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Abstract

In this paper, we present an evolutionary model of industry dynamics yielding en-
dogenous business cycles with ‘Keynesian’ features. The model describes an economy
composed of firms and consumers/workers. Firms belong to two industries. The first
one performs R&D and produce heterogeneous machine tools. Firms in the sec-
ond industry invest in new machines and produce a homogenous consumption good.
Consumers sell their labor and fully consume their income. In line with the em-
pirical literature on investment patterns, we assume that the investment decisions
by firms are lumpy and constrained by their financial structures. Moreover, draw-
ing from behavioral theories of the firm, we assume boundedly rational expectation
formation. Simulation results show that the model is able to deliver self-sustaining
patterns of growth characterized by the presence of endogenous business cycles. The
model can also replicate the most important stylized facts concerning micro- and
macro-economic dynamics. Indeed, we find that investment is more volatile than
GDP; consumption is less volatile than GDP; investment, consumption and change
in stocks are procyclical and coincident variables; employment is procyclical; un-
employment rate is anticyclical; firm size distributions are skewed but depart from
log-normality; firm growth distributions are tent-shaped.
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1 Introduction

The existence of widespread and persistent fluctuations which permanently affect the over-

all economic activity is an inherent feature of all modern economies. However, despite the

huge number of competing models providing a rationale for expansions and recessions, we

still lack a generally accepted explanation for business fluctuations. Indeed, it still holds

largely true that a good deal of research has been mainly concerned with theoretical pos-

sibilities, rather than with explanations of what actually happens’, with ‘little regard for

how the pieces fit each other and the real world’ (Zarnowitz, 1985, p. 570). Ultimately,

the theory of business cycle appears to be ‘long of both good and poor questions and short

of persuasive answers’ (Zarnowitz, 1997, p. 2).

A primary example of such a mismatching might be found in the ways economic theory

deals with the stylized facts concerning microeconomic investment dynamics and business

cycle properties. A robust macroeconomic empirical literature has indeed shown that, at

the aggregate level, investment is considerably more volatile than output and consumption

less volatile. Moreover, fluctuations of both output and its main components (i.e. invest-

ment, consumption and changes in inventories) tend to be synchronized. Finally, at the

microeconomic level, firms’ investments appear to be lumpy and strongly affected by firms’

financial structures.

Needless to say, one does indeed find huge streams of work on business cycles mostly

belonging either to the Real Business Cycle (RBC) perspective or to the New-Keynesian

(NK) one. This is not the place to undertake a review of the literature (on RBC, cf. King

and Rebelo (1999) and Stadler (1994); on NK theories, see Mankiw and Romer (1991) and

Greenwald and Stiglitz (1993)). Let us just mention here the basic mechanisms generating

cycles in the two perspectives. Real-business cycles are ultimately driven by exogenous and

unpredictable technological shocks, which generate fluctuating dynamics in a stochastic

general-equilibrium world, grounded upon a fully-rational, forward-looking representative

agent. Conversely, the basic story of NK models finds the roots of economic fluctuations

in product-, labor- and financial-market imperfections (including in primis informational

asymmetries). At the same time, these models do allow for some heterogeneity, at least in

the functional roles of the agents (the economy is in fact populated by financial investors,

firms, consumers, etc.), even if under the disguise of ‘representative’, fully rational types.

Certainly, one finds very hard to believe the existence of macroscopic technological

shocks (including negative ones) necessary for the RBC story to hold1. And, conversely,

while the informational setting of NK models is much more reasonable, we still feel uneasy

1In recent refinements, the size of the shocks might be lower (King and Rebelo, 1999), but the basic
story remains rather unbelievable.
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about the almost exclusive emphasis upon monetary and price shocks as drivers of the

fluctuations, while neglecting all technological factors.

Moreover, in our view, a major weakness – shared to different degrees by both streams

of literature – is the persistent clash between the microeconomics that one finds in the

models and the regularities in microeconomic behaviors that one empirically observes.

So, for example, notwithstanding the proliferation of models separately trying to account

for micro and macro stylized facts, almost no attempts have been made in the literature

to explain the properties of business cycles on the basis of multiple individual entities

embodying the observed microeconomic regularities about firms’ investment and pricing

behaviors.

In this paper, we try to bridge such a gap by proposing a model where both output

and investment dynamics are grounded upon lumpy investment decisions undertaken by

boundedly-rational firms constrained by their financial structure, but, at the same time,

always able to discover new production technologies.

First, we fully take on board the critique to the ‘representative agency fallacies’ (Kir-

man, 1989, 1992) and describe an economy with heterogeneous agents that interact in

explicitly modeled markets.

Second, well in line with Keynesian intuitions, we assume pervasive market uncertainty,

so that investment and pricing decisions are taken on the grounds of boundedly-rational

rules, most often involving adaptive expectations. In turn, such decisions bear permanent

aggregate demand effects.

Conversely, third, the ‘Schumpeterian’ feature of the model regards the persistent arrival

of technological innovations, entailing multiple endogenously generated micro-shocks on

productivity.

The model depicts an economy composed by firms (operating in two vertically-linked

industries), consumers/workers and a (unmodeled) non-market sector. Firms in the ‘up-

stream’ industry perform R&D and produce technologically heterogeneous machines. The

latter are used in the ‘downstream’ industry to produce a consumption good bought by

workers with their wages and by recipients of incomes in the non-market sector.

The work belongs to the evolutionary, ‘agent-based computational economics”’ (ACE),

family2. In each period t, firms and workers carry out their production, investment, and

consumption decisions on the basis of routinized behavioral rules and (adaptive) expecta-

tions. The dynamics of microeconomic variables (i.e. individual production, investment,

consumption, etc.) thus induces the macroeconomic dynamics for aggregate variables (e.g.

aggregate output, investment, consumption, etc.), whose statistical properties are then

2More on evolutionary and ‘agent-based computational economics’ (ACE) approaches in economics is
in Dosi and Nelson (1994), Dosi and Winter (2002), Epstein and Axtell (1996) and Tesfatsion (1997).
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studied and compared with empirically observed ones.

Simulation results show that the model is able to deliver self-sustaining growth patterns

characterized by endogenous business cycles. Moreover, we show that the model is able

to replicate those business cycle stylized facts (e.g. volatility, auto- and cross-correlation

patterns) actually observed. Finally, the micro-structure of the simulated economy is quite

in tune with the evidence on e.g. persistent heterogeneity in firm efficiencies, size and

growth rate distributions.

The rest of the paper is organized as follows. Section 2 provides a short overview

of micro and macro empirical evidence. In Section 3, we discuss the antecedents and

theoretical roots of our model, which we formally present in Section 4. Qualitative and

quantitative results of simulation exercises are discussed in Section 5. Section 6 concludes.

2 Aggregate Fluctuations and Micro Regularities:

Some Evidence

To repeat, a good check of the robustness of any model claiming to be able to ‘explain’

business cycles ought to rest in its ability to account together for more than one macroe-

conomic ‘stylized fact’ and ought to do it in ways which are coherent with the observed

microeconomics of business decisions and innovation patterns. Let us thus consider the

most relevant empirical regularities.

2.1 Macro Stylized Facts

A key issue in the empirical business cycle literature concerns the properties of aggregate

output and of its main components (i.e. investment, consumption and inventories).

All available statistical evidence suggests that recurrent fluctuations have characterized

the whole history of industrial economies. This applies also to the period after WWII,

when aggregate output and its main components have experienced an impressive long

term growth in the U.S. as well as in other developed countries. Even then, however, time-

series display growth together with persistent ‘cyclical’ turbulences. This can be seen also

if the dynamics of output and its components is analyzed at the business cycle frequencies:

then, the series display a typical ‘roller coaster’ shape, implying the repeated interchange

of expansions and recessions which are part of the very definition of the business cycle3.

Thus, the evidence pre- and post-WWII – which we summarize in Table 3 – corroborates

the seminal observations dating back to Kuznets (1930) and Burns and Mitchell (1946),

3See for instance Stock and Watson (1999).
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suggesting the following stylized facts4:

SF1 Investment is considerably more volatile than output.

SF2 Consumption is less volatile that output.

SF3 Investment, consumption and change in inventories tend to be procyclical and coin-

cident variables5.

SF4 Aggregate employment and unemployment rate tend to be lagging variables. The

former is procyclical, whereas the latter is anticyclical.

2.2 Micro Stylized Facts

Over the last couple of decades, the empirical literature on industrial dynamics and tech-

nological change has singled out an impressive number of robust statistical regularities

concerning the microeconomic properties of firm behavioral patterns. Let us begin here

with a telegraphical account of those stylized facts pertaining to firms’ investment decisions.

SF5 Investment is lumpy.

SF6 Investment is influenced by firms’ financial structure.

Consider first SF5. As shown by the important work of Doms and Dunne (1998) based

on plant level data, lumpiness is an intrinsic feature of firm investment decisions: in a

given year, 51.9% of all plants increase their capital stock by less than 2.5%, while the

11% of them raise it by more than 20%. Moreover, within-plant investment patterns show

that plants typically invest in every single year, but they concentrate half of their total

investment in just three years out of the sixteen under analysis.

Moreover, the microeconomic lumpiness of investment does not appear to be completely

filtered away at the macroeconomic level. Aggregate investment fluctuations are indeed

influenced by the number of plants incurring in huge investment episodes: the correla-

tion between aggregate investment and the number of plants experiencing their maximum

investment share is 0.59.
4Notice that the following aggregate regularities are fairly robust to diverse, relatively sophisticated

statistical analyses. Cf. for example Stock and Watson (1999), Agresti and Mojon (2001) and Napoletano,
Roventini, and Sapio (2004), who employ a bandpass filter (based on Baxter and King, 1999) to US data
ranging from 1956Q1 to 1996Q4, EMU series going from 1970Q1 to 2000Q3, and Italian/U.S. data for the
period 1970Q1− 2002Q3, respectively. See also Kydland and Prescott (1990) who apply a HP filter to US
data from 1954Q1 to 1989Q4.

5Agresti and Mojon (2001) find that consumption is slightly leading in the EMU area. Napoletano,
Roventini, and Sapio (2004) obtain the same result with US data and also find that investment is slightly
lagging in Italy. However, since these differences stem from very small changes in the cross-correlation
structure, they may just depend on the filter employed to detrend the series.
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As far SF6 is concerned, the evidence is even more impressive. Since the influential work

of Fazzari, Hubbard, and Petersen (1988), a huge stream of empirical literature6 has been

providing evidence against the Modigliani and Miller (1958) theorem. Indeed, if capital

markets are imperfect (e.g. because of information asymmetries), the financial structure

of the firm is likely to affect its investment decisions. First, the cost of external financing

is typically higher than that of internal financing: the larger information costs born by

each firm, the higher the gap between the cost of internal and external financing. Second,

information asymmetries may lead lenders to ration credit to the riskiest firms. These

propositions are supported by the evidence provided by the so-called ‘financial constraints’

literature: ceteribus paribus, firm investment is significantly correlated with cash flows (a

proxy for net worth variations) and the correlation magnitude is higher for those firms that

suffer more from information asymmetries plaguing capital market (e.g. young and small

firms)7.

Regarding the drivers of growth, a growing number of contributions has robustly high-

lighted the central role of technological learning, innovation and diffusion carried out by

business firms (see Dosi, Freeman, and Fabiani (1994) for a critical overview; more detailed

discussions are in Rosenberg (1982, 1994), Freeman (1982) and Dosi (1988)).

The idea that aggregate growth can be traced back to business history finds quantitative

roots in a series of robust stylized facts put forth by the literature on the microeconomics

of innovation. In a synthesis:

SF7 Firms are the main locus where technological accumulation takes place. Technolog-

ical learning – as well as its directions and rates – is carried out by firms in ways

which are strongly shaped by: (a) firm-specific abilities; (b) richness of perceived un-

exploited opportunities. As a consequence, technological learning and accumulation

tends to be mostly local : technical advances typically occur in a neighborhood of

currently-mastered technologies. This cumulative learning pattern is ‘punctuated’

by major, low-probability advances which generate jumps in the technological space

(i.e. changes in the technological paradigms).

SF8 Innovations take time to diffuse. Technological diffusion is slowed down by informa-

tion asymmetries and, even more important, by the fact that firms require time to

learn how to master new technologies and develop new skills.

SF9 Most innovations are industry-specific. Therefore, the overall pattern of business

fluctuations cannot be fully explained by economy-wide innovative shocks.

6See Hubbard (1998) for a survey.
7See, among others, Fazzari and Athey (1987) and Bond and Meghir (1994). For an alternative point

of view, cf. Kaplan and Zingales (1997) and Erickson and Whited (2000).

6



In turn, the foregoing regularities concerning innovation and technological diffusion

map onto the intersectoral patterns of realized performances and productivities. Extensive

studies on longitudinal micro-level data sets – ranging from the seminal work of Nelson

(1981) to the survey in Bartelsman and Doms (2000) – confirm that productivity dynamics

is characterized by a few robust regularities, namely:

SF10 Productivity dispersion among firms is considerably large.

SF11 Inter-firm productivity differentials are quite persistent over time.

Moreover, heterogeneity concerns firm size distributions, both among firms belonging

to the same industrial sector and across different industrial sectors (see, among a vast

literature, Stanley et al. (1996) and Bottazzi and Secchi (2003b,a)).

SF12 Firm size distributions tend to be considerably right skewed, with upper-tails made

of few large firms. These patterns vary significantly across different sectors.

As discussed at more length in e.g. Bottazzi, Cefis, and Dosi (2002), the foregoing

regularity obviously supports the view that real-world markets strongly depart from perfect

competition. Moreover, a growing evidence highlights microeconomic processes of growth

entailing some underlying correlation structure and lumpiness. More precisely:

SF13 Firm growth-rate distributions are not Gaussian and can be well proxied by fat-

tailed, tent-shaped densities.

According to SF13, firm growth patterns tend to display relatively frequent “big” –

negative or positive – growth events.

In the model presented below, we take explicitly on board micro-regularities pertaining

to firm investment and innovating behaviors (SF5 − 9) in the way we design the agents

populating our economy, with the aim of building a model that, at the same time, is able

to replicate and explain the stylized facts concerning the business cycle (SF1 − 4) on the

basis of micro-dynamics patterns which replicate the statistical regularities displayed by

the evolution of firm productivity, size and growth over time (SF10 − 13).

3 Theoretical Roots and Antecedents

We have already mentioned that the model which follows belongs to the evolutionary fam-

ily. The seminal reference here is Nelson and Winter (1982). The work shows, among other

things, the straightforward possibility of generating patterns of macroeconomic growth akin

7



those observed in reality, on the grounds of a microeconomic structure made of heteroge-

neous agents that continuously try to innovate and imitate new techniques of production.

There, however, any ‘Keynesian’ demand propagation effect is censored by construction,

and so it is in many other models of evolutionary inspiration8.

The first attempts to explore the properties of evolutionary models with ‘Keynesian’

demand propagation effects can be found in Chiaromonte and Dosi (1993) and in the

simpler but multi-economy framework studied in Dosi, Fabiani, Aversi, and Meacci (1994).

In the former, one describes a two-sector economy with machine-embodied innovations,

imperfect competition and two fundamental feedbacks running from investment to wages

to aggregate demand (the ‘multiplier’), and, the other way round, from aggregate demand

to investment (the ‘accelerator’).

The present model refines upon this early templates and, for the first time, analyzes

the fine statistical properties of the ensuing dynamics. Moreover, the model below tries to

explicitly capture in its behavioral assumptions some of the micro regularities mentioned

above.

Consider, for instance, investment lumpiness (cf. SF5). It is well-known that the

latter can be in principle interpreted as the outcome of some optimizing behavior of a

perfectly-rational firm. This is indeed what the so-called (S,s) investment models do9.

In that framework, firms face the problem of choosing the level of capital maximizing

their flow of profits. If their desired capital is larger than the actual one, firms want to

invest as long as they are able to recover capital adjustment costs. However, if the latter

present some non-convexities, firms will invest up to some optimal target level (S) only

if their capital imbalance is lower than a given optimal trigger threshold (s). Therefore,

investment lumpiness straightforwardly derives from non-convexity of adjustment costs.

Notwithstanding the awareness that investment lumpiness may have significant conse-

quences at the macro level, almost no attempts have been made to embed the observed

microeconomic investment behavior into a business cycle model10. More specifically, a

surprisingly little attention has been paid so far to the interpretation of the stylized facts

concerning the business cycle discussed above on the basis of the microeconomic evidence

on firm investment behavior (cf. SF5 and SF6).

8Note that some subsequent models do analyze the properties of economic fluctuations (Silverberg
and Lehnert, 1994; Fagiolo and Dosi, 2003). However, the latter are just the outcome of some underlying
‘Schumpeterian’ dynamics of innovation and imitation.

9See Caballero (1999) for a discussion. Cf. also Blinder and Maccini (1991) for a survey of (S,s)
inventory behavior models.

10An exception is in Thomas (2002). She develops a real business cycle model where firms take their
investment decisions according to a (S,s) rule. However, in this model, lumpy investment does not have
any significant impact at the macro level, because households preferences for smooth consumption paths
sterilize investment lumpiness through price movements (i.e. real wage and interest rate).
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In this paper, we take a preliminary step in this direction. In our model, invest-

ment can be either employed to increase the capital stock or to replace existing capital

goods. Consumption-good firms plan their expansion investment according to a (S,s) pat-

tern. However, we depart from the standard lumpy investment literature in modeling

firms as boundedly-rational agents. In particular, we assume that firms employ routinized

behavioral investment rules instead of fully-rational, profit-maximizing behaviors cum non-

convex adjustment costs (on routinized behaviors, see – within an enormous literature –

Nelson and Winter (1982), Dosi (1988), Cyert and March (1989) and, much earlier, Katona

and Morgan (1952)).

We interpret the target and trigger levels of an (S,s)-type of investment behavior in

terms of a routinized investment rule, rather than as the outcome of some optimization

procedure. Indeed, firms operating in ‘evolutionary environments’ (Dosi, Marengo, and

Fagiolo, 2005) typically face strong uncertainty and cannot attach any probability measure

to future outcomes (more on that in Dosi and Egidi (1991)). Hence, the adoption of a (S,s)

rule fulfills the goals of a prudent, risk-averse, firm who is not able to fully anticipate its

future level of demand and forms its expectations in an adaptive fashion. Firms will then

decide to expand their stock of capital only if they expect a significant demand growth.

As a result, they will invest to reach their target level of capital only if the fulfillment of

their expected demand requires a capital stock at least equal to their trigger level.

Similarly to what happens for expansion investment, firms employ routinized behav-

iors to decide their replacement investment11. In particular, we introduce heterogenous

capital goods and we assume that firms implement their replacement policy through a

payback-period routine. In this way, technical change and capital good prices enter in the

replacement decisions of consumption-good firms.

Finally, the financial structure of the firm does affect in our model its investment policies

(cf. SF6). Indeed, the presence of financial constraints implies that firms pay a premium

if they rely on external sources of funds (i.e. credit). Therefore, the financial structure of

firms might not be neutral: firms may turn to external credit when their stock of liquid

assets is not enough to fully finance their investment plans.

4 The Model

We model an economy populated by F firms and L workers/consumers. Firms are split in

two industries: there are F1 consumption-good firms (labeled by j in what follows) and F2

machine-tools firms (labeled by i). Of course, F = F1+F2. Consumption-good firms invest

11This in line with empirical evidence discussed in Feldstein and Foot (1971); Eisner (1972); Goolsbee
(1998), who show that replacement investment is typically not proportional to capital stock

9



in machine-tools and produce a homogeneous product for consumers. Machine-tool firms

produce heterogenous capital goods and perform R&D. Workers inelastically sell labor to

firms in both sectors and fully consume the income they receive. Investment choices of

consumption-good firms determine the level of income, consumption and employment in

the economy.

In the next subsection, we shall firstly describe in a telegraphic way the dynamics of

events in a representative time-period. Next, we shall provide a more detailed account of

each event separately.

4.1 The Dynamics of Microeconomic Decisions

In any discrete time period t = 1, 2, ..., the timeline of events runs as follows12:

1. Consumption-good firms take their production and investment decisions. According

to their expected demand, firms fix their desired production and, if necessary, invest

to expand their capital stock. A payback period rule is employed to set replacement

investment. Credit-rationed firms finance their investment, first with their stock of

liquid assets, and next, if necessary, with debt.

2. Capital-good market opens. Market shares allocate the total demand to each machine-

tool firm. Market shares change according to the evolution of the ‘competitiveness’

of each machine-producing firm.

3. Consumption-good market opens. Consumption-good production takes place. Un-

employment rates and monetary wage emerge as the collective outcome of micro-

decisions. The size of the consumption-good demand depends on the number of

workers employed by firms. Consumption-good firms facing imperfectly informed

consumers receive a fraction of the total demand as a function of their price compet-

itiveness.

4. Exit, technical change and entry. Firms facing negative net-liquid assets and/or a

non-positive market-share exit and they are replaced by new firms. Capital-good

firms stochastically search for new machines.

Finally, total consumption, investment, change in inventories, and total product are

obtained by aggregating individual time-t quantities.

12All updating steps are carried out using a ‘parallel updating scheme’. More specifically, all firms have
simultaneously access to the updating step and base their decisions on the most recent observation of the
variables affecting their updating decision.

10



4.2 Production and Investment: The Consumption-Good Sector

Each consumption-good firm j = 1, 2, ..., F1 produces a homogenous good using machines

and labor under constant returns to scale. Planned output depends on adaptive demand

expectations of the form:

De
j(t) = f(Dj(t− 1), Y (t− 1), Dj(t− 2), Y (t− 2)...),

where Dj(t− 1) is the demand of firm j at time t− 1 and Y (t− 1) is the level of aggregate

output at time t − 1. In fact, we explore different extrapolative rules based on both firm-

specific past demand and aggregate market signal (see section 4.3, below for details).

According to the expected demand and the inventories (Nj) inherited from the previous

period, firms fix their desired level of production (Qd
j ):

Qd
j (t) = De

j (t) −Nj(t− 1). (1)

The stock of capital determines the maximum level of production achievable by each firm.

Hence, given the desired level of production, firms compute the desired stock of capital as:

Kd
j (t) =

Qd
j (t)

ud
, (2)

where ud is the desired level of capacity utilization.

Consumption-good firms decide whether to expand13 their stock of capital following an

(S,s) model. They compute their trigger (Ktrig
j ) level of capital as follows:

K
trig
j = Kj(t)(1 + α), (3)

with 0 < α < 1. Firms then plan to increase their capital stock only if the desired capital

stock is higher than the trigger one:

EIj(t) =

{

0 if Kd
j (t) < K

trig
j (t)

K
trig
j (t) −Kj(t) if Kd

j (t) ≥ K
trig
j (t)

, (4)

where EIj(t) is the expansion investment.

Such a routine-based behavior as already mentioned is amply justified by the complexity

of the environment in which the firms are nested, characterized by strong market and

technological uncertainty.

The stock of capital of each consumption-good firm is heterogeneous, since it is com-

13We assume that there are no secondary markets for capital goods. Hence, firms have no incentives to
reduce their capital stock.
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posed of various vintages of machines which differ in terms of productivity. Machines

are measured in terms of their production capacity and are normalized to one. They are

identified by a labor productivity coefficient Ai,τ , where i denotes their producer and τ

their generation (technical change takes place through the creation of new generation of

machines. See section 4.7 below for details). Let Ξj(t) be the set of all types of machines

belonging to firm j at time t. Firm j’s capital stock is defined as:

Kj(t) =
∑

Ai,τ∈Ξj(t)

gj(Ai,τ , t),

where gj(Ai,τ , t) is the absolute frequency of machine Ai,τ . Given the nominal wage w(t),

the unit labor cost of each machine is computed as:

c(Ai,τ , t) =
w(t)

Ai,τ

.

Scrapping policies follow a payback-period routine. The replacement of an incumbent

machine depends on its degree of ‘technological’ obsolescence and on the market price of

new capital goods. More formally, firm j will scrap machines Ai,τ ∈ Ξj(t) if they satisfy:

RSj(t) =

{

Ai,τ ∈ Ξj(t) :
p∗(t)

c(Ai,τ , t) − c∗(t)
≤ b

}

, (5)

where p∗ and c∗ are, respectively, the average market price and unit labor cost of new

machines, and b is a strictly positive payback-period parameter. Hence, the replacement

investment (RIj) of firm j will be equal to:

RIj(t) =
∑

Ai,τ∈RSj(t)

gj(Ai,τ , t), (6)

i.e. each consumption-good firm computes its replacement investment (RIj) by ‘adding’ the

number of machines that satisfy eq. (5). The level of investment (Ij) is the sum of expansion

and replacement investment. Summing up the actual investment of all consumption-good

firms, we get aggregate investment (I).

Firms must bear production costs before selling their output. Hence, they must finance

production as well as investment. In tune with the spirit of the evolutionary perspective,

but also of many New Keynesian models, we assume imperfect capital market with credit

rationing. Hence, firms will use first their stock of liquid assets (NWj) in order to finance

production and investment and only borrow if the latter are not sufficient, up to a maximum

debt/sales ratio Ωmax, paying an interest rate r.

When consumption-good firms receive new machines, they update their average pro-
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ductivity (πj) and their unit cost of production (cj). Average productivity reads:

πj(t) =
∑

Ai,τ∈Ξj(t)

Ai,τ

gj(Ai,τ , t)

Kj(t)
,

while unit cost of production will be given by:

cj(t) =
w(t)

πj(t)
.

Firms fix the price as a mark-up on their unit cost of production:

pj(t) = (1 + µ)cj(t),

with µ > 0. Given their average productivity and their production, consumption-good

firms determine their labor demand (LD
j ):

LD
j (t) =

Qj(t)

πj(t)
.

Denoting by Sj total sales of firm j, profits (Πj) read:

Πj(t) = pj(t)Sj(t) − cj(t)Qj(t) − rDebj(t),

where Debj is the stock of debts. The variation of the stock of liquid asset of consumption-

good firms depends on their profits as well as on their investment choices:

NWj(t) = NWj(t− 1) + Πj(t) − cIj ,

where cIj is the amount of internal funds employed by firm j to finance investment.

4.3 Demand Expectations

As mentioned, we experiment with diverse forms of adaptive expectations characterized by

somewhat different computing abilities and extrapolating routines. In the simplest case,

we assume that consumption-good firms are endowed with perfectly myopic expectations:

De
j(t) = Dj(t− 1). (7)

Second, we allow for some extrapolative rule and a longer memory (call it the autoregressive

expectation case):

De
j(t) = β1Dj(t− 1) + β2Dj(t− 2) + β3Dj(t− 3) + β4Dj(t− 4), (8)
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with 0 ≤ β1,2,3,4 < 1.

Third, we model firms considering both the level and the variation of their past demand

(∆Dj(t− 1)). In this case firms have accelerative expectations:

De
j (t) = [1 + β5∆Dj(t− 1)]Dj(t− 1), (9)

with 0 < β5 < 1.

Fourth, we allow firms to learn also from their past forecast and past mistakes. Let us

call it the adaptive expectation case:

De
j (t) = De

j (t− 1) + β6[Dj(t− 1) −De
j(t− 1)], (10)

with β6 > 0.

Finally, in the fifth case firms consider also the dynamics of the whole economy. This

is the micro-macro expectation case:

De
j (t) = [1 + β7∆Dj(t− 1) + β8∆Y (t− 1)]Dj(t− 1), (11)

where Y denotes the aggregate output and 0 < β7,8 < 1.

4.4 Machine Production

In the previous section, we have described how the demand of capital goods is generated.

Let us now describe the machine producing sector.

Each machine-tool firm i = 1, 2, ..., F2 sells its latest generation of products charac-

terized by labor productivity coefficient Ai,τ ,with τ = 1, 2, .... The production process

employs labor only under constant returns to scale. The unit cost of production is specific

to the firm and to the produced vintage:

ci(t) =
w(t)

Ai,τ

.

Firms set the price according to a mark-up (µ) rule:

pi(t) = (1 + µ)ci(t),

where µ ≥ 0.

As it happens in the consumption-good industry, machine-tool firms bear the costs

of production before receiving the revenues. They finance production with their stock of

liquid assets (NWi) and if necessary with external funds. Once the level of production is

14



determined, firms can hire workers according to:

LD
i (t) =

Qi(t)

Ai,τ

,

where LD
i is the labor demand of firm i.

Firm i’s profits (Πi) will be then given by:

Πi(t) = [pi(t) − ci(t)]Qi(t) − rDebi(t).

The stock of liquid assets changes according to:

NWi(t) = NWi(t− 1) + Πi(t).

4.5 The Consumption-Good Market

In this and in the next section we present how good markets works. We first consider the

consumption-good market.

Since consumption-good firms take their production decisions according to their de-

mand expectations, they can obviously make mistakes which are revealed by variations in

inventories. If in the previous period, they produced too much (Qj(t − 1) > Dj(t − 1)),

they accumulate stocks. On the contrary, if they were not able to fully satisfy their past

demand (Qj(t− 1) < Dj(t− 1)), their ‘competitiveness’ (Ej) at time t is reduced:

Ej(t) = −ω1pj(t) − ω2lj(t), (12)

where lj is the level of unfilled demand inherited from the previous period and ω1,2 are non-

negative parameters. The average sectorial competitiveness (E
j
) is obtained by weighting

the competitiveness of each firm with its past market share (fj(t− 1)):

E
j
(t) =

F1
∑

j=1

Ej(t)fj(t− 1).

Under condition of imperfect information, consumers take time to imperfectly adjust to

relative consumption-good prices. Thus, market shares evolve according to a replicator

dynamics. More specifically, the market share of each firm will grow (shrink) if its com-

petitiveness is above (below) the industry-average competitiveness:

fj(t) = fj(t− 1)

(

1 + χ1

Ej(t) − E
j
(t)

E
j
(t)

)

, (13)
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with χ1 ≥ 014.

Aggregate consumption (cf. section 4.8) shapes the demand-side of the market and it

is allocated to consumption-good firms according to their market share:

Dj(t) = C(t)fj(t). (14)

4.6 The Capital-Good Market

Let us now turn to the capital-good market. Capital-good firms produce on demand.

Hence, since they are always able to fully satisfy their demand, their ‘competitiveness’

depends only on the price they charge:

Ei(t) = −ω3pi(t), (15)

where ω3 is a non-negative parameter. As in the consumption-good industry, average

sectoral competitiveness (E
i
) and market shares (fi) read:

E
i
(t) =

F2
∑

i=1

Ei(t)fi(t− 1)

fi(t) = fi(t− 1)

(

1 + χ2

Ei(t) − E
i
(t)

E
i
(t)

)

, (16)

with χ2 ≥ 0. Also in this case, since the market is characterized by imperfect information,

there is inertia in the adjustment process of the market shares.

The demand side of the capital-good market depends on the investment choices of

consumption-good firms. More specifically, final-good firm orders determine the size of the

investment ‘cake’, whose slices (Di) are allocated according to the market share of each

producers:

Di(t) = I(t)fi(t). (17)

4.7 Entry, Exit, and Technical Change

At the end of every period, firms with zero market shares and/or negative net assets die

and are replaced by new firms. Hence, the number of firms in both sectors remain constant

14In both consumption- and capital-good markets, a firm dies if its market share ceases to be positive
(cf. Dosi et al., 1995).
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across time. In order not to bias the overall dynamics, we start by assuming that each

entrant is a random copy of a survived firm.

Finally, our economy is fuelled by a never-ending process of technical change. At the

end of each period, machine-tool firms try to develop the next generation of their product

(i.e. discovering machines with a higher labor productivity coefficient). The result of their

efforts is strongly uncertain: firms develop a prototype whose labor productivity (Ai,new)

may be higher or lower than the one of the currently manufactured machine. More formally,

we let:

Ai,new = Ai,tǫ, (18)

where ǫ ∼ U [ι1, ι2]. We also posit that firm i will release the next generation machine only

if the latter entails a labor productivity improvement (i.e. Ai,new > Ai,τ ). Finally, if the

firm decides to produce the new machine, the index τ is accordingly incremented by one

unit.

4.8 Macro Dynamics

The dynamics generated at the micro-level by individual decisions and interaction mecha-

nisms induces, at the macroeconomic level, a stochastic dynamics for all aggregate variables

of interest (e.g. output, investment, consumption, unemployment, etc.).

Labor market is not cleared by real wage movements. As a consequence, involuntary

unemployment may arise. The aggregate supply of labor is exogenous, inelastic and grows

at a constant rate (η):

L(t) = L(t− 1)(1 + η).

The aggregate demand of labor is the sum of machine- and consumption-good firms’ labor

demands:

LD(t) =

F1
∑

j=1

LD
j +

F2
∑

i=1

LD
i (t).

Hence, aggregate employment (Emp) reads:

Emp(t) = minL(t)D, L(t)). (19)

The wage rate is determined by both institutional and market factors, with both indexation

mechanisms upon consumption prices and average productivity, on the one hand, and,

adjustments to unemployment rates, on the others:
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w(t) = w(t−1)+

(

1 + ψ1

cpi(t) − cpi(t− 1)

cpi(t− 1)
+ ψ2

A(t) −A(t− 1)

A(t− 1)
+ ψ3

U(t) − U(t− 1)

U(t− 1)

)

,

(20)

where cpi is the consumer price index, A is average labor productivity and U is the unem-

ployment rate. The system parameters ψ1,2,3 allow one to characterize various institutional

regimes for the labor market.

In addition to the industries producing consumption goods and machines – call them

the tradable sector of the economy – it is reasonable to assume a parallel source of ag-

gregate demand associated with a non-market sector – including of course in its empirical

counterpart government services. In the model, its admittedly blackboxed representation

is through a contribution to aggregate consumption proportional to the whole labor force

and the aggregate wage bill:

C(t) = w(t)Emp(t) + ϕw(t)L, (21)

with 0 < ϕ < 1.

As mentioned above, our model straightforwardly belongs to the evolutionary/ACE

class. Since in general, analytical, closed-form, solutions can hardly be obtained, one

must resort to computer simulations to analyze the properties of the (stochastic) processes

governing the coevolution of micro and macro variables15.

To do so, one should in principle address an extensive Montecarlo analysis in order to

understand how the statistics of interests change together with initial conditions and system

parameters. Notice, in any case, that in our model the only stochastic component affecting

the underlying dynamics is given by technological improvements in machine efficiencies.

In fact, sensitivity exercises show that the across-simulation stochastic variability is quite

low and no chaotic pattern is detected. Hence, we can confidently present below results

concerning averages over a limited number of replications (typically M = 50) as a robust

proxy for the behavior of all time-series of interest. Moreover, a Montecarlo sensitivity

analysis on some relevant system parameters is performed in Appendix C.

5 Simulation Results

How does the model fare in terms of its ability to account for the empirical regularities

presented in sections 2.1 and 2.2? Here we shall present in detail the simulation results

15On the ‘methodology’ of evolutionary/ACE models, see Nelson and Winter (1982); Lane (1993a,b);
Kwasnicki (1998); Dosi and Winter (2002); Pyka and Fagiolo (2005).
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under perfectly myopic expectation scenario and compare them with the results obtained

in the other expectation regimes (cf. Sec. 4.3). The value of the parameters and the initial

conditions are spelled out in Appendix B.

First, notice that the model is able to generate self-sustaining patterns of growth (cf.

Fig. 5). The analysis of investment components shows, second, that the behavior of

aggregate investment is the result of huge changes in both expansion and replacement

investment (see Fig. 6).

Third, if we separate the business cycle frequencies of the series by applying a bandpass

filter16, we observe the typical ‘roller coaster’ shape that characterizes real data (see Fig.

7 and section 2.1 above).

Fourth, our simulated series of aggregate investment appear to be more volatile than

output, and expansion investment fluctuates more wildly than replacement investment (cf.

Fig. 8).

Finally, aggregate investment and consumption seem to display a procyclical behav-

ior. Interestingly, the foregoing qualitative properties do not significantly change if we let

consumption-good firms follow more sophisticated expectation formation rules. As com-

pared to the expectation regime analyzed so far, output and investment appear to be

somewhat less volatile if firms are endowed with autoregressive (cf. Fig. 10 and eq. 8

above) expectations. Moreover, if one assumes autoregressive or accelerative (cf. eq. 9)

expectation set-ups, expansion investment appears to be less lumpy (cf. Figs. 11 and 15).

An important advantage of the model as compared with its ‘representative agent’ rivals

is that it also generates a microeconomic landscape consistent with the micro ‘stylized facts’

mentioned in section 2.2. So, for example, the skewed size distributions17 which emerge in

the simulation are not very different from the empirically observed one (cf. the rank-size

plot in Figure 1). Moreover, again in tune with the empirical evidence, pooled growth

rates of our simulated firms exhibit the typical ‘tent-shaped’ patterns, characterized by

tails fatter than the Gaussian benchmark (cf. Fig. 2).

Let us now turn to a more detailed study of the time-series generated by our model

simulations. More specifically, let us address the issue whether simulated series of aggregate

output growth, investment, consumption, etc. display statistical properties similar to the

empirically observed ones (as summarized in SF1 − 4).

16See Appendix A for a discussion of the properties of alternative filtering techniques.
17We employ consumption-good firms sales (S) as a proxy of firm size. Before pooling our data, we

normalize each observation by the year-average of firm size in order to remove any time trends in our data.
This allows one to get stationary size and growth distributions across years.
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We begin by focusing on the average growth rate (AGR) of the economy:

AGRT =
log Y (T ) − log Y (0)

T + 1
, (22)

where Y denotes aggregate output and compute Dickey-Fuller (DF) tests on output, con-

sumption and investment in order to detect the presence of unit roots in the series. All

results refer to averages computed across M = 50 independent simulations.

The average growth rate of output, consumption and investment are strictly positive

(see Table 4) and DF tests suggest that output, consumption, and investment are non-

stationary.

Finally, we detrend the time series obtained from simulations with a bandpass filter

(6,32,12) and we compute standard deviations and cross-correlations between output and

the other series18.

The relative standard deviations show that the model is able to match SF1 (i.e. in-

vestment is considerably more volatile than output) and SF2 (i.e. consumption is less

volatile than output). The volatility of aggregate investment is indeed 3 times larger than

the output one, whereas the relative volatility of consumption is 0.86.

As far as cross-correlations are concerned, consumption, investment and change in

inventories all appear to satisfy SF3: they are procyclical and coincident variables (cf.

Table 5). Moreover, our simulated cross-correlation patterns are also quantitatively similar

to those obtained by Stock and Watson (1999) on U.S. data (see Fig. 9).

In addition, employment turns out to be procyclical, while the unemployment rate is

anti-cyclical (SF4). Notice however that the two variables appear to be coincident. This

result may stem from the complete lack of frictions that characterizes the labor market

in our model. Indeed, since in every time period firms can hire and fire workers without

limitations, production fluctuations pour out in the labor market with no lags.

If we move to the other expectation regimes, the aforementioned quantitative results

do not significantly change. Investment relative standard deviation increases in the autore-

gressive expectation scenario (cf. Table 6), whereas it becomes lower in the accelerative

expectation regime (cf. Table 8), but, in any case, SF1 is always matched. According to

cross-correlations, SF3 is not completely satisfied only in the autoregressive expectation

scenario. Indeed, investment becomes slightly leading and change in inventories turns to

slightly lagging (see Table 7).

We have also checked whether our model is able to match the microeconomic stylized

facts on productivity dynamics (SF10 − 11). To do so, we compute – at each t – the

18All results refer to the choice of T = 600, cf. Appendix B. This econometric sample size is sufficient
to allow for convergence of recursive moments of all statistics of interest.
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standard deviation of labor productivities across consumption-good firms. Our results

(cf. Fig. 3) indicate that significantly asymmetries persist throughout the history of

our simulated economy (in tune with SF10). Moreover, we average productivity auto-

correlations for consumption-good firms19 finding autocorrelations significantly larger than

zero (cf. Fig. 4, thus suggesting persistency in micro productivity differentials (cf. SF11).

6 Conclusions

In this work, we have begun to explore the properties of an evolutionary, agent-based

model wherein macroeconomics dynamics is nested into heterogenous boundedly ratio-

nal firms which operate in two vertically linked sectors, producing ‘machines’ and a con-

sumption good. Technical progress is machine-specific and diffuses in the economy via

time-consuming investment by users. In turn, investment and production decisions induce

demand propagation effects much alike Keynesian ‘multiplier’ effects. Conversely, adaptive

expectations on demand drive investments in manners closely resembling the Keynesian

‘accelerator’.

The results, despite the simplicity of the model, appear to be surprisingly in tune with

a rather long list of empirical ‘stylized facts’ – concerning both the properties of aggregate

variables and the underlying microeconomics. The overall picture stemming from the

simulation results is one where self-sustaining, fluctuating patterns of growth emerge out

of the interactions among firms operating in market regimes that strongly depart from

perfect competition. Firms undergo a permanent process of selection and try to cope –

albeit imperfectly – with a turbulent environment characterized by endogenous demand

waves and technological shocks. This in turn induces lumpiness in individual firm growth

patterns, with relatively frequent episodes of larger- or smaller-than-average growth.

Self-sustained growth comes together with fluctuations in macroeconomic variables

characterized by statistical properties similar to the empirically observed one. Interest-

ingly, preliminary investigations appear to suggest that such properties are relatively in-

dependent from the specification of expectation formation. Rather, it is the heterogeneity

among the agents which is crucial to generate dynamic properties of the model.

Evolutionary microfoundations – in the form of multiple agents, who are imperfectly

adaptive in their behavior but also able to innovate – are shown to withhold macrodynamics

with strong Keynesian features.

19More precisely, in the last 100 periods of the simulations, we consider the normalized productivity of
firms that survived for at least 40 periods and we average auto-correlations until lag 8.
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A The Choice of the Filter

All analyses of empirical and simulated time-series conducted above have required the
application of some filtering techniques in order to single out the business cycle components
of the series.

The choice of the filter is not trivial: as Canova (1998, 1999) pointed out, different
detrending methods affect both the qualitative and quantitative stylized facts of the busi-
ness cycle. An ideal filter should remove the trend, as well as any irregular components,
without introducing any distortion. The problem becomes clearer if it is treated in the
frequency domain. According to the spectral decomposition theorem, a covariance sta-
tionary time series can be represented as the infinite sum of orthogonal components, each
of which is associated to a given frequency. Each series has a power spectrum, which
reports the contribution to the total variance of the process of the components belong-
ing to each frequency band. The (relative) importance of the fluctuations associated to a
given periodicity is given by the height of the spectrum at the correspondingly frequency.
As reported by Granger (1966), the spectrum of many macroeconomic time series has a
typical monotonically-decreasing shape, which implies that medium and (especially) low
frequencies – which correspond to the business cycle and long-run growth periodicity –
give the highest contribution to the variance of the variables. The ideal business cycle
filter should preserve the medium frequencies, detrend the variable (i.e. eliminating low
frequency fluctuations), and kill the high frequency noise.

Let us consider two of the most largely employed filters, i.e. ‘first-differencing’ (FD)
and ‘bandpass’ (BP), see Baxter and King (1999). On the one hand, the FD filter is very
simple and it is able to remove the trend component of the series. However, it amplifies
their short-run noise. Moreover, if a series does not have a unit root, we can incur in
over-differencing.

On the other hand, the BP filter outperforms FD and allows to single out only the
range of periodicity associated to the business cycle (e.g. 6-32 quarters)20.

Hence, in line with the econometric literature on business cycle stylized facts (Agresti
and Mojon, 2001; Stock and Watson, 1999; Napoletano, Roventini, and Sapio, 2004), we
choose to employ here the BP filter.

This choice is reinforced by the fact that the problem of high frequency noise is par-
ticularly severe in our data. For instance, if in the ‘perfectly myopic’ expectation scenario
we compare output and investment series detrended with the two filters (cf. Fig. 30), a
distortion due to the presence of short-run noise does emerge: the fluctuations of the first-
differenced series are very wild as compared to those of bandpass-filtered series. This does
not allow one to infer any clear relation between output and investment. Moreover, the
distortion introduced by first-differencing biases also the correlation structure (cf. Table
14).

Finally, notice that the BP filter requires to specify the range of frequencies that corre-
spond to business cycle periodicity. With real-world data, this choice is very simple: given
the frequency of the observed data (e.g. quarterly, monthly), the minimum and maximum

20More specifically, the optimal BP filter is an infinite symmetric moving average, singling out a specific
range of periodicity. The feasible BP filter is instead a finite moving-average, whose weights minimize the
squared difference between the ideal filter and viable ones.
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length of business cycle is usually defined according to a qualitative analysis of the data
(e.g. NBER chronologies).

Unfortunately, simulation-based exercises do not provide the modeler – by construction
– with this information. We deal with this problem by assuming that our simulated time-
tick coincides with quarterly data, and we use the same range of frequencies that are
commonly used in the empirical analysis of the U.S. business cycles (i.e. 6-32 quarters).

There seem to be at least three reasons which justify this choice. First, using quarterly
data allows us to better compare statistical properties of simulated time-series with those
exhibited by empirically observed ones (cf. Section 2.1). Second, we believe that the as-
sumption of quarterly data is a good compromise between the timing of investment and
production choices made by firms whose time-horizon is (also) shaped by data-availability.
Finally, the quarterly timing appears to be the ‘optimal’ one also from a calibration per-
spective. Imagine to search for the ranges of frequencies of a BF that allow our simulated
data to best reproduce the empirically observed stylized facts on output and investment.
More specifically, let us assume that the length of our business cycles falls between 6 and
32 quarters and let us filter our simulated data as if they were quarterly, monthly and
annual21. It turns out that the quantitative results we obtain with ‘annual’ data closely
resemble those obtained with first-differencing (cf. Table 14). This does not come as a
surprise: since frequency is the inverse of periodicity, by assuming annual data we widen
the frequency range, taking on board a lot of high frequency noise. With ‘quarterly’ and
‘monthly’ data, on the other hand, the situation improves substantially: the relative stan-
dard deviations of investment decrease, while both auto- and cross-correlations increase.
However, with ‘monthly’ data, auto- and cross-correlations fall too slowly as compared to
what happens in real-world data.

B Simulations and System Parameters

All simulation results presented above refer to the benchmark setup described in Table 1.
Initial conditions are defined as in Table 2.

The simulation results we get under different expectation regimes are quiet robust
to different expectation parametrizations. The results reported in the paper have been
obtained with β1 = 0.7, β2 = 0.3, β3,4 = 0; β5 = 0.25; β6 = 1; β7 = 0.05 and β8 = 0.25.

C Montecarlo Analysis

We perform a Montecarlo analysis (M = 50) to assess how different parameterizations
affect the results generated by the model. More precisely, in the perfectly myopic scenario,
we focus our analysis on investment parameters (i.e. the trigger α and the payback period
b), the wage share ϕ and the replicator dynamics coefficients χ1,2. We consider output and

21For ‘quarterly data’, we apply a bandpass filter (6,32,12); for ‘monthly’ data, we use a bandpass filter
(18,96,36) and for ‘annual’ data, a bandpass filter (2,8,6). The first two numbers set the lowest (e.g. 18
months) and highest periodicity (e.g. 96 months) that must be considered. The last number regulates the
precision of the filter.
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investment and, for every parameterization, we compute average growth rates, standard
deviations and cross-correlations as in Section 5. Results are reported in Table 15.

The general picture emerging from the Montecarlo analysis points to the resilience of
the model. Indeed, the statistics produced by the model are quite robust to different
parameterizations.

If α rises, average growth rates does not change and the volatility of GDP and in-
vestment slightly increases. Moreover, investment becomes slightly leading, because the
correlations at time t and t− 1 fall.

Lower values of the payback period parameter have no impact on the GDP average
growth rate and on the correlation-structure. On the contrary, the investment average
growth rate responds in a non-linear way, the GDP standard deviation slightly falls,
whereas the investment standard deviation rises.

The major influence of the wage share is on the correlation structure. As φ rises,
investment tend to becomes slightly leading. Average growth rates and standard deviations
are almost unaffected.

Finally, the competitive pressure exercised by the economic environment via χ1,2 has
no influence on the GDP average growth rate and it slightly affects the investment av-
erage growth rate. When χ1,2 rises, both GDP and investment volatility grow, whereas
correlations are almost unaffected.
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Description Symbol Value
Size of Consumption-good Industry F1 200
Size of Capital-good Industry F2 50
Econometric Sample Size T 600
Replicator Dynamics Coeff. χ1,2 −0.5
Competitiveness weights ω1,2,3 1
Uniform Distribution Support: Lower Bound ι1 −0.5
Uniform Distribution Support: Upper Bound ι2 0.5
Labor Supply Growth Rate η 0.01
Wage Setting: ∆cpi weight ψ1 0.75
Wage Setting: ∆A weight ψ2 1
Wage Setting: ∆U weight ψ3 0.1
Desired level of capacity utilization ud 0.75
Trigger rule α 0.1
Payback Period Parameter b 4
Mark-up rule µ 0.3
Interest rate r 0.01
Wage share ϕ 0.1

Table 1: Benchmark Parametrization

Description Symbol Value
Market Wage w(0) 100
Consumer Price Index cpi(0) 1.3
Average Labor Productivity A(0) 100
Liquid Assets NWi,j(0) 3000
Capital Stock Kj(0) 2000
Labor Supply L(0) 3000

Table 2: Initial Conditions
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Std. Dev. Cross-correlations with GDP (lags)
Series Abs. Rel. t-4 t-3 t-2 t-1 0 t+1 t+2 t+3 t+4
GDP 1.66 1 0.03 0.33 0.66 0.91 1 0.91 0.66 0.33 0.03
Consumption 1.26 0.76 -0.07 0.21 0.51 0.76 0.90 0.89 0.75 0.53 0.29
Investment 4.97 2.99 0.04 0.32 0.61 0.82 0.89 0.83 0.65 0.41 0.18
Ch. in Invent. 0.38 - -0.32 -0.04 0.28 0.57 0.73 0.72 0.56 0.32 0.08
Employment 1.39 0.84 0.49 0.72 0.89 0.92 0.81 0.57 0.24 -0.07 -0.33
Unempl. rate 0.76 0.46 -0.27 -0.55 -0.80 -0.93 -0.89 -0.69 -0.39 -0.07 0.19

Table 3: Variance and Auto-Correlation Structure of Output and Other Macro Series for
the U.S. Economy (1953 - 1996). Quarterly data have been detrended with a bandpass
filter (6,32,12). Source: Stock and Watson (1999).

GDP Consumption Investment
Avg. growth rate (%) 1.50% 1.51% 1.54%

Dickey-Fuller test (logs) 2.8715 3.9986 -0.9186
Sign. level 1 1 1

Dickey-Fuller test (bpf 6,32,12) -4.8703 -4.8040 -5.6382
Sign. level 0.01 0.01 0.01

Std. Dev. (bpf 6,32,12) 0.1931 0.1659 0.6089
Rel. Std. Dev. (GDP) 1 0.86 3.15

Table 4: Perfectly Myopic Expectations. Output, Investment and Consumption Statistics.

Series GDP (bpf 6,32,12)
bpf 6,32,12 t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4
GDP -0.1516 0.2493 0.6281 0.9001 1 0.9001 0.6281 0.2493 -0.1516
Consumption -0.1227 0.2777 0.6481 0.9085 0.9975 0.8918 0.6159 0.2350 -0.1672
Investment -0.1887 0.1226 0.4300 0.6767 0.8112 0.7998 0.6396 0.3622 0.0263
Ch. in Invent. -0.0956 0.1067 0.3101 0.4669 0.5342 0.4913 0.3500 0.1493 -0.0615
Employment -0.1397 0.2637 0.6389 0.9045 0.9981 0.8966 0.6248 0.2478 -0.1514
Unempl. rate 0.1274 -0.2663 -0.6327 -0.8949 -0.9916 -0.8966 -0.6296 -0.2519 0.1537

Table 5: Perfectly Myopic Expectations. Correlation Structure.
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GDP Consumption Investment
Avg. growth rate (%) 1.54% 1.53% 1.58%

Dickey-Fuller test (logs) 6.4372 9.4470 -0.4309
Sign. level 1 1 1

Dickey-Fuller test (bpf 6,32,20) -4.8703 -4.8380 -5.1365
Sign. level 0.01 0.01 0.01

Std. Dev. (bpf 6,32,20) 0.0767 0.0672 0.3183
Rel. Std. Dev. (GDP) 1.00 0.88 4.15

Table 6: Autoregressive Expectations. Output, Investment and Consumption Statistics.

Series Gdp (bpf 6,32,12)
bpf 6,32,12 t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4
GDP -0.0706 0.2929 0.6462 0.9049 1 0.9049 0.6462 0.2929 -0.0706
Consumption -0.0850 0.2789 0.6337 0.8963 0.9980 0.9115 0.6618 0.3150 -0.0469
Investment -0.1592 0.1241 0.4161 0.6580 0.7968 0.8023 0.6755 0.4465 0.1640
Ch. in Invent. 0.1195 0.3136 0.4678 0.5475 0.5318 0.4225 0.2453 0.0412 -0.1474
Employment -0.1100 0.2565 0.6167 0.8868 0.9968 0.9180 0.6744 0.3319 -0.0280
Unempl. rate 0.1144 -0.2507 -0.6113 -0.8826 -0.9943 -0.9173 -0.6752 -0.3333 0.0272

Table 7: Autoregressive Expectations. Correlation Structure.

GDP Consumption Investment
Avg. growth rate (%) 1.52% 1.50% 1.66%

Dickey-Fuller test (logs) 2.2160 3.6865 -0.3357
Sign. level 1 1 1

Dickey-Fuller test (bpf 6,32,20) -5.5105 -5.5063 -5.9885
Sign. level 0.01 0.01 0.01

Std. Dev. (bpf 6,32,20) 0.1630 0.1379 0.4059
Rel. Std. Dev. (GDP) 1.00 0.85 2.49

Table 8: Accelerative Expectations. Output, Investment and Consumption Statistics.
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Series Gdp (bpf 6,32,12)
bpf 6,32,12 t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4
GDP -0.2626 0.1362 0.5565 0.8785 1 0.8785 0.5565 0.1362 -0.2626
Consumption -0.2666 0.1350 0.5567 0.8778 0.9988 0.8805 0.5611 0.1417 -0.2570
Investment -0.3193 -0.0305 0.3120 0.6181 0.7967 0.7902 0.5981 0.2812 -0.0642
Ch. in Invent. -0.1452 0.0293 0.2236 0.3715 0.4170 0.3401 0.1675 -0.0386 -0.2083
Employment -0.2746 0.1259 0.5489 0.8735 0.9990 0.8847 0.5677 0.1487 -0.2507
Unempl. rate 0.2700 -0.1281 -0.5476 -0.8694 -0.9944 -0.8826 -0.5694 -0.1529 0.2474

Table 9: Accelerative Expectations. Correlation Structure.

GDP Consumption Investment
Avg. growth rate (%) 1.56% 1.56% 1.73%

Dickey-Fuller test (logs) 3.0319 4.1459 -0.8462
Sign. level 1 1 1

Dickey-Fuller test (bpf 6,32,20) -4.9501 -4.8922 -5.6906
Sign. level 1 1 1

Std. Dev. (bpf 6,32,20) 0.1915 0.1646 0.6085
Rel. Std. Dev. (GDP) 1 0.86 3.18

Table 10: Adaptive Expectations. Output, Investment and Consumption Statistics.

Series Gdp (bpf 6,32,12)
bpf 6,32,12 t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4
GDP -0.1491 0.2518 0.6302 0.9013 1 0.9013 0.6302 0.2518 -0.1491
Consumption -0.1248 0.2769 0.6483 0.9087 0.9974 0.8923 0.6177 0.2375 -0.1649
Investment -0.1939 0.1174 0.4252 0.6729 0.8093 0.8012 0.6441 0.3677 0.0301
Ch. in Invent. -0.0919 0.1111 0.3128 0.4652 0.5285 0.4869 0.3547 0.1691 -0.0256
Employment -0.1417 0.2629 0.6391 0.9047 0.9981 0.8971 0.6266 0.2504 -0.1491
Unempl. rate 0.1296 -0.2656 -0.6330 -0.8951 -0.9914 -0.8968 -0.6310 -0.2539 0.1519

Table 11: Adaptive Expectations. Correlation Structure.
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GDP Consumption Investment
Avg. growth rate (%) 1.44% 1.45% 0.53%

Dickey-Fuller test (logs) 2.4223 3.1405 -1.7463
Sign. level 1 1 1

Dickey-Fuller test (bpf 6,32,20) -5.6499 -5.5816 -5.8515
Sign. level 0.01 0.01 0.01

Std. Dev. (bpf 6,32,20) 0.2118 0.1792 0.7649
Rel. Std. Dev. (GDP) 1 0.85 3.61

Table 12: Micro-Macro Expectations. Output, Investment and Consumption Statistics.

Series Gdp (bpf 6,32,12)
bpf 6,32,12 t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4
GDP -0.3400 0.0903 0.5365 0.8739 1 0.8739 0.5365 0.0903 -0.3400
Consumption -0.3314 0.1086 0.5534 0.8825 0.9985 0.8646 0.5247 0.0810 -0.3476
Investment -0.2796 0.0324 0.3445 0.5868 0.7054 0.6738 0.5021 0.2325 -0.0732
Ch. in Invent. -0.1542 0.0020 0.1804 0.3304 0.4010 0.3642 0.2327 0.0527 -0.1190
Employment -0.3410 0.0983 0.5454 0.8787 0.9986 0.8671 0.5280 0.0847 -0.3429
Unempl. rate 0.3402 -0.0992 -0.5433 -0.8735 -0.9944 -0.8694 -0.5391 -0.1009 0.3298

Table 13: Micro-Macro Expectations. Correlation Structure.
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Series Std. Dev. GDP (rates of growth)
r.o.g. abs. rel. t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4
GDP 0.11 1.00 0.082 -0.202 0.533 0.180 1 0.180 0.533 -0.202 0.0824
Consumption 0.08 0.74 -0.111 0.019 0.419 0.458 0.901 0.411 0.437 -0.054 -0.064
Investment 0.97 8.63 0.013 -0.086 0.178 0.031 0.224 0.064 0.244 -0.080 0.130

Series Std. Dev. GDP (bpf 6,32,12)
bpf 6,32,12 abs. rel. t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4
GDP 0.19 1.00 -0.152 0.249 0.628 0.900 1 0.900 0.628 0.249 -0.152
Consumption 0.17 0.86 -0.123 0.278 0.648 0.908 0.997 0.892 0.616 0.235 -0.167
Investment 0.61 3.15 -0.189 0.123 0.430 0.677 0.811 0.800 0.640 0.362 0.026

Series Std. Dev. GDP (bpf 2,8,3)
bpf 2,8,3 abs. rel. t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4
GDP 0.06 1.00 0.008 -0.278 0.363 0.193 1 0.193 0.363 -0.278 0.008
Consumption 0.04 0.74 -0.164 -0.104 0.259 0.431 0.902 0.382 0.275 -0.153 -0.111
Investment 0.57 9.41 -0.005 -0.093 0.135 0.018 0.161 0.059 0.198 -0.068 0.101

Series Std. Dev. GDP (bpf 18,96,36)
bpf 18,96,36 abs. rel. t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4
GDP 0.07 1.00 0.558 0.738 0.878 0.967 1 0.967 0.878 0.738 0.558
Consumption 0.06 0.89 0.588 0.761 0.892 0.973 0.997 0.960 0.866 0.721 0.536
Investment 0.34 4.89 0.327 0.497 0.638 0.741 0.798 0.806 0.764 0.676 0.547

Table 14: Robustness of Simulation Results to Alternative Filtering Procedures. First
Differencing vs. Bandpass Filters.

Parameters Avg. gr. r. Std. dev. Inv. corr. with GDP
α b ϕ χ1,2 GDP Inv. GDP Inv t-1 t t+1

0.10 4 0.10 -0.5 1.50% 1.54% 0.1931 0.6089 0.6767 0.8112 0.7998
0.20 4 0.10 -0.5 1.52% 1.49% 0.2112 0.7000 0.5331 0.7123 0.7662
0.30 4 0.10 -0.5 1.51% 1.56% 0.2372 0.6823 0.4757 0.6761 0.7548
0.10 3 0.10 -0.5 1.51% 1.44% 0.1713 0.6854 0.6595 0.7844 0.7615
0.10 2 0.10 -0.5 1.49% 1.62% 0.1603 0.7886 0.6818 0.7998 0.7555
0.10 4 0.15 -0.5 1.51% 1.52% 0.1830 0.6335 0.5255 0.6691 0.7180
0.10 4 0.05 -0.5 1.52% 1.54% 0.1518 0.6141 0.6257 0.7552 0.7362
0.10 4 0.10 -0.4 1.51% 1.48% 0.1394 0.5768 0.6135 0.7635 0.7733
0.10 4 0.10 -0.6 1.52% 1.52% 0.2192 0.6674 0.6174 0.7341 0.7320

Table 15: Perfectly Myopic Expectations. Montecarlo Analysis of System Parameters.
Averages over 50 Replications.
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Figure 1: Pooled (Year-Standardized) Sales Distributions. Log Rank vs. Log Size Plots.
M-G: Model-Generated Distribution.
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Figure 2: Pooled (Year-Standardized) Firm Growth Rates. Binned Densities of Simulated
Growth Rates vs. Laplace Fit. M-G: Model-Generated Growth Rates.
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Figure 3: Standard Deviations of Consumption-Good Firm Productivity.

t t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

P
e

rc
e

n
t

Figure 4: Average Auto-Correlations of Consumption-Good Firm Productivity. Standard
Deviations of Average Auto-Correlations Are Reported Above the Bars
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Figure 5: Perfectly Myopic Expectations. Level of Output, Investment and Consumption.
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Figure 6: Perfectly Myopic Expectations. Expansion and Replacement Investment.
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Figure 7: Perfectly Myopic Expectations. Bandpass-Filtered Output, Investment and
Consumption.
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Figure 8: Perfectly Myopic Expectations. Bandpass-Filtered Expansion and Replacement
Investment.
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Figure 9: Perfectly Myopic Expectations. Model Generated (M-G) vs. Empirical Data
(S-W: Stock and Watson, 1999) Cross-correlations.
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Figure 10: Autoregressive Expectations. Level of Output, Investment and Consumption.
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Figure 11: Autoregressive Expectations. Expansion and Replacement Investment.
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Figure 12: Autoregressive Expectations. Bandpass-Filtered Output, Investment and Con-
sumption.
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Figure 13: Autoregressive Expectations. Bandpass-Filtered Expansion and Replacement
Investment.
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Figure 14: Autoregressive Expectations. Model Generated (M-G) vs. Empirical Data
(S-W: Stock and Watson, 1999) Cross-correlations.
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Figure 15: Accelerative Expectations. Level of Output, Investment and Consumption.
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Figure 16: Accelerative Expectations. Expansion and Replacement Investment.
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Figure 17: Accelerative Expectations. Bandpass-Filtered Output, Investment and Con-
sumption.
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Figure 18: Accelerative Expectations. Bandpass-Filtered Expansion and Replacement
Investment.
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Figure 19: Accelerative Expectations. Model Generated (M-G) vs. Empirical Data (S-W:
Stock and Watson, 1999) Cross-correlations.
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Figure 20: Adaptive Expectations. Level of Output, Investment and Consumption.
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Figure 21: Adaptive Expectations. Expansion and Replacement Investment.
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Figure 22: Adaptive Expectations. Bandpass-Filtered Output, Investment and Consump-
tion.
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Figure 23: Adaptive Expectations. Bandpass-Filtered Expansion and Replacement Invest-
ment.
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Figure 24: Adaptive Expectations. Model Generated (M-G) vs. Empirical Data (S-W:
Stock and Watson, 1999) Cross-correlations.
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Figure 25: Micro-Macro Expectations. Level of Output, Investment and Consumption.
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Figure 26: Micro-Macro Expectations. Expansion and Replacement Investment.
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Figure 27: Micro-Macro Expectations. Bandpass-Filtered Output, Investment and Con-
sumption.
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Figure 28: Micro-Macro Expectations. Bandpass-Filtered Expansion and Replacement
Investment.
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Figure 29: Micro-Macro Expectations. Model Generated (M-G) vs. Empirical Data (S-W:
Stock and Watson, 1999) Cross-correlations.
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Figure 30: First Differencing vs. Bandpass Filter (6,32,12).
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