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Abstract

This paper provides a description of the production process by comparing different
frameworks in which to analyze the relations between inputs and output. The analyses
are performed on a representative sample of Italian manufacturing firms. We employ
both parametric and non-parametric analysis. The latter allows to detect the presence
of heterogeneity in the way the production is carried out within each sector.

Results of the econometric analysis show that coefficient estimates tend to be robust
with respect to the different models employed.
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Sintesi

Questo articolo propone una descrizione del processo produttivo che permette di confrontare
differenti approcci presenti in letteratura. L’analisi presentata fa riferimento ad un campione
rappresentativo delle imprese italiane nel settore manifatturiero. Si impiegano sia metodi
parametrici che nonparametrici. Questi ultimi permettono di individuare un elevato grado di
eterogeneità nel modo in cui è effettuata la produzione da imprese in uno stesso settore.

I risultati dell’analisi econometrica evidenziano come i coefficienti stimati siano poco sen-
sibili alla scelta del modello.
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1 Introduction

Describing the production technology has traditionally proved to be a relevant and appealing
issue in economics. Such a characterization allows indeed to address a number of meaningful
questions as the extent of substitutability or complementarity of inputs, the source of produc-
tivity differences across firms (and its measurement) or the magnitude of economies of scale,
to mention but a few.

An important strand of research1 in this field has tried to characterize the production
process of firms by means of production functions with relatively simple functional forms.
The early representation of Cobb and Douglas [1928] is still widely adopted due to its nice
properties. Different kinds of investigations were performed on the Cobb-Douglas production
function and also on other specifications intended to relax some of the assumptions underlying
this traditional model. Early works had been largely cross-sectional but as time-series data
became available it was a natural development to take into explicit account the role of time
(cfr. the historical note in Griliches [1996]). Even if the need to choose the individual firm
as the level of investigation was immediately recognized,2 a common limitation of these early
works was their focus on an aggregate production function, mostly due to the unavailability
of more disaggregated data.

Recently the availability of longitudinal micro-level data sets (LMD) has largely increased
the interest in describing the production activities of business firms and, in particular, in mea-
suring their productivity and dynamics (see Baily et al. [1992] and the review in Bartelsman
and Doms [2000]). At the same time, the desire to disentangle the empirical description of
the production process from a strict set of assumptions about the technology choices available
to firms and their preferences led to the development of a large literature which, applying
non-parametric techniques, is interested in describing the production activities of the different
firms composing a sector or an industry, ultimately identifying the so-called efficient frontier

of the production. This approach is purported to reconstruct a benchmark of the industry, so
that each firm can be compared with the best performer for each level of scale of the activity
(see for instance Varian [1984]).

In this paper we propose a “disaggregated” analysis aimed at exploring how the production
process is carried out in different manufacturing sectors. We apply non-parametric techniques
without following the “efficient frontier” tradition since we do not want to define any sort
of “optimal” mixtures of inputs for the firms operating in a given sector. Rather, we use a
descriptive approach trying to obtain a succinct description of the production activity in each
sector and to provide an account of how the mix of inputs varies across industries and in time.
This enables us also to keep track of how relative input intensities vary, in a given sector, with
the size of the firm. Furthermore we consider a parametric approach, adopting a standard
form for the sectoral production function, and we present estimations of the inputs-output
relationship, based on different methods designed to exploit the longitudinal structure of our
database. With this respect, the main finding is that the estimated technical coefficients seem
not very sensitive to the choice of method.

The paper is organized as follows. In Section 2 we briefly describe the nature and structure
of our data. In Section 3 a first exploratory investigation, based on non-parametric method is

1In this paper we neglect at least one another important line of research: the one developed out of the
national income measurement tradition, based largely on the work of NBER under the leadership of Simon
Kuznets.

2For instance, Marschak and Andrews [1944] say that “it is the firm, not the country, state or industry,
that chooses the resources and (more or less) tries to maximize the profit” (p. 169).
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presented. The parametric part of our analysis is described in Section 4 while in Section 5 we
summarize our conclusions.

2 Data

The research we present here draws upon the MICRO.1 databank developed by the Italian
Statistical Office (ISTAT)3. MICRO.1 contains longitudinal data on a panel of several thou-
sands of Italian manufacturing firms with employment of 20 units or more and it covers the
years 1989-97. As reported in Bartelsman et al. [2004] the percentage of manufacturing firms
with more than 20 employees is the 12% of the total population. However, these relative larger
companies account for almost 70% in terms of employment in the manufacturing sector.

Firms are classified according to their sector of principal activity following the ISIC clas-
sification. The database contains information on many variables appearing in a firms balance
sheet. The “panel” nature of the database allows us to keep track of the same firm during
the considered interval. The richness of the cross-sectional dimension of the sample allows to
partially overcome shortcomings due to the limited time span of the dataset. In this work we
have chosen total sales plus (or minus) the variation of unsold stocks as a proxy for output.
Labor is proxied by number of employees and capital by tangible fixed assets; and in particular
by the amount that corresponds to the original historic cost.

3 Non Parametric Analysis

We begin our analysis with a non parametric investigation of the relation between the two
factors of production considered, capital and labor, and firms output.

A first question concerns the degree of heterogeneity in the amount of inputs used in a
given sector. Let li = log(Li) and ki = log(Ki) where i ∈ {1, . . . , N} be respectively the
number of employees and the capital of firm i in a sector with N firms. We can represent the
fraction f(l, k) of firms using a given amount of inputs (l, k) using a kernel density estimate
obtained from observed data

f̂(l, k) =
1

N hl hk

N
∑

i=1

K

(

l − li
hl

,
k − ki

hk

)

(1)

where hl and hk are bandwidth parameters controlling the degree of smoothness of the den-
sity estimate and where K is a kernel density, i.e. K(x, y) ≥ 0, ∀x, y ∈ (−∞, +∞) and
∫

dxdyK(x) = 1. The kernel density estimate can be considered a smoothed version of the
histogram obtained counting the observations in different bins. It relies on the provision of
two objects: the kernel4 K and the bandwidths hl and hk.

The results for four different sectors are reported in Fig. 1 (left side plots) for the year
1997. For any couple of input quantities (l, k), the height of the surface is proportional to the
probability of finding a firm using that amount of inputs. The distributions appear to have a
rather wide support which spans several orders of magnitude in both capital and number of
employees. This confirms the well known fact that firms of very different sizes coexist inside

3The database has been made available to our team under the mandatory condition of censorship of any
individual information.

4Throughout this paper the kernel function will always be the Silverman Type II density defined in Silver-
man [1986].
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Figure 1: (Left Side) Kernel density estimate of (k, l) in 1997 for 4 different manufacturing sectors. (Right
Side) Kernel density estimate of (log(S/K), log(S/L)) in the same year and for the same sectors.
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SECTOR ISIC log(S/K) log(S/L) ρ(∆τ k,∆τ l)

τ = 1 τ = 5 τ = 9
Code Mean Std Dev. Mean Std Dev. Coeff. Std Err. Coeff. Std Err. Coeff. Std Err.

Food/Beverages 15 1.18 1.15 6.06 0.81 0.125 0.011 0.279 0.018 0.345 0.042
Textiles 17 0.89 1.14 5.28 0.73 0.136 0.009 0.326 0.015 0.376 0.037
Leather/Footwear 19 1.94 1.13 5.14 0.90 0.080 0.013 0.203 0.023 0.292 0.065
Wood Manufact. 20 1.04 1.04 5.35 0.65 0.111 0.017 0.242 0.029 0.379 0.069
Paper/Allied Prod. 21 0.86 1.11 5.68 0.59 0.111 0.018 0.275 0.029 0.302 0.067
Chemicals Prod. 24 1.16 1.14 6.04 0.64 0.183 0.014 0.409 0.023 0.441 0.052
Rubber/Plastics 25 1.06 0.96 5.52 0.60 0.133 0.012 0.297 0.021 0.339 0.046
Basic Metals 27 1.00 1.06 5.80 0.73 0.125 0.016 0.199 0.025 0.247 0.057
Metal Products 28 1.09 1.12 5.25 0.58 0.094 0.008 0.248 0.014 0.289 0.033
Indust. Machinery 29 1.50 1.06 5.51 0.54 0.105 0.008 0.273 0.013 0.391 0.029
Electr. Machinery 31 1.56 1.08 5.41 0.63 0.128 0.013 0.318 0.024 0.339 0.055
Furniture Manuf. 36 1.39 1.07 5.33 0.62 0.106 0.010 0.247 0.017 0.270 0.040

Table 1: Descriptive statistics of log(S/K) and log(S/L) in 1997. Cross correlation coefficient ρ(∆τk, ∆τ l) for
different time horizons τ with standard error expressed as the inverse square root of the number of observations.

the same manufacturing sector. We have checked that the width of the distribution and its
shape is essentially invariant across the years covered by our databases, for all the sectors
under investigation. Not only the sizes of the firms are different, but also the intensity with
which the different inputs contribute to firm output can be shown to vary to a large extent. In
the right side plots of Fig. 1 we report, for the same sectors, the two dimensional density of the
logarithms of input intensities log(S/K) and log(S/L) estimated using (1). As can be seen,
the support of the distributions is again quite wide: firms belonging to the same sector seem to
possess very different production structures. For instance in the Textiles sector (ISIC 17) firms
with a value of log(S/K) around 1 coexist with firms with a value larger than 2. This implies a
more than twofold difference in the capital productivity. The same can be said for the number
of employees: in line with previous investigation reported in Bottazzi et al. [2002] we observe
the coexistence in the same sector of firms with very different labour productivity log(S/L). In
the Textiles sector (ISIC 17) this quantity spans values from 4 to 6, corresponding to a labor
productivity ranging from around 50 to around 400 million Lire5 per employee. Even if the
distribution of capital and labor productivities is broad in all sectors, the sectoral specificities
clearly emerge in their averages: the average value of log(S/K) ranges from 0.86 in the Paper
and Allied Products sector (ISIC 21) to 1.94 in the Leather and Footwear sector (ISIC 19)
while the labor productivity ranges from 5.14 (around 170 million 1997 Lire per employee) in
the Leather and Footwear sector (ISIC 19) to 6.06 (around 428 million 1997 Lire per employee)
in the Food and Beverages sector (ISIC 15). Table 1 reports mean and standard deviation of
log(S/K) and log(S/K) for all the sectors analyzed.

Next we move to the description of how the two inputs under analysis enters in the pro-
duction process of the different firms operating in a given sector. In other terms, we want to
analyse how, inside a given sector, the response variable, output, depends on a vector of input
variables, namely capital and labor. The clear heterogeneous nature of the firms operating in
the same sector suggests that the analysis of the input-output relation cannot be performed
simply looking at the average intensities or, in general, at some aggregate quantities. A clear
representation of the sectoral structure of the production activity can be obtained using a
multivariate kernel regression. This is a non-parametric description which does not impose
any a priori structure on the data themselves [Pagan and Ullah, 1999, Härdle et al., 2004]. We
are interested in estimating the conditional expectation of output E(s|(k, l)) given a certain

51997 nominal value.
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Figure 2: Kernel estimate of the conditional expectation of output Ê(s|(k, l)) in 1997 in 4 different sectors.
The estimation is computed in 60 points.

amount of inputs (k, l)

E[s|(k, l)] =

∫

s f(s|k, l) ds =

∫

s f(s, k, l)ds

f(k, l)
(2)

where f(s, k, l) is the joint probability density of having output level s, capital k and an
employment level (in log) equal to l. Replacing f(s, k, l) with the multivariate kernel density
estimates f̂(s, k, l) defined in analogy with (1) a kernel estimation of the expected output
Ê(s|(k, l)) can be defined [Silverman, 1986]

Ê[s|(k, l)] =

N
∑

i=1

si K

(

k − ki

hk

,
l − li
hl

)

N
∑

i=1

K

(

k − ki

hk

,
l − li
hl

)

(3)

using the observed levels of output and input utilization (si, ki, li) of the N firms operating
in a sector. The resulting conditional expectation functions Ê(s|(k, l)) for four sectors are
shown in Fig 2. To each combination of (log) capital k and (log) labor l, on x and y axis
corresponds the relative level of output s, on the z axis. Using the kernel estimation technique,
smooth surfaces have been obtained from the discrete sets of observations. As a reference, the
location of the observed amount of inputs (k, l) has been reported on the basis of plots. The use
logarithmic scales allows us to represent firms of very different dimensions on the same plot so
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Figure 3: Binned scatter plots of ∆k versus ∆l for different time horizons τ in 4 different sectors. A robust
linear fit which minimize the mean absolute deviation is also reported.

that the identification of possible patterns becomes possible. Some features of Fig. 2 are more
explicit, whereas others deserve more accurate comments. First of all, as expected, output is
an increasing function of both factors and this function seems to be well described, at least
globally, by a plane in the (s, k, l) space. These plots confirm the heterogeneity in technologies
within a single sector revealed by the analysis of the empirical probability densities reported
in Fig 1 and show how a given level of output is attainable with significantly different mix
of inputs. This is particularly true for smaller firms where a certain “tolerance” to possible
inefficiencies in input usage seems to be present. Indeed, looking at the disperse distributions
of couples (k, l) for the different firms inside a sector (small black dots on the plot basis of
Fig. 2) we observe that very different levels of inputs can be associated with the same level of
output. Surely these differences in the strength and pace of competition are worth of further
exploration (Winter [2002]). Moreover, our analysis reveals that the observed heterogeneity
in inputs utilization is persistent over time and we do not find any evidence of convergence
towards a common mixture, for instance in the form of some reduction in the variance of the
sectoral distribution of capital S/K or of labor S/L productivity.

Notwithstanding the permanent character of the width of the input distributions, both
in their level, l and k, and in their respective productivities, it is interesting to analyze the
structure of their evolution across time. In particular, we are interested in the relation among
the firms growth rate when its size is measured in terms of different inputs6. Let li,t and
ki,t be the (log) number of employees and (log) capital of firms i at time t. For each firm

6The analysis of the growth dynamics of firms in terms of sales based on the same database analyzed here
is extensively presented in Bottazzi and Secchi [forthcoming]
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i consider the joint logarithmic rates of growth over a period τ of the number of employees
and of the capital (∆τ li,t, ∆τki,t) where ∆τxi(t) = xi,t+τ − xi,t with x = {l, k}. In order
to provide a synthetic representation of the relation between these two variables we report
in Figure 3 a binned scatter plot for 4 different sectors. These plots are built by dividing
the observations in different quantiles according to ∆τ li(t) and plotting for each quantile
the mean of ∆τki(t) against the mean of ∆τ li(t). Visual inspection reveals that, especially
when longer time horizon are considered (τ ≥ 5 years), a clear positive relationship emerges:
as expected, the growth of a firm in terms of capital corresponds to a growth in terms of
number of employees, and vice-versa. However, it is interesting to notice that on shorter
time horizon (τ = 1 year) the slope of the relation tends to change and become flatter. To
analyze this effect from a quantitative point of view and to explore sectoral specificities in the
relation between ∆τki(t) and ∆τki(t) without departing from the non-parametric approach,
we calculate the cross correlation coefficient ρ(∆τk, ∆τ l) for all the sectors and three different
values of τ . Table 1 reports the results. The values obtained for ρ(∆τk, ∆τ l) confirm the
existence of a significant positive correlation between the firm growth expressed in terms of
capital and in terms of labor, corroborating also the idea that the cross correlation coefficient
is an increasing function of the length of the time-horizon. Notice that for all the sectors the
difference between ρ(∆1k, ∆1l) and ρ(∆5k, ∆5l) is statistically significant7 while considering
ρ(∆5k, ∆5l) and ρ(∆9k, ∆9l) the same is true only in half of the sectors studied.

4 Parametric analysis

In this section we perform a parametric analysis of the input-output relations observed inside
the different manufacturing sectors of our database. We describe the production activity in
a two digit sector8 with the help of a simple Cobb-Douglas production function (Cobb and
Douglas [1928]). Output is proxied by sales S and we consider as inputs labor (i.e. number
of employees) L and capital K to obtain the following functional relation

S = C Lα Kβ . (4)

where C is a constant term. Taking the logarithms, with usual notation, (4) becomes

s = α l + β k + c (5)

where c = log(C). The linear relation implied by the previous equation between log output
and log inputs is, at least approximatively, consistent with the “planar” shapes shown in
Fig 2. Notice that the specification in (5) does not impose homogeneity of degree 1 on the
production function, thus allowing to test for the presence of different regimes of returns to
scale. The parameters α and β represent the elasticity of output with respect to labor and
capital, respectively.

Notwithstanding the simple functional form of (5), a variety of issues potentially arises
in performing regression estimates of the input elasticities. In the next section we perform a
simple cross-sectional ordinary least squares regression (OLS) of firms output on the different
inputs, separately for each sector and in several different years. We start with an univariate
analysis that takes in consideration a single input at a time and move, next, to the estimation of

7Here this means that ρ(∆5k, ∆5l) is greater than ρ(∆1k, ∆1l) plus two standard errors.
8Although the database allows to go as far as three-digit, we preferred to maintain a high number of

observations in each sector.
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SECTOR ISIC 1989 1991 1994 1997
Code Coeff. Std Err Coeff. Std Err Coeff. Std Err Coeff. Std Err

Food/Beverages 15 1.040 0.024 1.062 0.021 1.072 0.021 1.151 0.027
Textiles 17 1.053 0.025 1.074 0.022 1.146 0.023 1.181 0.025
Leather/Footwear 19 1.153 0.052 1.267 0.041 1.318 0.040 1.309 0.053
Wood Manufact. 20 1.195 0.047 1.180 0.044 1.283 0.044 1.299 0.048
Paper/Allied Prod. 21 1.084 0.030 1.114 0.027 1.143 0.034 1.197 0.034
Chemicals Prod. 24 1.158 0.020 1.119 0.019 1.067 0.019 1.151 0.022
Rubber/Plastics 25 1.024 0.023 1.043 0.022 1.108 0.022 1.134 0.026
Basic Metals 27 1.080 0.032 1.080 0.027 1.100 0.028 1.167 0.030
Metal Products 28 1.123 0.018 1.132 0.016 1.183 0.016 1.207 0.018
Indust. Machinery 29 1.063 0.011 1.078 0.011 1.107 0.011 1.135 0.012
Electr. Machinery 31 1.081 0.018 1.110 0.019 1.118 0.021 1.123 0.023
Furniture Manuf. 36 1.160 0.025 1.219 0.023 1.245 0.024 1.240 0.026

Table 2: Estimated slopes bl of the regression s ∼ al + bl l together with their standard errors.

the two inputs Cobb-Douglas production function defined in (5). In Section 4.2 we propose a
different approach that uses the longitudinal dimension of our database to overcome some
difficulties inherent in the OLS estimation. The idea is that repeated observations on a
single firm allow to circumvent some of the problems that arise in a purely cross-sectional
analysis. In particular, it is possible to identify those idiosyncrasies which reveal themselves
as heterogeneity among firms and are relatively stable over the considered interval.

4.1 Production Function Estimates: Cross Sectional Analysis

We start our investigation with a simple univariate analysis of the relation between the output
of a firm and the number of its employees. For each sector we consider the linear model

si = al + bl li + εi , (6)

where si and li stand, with usual notation, for the (log) sales and (log) number of employees of
firm i and ε are i.i.d. random residuals. The intercept al and slope bl are considered constant
for all the firms in the same sector. The results of the regression of (6) for different years on
the largest two-digit sectors are reported in Table 2. The observed slopes are never far from
the value of 1 but, for several sector, they are significantly greater.

The same analysis can be repeated for the relationship between firm output and firm
capital, fitting the model

si = ak + bk ki + εi (7)

with ki the (log) capital of the i-th firm. The results are reported in Table 3. The observed
slopes are always significantly less than one, ranging from 0.6 to 0.8, apart from the last year,
where a noticeable reduction can be observed. Indeed, in 1997 the slope bk is characterized
by values between 0.45 and 0.6.

As a second step we explicitly consider the multivariate dimension of the production process
described by (5) and we estimate the elasticity of output with respect to both inputs. Following
the Cobb-Douglas specification we consider the following regression

si = ω + α li + β ki + εi , (8)

where εi represents i.i.d. residuals. We estimate this model using OLS on a cross-section of
firms in a given year. In Table 4 we report the estimated values of α and β for the different
two-digit sectors. As in the univariate case, we report results for different years so as to provide
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SECTOR ISIC 1989 1991 1994 1997
Code Coeff. Std Err Coeff. Std Err Coeff. Std Err Coeff. Std Err

Food/Beverages 15 0.748 0.017 0.744 0.015 0.681 0.015 0.574 0.015
Textiles 17 0.620 0.014 0.610 0.013 0.598 0.011 0.513 0.015
Leather/Footwear 19 0.696 0.019 0.672 0.018 0.693 0.017 0.561 0.024
Wood Manufact. 20 0.662 0.028 0.662 0.023 0.658 0.022 0.496 0.026
Paper/Allied Prod. 21 0.692 0.019 0.692 0.017 0.667 0.019 0.524 0.021
Chemical Prod. 24 0.743 0.017 0.735 0.017 0.706 0.018 0.601 0.018
Rubber/Plastics 25 0.726 0.016 0.708 0.015 0.660 0.015 0.546 0.016
Basic Metals 27 0.866 0.019 0.811 0.017 0.793 0.019 0.641 0.021
Metal Products 28 0.654 0.012 0.640 0.011 0.603 0.009 0.443 0.011
Industr. Machinery 29 0.687 0.011 0.635 0.011 0.628 0.010 0.558 0.011
Electr. Machinery 31 0.701 0.014 0.687 0.014 0.661 0.014 0.577 0.017
Furniture Manuf. 36 0.590 0.017 0.608 0.015 0.591 0.015 0.477 0.017

Table 3: Estimated slopes bk of the regression s ∼ ak + bk k together with their standard errors.

an account of possible trends in time. Comparison of parameters at different years point out
a relative stability of the estimates. The only change which appears at a first glance is the
decrease of the capital elasticity, β, as time increases, confirming the results of the univariate
analysis (see Table 3). The reduction in the value of β is more apparent in the more recent
years of the considered interval and seems to imply that, ceteris paribus, the contribution to
total output of additional investments in the recent years of the interval would be less effective
than at the beginning of the period. This finding would deserve further investigations, which
goes far beyond the purpose of the present study. Here it suffices to say that the short time
span in which the trend gets disclosed would suggest other causes than inflation. The relatively
sudden decrease in coefficients in nearly all sectors could hint at effects which are due to a
change in the institutional setting of the market. In particular, a possible explanation for
this distortion could be found in the Italian Tremonti’s law, which enabled firms to benefit
from partial tax exemption for profits re-invested in the corporate business. The law fostered
investments and plants renewal but the new capital goods were not immediately productive.
Tremonti’s law was in force for 1994 and 1995 only, but economic consequences clearly outlived
the norm itself.

With respect to intra-sectoral heterogeneity, the different magnitude in the coefficients
accounts well for the required peculiarity of the production process in different manufacturing
sectors. From Table 4 it is also evident that the sum of elasticities of labor and capital is close
to one in almost all sectors, hinting at a general presence of a constant return to scale effect
in production. Among exceptions, however, we mention Chemical Products (ISIC 24) and
Industrial Machinery (ISIC 29). On the other hand, Furniture Manufacturing (ISIC 36) needs
a more detailed investigation, since it also comprises most of the firms which were left out
from the considered classification of industrial sectors. The robustness of the approximately
constant returns to scale structure is confirmed by the fact that when the elasticity of capital,
β, decreases, a counterbalancing effect is very often observed which leads to an increase in the
labor elasticity α.

4.2 Production Function Estimates: Panel Data Analysis

As it has been early noticed (Mendershausen [1938], Marschak and Andrews [1944]) the esti-
mation of production function from cross-sectional empirical data can plausibly be affected by
a problem of simultaneity. It may indeed happen that observed inputs (i.e. labor and capital)
are correlated with unobserved ones. Thus, the decision process of inputs adoption performed
by firms is affected by variables not available to the economist. The existing correlation be-
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SECTOR
ISIC
Code

1989 1991 1994 1997

c α β c α β c α β c α β

Food and
Beverages

15
3.715 0.584 0.424 3.778 0.612 0.408 4.067 0.702 0.344 4.300 0.733 0.318

(0.132) (0.034) (0.024) (0.123) (0.030) (0.021) (0.118) (0.028) (0.019) (0.111) (0.029) (0.015)

Textiles 17
3.537 0.613 0.361 3.633 0.635 0.337 3.537 0.623 0.373 4.03 0.886 0.203

(0.100) (0.029) (0.017) (0.098) (0.030) (0.017) (0.091) (0.029) (0.015) (0.113) (0.034) (0.018)

Leather -
Footwear

19
2.994 0.473 0.546 2.923 0.638 0.464 2.883 0.649 0.493 3.256 0.855 0.348

(0.149) (0.047) (0.025) (0.138) (0.046) (0.022) (0.131) (0.044) (0.021) (0.187) (0.056) (0.026)

Wood
Manufact.

20
3.010 0.735 0.369 3.023 0.637 0.416 3.033 0.722 0.397 3.806 0.968 0.206

(0.187) (0.059) (0.033) (0.162) (0.052) (0.028) (0.161) (0.054) (0.027) (0.188) (0.062) (0.028)

Paper &
Allied Prod.

21
3.626 0.573 0.396 3.629 0.609 0.374 3.739 0.620 0.372 4.380 0.873 0.205

(0.133) (0.042) (0.027) (0.125) (0.042) (0.026) (0.151) (0.051) (0.029) (0.142) (0.045) (0.022)

Chemicals
Prod.

24
3.688 0.829 0.274 4.088 0.840 0.238 4.572 0.816 0.226 4.617 0.881 0.208

(0.117) (0.033) (0.022) (0.121) (0.032) (0.023) (0.128) (0.031) (0.022) (0.114) (0.029) (0.018)

Rubber
Plastics

25
3.461 0.547 0.422 3.501 0.613 0.380 3.663 0.694 0.342 4.072 0.800 0.266

(0.117) (0.032) (0.022) (0.111) (0.030) (0.020) (0.105) (0.030) (0.018) (0.108) (0.030) (0.016)

Basic
Metals

27
2.475 0.300 0.676 2.877 0.466 0.525 3.279 0.554 0.462 3.982 0.794 0.297

(0.178) (0.048) (0.036) (0.151) (0.040) (0.029) (0.170) (0.044) (0.031) (0.145) (0.038) (0.022)

Metal
Products

28
3.330 0.725 0.329 3.399 0.775 0.294 3.334 0.776 0.317 3.975 0.976 0.171

(0.076) (0.023) (0.014) (0.072) (0.022) (0.013) (0.064) (0.019) (0.010) (0.073) (0.022) (0.010)

Indust.
Machinery

29
4.217 0.850 0.185 4.450 0.953 0.108 4.487 0.963 0.121 4.622 0.984 0.117

(0.066) (0.019) (0.014) (0.063) (0.018) (0.013) (0.062) (0.018) (0.012) (0.062) (0.018) (0.011)

Electr.
Machinery

31
3.608 0.723 0.307 3.588 0.742 0.307 3.782 0.703 0.323 4.275 0.828 0.231

(0.084) (0.026) (0.018) (0.086) (0.027) (0.017) (0.093) (0.030) (0.018) (0.101) (0.030) (0.017)

Furniture
Manufact.

36
3.568 0.855 0.249 3.413 0.903 0.252 3.495 0.927 0.248 4.110 1.008 0.154

(0.104) (0.032) (0.018) (0.096) (0.030) (0.017) (0.097) (0.031) (0.017) (0.108) (0.032) (0.016)

Table 4: Elasticity of Output with respect to Capital and Labor. Estimated parameters of the regression: st = c + α lt + β kt. Standard errors in brackets.
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tween the unobserved variables and the regressors introduces biases in OLS estimators of the
production function parameters. For instance, considering the Cobb-Douglas specification
previously introduced one can write

si = αli + βki + ωi + εi , (9)

where εi are i.i.d. components and where ωi represents unobserved inputs like managerial
ability, quality of land or materials which affect firm output si. The coefficient c in (5) has
been split in two components: a stochastic part, εi, that might represent measurement error in
output or any shock affecting output which is unknown to the firm itself when making choices
for capital and labor, and ωi, a structural part of firms activity, which is known to the firm
when it plans its production activity, but which is ignored by the economist. If the observed
inputs, li and ki, are correlated with the unobserved ωi, the OLS estimators of the coefficients
α and β will result biased. The purpose of the following panel data analysis is to employ at
the same time the cross sectional and time series dimensions of our database to overcome, at
least partly, these difficulties. Indeed certain “unobserved” inputs, such as quality of materials
or entrepreneurial ability, can be considered, in first approximation, fixed over time and thus
can be eliminated by applying appropriate “within” transformations. Rewriting (9) in panel
data notation, introducing an explicit dependence on time t, we obtain the following

si,t = α li,t + β ki,t + ωi + ei,t . (10)

In the following analysis we will consider three different models, based on (10), which
enable to account for possible sources of heterogeneity among firms in each of the considered
sectors. In this way we are able to evaluate the sensitiveness of coefficient estimates to the
chosen specification. First we estimate the fixed effects model where ωi are considered time
invariant so that can be eliminated by subtracting the individual mean to obtain the model

(sit − s̄i) = α (lit − l̄i) + β (kit − k̄i) + (ei,t − ēi) , (11)

where the notation x̄ stands for individual average of quantity x over time. This approach was
first exposed in Hoch [1958], and then popularized by Mundlak [1961]. A second alternative
specification is obtained by considering the variability between individuals and neglecting
that within individuals, to obtain the between-group model (Wooldridge [2002]) defined by the
following relation

s̄i = αl̄i + βk̄i + ωi + ēi , (12)

where ωi + ēi is now the error term. As we are now including individual effects in the error
terms, we need to assume they are uncorrelated with the explanatory variable l and k. Finally,
we consider the random effects model where the individual specific effects ωi, as opposed to
the fixed effects model where they are considered deterministic and constant over time, are
assumed to be random variables. The issue is whether or not ωi can be considered as random
draws from a common population or whether the conditional distribution of ωi given the
regressors, l and k, can be viewed as identical across i. For a more detailed exposition we refer
the reader to Hsiao [2003]. As far as the present work is concerned, it suffices to bear in mind
that the random effect estimator is a (matrix) weighted average of the estimates produced
by the between and within (or fixed) estimators. The results for the different estimates are
reported in Table 5, where for the random effects model we consider both Generalized Least
Squares (GLS) and Maximum Likelihood (ML) estimations.
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The estimated parameters of the fixed effect model suggest a relatively smaller capital
elasticity for most sectors, when compared to OLS estimates in Table 4. This result is common
to large part of panel data applications to production function estimates (see for instance
the discussion in Griliches and Mairesse [1995]). Nevertheless, the coefficients’ estimates we
obtained do not bear other bad features pointed out in the literature. In particular, our panel
data estimates of elasticities of output with respect to capital, although significantly lower
than the ones obtained with OLS, are still statistically significant. Further, the resulting
estimates of returns to scale do not display a sharp decrease as reported, for instance, by
Griliches and Mairesse [1995]. Estimated coefficients of the random effects model with GLS
and ML are closer for sectors with more observations; the two estimators, indeed, converge
asymptotically. Notice that the Hausman test (Hausman [1978]) for model specification rejects
the hypothesis that the individual-level effects are adequately modeled by a random effects
specification. However, this does not exclude the appropriateness of the random effects model
under a different specification of the production process, for instance.

4.3 Testing for constant output elasticity

We conclude our parametric investigation proposing a comparison between a standard exercise
in production theory and our empirical data. We use the Cobb-Douglas production function
introduced before, which is known to fit well inside the domain of the standard (neoclassical)
production theory. Let us assume, as in many textbooks in microeconomics, that the firm
chooses its production activity solving a cost minimization problem. Specifically, assume that
the firm knows that its present market share grants it a level of output equal to S, so that the
choice of the level of labor L and capital K is the solution of the following problem

min
L,K

{L pL + K pK} s. t. c Lα Kβ = S , (13)

where pL and pK are the unit cost of labor and capital, respectively. Solving the problem one
obtains the following conditional factor demand equations for labor L

L(pL, pK, S) = S1/(α+β)c−1/(α+β)

(

α

β

pK

pL

)β/(α+β)

,

and capital K

K(pL, pK, S) = S1/(α+β)c−1/(α+β)

(

β

α

pL

pK

)α/(α+β)

.

Considering the input ratio r, expressed as capital per unit of labor

r =
K

L
=

β

α

pL

pK

,

and taking the logarithms one has, with usual notation,

s = β log(r) + (α + β) l (14)

and
s = −α log(r) + (α + β) k . (15)

Thus, if inputs are chosen according to (13), the input ratio does not depend on the actual
size of the firm and the elasticity of output with respect to inputs reduces to α + β.
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SECTOR
ISIC
Code

Total
Obs.

Fixed Effects (Within-group) Between-group Random Effects (ML) Random Effects (GLS)

c α β c α β c α β c α β

Food and
Beverages

15 11715
5.817 0.432 0.268 4.093 0.731 0.325 5.114 0.568 0.282 5.098 0.571 0.282

(0.064) (0.014) (0.005) (0.093) (0.023) (0.015) (0.053) (0.012) (0.005) (0.051) (0.011) (0.005)

Textiles 17 15423
5.534 0.565 0.149 3.532 0.674 0.342 4.821 0.654 0.185 4.783 0.658 0.190

(0.057) (0.013) (0.005) (0.075) (0.025) (0.012) (0.049) (0.011) (0.005) (0.047) (0.011) (0.005)

Leather -
Footwear

19 8736
4.575 0.737 0.193 2.756 0.707 0.466 3.841 0.818 0.244 3.802 0.821 0.248

(0.088) (0.022) (0.007) (0.105) (0.035) (0.015) (0.072) (0.018) (0.006) (0.069) (0.018) (0.006)

Wood
Manufact.

20 11715
4.734 0.692 0.191 3.261 0.743 0.353 4.232 0.758 0.221 4.217 0.760 0.222

(0.103) (0.025) (0.009) (0.135) (0.045) (0.021) (0.084) (0.021) (0.008) (0.082) (0.021) (0.008)

Paper &
Allied Prod.

21 4475
5.065 0.687 0.189 4.030 0.633 0.335 4.598 0.749 0.215 4.603 0.749 0.215

(0.125) (0.030) (0.009) (0.116) (0.039) (0.021) (0.083) (0.021) (0.008) (0.082) (0.021) (0.008)

Chemicals
Prod.

24 7189
5.030 0.654 0.242 3.672 0.802 0.309 4.274 0.763 0.260 4.280 0.762 0.260

(0.089) (0.019) (0.007) (0.092) (0.025) (0.016) (0.062) (0.014) (0.006) (0.061) (0.014) (0.007)

Rubber
Plastics

25 8950
4.799 0.672 0.215 3.758 0.683 0.335 4.368 0.724 0.243 4.372 0.724 0.243

(0.074) (0.017) (0.007) (0.082) (0.023) (0.014) (0.054) (0.013) (0.006) (0.053) (0.013) (0.006)

Basic
Metals

27 5190
4.273 0.796 0.238 3.801 0.702 0.335 4.140 0.792 0.255 4.141 0.793 0.255

(0.125) (0.026) (0.010) (0.126) (0.033) (0.022) (0.082) (0.018) (0.009) (0.082) (0.018) (0.009)

Metal
Products

28 20591
4.331 0.858 0.155 3.630 0.820 0.262 4.009 0.881 0.184 4.010 0.881 0.184

(0.052) (0.012) (0.004) (0.051) (0.016) (0.008) (0.036) (0.009) (0.004) (0.036) (0.009) (0.004)

Indust.
Machinery

29 21965
4.632 0.875 0.142 4.552 0.934 0.124 4.552 0.901 0.140 4.553 0.901 0.141

(0.054) (0.012) (0.005) (0.047) (0.014) (0.009) (0.033) (0.008) (0.004) (0.034) (0.008) (0.004)

Electr.
Machinery

31 8409
5.182 0.718 0.133 3.562 0.768 0.305 4.250 0.815 0.190 4.241 0.815 0.191

(0.077) (0.017) (0.007) (0.063) (0.021) (0.012) (0.050) (0.013) (0.007) (0.048) (0.012) (0.006)

Furniture
Manufact.

36 13061
4.936 0.704 0.165 3.523 0.917 0.247 4.386 0.803 0.186 4.378 0.805 0.186

(0.062) (0.015) (0.005) (0.078) (0.025) (0.013) (0.050) (0.012) (0.005) (0.048) (0.012) (0.005)

Table 5: Estimated coefficients for the Fixed Effects, Between-group and Random effects model (both Maximum Likelihood and GLS Estimates). Standard
Errors in brackets.
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SECTOR ISIC 1989 1991 1994 1997
Code Coeff. Std Err Coeff. Std Err Coeff. Std Err Coeff. Std Err

Food/Beverages 15 0.236 0.018 0.253 0.018 0.247 0.018 0.462 0.028
Textiles 17 0.377 0.020 0.389 0.018 0.477 0.017 0.379 0.026
Leather/Footwear 19 0.480 0.026 0.484 0.024 0.470 0.020 0.450 0.038
Wood Manufact. 20 0.364 0.035 0.455 0.034 0.466 0.031 0.461 0.049
Paper/Allied Prod. 21 0.420 0.033 0.430 0.029 0.442 0.029 0.524 0.048
Chemical Prod. 24 0.235 0.019 0.216 0.021 0.187 0.022 0.323 0.032
Rubber/Plastics 25 0.292 0.021 0.298 0.022 0.350 0.022 0.414 0.032
Basic Metals 27 0.289 0.019 0.294 0.021 0.276 0.021 0.366 0.037
Metal Products 28 0.345 0.017 0.328 0.017 0.427 0.016 0.419 0.026
Industr. Machinery 29 0.189 0.014 0.166 0.014 0.193 0.013 0.252 0.019
Electr. Machinery 31 0.271 0.020 0.312 0.022 0.384 0.023 0.372 0.033
Furniture Manuf. 36 0.301 0.023 0.318 0.021 0.321 0.020 0.312 0.030

Table 6: Estimated slope ar of the regression in (16) together with its standard error.

This prediction is clearly violated by the estimates reported in Tables 2 and 3. Indeed,
leaving aside the intercept, the estimated slopes for output-labor and output-capital relations
in equations (6) and (7) are significantly different in all sectors under analysis. This issue can
be further clarified by running a cross-sectional regression of inputs ratio r versus firm (log)
size

log(r) ∼ ar + br s . (16)

The results are reported in Table 6. As can be seen, the slope coefficients ar are significantly
different from zero in each year and in each sector under study. The scatter plot of the inputs
ratio versus output for the firms in four different sectors are presented in Fig. 4, together with
the linear fit provided by (16). For the sake of clarity, in these plots observations have been
binned in several quantiles, nevertheless all the available observations have been employed
while performing the relative regressions. The high significance of the estimated slope coef-
ficients ar reported in Table 6 clearly appears in Fig. 4. In all the sectors, although with
different intensities, the mix of inputs tends to substitute labor for capital as size increases.
This result suggests that the conjecture of a constant input mix for different level of output
is, for the Italian Manufacturing sectors, not appropriate.

5 Conclusions

The aim of this work was to propose a summary description of how the production process is
conducted in the different sectors of the Italian manufacturing industry. We tried to accomplish
to this by combining an exploratory, non-parametric analysis together with an, admittedly
oversimplified, model of the sectoral production function. The non-parametric analysis allowed
us to identify and describe some of the salient properties which characterize, de facto, the way
production is carried out. At the same time, we tried to lay down an empirically testable
framework in which some standard assumptions of what is generally accepted as production
theory can be studied.

The non-parametric analysis reveals that the production process displays a heterogenous
nature: it is possible to attain a certain level of output with various mix of capital and labor.
This hints at the presence of a non-negligible rate of substitutability, at least when these two
factors of production are considered, in actual production technologies. This result also leaves
room for the coexistence, in the same sector, of firms that adopt very different procedures,
possibly also from an organizational perspective, to carry out production. At the same time,
heterogeneity also gets disclosed through the remarkably different levels of technical efficiency,
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Figure 4: Relation between output and input ratio, k/l: binned scatter plots in 4 sectors in 1994. Errorbars
display two standard errors.

here proxied by labor and capital productivities, attained by firms in the same sectors (see
Figure 1). With this respect, it seems that markets for manufactured goods tolerate firms
whose productivity is and remains substantially different over time.

Results on cross-sectional observations (see Table 4) lend support to the conjecture of
high sectoral stability of the technical coefficients over time. The panel data analysis, even
if in several cases provides significantly different results, globally confirms the same behavior
(see Table 5). This empirical evidence is also supported by theoretical reasoning; indeed,
the nature of the production process, especially in traditional manufacturing sectors, does
not seem to leave much room for sudden changes in the way production is carried out. It
is also true, however, that unexpected factor price fluctuations or a new institutional setting
might well cause a sudden shift in inputs usage and, consequently, in estimated elasticity
coefficients. In any case, it is natural to expect that existing plants, established technologies
and organizational routines will tend to hamper not only adoption of new technologies, but
also a rethinking of the way the production process is managed (Nelson and Winter [1982]).
Finally, the evidence of input ratio that varies with size, provided by Table 6 and Fig. 4,
may be due to input prices depending on the scale of activity and/or to firm operating with
different technology at different size classes. The analysis performed in this work does not
allow us to discriminate the two causes.

The main goal of this work rests in seeking to propose an empirically-based approach in
the domain of production theory. The observed regularities, should, in no way, be interpreted
as hinting at the presence of some “natural” and “unmodifiable” laws, rather they are the
results of an ongoing process which bears the consequences of being highly specific in space
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and time. However, we believe that any model who aims to propose a description of corporate
production activity has to encompass, at least at a bare bones level, some of the features which
are disclosed in the present analysis.
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