. Notice that in both cases, the agents will tend to explore a smaller

number of options and the ensuing dynamics will be more ’sticky’.

— Figure 10 about here —

Figure 10 presents the average degree in four network classes (with θ = 0.3) for three

17



cases: (i) the basic model without inertia and allowing global moves, (ii) the model with

inertia and global moves, and (iii) the model with inertia and local-moves-only12. As

expected, segregation levels decrease when one introduces subsequently the assumptions

of inertia and local-moves-only, especially in lattice-type of networks. In all other cases,

the effect is relatively small.

6 Conclusions

Considering six different classes of networks, we generalized the spatial proximity model

due to Schelling (1969, 1971a,b, 1978). For each network structure, we considered two

types of agents who occupy nodes in the network, with some nodes being empty. The

agents have preferences about the composition of their own neighborhood in the network,

and move to available vacant locations following myopic best-responses. We analyzed the

ensuing dynamics, performing also a sensitivity analysis of a range of parameter values

and setups. The main result of our analysis is an affirmative answer to the question

whether mild proximity preferences as such may suffice to explain segregation in a wide

range of network structures. In other words, our analysis confirms mild proximity pref-

erences as an important possible explanation of segregation not only in regular spatial

networks, but also in more general social networks.

An example of social interactions fitting this kind of model is a network of professional

relationships, i.e., interactions with colleagues, suppliers, customers, etc. Typically an

agent searching a job needs to find a vacancy (empty node), and when starting a new job

he ’inherits’ the links that come with his new position, while severing ties related to his

previous job. A similar pattern applies to positions in sports clubs or, say, orchestras.

Obviously, not all social interactions are adequately described by a given network

structure. Therefore, the next step of our research will be to study models of segregation

based on proximity preferences in which the network structure may evolve endogenously,

with individual agents forming new ties or severing existing ones according to their prox-

imity preferences in response to their environment.

12These results do not qualitatively vary if one considers the SSI.
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Appendix

A Segregation Indices

In this appendix we formally define the segregation indices that we employ in our analysis.

• Freeman Segregation Index (FSI)

Consider a NDG G over M nodes described by the sociomatrix W . Nodes can be of

three types: +1, −1 or 0 (with 0 meaning that the node is empty). Let NA and NB

the number of agents of types A = +1 and B = −1. Let us define the 2x2 mixing

matrix P where entry pab with a, b ∈ {A,B} counts the number of links connecting
an a-type node with a b-type node. It is easy to see that:

P = E ′AE,

where A is the N × N socio-matrix obtained from W by deleting rows/columns

associated to empty nodes, and E is the N ·2 matrix (state indicator matrix) where

columns refer to the type {A,B} and rows to the node. Any row i can either be

(1, 0) if node i is of type A or (0, 1) if node i is of type B. Given the mixing matrix

of cross-group ties P , define the expected matrix of cross-group ties by E(P ) using

the standard expected contingency matrix. Operationally, let

P =

[
pAA pAB

pBA pBB

]

be the mixing matrix. Freeman (1972) asked how we could identify segregation in

a social network. Theoretically, he argues, if a given attribute (group label) does

not matter for social relations, then relations should be distributed randomly with

respect to the attribute. Thus, the difference between the number of cross-group

ties expected by chance and the number of observed ties (divided by expected ones)

measures segregation:

FSI =
[E(pAB) + E(pBA)]− [pAB + pBA]

E(pAB) + E(pBA)
.
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To compute expected values, consider the row and column sums:

pA· = pAA + pAB

pB· = pBA + pBB

p·A = pAA + pBA

p·B = pAB + pBB

p·· = pAA + pAB + pBA + pBB

and let:

E(pAB) =
pA· × p·B

p··

E(pBA) =
pB· × p·A

p··

Notice that in principle Freeman’s index should be computed as:

FSI∗ = max{FSI, 0}

because it measures whether there are less cross-group links than expected. As

Mitchell (1978) argues, there is no way to compute systematic integration. Freeman

(1978) then suggest to compute two different indices, one for segregation and one

for integration, namely:

FSI∗∗ =
[E(pAB) + E(pBA)]− [pAB + pBA]

E(pAB) + E(pBA)−min{E(pAB) + E(pBA)}

Since min{E(pAB) + E(pBA)} = 0, this means that when measuring systematic

segregation we have FSI∗∗ = FSI. Similarly, the index to measure systematic

integration is:

FII =
[E(pAB) + E(pBA)]− [pAB + pBA]

E(pAB) + E(pBA)−max{E(pAB) + E(pBA)} ,

where max{E(pAB)+E(pBA)} = NA ·NB. We compute FSI and FII for agents of

types A = −1 and B = +1. A larger value for any of the two indices means “more”

of what it measures.

• Spectral Segregation Index (SSI)

The Spectral segregation index is computed as follows (see Echenique and Fryer,

2005, for additional details and applications). Consider the M ×M socio-matrix W

and the current configuration of types across the M nodes. Define as Ax the sym-

metric, square sub-matrix obtained from W by considering only the rows/columns
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associated to agents of type x ∈ {−1,+1}. If there are K = N/2 agents of each

type (assuming N even), both A−1 and A+1 are K × K symmetric matrices. For

each type x ∈ {−1,+1}, define the Spectral segregation index with SSI(x) as the
largest eigenvalue of Ax. The entries of the eigenvector associated to SSI(x), suit-

ably scaled so that the average of the entries are equal to the eigenvalue SSI(x),

give the segregation levels of the individuals belonging to group x. Notice that:

dmin(x) ≤ d(x) ≤ SSI(x) ≤ dmax(x),

where dmin(x), d(x) and dmax(x) are, respectively, the minimum, average and max-

imum degree of the nodes associated to agents of type x in the sub-graph W com-

posed of nodes hosting an agent of type x. Therefore, to have an index ranging in

the unit interval, one can employ:

SSI∗(x) =
SSI(x)− dmin(x)

dmax(x)− dmin(x)
.

In our results, we typically get that SSI∗(−1) and SSI∗(+1) are very close in each

run and parametrization. This is because of symmetry between types in the initial

random allocation, with equal numbers of agents of each type. Therefore, we report

the average SSI index:

SSI =
SSI∗(−1) + SSI∗(+1)

2

as our spectral measure of segregation for the society as a whole.
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(a) 2D-VN Lattice
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(b) 2D-M Lattice
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(c) Regular
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(d) Random
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(e) Small-World
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(f) Scale-Free
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Figure 8: SSI v. Average Degree for Different Levels of θ. Parameters: M = 100, MC Sample Size: 1000
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Figure 9: Small-World Networks. SSI (left) and FSI (right) v. θ for Different Average Degrees. Param-
eters: M = 100, MC Sample Size: 1000
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Figure 10: FSI v. Average Degree in three alternative setups: (i) Basic Model; (ii) Inertia in individual
decision rules; (iii) Inertia in individual decision rules and local moves. See Section 5.3 for details.
Parameters: M = 100, θ = 0.3, MC Sample Size: 1000
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