


This paper can be considered in many respects an improved version of WP LEM 2002-14 G. Bottazzi, A.

Secchi “ On The Laplace Distribution of Firms Growth Rates” .

We present a new the description of the empirical results and we try to provide better justification for the

theoretical assumptions constituting the base of our analysis. In the present version we introduce a new more

general version of the main theorem that helps to clarify the assumption about micro-shocks distribution, the

nature of the considered limits and the nature of the observed convergence.

Since the present version lacks several analysis that were performed in the aforementioned paper we decided

to add the present work as a new working paper rather than a replacement of the previous one.

1



Explaining the Distribution of Firms Growth Rates

Giulio Bottazzi∗ Angelo Secchi∗∗

Empirical analyses on aggregated datasets have revealed a common exponential behavior in the shape of the

probability density of the corporate growth rates. We present clearcut evidence on this topic using disaggre-

gated data. We explain the observed regularities proposing a model in which the firms’ ability of taking up

new business opportunities increases with the number of opportunities already exploited. A theoretical result

is presented for the limiting case in which the number of firms and opportunities go to infinity. Moreover, using

simulations, we show that even in a small industry the agreement with asymptotic results is almost complete.

1 Introduction

One of the most traditional problem in the Industrial Organization literature concerns the statistical properties

of the size of firms and its dynamics.

Early investigations focused on two aspects of the general problem, namely the analysis of the size distri-

bution and the characterization of firms growth dynamics in terms of autoregressive stochastic processes. The

log-normal character of the upper tail of the size distribution was quite unanimously considered the natural

benchmark. On the other hand the dynamic analysis relied on the estimate of linear models on the growth rates

process in order to both verify the Gibrat hypothesis (Gibrat, 1931) of random-walk growth and to find pos-

sible violations (in the enormous body of contributions see for instance Dunne et al. (1988); Evans (1987a);

Hall (1987)).

These early works were conducted over datasets at a high level of aggregation, typically including large

firms operating in very different sectors. For instance, Hart and Prais (1956) studied the dynamic of the

whole U.K. manufacturing industry, while Simon and Bonini (1958) and Hall (1987) explored the size and
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growth process of the manufacturing firms of the U.S. economy, across all the sectors. A common source

of problems in considering such aggregate data is the possibility of introducing statistical regularities that

are simply the result of the aggregation process and, at the same time, concealing the true properties of the

dynamics of business firms that are active in specific sectors. Indeed Hymer and Pashigian (1962), analyzing

more disaggregated data, find a high heterogeneity in firms size distributions across different sectors. They

conclude that it is quite unclear whether any “stylized fact” regarding the size distribution actually exists. As

far as the validity of the Gibrat’s hypothesis is concerned, the conclusions of these works are variegated, if

not contradictory (see Singh and Whittington (1975) for an early sectoral analysis and the critical reviews in

Sutton (1997) and Lotti et al. (2003)).

Moving from the foregoing traditional econometric issues, a new strand of analysis recently emerged

proposing a more complex statistical characterization of firms growth dynamics. Following these lines of

research this paper, extending preliminary results reported in Bottazzi and Secchi (2003), analyses the growth

rates distribution of business firms in the Italian manufacturing industry using data disaggregated by sectors.

The results are clearcutting: the growth rates probability density, in all the sectors under study, possesses the

same symmetric exponential character that, when plotted on log scale, emerges as a sort of tent-like shape.

The same tent-shape characterizes growth rates density in U.S. manufacturing industry (Stanley et al., 1996)

and in the world-wide pharmaceutical industry (Bottazzi et al., 2001).

The robustness of this empirical finding constitutes an interesting theoretical issue unexplained by the few

standard models present in the literature. In our opinion, the reason for that can be traced back to the pres-

ence, in those models, of noticeable weaknesses. First of all, from the seminal work of Gibrat (Gibrat, 1931)

to the more recent contributions of Geroski (2000) and Amaral et al. (2001), many models do not assume any

interdependence between the histories of different firms. The dynamics of each firm is a stochastic process,

encompassing growth, diversification, entry and exit, that, nevertheless, does not take into consideration the

behavior of the other firms. Each firm acts as if it was a monopolist in a sector whose dynamics can be repre-

sented simply with an exogenous expansion (or contraction) of demand. A different kind of models, originally

proposed by Ijiri and Simon (1977) and later reconsidered by Sutton (1998) make the assumption that there is

a finite set of pre-existing growth opportunities (or equivalently, a constant arrival of new opportunities) and

that firms growth process is conditioned by the number of opportunities they are able to take up. Roughly

speaking, one could say that these models, generically known as “islands models”, try to provide a first ac-

count of the competitive behavior based on the idea that firms need to seize the most out of a scarce resource.

Nevertheless, these models fail to explain the empirical shape of the growth rates density.
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A complementary stream of literature, encompassing a vast body of models, has proposed the inclusion

of a competitive dimension in the description of industrial dynamics based on diverse rationality and infor-

mational assumptions concerning the behavior of economic agents. Consider, for instance, the model based

on the notion of “Schumpeterian competition” in Nelson and Winter (1978), the Bayesian learning model in

Jovanovic (1982) or the model of research and exploration in Ericson and Pakes (1995). Even if these mod-

els are both successful in bringing a more plausible microeconomic foundation in the description of business

firms dynamics, and helpful in deriving clear empirical implications on the dynamics of single firms and on

the structure of the whole industry (c.f. for instance Evans (1987b) and Pakes and Ericson (1995)), they do

not focus on the specific issue of the shape of the growth rates distribution.

In the present paper we build a simple mechanism of firm dynamics where a stylized idea of competition

is introduced. Nonetheless, rephrasing Nelson and Winter (1978), in our model luck is the principal factor

that finally distinguishes winners from losers among the contenders. Even if we are well aware of the need

of a more structural approach in the development of detailed models aimed at the description of particular

industries, we take here a different perspective inspired by Simon’s tradition aiming at both simplicity and

generality. We introduce a stochastic description where each firm is considered a different realization of the

same process. This process represents a simple generalization of already existing island models. Similarly to

what happens in these models, the symmetry is broken at the aggregate level: the total growth of the whole

population of firms is bounded by a finite set of sector-specific opportunities.

The novelty resides in the way in which we describe the random distribution of opportunities among

firms. In the existing formulations (Ijiri and Simon, 1977; Sutton, 1998) the assignment procedure with which

market opportunities are distributed carries no history and at each competitive round each firm possesses the

same probability of seizing them. Conversely, our assignment procedure allows to represent self-reinforcing

mechanisms whereby the probability for a given firm to take up a new opportunity positively depends on the

number of opportunities already taken up.

The remainder of this paper is organized as follows. After a brief description of our data, in Section 3 we

report the results of our empirical investigation. Section 4 proposes a new stochastic model of firm growth

while Section 5 continues its analysis and compares its features with the empirical findings. In this Section

we also present a formal result that ensures generality and robustness to our model. Section 6 draws some

conclusions and briefly comments on the need for further theoretical research.
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2 Data Description

This research draws upon the MICRO.1 databank developed by the Italian Statistical Office (ISTAT)1. MI-

CRO.1 contains balance sheets entries of a panel of several thousands of Italian firms, over around a decade.

In MICRO.1 only firms with 20 or more employees are considered and different businesses inside the same

firm are assigned to the firm primary activity2

Since the panel is open, due to entry, exit, fluctuations around the 20 employees threshold and variability in

response rates, we consider a balanced panel composed only by the firms that are present both at the beginning

and at the end of our window of observation3 . For statistical reliability we restrict our analysis to the period

1989 − 1996 and to the sectors with more than 44 firms, reducing the number of sectors under study from 97

to 55. The choice to limit the analysis to a balanced panel containing only the largest sectors4 reduces the total

number of firms under study from around 36000 to around 8400.

In this work we are exclusively interested in the process of internal growth, as opposed to the growth due to

mergers, acquisitions and divestments. In order to control for these phenomena we build “super-firms” which

account throughout the period for the union of the entities which undertake such changes. So, for example, if

two firms merged at some time, we consider them merged throughout the whole period. Conversely, if a firm

is spun off from another one, we “re-merge” them starting from the separation period 5. This “re-merging”

procedure affects less then the 15% of the whole population of firms. After the application of this procedure,

we end up with a sample of 8091 super-firms observed for 8 years.

3 Empirical evidence

Some years ago in a series of papers based on the COMPUSTAT database Stanley et al. (1996) and Amaral et

al. (1997) analyzed the probability distribution of the (log) growth rates of publicly traded U.S. manufacturing

firms. These studies were performed using observations in the time frame 1974-93 and on companies with

primary activity belonging to the SIC code range 2000-3999. Different lines of business inside the same

multi-activity firm were completely aggregated. According to these analyses, the firm growth rate g, when

one considers the aggregate distribution across all the sectors, appears to robustly display, on a log scale, a

1The database has been made available to our team under the mandatory condition of censorship of any individual information.
2This operation is performed directly by ISTAT; hence we do not have specialization ratios.
3We are aware that this procedure could introduce a selection bias due to fluctuation around the threshold of 20 employees.

However consider that we use Sales to proxy firm size while the inferior threshold is defined in terms of number of employees. This
should reduce the severity of the bias.

4We replicated our analysis also on the unbalanced database, obtaining very similar results. For brevity, we do not report here this
analysis. Results are available upon request.

5For more details on this database and on the variables used in this paper see Bottazzi et al. (2002).
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characteristic tent-shape probability density. Hence a Laplace (symmetric exponential) functional form

fL(g;µ, a) =
1

2a
e−

|g−µ|
a (1)

was proposed in order to describe the empirical observations. More recently Bottazzi et al. (2001) found the

same characteristic shape for the empirical density of the growth rates of the largest worldwide companies in

the pharmaceutical industry.

The similarity across these early studies naturally leads to the question of how general this tent-shape

character is when different industries or countries are taken in consideration. Moreover, these studies where

focused on very large multi-plants and/or multinational companies and, in particular for the COMPUSTAT

based analysis, data were aggregated across many distinct sectors. Hence a further possible issue concerns

the robustness of this finding when smaller firms and disaggregated data are analyzed. In the present section

we address these two issues. Our study of the MICRO.1 dataset, that includes a large part of the Italian

manufacturing industry, adds new evidence to the original finding. The analysis is conducted sector by sector

in order to check to what extent the mentioned finding survives at a more disaggregated level.

In what follows we use total sales as a definition of firms’ size. Let Si,j(t) represents the sales of the i-th

firm, belonging to the j-th sector, at time t. Here j ∈ {1, . . . , 55} and if Nj is the number of firms in the j-th

sector, one has i ∈ {1, . . . , Nj}. In order to eliminate possible trends, both sector specific and industry-wide,

we consider the normalized (log) sales

si,j(t) = log(Si,j(t)) −
1

Nj

Nj
∑

i=1

log(Si,j(t)) (2)

subtracting from the (log) size of each firm the average (log) size of all the firms operating in the same sector.

The (log) growth rate is then defined according to:

gi,j(t) = si,j(t + 1) − si,j(t) . (3)

Notice that from (2) the distribution of the g’s is by construction centered around 0 for any t.

As a first qualitative investigation one can simply plot the observed densities for different sectors. Fig. 1

and Fig. 2 show the growth rates densities for six different three digit sectors chosen because both numerous

and structurally diverse. The activity indeed ranges from footwear production to the treatment of metals for

industrial purposes. All the 7 years of data are pooled together under the assumption of stationarity of the
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growth process 6. For each sector the Laplace density estimated via maximum likelihood is also shown. As

can be seen, these fitted densities describe the observations well.

In order to quantify the agreement with the Laplace and to give a synthetic account of its robustness and

generality in describing empirical densities we follow a parametric approach. We consider a flexible family

of probability densities, known as the Subbotin family (Subbotin, 1923), that includes as a particular case the

Laplace. The Subbotin density, centered in g = 0, is characterized by 2 parameters: a scale parameter a and a

shape parameter b. Its functional form reads:

fS(g) =
1

2ab1/bΓ(1/b + 1)
e−

1
b | g

a |b (4)

where Γ(x) is the Gamma function. The lower is the shape parameter b, the fatter are the density tails. For

b < 2 the density is leptokurtic and is platikurtic for b > 2. It is immediate to check that for b = 2 this density

reduces to a Gaussian and for b = 1 to a Laplace (symmetric exponential). For each sector we compute the

density that best fits the data among those belonging to this family. We estimate the a and b parameters for

each sector maximizing the likelihood of observations.

The binned empirical density of the b parameter estimates over the 55 sectors is reported in Fig. 3. The

values for specific sectors can be read from Table 1 together with the Cramer-Rao standard errors obtained

from the inverse information matrix (Agrò, 1995). Considering the 95.7% significance level defined by the

two standard errors threshold, only 15 sectors on 55 possess values of b that are significantly different from 1.

Even when this difference result significant, its absolute size is small: only 4 sectors out of 55 possess values

of b that are significantly outside the interval [.9, 1.1].

In Fig. 5 we report the “aggregate” empirical growth rates density, obtained pooling together the observa-

tion from the 55 sector under study. In the case of 1-year lag growth rates, a clear symmetric exponential shape

appears. The maximum likelihood estimation of the Subbotin distribution on the aggregated data provides a

value b = 0.965 with a standard error of 0.007, very similar to the Laplace value b = 1. This result is in

perfect agreement to what found by Stanley et al. (1996) on the COMPUSTAT database and we can conclude

that the tent-shape characterizes the growth rates density both at aggregate and disaggregate level. Since the

mixture of Laplace densities with heterogeneous variances would approximate a Gaussian distribution, one

could expect that the peculiar Laplace shape, when present at the level of single sectors, would tend to disap-

pear in the aggregate. The apparent lack of this effect in our data is due to the fact that the sectoral growth rate

6In performing this pooling we are assuming that the conditional distribution of firm growth rates is independent from the size of
the firm. Even if this is not generally the case we have checked that this requirement is fulfilled across all sectors of our database. For
a discussion see Bottazzi et al. (2003).
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densities are similar not only in terms of their tail behavior, described by the parameter b, but also in terms of

their typical “width”, captured by the parameter a. Indeed, also the empirical density of the ”scale” parame-

ters a, estimated via likelihood maximization and reported both Fig. 4 and in Table 1 (together with standard

errors), possesses a remarkably narrow support. This evidence suggests a quite strong similarity among the

growth rates densities in different sectors and, consequently, it helps to preserve the Laplace shape even when

different sectors are considered together.

We conclude our analysis of the firms growth rates by looking at their structure on a longer, multi-year,

time horizon. In line with previous notation we define the growth rate on a T year period as:

gi,j(t;T ) = si,j(t + T ) − si,j(t) . (5)

When T = 1, (5) reduces to the one year growth rates defined in (3). Using again maximum likelihood

estimation one can compute the value of the a and b parameters in each sector at different T . As can be seen

from Fig. 6 the average value of the b parameters across all the sectors, that is near to 1 when T = 1, steadily

increases for longer intervals. This implies that the typical shape of the growth rates density becomes more

similar to a Gaussian when longer time horizons are considered. An example of this effect is shown in Fig. 5

where the aggregate growth rates density is reported in the case of a time lag of 7 years (T = 7) together with

the best Subbotin fit which provides a value of b = 1.243 with a standard error of 0.027 lying between the

Laplace b = 1 and the Gaussian b = 2 case. This phenomenon might be considered natural if the firm growth

shocks relative to different years were independent and, consequently, the progressive normalization of the

growth rate density were an effect of the Central Limit Theorem (CLT). Notice, however, that the slope of

the curve in Fig. 6 seems to decrease rapidly as T increases, suggesting that the asymptotic value of b can be

quite below the expected value of 2. The time horizon of our database is however too short to allow a reliable

discussion of this point. As one consider longer time lag, the number of available observations decreases and

the statistics become so noisy that it is impossible to conclude if some further effect, apart the CLT, is at work

here. Moreover, the heterogeneity of the autocorrelation coefficients of the growth rates in different sectors

(see Table 1) tends to complicate the matter.

The empirical findings of this section can be summarized as follows. First, the Laplace density constitutes

a good approximation of the observed densities not only when large firms and/or aggregated data are consid-

ered, but also for medium sized firms and at a disaggregated level. Second, this characteristic shape tends to

disappear when longer time horizons are considered, as suggested by the Central Limit Theorem under the

hypothesis of independent growth events.
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Our investigation is then arrived at the end of its first stage: we found a simple generalization (the Laplace

distribution) that is able to describe an empirical fact (the tent-shape of the empirical growth rates density)

with, in our opinion, a good degree of approximation. In the very spirit of the Simonian tradition (Simon,

1968), our second step will be to propose a possible explanation for this stylized fact and identify the condi-

tions under which the deviations of the empirical observations from the proposed explanation my be expected

to decrease.

4 A model of firm growth

In the literature about the stochastic models of firms growth dynamics, there exists a well established tradition

describing the modification of firm size, over a given period of time, as the cumulative effect of a number

of different “size” shocks generated by the diverse accidents that affected the firm history in that period (see,

among many contributors, Kalecki (1945); Ijiri and Simon (1977); Steindl (1965) and more recently Amaral et

al. (2001); Geroski (2000); Sutton (1998)). Since these models are usually described in terms of multiplicative

processes, it is natural to use logarithmic quantities to describe the “status” of a given firm. Consider a firm i

and let si(t) be its (log) size at time t. One can write

gi(t;T ) = si(t + T ) − si(t) =

Gi(t;T )
∑

j=1

xj(t) (6)

where the firm growth in the period [t, t + T ] is described as a sum of Gi(t;T ) “shocks” each one having

a finite effect x on firm size. In empirical studies, the time lag T can range from 3 months for quarterly

data, to 30 − 50 years for the longest databases. In the oldest model of Gibrat (Gibrat, 1931) the shocks x’s

are assumed independent realizations of the same random variables x, so that the firms growth is described

as a geometric Brownian motion. The growth rates associated to different non-overlapping time periods are

independent and when the number of shocks Gi(t;T ) increases, the rate of growth gi(t;T ) tends, for the

Central Limit Theorem, toward a normal distribution.

As we showed in the previous Section this is not the case in the real world: in three very different databases,

at least when yearly data are considered, a Laplace distribution fits the data much better than a Gaussian.

Since the Gibrat’s model cannot yield an equilibrium distribution of the growth rates that resembles the

observed one, we are led to conclude that some of the assumptions adopted are not appropriate.

Probably the most noticeable drawback of the Gibrat’s idea resides in the implicit assumption that com-

panies growth process are completely independent. This is equivalent to assume the absence of any form of
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competition, even among firms operating in the same sector and selling on the same market. To this respect, a

different theoretical tradition, dating back to the early work of Simon and recently renewed by Sutton, aims to

introduce in the family of Gibrat-type stochastic models of growth a stylized description of competition and

entry dynamics.

These “islands models” postulate the existence of a finite number of business opportunities available to

firms. All the firms, operating in a number of independent sub-markets (islands), take up the available op-

portunities and their growth process is measured by the number of opportunities they end up with. These

opportunities represent all sorts of “accidents” that can plausibly affect the history of a business firm: the

exploitation of technological novelties, the reaction to demand shocks and the effects of managerial reorga-

nizations. The departure of these models from the Gibrat tradition is twofold. First, even if each business

opportunity concerns only one firm, the symmetry of the growth process of different firms is broken, in the

aggregate, by the fact that the business opportunities are limited. Second, there is always a finite probability

that business opportunities are taken up by new firms. In these models the constant Gi is reinterpreted as a

stochastic variable Gi, representing the outcome of a random assignment procedure of business opportunities

among incumbent and entrant firms.

It turns out that even the “island models” (both the original version by Simon and the most recent refine-

ment by Sutton) fail to account for the observed tent-shaped density of growth rates. Indeed, if one switches

off the entry dynamics, as we did in the empirical investigations presented in the previous Section, these mod-

els again generate a Gaussian growth density. This stems from the assumed equiprobability of incumbent firms

to capture new business opportunities when the process is described in terms of logarithm. In this case the

unconditional distribution of Gi for a given firm is binomial; so that, in the limit of many small opportunities,

one obtains again, via Central Limit Theorem, a Gaussian form.

In the remainder of this Section, we discuss a modification of the models proposed by Simon and Sutton.

We show that if one changes the basic assumption of ”equal assignment probabilities” of the business oppor-

tunities, the shape of the growth rates distribution is consequently modified and is no longer a Gaussian. We

basically retain the island models approach and describe the growth of a firm as a two steps process. In the first

step there is a random assignment among firms of a fixed number of business opportunities. The assignment

procedures leads to a possible realization of the random variables Gi ∀i ∈ {1, . . . , N}. In the second step,

the Gi business opportunities assigned to firm i act as the source of micro-shocks affecting its size.

The first step of our model is based on a simple stochastic partition of a finite number of business opportu-
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nities, say M , among a population of N identical firms7. Instead of assuming, as common in the cited models,

that the assignment of each opportunity is an independent event with constant probability 1/N , we introduce

the idea of ”competition among objects whose market success. . . [is] cumulative or self-reinforcing”(Arthur ,

1994, 1996). We model this idea with a process where the probability for a given firm to obtain new opportu-

nities depends on the number of opportunities already caught. Such a procedure of sequential assignment of

M business opportunities among N firms is easily described using a Polya’s urn scheme.

Consider an urn containing N balls of N different types. In this urn there is one ball for each type and

each type represents a specific firm. A ball is drawn at random, then it is replaced and, moreover, 1 ball of

the type drawn is added. Another random drawing is made from the ”new” urn containing one more ball and

this procedure is repeated M times. It is straightforward to notice that in this way we introduce the desired

effect that the drawing of either type increases the probability of the same type to be drawn at the next step

(See Fig. 7 for a simple graphical exemplification of a first step of this procedure). We can now interpret the

drawing of the ball of type i ∈ {1, . . . , N} as the assignment of one opportunity to firm i. In this context

the outcome of each process of assignment of all the opportunities among firms is completely described by

the occupancy N -tuple (m1,m2, . . . ,mN ) where
∑N

j=1 mj = M . The probability of obtaining a particular

N -tuple (Feller (1968), p.120) is given by:

P {(m1,m2, . . . ,mN )} =
1

(N+M−1
N−1

) . (7)

The conditional probability of the same N -tuple, given that h opportunities have already been assigned

to a single firm, can be derived from (7) simply noting that the problem remains exactly the same but the

number of firms and the number of opportunities involved reduce to N − 1 and M − h respectively. Hence

this conditional probability becomes:

P
{

(m2, . . . ,mN )
∣

∣

∣
m1 = h

}

=
1

(N+M−h−2
N−2

) . (8)

It is now easy to compute the marginal probability that a given firm obtains exactly h opportunities:

p(h;N,M) =
P {(m1,m2, . . . ,mN )}

P
{

(m2, . . . ,mN )
∣

∣

∣
m1 = h

} =

(N+M−h−2
N−2

)

(N+M−1
N−1

) (9)

which is the well known Bose-Einstein statistics8 . To give an idea of the outcome of the previous assignment
7In accordance with the empirical investigations presented in the previous Section, we consider a fixed number of firms and

abstract from any entry and exit dynamics.
8This statistics is mainly used in physics where it describes the peculiar thermodynamic behavior of a large family of subnuclear
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procedure in Fig. 8 we compare the Bose-Einstein distribution with the Binomial distribution that would have

been obtained if each opportunity were assigned with the same probability 1/N . The “clustering” effect is

evident in the fat tailed nature of the Bose-Einstein distribution, that suggests an increased probability to assign

a large number of opportunities to a single firm. Furthermore, this distribution possesses a zero modal value in

sharp contrast with the M/N value generated by an independent and equiprobable opportunities assignment.

The procedure just described provides a particular partition of M opportunities among N firms summa-

rized by the N -tuple (m1, . . . ,mN ). As already mentioned, these business opportunities can be thought of

as the source of micro-shocks affecting the size of the firm. We make no assumptions on the actual nature

of these shocks and we want to relate “opportunities” to “growth” in the simplest way. Hence, we assume

that these micro-shocks are randomly and independently drawn from a common distribution. Since we are

interested only in the distribution of the relative growth rates, we assume that the shocks distribution has zero

mean. The total growth of firm i is obtained adding mi(t) + 1 independent micro-shocks: mi(t) shocks

assigned by the Polya process plus the 1 already in the urn at the beginning of the assignment procedure. If

si(t) stands for the random variable describing the (log) size of firm i at time t, the growth equation reads

si(t + 1) = si(t) + gi(t) gi(t) =

mi(t)+1
∑

j=1

xj(t)

where x are i.i.d. with a common distribution F (x) with mean 0. Notice that the random growth rates g i

are identically, but not independently, distributed across firms, due to the global constraint
∑

i mi = M .

Notice also that, being expressed in terms of growth rates, the effect of each opportunity on the size of the

firm depends on the size itself. The unconditional probability distribution of g, implied by the assignment

procedure in (9), reads

Fmodel(g;N,M, v0) =
M
∑

h=0

p(h;N,M) F (g)F(h+1) (10)

where F (g)Fh stands for the h-time convolution of the micro-shocks distribution (i.e. the distribution of the

sum of h micro shocks). The average number of opportunities per firm is M/N and if vx is the variance of

the micro-shock distribution, the distribution of growth rates g has mean 0 and variance v = vx(M/N + 1).

At this point it is useful to clarify a few points about the assumptions just considered. First, concerning

the zero mean hypothesis, notice that the choice of a distribution with a non-zero mean mx would simply

introduce an industry-wide growth trend proportional to Mmx. In this paper we disregard this kind of trend

since, in accordance with the empirical studies cited in Section 3, we describe the process in terms of market

particles.
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shares. Second, both the hypotheses of no correlation among micro-shocks and of constant variance vx in

their distribution are working hypotheses introduced to keep the discussion clearer and can be relaxed, for

instance introducing a mild correlation among micro-shocks or introducing a random variance extracted from

a given distribution. Finally, in the next Section we will show that, when one considers a large number of firms

N and a large average number of shocks per firm M/N , the actual choice for the shape of the micro-shocks

distribution becomes irrelevant.

5 The source of the tent-shape

The mechanism presented in the previous Section is rather parsimonious in terms of the required parameters.

It is able to provide a uniquely defined distribution for the firm growth rates when only three components are

specified: the number of firms operating in the market N , the total number of “business opportunities” M

representing the “sources” of the firms growth events and the effect that these events have on the size of the

firm, captured by the micro-shocks probability distribution F (x).

In this Section we analyze extensively the properties of the mechanism presented. Our aim is to understand

under which conditions this mechanism is able to reproduce the empirical regularities described in Section 3.

More precisely, we will show that when the number of firms N and the average number of micro-shocks per

firm M/N become large, the growth rate distribution obtained from (10) progressively approaches a Laplace

distribution.

In order to simplify the discussion, let us assume that the micro-shocks are normally distributed, with unit

variance vx = 1, i.e. F (x) = N(x; 0, 1). This assumption is made only to keep the discussion easier, and we

show in the next Section that our conclusions are largely independent from the actual shape of the micro-shock

distribution.

We start our analysis with an example. Consider a sector with a reasonable number of firms, let say 100.

This number is more or less of the same order of the population size in the manufacturing sectors analyzed in

Section 3. Now suppose that no assignment of opportunities is performed, i.e. that M = 0. In other terms,

each firm ends up with just one shock, the one originally put in the urn. Since the micro-shock distribution

is N(x; 0, 1), and exactly one shock is assigned to each firm, the observed growth rates distribution will have

the same normal form. A picture of the associated density is reported in Fig. 9 with the label M = 0. The

log scale on the y axis makes its parabolic shape clear. Now suppose instead to have a positive number of

opportunities, for instance suppose that M = 100, so that the average number of opportunities per firm is

now increased to 2. Now suppose that the micro shocks are distributed according to N(x; 0, 1/2). This means
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that if the opportunities would be assigned independently, the firm growth rates would be the sum of two (the

average number of shocks) normal variates with variance 1/2, that is a normal variate with variance 1. Under

the assumption of independent assignment, thus, the growth rates distribution would not change. But this is

not our case. Indeed, if one follows the Polya process for the assignment of these 100 opportunities across the

100 firms, the growth rates density that emerges is different from a normal. This density is reported in Fig. 9

with the label M = 100 and is computed starting from the definition of the distribution in (10). As can be

seen, the tails of the density are much fatter than in the normal case. This is a consequence of our mechanism

of assignment: under the Polya process many opportunities tend to concentrate in few firms, producing final

growth rates that are the sum of many micro-shocks and, consequently, are likely to become quite large. The

shape of the density is, however, still close to a normal, at least in the central part. But what does happen if

we further increase the number of opportunities? The answer is provided by the density shown in Fig. 9 with

the label M = 10000. This is generated considering M = 10000 micro-shocks, i.e. an average of 101 micro-

shocks per firm, distributed according to N(x; 0, 1/101). Under the independent assignment hypothesis we

would again obtain for the growth rates a normal density with unit variance. As can be seen, the obtained

shape is instead almost identical to a tent-shaped Laplace distribution (see the inset of Fig. 9).

The agreement between the density generated by our assignment procedure and the Laplace can be further

understood by looking at Fig. 10. Here we report the absolute deviation |Fmodel(g;M,N) − FL(g)| between

the Laplace distribution and the distribution predicted by (10). We set the parameters to the same values used

in Fig. 9. As can be seen, the absolute deviation is strongly reduced when the number of opportunities M is

increased. On the other hand, its value seems to depend on g. In order to build a global measure of agreement

between the two distributions that is independent from the value of g we consider the height of the maximum

of the functions plotted in Fig. 10. We define

D(N,λ) = sup
−∞<g<+∞

|Fmodel(g;N,M) − FL(g)| (11)

where Fmodel(g;N,M, f) is derived from the density defined in (10) and using normally distributed micro-

shocks as described above, while FL(g) stands for the unit-variance Laplace distribution. The values of D for

different N and M/N are plotted in Fig. 11. As N and M/N increase, the value of D decreases of several

orders of magnitude and the ability of our mechanism to reproduce the Laplace distribution quickly improves.

This picture tells us where, in the parameter space, we can expect that our mechanism gives a good account

of the observed tent-like shape: this happens when both the number of firms N and the number of shocks

per firm M/N are large. At this point a natural question arises: how large should this “large” be? Of course
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there are no definite answers to this question, since for any finite value of N and M the maximum absolute

deviation of Fmodel from FL is not zero. Indeed, in the next Section we will show that the perfect agreement

can be reached only for asymptotically large values of these parameters. However, a quite satisfactory even if

“heuristic” answer is provided by Fig. 12. Here, setting the value of N to ”typical” values observed in data

and choosing for M a sufficiently large value, we obtain the same level of agreement to the exponential shape

found in empirical investigations. Notice that the binned density in Fig. 12 is computed using 7 independent

realizations of the assignment process to provide direct comparability with the empirical plots in Section 3,

where the 7 years of data were pooled together. We can conclude that the proposed mechanism of opportunities

assignment, when the parameters N and M are set to proper (large) values and the micro-shocks are normally

distributed, is able to reproduce the Laplace shape of the one-year growth rates density observed in industrial

data.

We present now an analytical result proving that, as long as the total number of firms is large and their

growth is generated by the assignment of a large number of small shocks, the double-exponential shape of the

distribution of growth rates is robust to different specifications of the micro-shocks distribution. To show this,

we study the model in the limit M,N → ∞. In general, when we perform this limit, we cannot keep fixed

the variance of the micro-shock distribution. Indeed, in order to match empirical observations, the growth

rate distribution generated by the model must have finite variance9 . If one increases the average number of

micro-shocks assigned to firms, then the variance of these shocks must be decreased, in order to maintain

the same variance for the final distribution, as we did in the example above. When the limit M → +∞ is

considered, the rescaling of the variance becomes mandatory to avoid degenerate distributions. The mean of

the Bose-Einstein distribution in (9) is M/N and, if the micro-shock distribution possesses finite variance vx,

the variance of the distribution Fmodel in (10) becomes vx (1 + M/N). In order to obtain a final distribution

with finite variance v, when we vary the values of M and N , we must replace the random variable x in

(10) with
√

vN/
√

vx(N + M)x. This is equivalent to consider a micro-shocks distribution of the form

F (
√

(N + M)/(vN) x) where F (x) is a distribution with unit variance10 .

The main theoretical result of this paper is established in the following theorem that provides a complete

asymptotic characterization of the distribution of firms growth rates implied by our model.

Theorem 1. Let F (x) be a probability distribution with zero mean and unit variance and let m be a discrete

9More precisely, the empirical growth rate densities seem to be characterized by an asymptotic exponential behavior, thus pos-
sessing all the central moments. As the discussion below will however reveal, it is enough to assume, in all the cases of interest, the
existence of the second moment of the micro-shocks distribution.

10We take an unit variance unscaled distribution F to get rid of the parameter vx. This choice obviously does not constitute a
reduction in generality, since any random variable with finite variance is proportional to a random variable with unit variance.
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random variable distributed according to the Bose-Einstein distribution with parameters N and M , as defined

in (9).

Consider the random variable

g =
m+1
∑

j=1

xj (12)

where x are i.i.d random variables distributed according to F (
√

(N + M)/(vN) x).

When M and N go to infinity, if the limit of M/N exists, finite or infinite, the random variable g converges

in distribution to a proper random variable whose specific distribution depends on the asymptotic order relation

between N and M . If Fmodel(g) is the distribution of g one has

1. If M,N → ∞ and N asymptotically dominates M , that is limM,N→∞ M/N = 0, then

lim
M,N→+∞

Fmodel(g) = F (
g√
v
) (13)

i.e. the random variable g converges in distribution to the rescaled micro-shock random variable
√

vx.

2. If M,N → ∞ and N is asymptotically equivalent to M , i.e. limM,N→∞ M/N = λ ∈ R+ then

lim
M,N→∞

Fmodel(g) = Λ(g;λ) (14)

where Λ(g;λ) is a distribution function whose expression depends on λ and on the micro-shock distri-

bution F (x) and whose characteristic function can be completely specified in terms of the micro-shocks

characteristic function.

3. If M,N → ∞ and M asymptotically dominates N , that is limM,N→∞ N/M = 0, then

lim
M,N→∞

Fmodel(g) = FL(g; 0,
√

v/2) (15)

where FL(g; 0,
√

v/2) is a Laplace distribution with mean 0 and variance v.

Proof. See Appendix A.

The discussion of the three possible cases in Theorem 1 can help to clarify the basic intuition behind it.

In the first case, the number of firms N grows faster than the number of assigned shocks M . The proba-

bility of a firm to end up with the single shock he had from the beginning tends asymptotically to one, so that

the growth rate distribution converges to the distribution of this single shock.
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In the second case, the average number of shocks per firm M/N tends to a constant value λ and the growth

rate tends to a distribution which is a “distorted” version of the micro-shock distribution F , the “distortion”

being the effect of the random assignment of shocks.

Finally, in the third case, the number of micro-shocks assigned to firms increases more rapidly that the

number of firms, so that the number of shock a firm gets becomes, on average, infinite. At the same time,

however, the variance of each shock, which is proportional to N/(N +M), decreases toward zero. The mixed

effect of an infinite number of shock of infinitesimal magnitude leads to a phenomenon similar to the central

limit theorem: the limit distribution is independent from the exact specification of the micro-shock distribution

and displays an “universal” character. In this case, instead of the Gaussian distribution implied by the standard

Central Limit Theorem, we obtain a Laplace distribution.

Before ending this Section let us briefly discuss the second evidence highlighted in Section 3, namely the

progressive “normalization” of the growth rates density when one considers longer time scales (see Fig. 5).

If one assumes that the process of opportunities assignment is repeated anew each year, i.e. that no memory

of the previous year assignment is retained when the new year opportunities are assigned, then the growth

rates of each year are independent for any firm. Consequently, the T lags growth rates are the sum of T

independent random variables and, when T becomes large, their distribution tends toward a Gaussian. In

this way we recover, at least as a first approximation, the behavior reported in Fig. 6. One can however

argue that the idea of introducing strong positive-feedback effects in the opportunities assignment inside the

same year and no memory at all of the previous year assignment sounds rather inconsistent. After all, if

dynamic increasing returns are there, why should they disappear during the new year’s eve? We believe that

the relevant point to notice here is that the one-year time span used to build empirical databases does not

posses any meaning inside our model and, most probably, even inside the real economic dynamics (c.f. the

discussion in Geroski (2000)). In this respect, one can think that the assignment procedure of our model

works on a certain time span, let say on a time scale from 6 to 36 months, but that for longer time period the

effect of the past captured opportunities fades away. This reduction in the relevance of opportunities caught in

the far past can be progressive and smooth. From evidence shown in Fig. 6, we can suppose that the reduction

becomes relevant on a time scale of few years and, plausibly, acts with a different strength in different sectors.

In order to describe this kind of dynamics one can modify the assignment mechanism introduced in Section 4

assuming, for instance, that the balls of a given firm are removed from the urn after a given time span or that

their contribution to the probability of capturing new balls is inversely proportional to their “age”, i.e. the

number of turns they stayed in the urn. This kind of models would consider explicitly the flow of time and,
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consequently, introduce quite a few technical difficulties. We do not want to pursue here this issue but it is

clear that our model should not be considered valid on a very long time scale11 .

6 Conclusions

This paper presents crucial evidence in support of the tent-shape of the firm growth rates distribution, ex-

tending previous findings in two different directions. First, we replicate the analysis already performed by

Stanley et al. (1996) and Bottazzi et al. (2001) on a new databank (MICRO.1) covering many firms of the

Italian manufacturing industry. Second, using data disaggregated by sector, we prove that the shape of these

distributions is not a mere effect of aggregation. Although intersectoral differences clearly arise, we conclude,

in line with previous studies, that the tent-shape (double exponential) distribution of corporate growth rates

appears as an extremely robust feature of the manufacturing industry, characterized by a higher regularity than

the one shown by size distributions.

On the theoretical side, we propose a model which describes the dynamics of firms growth. The model

clearly originates in the Simon inspired literature on firm dynamics with which it shares two central features.

First, different firms are viewed as different realizations of the same stochastic process. Second, the model

includes a very simple idea of competition represented by a global constraint on the total number of available

growth opportunities.

The essential novelty of our approach lies in the assignment procedure of different business opportunities

among different firms. In our model, the probability for a given firm to obtain new opportunities depends

on the number of opportunities already caught. In this way, we introduce dynamic increasing returns in

the growth process of firms. Economies of scale, economies of scope, network externalities and knowledge

accumulation are just a few examples of possible economic mechanisms able to generate positive feedbacks

within markets, businesses and industries. The overall effect can be described as the emergence of a sort of

”attracting force” between the various opportunities that tends to group them in bigger chunks leading to the

appearance of two noticeable properties in their unconditional distribution: the presence of a fat tail, which

indicates a more likely presence of extremely large number of opportunities assigned to a single firm, and the

absence of a natural scale of the underlying process, hinted by the 0 value of the mode.

The ability of the model to reproduce empirical findings without requiring a fine tuning of the parameters

is due to the Theorem in Section 5 and constitutes its main strength. This theorem ensures that, when the

11In fact, the present model would generate, in the long run, log-normal size distributions that are not observed in empirical analyses.
Concerning the MICRO.1 database considered in Section 3, the shapes of the size distributions in the different sectors appear quite
heterogeneous. See Bottazzi et al. (2003) for details.
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number of firms and the number of opportunities per firm go to infinity, the growth rates distribution generated

by the model converges to the Laplace. According to this Theorem, the sole requirement is that the number of

“business opportunities” for which firms compete is increasingly larger than the number of competing firms.

Consequenlty, the competitive success is not seen as the outcome of a single lucky event granting one firm a

persistent, dominant, position but, rather, as the ability of a firm to build its new success, through a permanent

struggle and inside an extremely volatile environment, on the basis of its past, sucessfull, behaviour. If this

requirement is fullfilled, neither the fine tuning of the parameters values nor the choice of a particular micro-

shocks distribution are required for our model to reproduce the observed tent-shape of the distribution of

growth rates.

The model presented here can be extended to capture also the scaling relationship between the variance

of the growth rates and the size of the firm discussed in Stanley et al. (1996). This extension can be easily

performed considering a diversified firm competing in independent sub-sectors whose number depend on

the firm size. We did not pursue this issue here since the empirical evidence on this point seems mixed: the

relation between growth rates variance and firm size is present in the COMPUSTAT database both at aggregate

(Stanley et al., 1996) and disaggregated (Bottazzi and Secchi, 2004) level and in the worldwide pharmaceutical

industry (Bottazzi et al., 2001) but, as mentioned, it seems to be absent in the Italian manufacturing industry.

We are aware that the Polya urn mechanism presented in Section 4 does only constitute a simple metaphor

of “positive feedback that operates - within markets, businesses, and industries - to reinforce that which gain

success or aggravate that which suffer loss” (Arthur (1994), p.100). The direct test of this assumption,

dealing with the intimate essence of the competitive dynamics, is not trivial since it would require the joint

investigation of the existence and nature of increasing returns both at the level of single firm and of the whole

industry and, consequently, would not allow an explicit identification of a single hypothesis.

However, one can think to the body of empirical literature on the “clusterization” of technological inno-

vations (Silverberg and Verspagen, 2000), the increasing returns in research activity (Henderson and Cock-

burn, 1996) and the self-reinforcing effect in the creation of managerial talents (Penrose, 1958) as suggestive

evidences supporting the existence of an underlying positive feedback mechanism shaping the competitive

dynamics.

From a more general point of view, the justification of the stochastic models like the one presented here

lies in their ability to describe the observed regularities. At the same time, their relative value should be

expressed in terms of their degree of generality and by their ability of “explaining why the generalization

’should’ fit the facts” (Simon, 1968).
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APPENDIX

A Asymptotic behavior of the growth rates density

In this Appendix we prove Theorem 1 concerning the asymptotic behavior of firms growth rates distribu-

tion (10). Before attacking the main proof, we need two preliminary results on the asymptotic properties

of the Polya process. To this purpose, it is convenient to introduce the Bose-Einstein generating function,

formally defined as

Q(z;N,M) =
M
∑

h=0

zh p(h;N,M) . (A1)

A more suitable representation of this function is provided by the following

Lemma 1. The generating function in (A1) admits the following integral representation

Q(z;N,M) = (N − 1)

∫ 1

0
dt (1 − t)N−2 (1 − t + t z)M (A2)

Proof. Consider the generic term in (9), expanding the binomial coefficient one obtains

p(h;N,M) =
Γ(N + M − h − 1)

Γ(N − 1) Γ(M − h + 1)

Γ(N) Γ(M + 1)

Γ(N + M)
(A3)

where we used the relation a! = Γ(a + 1). Multiplying both the numerator and denominator by Γ(h + 1) and

using the definition of the beta function B(a, b) = Γ(a)Γ(b)/Γ(a + b) one can rewrite (A3) as

p(h;N,M) = (N − 1)

(

M

h

)

B(N + M − h − 1, h + 1) (A4)

where the second factor stands, with usual notation, for the binomial coefficient. Using the following integral

representation of the beta function (Abramowitz and Stegun (1966) p.258)

B(a, b) =

∫ 1

0
dt ta−1 (1 − t)b−1 (A5)

and substituting it in (A4) one obtains

p(h;N,M) = (N − 1)

(

M

h

)
∫ 1

0
dt th (1 − t)N+M−h−2 . (A6)
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The integral representation (A6) can be substituted for each term in (A1) to obtain

Q(z;M,N) = (N − 1)
M
∑

h=0

(

M

h

)

zh

∫ 1

0
dt th (1 − t)N+M−h−2 (A7)

that, once the summation on h is moved inside the integral and the binomial expansion is collected, reduces

to (A2). Q.E.D.

Now formally rewrite (A2) as

Q(z;N,M) = −
∫ 1

0
dt (1 − t + t z)M d

dt
(1 − t)N−1 (A8)

so that, after a straightforward integration by parts, one obtains

Q(z;N,M) = 1 − (1 − z)
M

N
Q(z;N + 1,M − 1) . (A9)

This recurrence relation can be used to characterize the asymptotic behavior of the Bose-Einstein generating

function Q for large values of the parameters M and N . The result is provided by the following

Lemma 2. When |z| ≤ 1 if the values of N and M tend to infinity, the generating function Q(z;N,M) tends

to the fixed point of the recurrence relation (A9). More precisely

lim
M,N→∞

Q(z;N,M) ∼
1 − (1 − z) M

N2 E(N,M)

1 + (1 − z) M
N

|z| ≤ 1 (A10)

where E is a bounded function of M and N , that is limM,N→∞ |E| < ∞.

Proof. Let us consider the difference between Q(z;N,M) and Q(z;N + 1,M − 1). Using the integral

representation in (A2) it can be written as

Q(z;N,M) − Q(z;N + 1,M − 1) =
∫ 1

0
dt(1 − t)N−2 (1 − t + zt)M−1 [(N − 1) t z − (1 − t)] . (A11)

Splitting the square brackets and using again the representation (A2) one obtains

Q(z;N,M) − Q(z;N + 1,M − 1) =

z (N − 1)

∫ 1

0
dt t (1 − t)N−2 (1 − t + zt)M−1 − 1

N
Q(z;N + 1,M − 1) . (A12)
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Since |a − b| ≤ |a| + |b|, the absolute value of the left-hand side of (A12) satisfies

|Q(z;N,M) − Q(z;N + 1,M − 1)| ≤

|z| (N − 1)

∫ 1

0
dt t (1 − t)N−2 |1 − t + zt|M−1 +

1

N
|Q(z;N + 1,M − 1)| . (A13)

If |z| ≤ 1 it is |1 − t + zt| ≤ 1 ∀t ∈ [0, 1]. Then, the value of the first integral on the right hand side of (A13)

does not decrease if one replaces |1 − t + zt| with 1 so that, after an integration by parts, one obtains

|Q(z;N,M) − Q(z;N + 1,M − 1)| ≤ |z|
N

+
1

N
|Q(z;N + 1,M − 1)| . (A14)

From the expansion in (A1) immediately follows that when |z| ≤ 1 it is |Q(z;N,M)| ≤ Q(1;M,N) = 1 so

that

|Q(z;N,M) − Q(z;N + 1,M − 1)| ≤ 1 + |z|
N

≤ 2

N
(A15)

and one can write

Q(z;N + 1,M − 1) = Q(z;N,M) +
1

N
E(N,M) (A16)

where E is a bounded function of N and M . Substituting (A16) in (A9) proves the assertion. Q.E.D.

We can now use the result of the previous Lemma to proof Theorem 1.

Proof of Theorem 1. From (12) the model growth rates distribution function reads

Fmodel(g) =

M
∑

h=0

p(h;N,M) F (
√

(N + M)/(vN)x)F(h+1) (A17)

and, since the series in (A17) is absolutely convergent, its characteristic function satisfies

φmodel(k) =

∫ +∞

−∞

ei k g dFmodel(g;N,M) =
M
∑

h=0

p(h;N,M) φ(
√

vN/(N + M) k)h+1 (A18)

where φ(k) is the characteristic function of the micro-shock distribution F (x) and we used the fact that the

characteristic function of the h-convolution of the distribution F is h times its characteristic function.

Remembering the definition of the Bose-Einstein generating function in (A1) one can rewrite the charac-

teristic function (A18) as

φmodel(k;N,M) = φ(
√

vN/(N + M) k) Q(φ(
√

vN/(N + M) k);N,M) . (A19)
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This expression clearly separates the contribution of the random procedure used to assign the growth shocks

to the firms, which is responsible for the term Q, from the specific nature of the micro-shocks distribution,

which is described by the characteristic function φ.

Using the relation in (A19) one can express the asymptotic behavior of the characteristic function of the

model in terms of the asymptotic behavior of the generating function.

Since φ(k) is a characteristic function it is |φ(k)| ≤ 1,∀k (Lemma 1, Feller (1968) p.499) and one can

use (A10) to obtain

φmodel(k) ∼ φ(
√

(M + N)/vN k)
1 − (1 − φ(

√

vN/(N + M) k)) M
N2 E(N,M)

1 + (1 − φ(
√

vN/(N + M) k)) M
N

(A20)

for large values of M and N . Now consider in turn the three possibilities above:

1. if M and N go to infinity in such a way that N diverges faster than M and limM,N→∞ M/N = 0, the

rescaled micro-shock characteristic function φ(
√

vN/(N + M) k) tends to φ(
√

v k) and Q(z;N,M)

tends to 1 so that

lim
M,N→+∞

φmodel(k) = φ(
√

v k) (A21)

2. the second case is analogous to the first. If M and N are of the same asymptotic order and limM,N→∞ M/N =

λ, obviously it is limM,N→∞ M/N2 → 0 and taking the limit of (A20) one has

lim
M,N→+∞

φmodel(k) =
φ(

√

v/(1 + λ) k)

1 + λ − λφ(
√

v/(1 + λ) k)
(A22)

3. if M diverges faster then N so that limM,N→∞ N/M = 0, the micro-shock variance goes to zero

proportionally to N/M . Since the micro-shocks distribution F (x) possesses unitary second moment it

admits the following expansion around the origin (Lemma 2, Feller (1971) p. 512)

φ(
√

vN/(N + M) k) = 1 − 1

2
k2 vN

M + N
+ o

(

vN

M + N

)

. (A23)

Substituting this expansion in (A20) and taking the limit N/M → 0 one obtains

lim
M,N→+∞

φmodel(k) =
1

1 + 1
2 v k2

(A24)

where the left-hand side is the characteristic function of a Laplace distribution with mean 0 and variance

v, as can be easily checked computing the Fourier transform of (1).
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The limits in (A21), (A22) and (A24) are pointwise limits involving the characteristic function of the

model. Since F (x) possesses a finite variance, the function φ(k) is continuous in the origin and so are all the

limit functions in the above equations.

Since the point-like limit of a sequence of characteristic functions to a function continuous in the origin

implies the limit in distribution for the associated sequence of random variables (Theorem 2, Feller (1971) p.

508), the assertion is proved. Q.E.D.
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Figure 1: Binned empirical densities of the growth rates for the three sectors of textiles finishing, treatment
and coating of metals and special purpose (metallurgy, mining, chemistry . . . ) machinery. The densities are
pooled over all the 7 years (Data source: MICRO.1). Notice the log scale on the y-axes.
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Figure 2: Binned empirical densities of the growth rates for the three sectors of footwear, printing and fur-
niture. The densities are pooled over all the 7 years (Data source: MICRO.1). Notice the log scale on the
y-axes.
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Figure 3: The binned empirical density of the b parameter values estimated using maximum likelihood over
the different sectors. The values for the different sectors together with standard errors are reported in Table 1.
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Figure 4: The binned empirical density of the a parameter values estimated using maximum likelihood over
the different sectors. The values for the different sectors together with standard errors are reported in Table 1.
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Figure 5: Binned empirical densities of the growth rates of the whole Italian manufacturing industry (Data
source: MICRO.1) together with the best Subbotin fit. Two different time lags are considered of 1 and 7 years
respectively. Notice the log scale on the y-axes.
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Figure 6: Estimated Subbotin shape parameter b of the growth rates distribution for different time horizons.
The value reported is the average over all the sectors.
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Figure 7: First drawn from a urn with two colors labeled A and B. After the extraction the state of the urn
depends on which color was drawn.

33



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  50  100  150  200  250x

Pr(x) Binomial
Bose-Einstein

Figure 8: The Bose-Einstein probability distribution (9) of the number of opportunities per firm together with
the corresponding Binomial distribution with N = 100 and M = 10, 000.
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Figure 9: Growth rates probability density for N = 100 and different values of M . The inset shows a
particular of the central region.
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Figure 10: Absolute deviation |Fmodel(g)−FL(g)| as a function of g for N = 100 and different values of M .
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Figure 11: The maximal deviation D of the model density from a Laplace is shown as a function of the number
of firms N and the average number of micro-shocks per firm M/N . Micro-shocks are normally distributed.
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Figure 12: Growth rates probability density simulated with λ = M/N = 16, N = 100 and normally
distributed micro-shocks. A pool of 7 independent realizations in considered. The theoretical Laplace density
with unit variance (a = 1/

√
2) is also shown.
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Autocorr. Parameter b Parameter a

Ateco code Sector # of Firms Coef. Std Err. Coef. Std Err. Coef. Std Err.

151 Production, processing and preserving of meat 114 -0.15 0.08 0.83 0.05 0.089 0.004

155 Dairy products 85 -0.17 0.09 0.91 0.07 0.080 0.004

158 Production of other foodstuffs (brad, sugar, etc...) 157 -0.11 0.07 0.89 0.05 0.097 0.004

159 Production of beverages (alcoholic and not) 94 0.21 0.08 0.88 0.06 0.108 0.006

171 Preparation and spinning of textiles 154 0.02 0.07 1.19 0.07 0.142 0.005

172 Textiles weaving 171 -0.01 0.06 1.12 0.06 0.122 0.004

173 Finishing of textiles 181 0.13 0.06 1.11 0.06 0.107 0.004

175 Carpets, rugs and other textiles 90 -0.13 0.09 1.02 0.08 0.118 0.006

177 Knitted and crocheted articles 162 -0.09 0.07 0.97 0.05 0.124 0.005

182 Wearing apparel 379 0.01 0.05 0.92 0.03 0.120 0.003

191 Tanning and dressing of leather 87 0.04 0.09 1.12 0.09 0.140 0.007

193 Footwear 245 -0.06 0.05 1.12 0.05 0.150 0.004

202 Production of plywood and panels 52 -0.09 0.11 0.98 0.09 0.104 0.007

203 Wood products for construction 59 -0.28 0.11 0.94 0.08 0.105 0.007

205 Production of other wood products (cork, straw, etc...) 56 0.18 0.11 1.31 0.13 0.106 0.006

211 Pulp, paper and paperboard 46 -0.37 0.12 0.89 0.09 0.120 0.009

212 Articles of paper and paperboard 180 -0.19 0.06 0.93 0.05 0.103 0.004

221 Publishing 72 -0.11 0.10 0.62 0.05 0.079 0.005

222 Printing 199 -0.03 0.06 1.25 0.07 0.108 0.003

241 Production of basic chemicals 80 -0.17 0.09 0.88 0.07 0.114 0.006

243 Paints, varnishes, printing inks and mastics 58 -0.07 0.11 1.05 0.10 0.080 0.005

244 Pharmaceuticals, medicinal chemicals and botanical products 97 0.07 0.08 0.91 0.06 0.117 0.006

245 Soap and detergents, cleaning and toilet preparations 46 0.35 0.12 0.99 0.10 0.098 0.007

246 Other chemical products 51 -0.04 0.11 0.80 0.07 0.108 0.008

251 Rubber products 87 0.04 0.09 0.93 0.07 0.097 0.005

252 Plastic products 352 -0.12 0.04 0.95 0.04 0.113 0.003

261 Glass and glass products 87 -0.11 0.09 1.08 0.08 0.099 0.005

262 Ceramic goods not for construction 59 0.26 0.11 1.20 0.11 0.107 0.006

263 Ceramic goods for construction 91 0.09 0.08 1.04 0.08 0.109 0.005

264 Bricks, tiles and construction products in baked clay 84 -0.03 0.09 1.17 0.09 0.103 0.005

266 Articles in concrete, plaster and cement 141 -0.21 0.07 0.86 0.05 0.160 0.007

267 Cutting, shaping and finishing of stone 69 -0.03 0.10 1.19 0.10 0.116 0.006

273 First processing of iron and steel 82 0.05 0.09 0.84 0.06 0.126 0.007

275 Casting of metals 125 -0.13 0.07 0.99 0.06 0.116 0.005

281 Structural metal products 156 -0.18 0.07 1.26 0.07 0.185 0.007

284 Forging, pressing, stamping and roll forming of metal 132 -0.07 0.07 1.13 0.07 0.126 0.005

285 Treatment and coating of metals 182 -0.13 0.06 1.01 0.05 0.135 0.005

286 Cutlery, tools and general hardware 149 -0.07 0.07 1.01 0.06 0.125 0.005

287 Other fabricated metal products 265 -0.18 0.05 0.86 0.04 0.107 0.003

291 Machinery for the production and the use of mechanical power 224 -0.02 0.05 0.93 0.04 0.121 0.004

292 Other general purpose machinery 199 -0.22 0.06 1.04 0.05 0.158 0.005

293 Agricultural and forestry machinery 54 -0.34 0.11 0.96 0.09 0.139 0.009

294 Machine tools 114 -0.11 0.08 1.06 0.07 0.170 0.007

295 Other special purpose machinery 424 -0.24 0.04 1.06 0.04 0.185 0.004

297 Domestic appliances not elsewhere classified 59 -0.07 0.11 1.19 0.11 0.108 0.006

311 Electric motors, generators and transformers 71 -0.01 0.10 1.01 0.08 0.131 0.007

312 Manufacture of electricity distribution and control equipment 70 -0.16 0.10 0.84 0.07 0.149 0.009

316 Electrical equipment not elsewhere classified 91 -0.11 0.09 0.97 0.07 0.137 0.007

322 TV and radio transmitters and lines for telephony and telegraphy 44 -0.15 0.12 0.92 0.10 0.175 0.013

332 Measure, control and navigation instruments 51 0.09 0.11 1.20 0.12 0.119 0.008

342 Production of bodies for cars, trailers and semitrailers 50 -0.07 0.11 1.09 0.11 0.153 0.010

343 Production of spare parts and accessories for cars 125 -0.09 0.07 1.09 0.07 0.137 0.006

361 Furniture 444 -0.02 0.04 1.04 0.03 0.121 0.003

362 Jewelry and related articles 84 0.05 0.09 1.41 0.12 0.163 0.008

366 Miscellaneous manufacturing not elsewhere classified 68 0.10 0.10 1.14 0.10 0.117 0.007

Table 1: Summary table of the 55 sectors under analysis. For each sector are reported the estimated a and b
parameters together with the growth rates autocorrelation coefficient.
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