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Abstract

We study a local version of the Minority Game, where agents are placed on the
nodes of a directed graph. Agents care about being in the minority of the group of
agents they are currently linked to and employ myopic best-reply rules to choose their
next-period state. We show that, in this benchmark case, the smaller the size of local
networks, the larger long-run population-average payoffs. We then explore the collec-
tive behavior of the system when agents can: (i) assign weights to each link they hold
and modify them over time in response to payoff signals; (ii) delete badly-performing
links (i.e., opponents) and replace them with randomly chosen ones. Simulations
suggest that, when agents are allowed to weigh links but cannot delete/replace them,
the system self-organizes into networked clusters that attain very high payoff values.
These clustered configurations are not stable and can easily be disrupted, generating
huge subsequent payoff drops. If, however, agents can (and are sufficiently willing to)
discard badly performing connections, the system quickly converges to stable states
where all agents get the highest payoff, independently of the size of the networks
initially in place.
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1 Introduction

In the last years, both physicists and economists have become increasingly interested in

investigating the collective properties of dispersed dynamical systems composed of many
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boundedly-rational agents who directly interact over time (Kirman, 1997).

A well-known instance of such a system is the Minority Game (MG), first introduced

as a model of inductive rationality in the famous “El-Farol Bar Problem” by W. Brian

Arthur (Arthur, 1994) and then explored in details by Challet and Zhang (1997).

In a nutshell, the standard formulation of the MG envisages a population of N (odd)

players who repeatedly choose a binary state (−1 or +1). In each time period t = 1, 2, ...,

the state chosen by the minority wins. Agents who are in the minority get a point, the

others get zero. Agents are only allowed to observe the last m ≥ 1 winning sides: history is

the only common information. To choose their next-period state, players use one of their

k ≥ 2 strategies, each strategy being a lookup table assigning an output (i.e., the state

to be chosen in the next period) to any of the 2m possible state configurations. Agents

always select their best-performing strategy to make their choice. The performance of

any given strategy evolves through time. Agents are initially endowed with a random

repertoire of strategies, drawn at random from the pool of all 22m
conceivable ones. If an

agent is successful in a given time period, it assigns a point to all strategies that would

have predicted the winning state – no matter if they were actually used or not – and zero

otherwise.

The standard MG has become a paradigm for studying systems where adaptive agents

compete for scarce resources and has been recently employed to study the dynamics of

stock markets and market-entry games (see, inter alia, Challet, Marsili, and Zhang (2000),

Marsili and Challet (2001), Bottazzi, Devetag, and Dosi (2003) and Ochs (1990, 1995)).

From a theoretical perspective, the standard MG model has been extensively studied both

numerically and analytically (Challet and Zhang, 1998) and a huge number of contributions

have been exploring a large spectrum of possible extensions (see the Minority Game’s web

page http://www.unifr.ch/econophysics/minority in the Econophysics Forum Internet Site

for an exhaustive annotated bibliography).

In particular, a recent stream of research has investigated the consequences of relaxing

two key assumptions of the basic framework, namely global interactions (each agent cares
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about being in the minority of the whole population) and common information (all players

have access to the same information – the globally winning side). The underlying idea

is that each agent playing the MG could instead have access only to a local source of

information, for example the state played in the past by those agents who are the “closest

ones” in some underlying socio-economic space (Fagiolo, 1998). For example, Paczuski,

Bassler, and Corral (2000) models a MG where agents are placed in a Kauffman NK-

network (Kauffman, 1993). Agents can only observe the state of the individuals they are

currently linked with and hold only one strategy. The latter maps the past state of one’s

neighbors into the state to be chosen in the next period. Similarly, Kalinowski, Schulz,

and Briese (2000) and Slanina (2000) place their agents over one-dimensional boundaryless

lattices (circles) and allow them to observe the states held in the recent past by their

nearest-neighbors. Notice, however, that in these models agents interact locally but play

globally the MG: players are indeed rewarded only if they choose the globally winning side.

Conversely, Moelbert and De Los Rios (2002) studies a local MG in which the population is

spatially distributed over a regular lattice with nearest-neighbor interactions. Agents only

observe time t − 1 states played by their neighbors and care about being in the minority

of their local group.

Although the study of “local” versions of the standard setup has been shedding some

light on the ways in which heterogeneous information affects collective MG dynamics, very

little attention has been paid to the role played by network structures and local interac-

tions in shaping long-run aggregate outcomes. For example, the existing literature has

extensively addressed the study of MGs played over very regular network structures such

as homogeneous lattices. On the contrary, the consequences of assuming more asymmetric

structures – such as generic, random directed graphs – are still poorly investigated (see

Kirley (2004) for an exception in the case of scale-free networks).

Furthermore, local MGs have almost exclusively focused on “frozen” or “static” in-

teraction structures. This means that agents always interact with the same opponents

and do not have the faculty to modify the structure of their network endogenously (see,
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however, Anghel, Toroczkai, Bassler, and Korniss (2004) and Lo, Chan, Hui, and John-

son (2004) for two examples of exogenous network dynamics). Nevertheless, endogenous

network formation is well-known to crucially alter the properties of collective dynamics in

spatial games (see for example the discussion in Fagiolo, Marengo, and Valente (2004) and

Fagiolo (2005)).

In this paper, we begin to explore in more detail the role played by networks (and the

evolution thereof) in local MGs.

We consider a population of N agents living in a discrete-time economy. Each agent is

initially connected through unilateral links (directed edges) to a fraction of other players,

whose last-period states are the only information they are allowed to observe. Agents are

rewarded with one point if they are successful – that is, if they play as the (strict) minority

of their local group does – and zero otherwise.

In any time period, only a fraction of the agents are allowed to consider whether to

change their state. Agents decide their next-period state by evaluating the state of their

local network.

We implement two network evaluation setups. In the first one, we assume non-weighted

links : each opponent always counts as one, no matter what it did in the past. Therefore,

agents simply choose the state played by the strict minority of their peers. In the second

setup, we introduce weighted links. Each agent separately evaluates every link (opponent)

and assigns to it a weight that increases only if the linked agent suggested the minority

side in the past. State decisions will then depend upon a comparison between the sum of

weights associated to agents playing +1 and −1 in the local group. We call this second

setup a “weighted” minority game (WMG).

As far as network dynamics is concerned, we simulate the behavior of the system in

two scenarios. The first scenario assumes frozen networks. The network initially in place

cannot be modified, and only their weights might possibly evolve. In the second scenario

endogenous networks are assumed: agents can decide whether to remove a badly performing

link, that is a link whose weight becomes smaller than a given threshold. Since agents do
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not have good knowledge of the region of the economy outside their local network, we

assume that the new opponent is chosen at random from the remaining set of agents.

We explore system behavior when the initial density of the network changes in alter-

native network evaluation setups and network dynamics scenarios. Preliminary simulation

exercises show that, in the non-weighted local MG with frozen networks, the smaller the

density of the network, the larger average payoffs. If, however, we assume a WMG with

frozen networks, the population tends to build a network of small clusters composed of

highly coordinated agents choosing the same state. Agents of one cluster keep assigning

more and more importance to agents of other clusters. These global configurations are not

in general robust and can be easily disrupted by subsequent network reassessments. Fluc-

tuating patterns for average payoffs are likely to emerge. Finally, we study what happens

when agents play the WMG over endogenous networks. In this case, the population splits

in two subgroups playing opposite states. Agents in a group are prevalently linked with

agents of the other group. Average payoffs converge to one. Thus, the population learns to

“globally win” the WMG by selecting the most convenient set of opponents in the game.

The rest of the paper is organized as follows. Section 2 formally describes the model.

In Section 3 we present preliminary simulation results. Finally, Section 4 concludes and

discusses future developments.

2 The Model

We study a population of myopic agents i ∈ I = {1, ..., N}, with N even, playing a minority

game in discrete time periods t = 0, 1, 2, .... Each agent i is characterized by its binary

state st
i ∈ {−1, +1} in the game and by the set V t

i ⊆ I − {i} of other agents is currently

linked to (which we call interaction group).

We denote by ijt the directed edge linking agent i to j at time t. Since links are directed,

the fact that j ∈ V t
i does not necessarily imply that i ∈ V t

j . The collection {V t
i , i ∈ I} thus

induces at every t a directed graph over I. The set of directed edges (links) held by the
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agents may be interpreted as their “window over the world”. Agents play here a local MG:

they observe the part of the population which is relevant to them and adapt to a small

and local set of signals.

In each period, agents get a positive (unit) payoff if they play the same as the minority

of their interaction group V t−1
i does. More formally, the payoff at time t of agent i is given

by:

πt
i = πt

i(s | nt
i(s), n

t
i(−s)) =

⎧⎪⎨
⎪⎩

1,

0,

if nt
i(s) < nt

i(−s)

otherwise
, (1)

where s{−1, +1} and nt
i(s) = #{j ∈ V t−1

i : st
j = s} is the number of agents playing s in

V t−1
i .

We assume that, in each time period, any agent is allowed to revise its current state

with probability θ ∈ (0, 1] and that agents earn the payoff (1) even if they must stay

put (or if they do not actually change) their current state. The parameter θ governs the

state updating regime. If θ = 1, one has the standard “parallel updating scheme”. If

θ is sufficiently small, then at most one agent has the option to update its state at t

(“asynchronous updating scheme”). Since the nature of the updating scheme has been

shown to crucially affect the outcomes of dynamic systems such as the one studied here

(Page, 1997), it seems interesting to allow for different updating frequencies in the model

(see also Section 4).

Agents are assumed to be myopic and to employ best-response strategies given their

local information (Blume, 1995). This means that agent i, when called to revise its state

at time t, can only observe time t − 1 variables concerning agents in V t−1
i . Agents can be

considered to remain in a “dormant status” until they are woken-up and allowed to act upon

currently available information. Therefore, asynchronous updating (θ < 1) and myopic

behavior allow one to model systems where agents behave on the grounds of heterogeneous

information.

We consider two alternative setups as to how updating agents evaluate the information
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coming from their local network and use that information in deciding their next-period

state.

In the first setup, every linked agent (that is, every edge ijt−1) always counts as one,

independently of the past behavior of the opponent j. Therefore, agent i chooses, with

probability θ, its (new) action using a standard, deterministic, best-reply rule:

st
i =

⎧⎪⎨
⎪⎩

+1,

−1,

if nt−1
i (+1) < nt−1

i (−1)

if nt−1
i (+1) > nt−1

i (−1)
. (2)

We avoid any tie-breaking complications simply by assuming that all interaction groups

always contain an odd number of players (see also below). Our results are not dramatically

altered if one assumes stochastic TBRs (agents choose at random when a tie occurs) or

state-dependent ones (agents stick/switch to their current choice).

In the second setup, we implement a weighted version of the MG (WMG). We suppose

that each agent attaches an indicator of importance (weight) ηt
ij to each link ijt it maintains

(more on how weights are computed and evolve through time below). Given last-period

weights ηt−1
ij attached to agents j ∈ V t−1

i , the agent drawn for state updating – say, i –

updates its state by employing a weighted-minority rule as follows:

st
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

+1, if
∑

j∈V t−1
i (−1)

ηt−1
ij <

∑
j∈V t−1

i (+1)

ηt−1
ij

−1, if
∑

j∈V t−1
i (−1)

ηt−1
ij >

∑
j∈V t−1

i (+1)

ηt−1
ij

, (3)

where we denote by V t−1
i (s) = {j ∈ V t−1

i : st−1
j = s} and s ∈ {−1, +1}. In other words,

agents now use a weighted best-reply rule, where opponents do not all count as one and

their relative importance is given by their performance in the past.

After state updating (which happens – on average – for at most θ ·N agents in each t),

payoffs of all agents are computed according to (1). Then, in the WMG setups, weights
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are updated over time. In each period, after strategies have been updated, each link is

assigned a score et
ij equal to 1 or 0, depending on whether the “suggestion” coming from

j was correct (that is, if it indicated the state played by the minority of the linked agents)

or not. More formally:

et
ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1,

1,

0,

0,

if

if

if

if

πt
i = 1

πt
i = 0

πt
i = 0

πt
i = 1

and

and

and

and

st
i �= st−1

j

st
i = st−1

j

st
i �= st−1

j

st
i = st−1

j

. (4)

Agents then use the score to update the weight of each link as follows:

ηt
ij = αηt−1

ij + (1 − α)et
ij, (5)

where α ∈ [0, 1] and ηt
ij ∈ [0, 1].

Notice that by applying the weight updating rule in (5), agents trade-off their memory

about the “past contributions” from agent j with its “current contribution” (et
ij). The

parameter α tunes the memory effect. If α � 0, weights track very closely current scores

(no memory), whereas, if α � 1, memory becomes very important. The ηt
ij series are

smoother and are quite robust to new scores. See Figure 1 for an example of weight series

generated by applying rule (5) to the same series of et
ij for alternative values of α (cf.

Skyrms and Pemantle (2000), Weisbuch, Kirman, and Herreiner (2000) and Kirman and

Vriend (2001) for a similar approach).

Weights provide an indication of how useful links have been in the past in helping to

take a correct decision, no matter if the player actually did choose a new state or was forced

to stick to its current one. In a sense, the collection {ηt
ij, j ∈ V t−1

i } is a measure of how

much i’s interaction group has been able to effectively and consistently convey information

to agent i. On average, the closer all weights {ηt
ij, j ∈ V t−1

i } to 1, the more agent i can

rest on the suggestions coming from its local network in taking a state updating decision
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Figure 1: An example of the dynamics of individual weights. Equation (5) is applied over
the same time-series of scores et

ij for three values of the memory parameter α =0.6, 0.8,
0.9.

at time t.

Therefore, the index

H t
i =

∑
j∈V t−1

i

(
ηt

ij

)2

|V t−1
i | ∈ [0, 1] (6)

provides information about the overall helpfulness of agent i’s interaction group V t−1
i . We

employ squared weights to emphasize the contribution to H t
i made by extreme-valued links,

that is opponents which are considered either as completely useless or completely helpful.

Finally, let us describe how networks evolve through time. At time t = 0, each agent

is randomly linked with L0 other agents. More formally, each agent is endowed with the

same (odd) number of links L0
i = L0 = �δN�, where δ ∈ (0, 1) is a proxy for the “density”

of the initial network and L0 ∈ {1, 3, 5, ..., N − 1}.
We experiment with two alternative scenarios as far as network dynamics is concerned.

In the first one, frozen networks are assumed. Links cannot change in the entire process

and, under the WMG setup, weights can only be updated. This allows one to disentangle

the roles played by coordination, local interactions, and, possibly, weight updating in
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shaping collective behavior.

In the second setup, we study an endogenous networks system. After state updat-

ing, agents are allowed to discard badly-performing links. More formally, we introduce a

threshold µ ∈ (0, 1) and we suppose that agent i deletes all links such that:

ηt
ij < µ

∑
h∈V t−1

i
ηt

ih

|V t−1
i | = µηt

i. (7)

In line with the local nature of information diffusion in our economy, we assume that

agents replace any discarded link with a new one (randomly chosen from the set of all

currently unconnected agents) and that any new link is initially assigned a weight equal

to the average of the weights of all undiscarded links. Thus, the number of links that each

agent holds remains constant at any t (equal to L0).

3 Simulation Results

In this Section, we present some preliminary Monte-Carlo simulation exercises and discuss

the most important properties displayed by the collective behavior of the system.

We begin with a benchmark parametrization where: (i) the frequency of state updating

is θ = 0.20; (ii) the population size is N = 100.

Our main goal is to explore how networks influence collective dynamics. Therefore,

we start by studying what happens to the distribution of individual payoffs and to the

interaction structure (i.e. links and weights) when the “density” of the initial network (δ

or, equivalently, L0) changes in each of the following three setups:

1. Agents play a non-weighted MG and networks are frozen.

2. Agents play a weighted MG and networks are frozen.

3. Agents play a weighted MG and networks are endogenous.
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In all our exercises, we average our observations over M = 10 independent Monte-Carlo

simulations in order to wash away across-simulation variability. Moreover, we observe

the system dynamics until the economy has reached a sufficiently stable behavior, which

typically happens for 2000 ≤ T ≤ 4000 for all (α, θ,N) setups explored in our simulations.

All foregoing results are quite robust to alternative (α, θ) parameterizations, as well as

to larger Montecarlo sample sizes (M), population sizes (N) and time horizons (T ). See,

however, Section 4 for a brief discussion on the need for a deeper sensitivity analysis over

the whole parameter space.

3.1 Non-Weighted Minority Games over Frozen Networks

In the first set of simulations, we study a system where agents play a non-weighted MG over

exogenously fixed networks. This means that the initial interaction structure {V 0
i , i ∈ I}

is not allowed to change. Agents always observe the same local network and are rewarded

only if they play as the minority of their opponents. Furthermore, each opponent always

counts as one, irrespective of its past behavior – weights are always equal to one for each

link.

In such a setting, an interesting question arises about whether collective coordination

can be affected by the size of the observation window held by the agents. In Figure 2 we

plot the evolution over time of population-average payoffs

πt =
1

N

N∑
i=1

πt
i (8)

as the number of links with which we endow each agent (L0) changes.

Populations with a smaller number of links provide, on average, higher payoff levels.

A better coordination is then achieved by playing with a smaller number of opponents.

In fact, if agents are only able to observe the world through a smaller window, it is more

likely that these windows do not overlap (that is, i ∈ V 0
j but j /∈ V 0

i ). This allows agents

better to coordinate and the system to reach a good average performance.
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Figure 2: Montecarlo mean of population-average payoffs when agents play a non-weighted
MG over frozen networks and the initial number of links changes (L0=5, 25, 55). Monte-
carlo mean performed over M = 10 runs. Setup: N = 100, θ = 0.20.

Notice also that the high instability and frustrated behaviors often displayed in standard

MG are avoided (for similar findings in the context of nearest-neighbors interactions on

lattices, cf. Burgos, Ceva, and Perazzo (2004), Kalinowski, Schulz, and Briese (2000) and

Moelbert and De Los Rios (2002)). Our results suggest that local interactions can partly

replace individual memory: a stable collective behavior characterized by a better-than-

average coordination can be reached even if players cannot observe the last global winning

sides and cannot learn in the strategy space (cf. also Bottazzi, Devetag, and Dosi (2003)).

3.2 Weighted Minority Games over Frozen Networks

Let us turn now to the case where networks are still frozen but agents can weigh the

importance of the links they maintain. Notice that, in this setup, agents cannot discard

poorly performing links to add others, but they can attach different beliefs about whether

the information coming to a particular opponent is useful in deciding their next-period

state.

Each opponent j in a given V 0
i then contributes to the decision at time t in proportion
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to its link-weight ηt
ij. In what follows, we suppose that the importance of memory in

weights dynamics is very high (α = 0.99). This means that the score et
ij currently earned

by the opponent j has a small impact in changing the assessments of agent i about its

beliefs over j.

When agents are allowed to “select which details to observe from their window”, the

collective behavior of the system sensibly changes as compared to the non-weighted case.

Indeed, populations holding a large number of links are now able to focus on smaller subsets

of trusted connections. The latter are the ones that, in the past, have guaranteed high

scores (see eq. 4). As a consequence, the population tends to break down into groups

of agents sharing the same state, which, however maintain very weak (if possibly no)

connections among them. Agents belonging to, say, a +1 group instead build connections

with players belonging to a −1 group.
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Figure 3: Time-series of individual H t
i indices, i = 1, ..., N , when agents play a weighted

MG over frozen networks. Values of H t
i refer to a benchmark run. Setup: N = 100,

α = 0.99, θ = 0.20, L0 = 55.

Such a clustering process entails a high degree of coordination among agents: it is

therefore very difficult to achieve and very sensitive to small fluctuations. To see this, we

report in Figure 3 all individual indices H t
i (see eq. 6) for a typical simulation run. Notice
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Figure 4: Time-series of population average payoffs when agents play a weighted MG over
frozen networks. Payoff values refer to the same benchmark run of Figure 3. Setup:
N = 100, α = 0.99, θ = 0.20, L0 = 55.

that all indices increase when a feasible coordination pattern is under formation. However,

after such a clustered network has been built, any small change in the global state-weight

configuration is able to disrupt the coordination pattern that has just emerged (for a similar

evidence in the context of open-ended economies self-organizing “on the edge of chaos”, cf.

Lindgren (1991)).

Population-average payoffs accordingly increase during the construction of the clustered

network and then falls after the latter has been destroyed, see Figure 4. The initial wave

(with H t
i indices all increasing) is due to a larger and larger number of agents strengthening

their links to agents belonging to an opposite-state cluster. While more and more agents

join the cluster, the network falls apart. This causes a huge drop in both payoffs and H t
i

values.

This oscillating behavior is not limited to the early stages of the simulation, but can be

observed at any time-scale. In a further set of exercises not reported here (but available

to the reader on request), we observed continuing oscillations until t = 50000, and, more

generally, well beyond the expected relaxation horizon.
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Interestingly enough, populations with an initially low number of links get now lower

average payoffs than their more connected counterparts (see Figure 5). This is because

weight assessment over a small number of agents does not provide a large enough pool

from which selecting a robust subset of opponents behaving in a consistently useful way

over time.
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Figure 5: Montecarlo mean of population-average payoffs when agents play a weighted MG
over frozen networks and the initial number of links changes (L0=5, 25, 55). Montecarlo
mean performed over M = 10 runs. Setup: N = 100, α = 0.99, θ = 0.20.

Note, however, that all three populations reach now (on average) higher payoff levels

than in the previous case. This suggests that allowing for some endogeneity in network

formation (e.g., payoff-dependent weight dynamics) implies a better collective performance.

To explore this intuition further, we move now to the endogenous networks setup.

3.3 Weighted Minority Games over Endogenous Networks

Let us now suppose that agents play a WMG and can endogenously delete badly-performing

links. We set the cutoff value to µ = 0.50. This means that an agent holding a link ijt

such that ηt
ij < 1

2
ηt

i will delete it and replace it by another ij′t, where j′ is drawn at random

from the pool of all currently non-linked players.
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In this setup, the coordination process becomes quite efficient and very rapid. Agents

typically split into two (almost) equally-sized groups: players in the first persistently choose

the state +1, those in the other always select the state −1. Agents in one group maintain

a large majority of links with agents in the other group. This allows them effortlessly to

get a positive reward and rapidly converge to an overall system configuration characterized

by average payoffs πt very close (if not equal) to one. Therefore, despite the local nature

of interaction patterns, the population is able to “globally win” the MG by endogenously

selecting the right set of opponents.
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Figure 6: Montecarlo mean of population average H
t

index when agents play a weighted
MG over endogenous networks and the initial number of links changes (L0=5, 25, 55).
The cutoff value for all three populations is µ = 0.50. Montecarlo means performed over
M = 10 runs. Setup: N = 100, α = 0.99, θ = 0.20.

What is more, convergence to a stable interaction pattern allowing for an efficient

collective behavior does not generally depend on the initial degree of connectivity. Figure

6 shows the population-average of H t
i indices:

H
t
=

1

N

N∑
i=1

H t
i , (9)

16



0.2

0.4

0.6

0.8

1.0

0 500 1000 1500 2000 2500 3000

Time

P
o
p
u
l
a
t
i
o
n
-
A
v
e
r
a
g
e
 
H
 
I
n
d
e
x

L°=5

L°=25

L°=55

Figure 7: Continuation of the simulation runs presented in Figure 6 after the cutoff value
for the L0 = 5 population has been increased to µ = 0.80 at t = 1550. Montecarlo mean

of population average H
t
index performed over M = 10 runs. Setup: N = 100, α = 0.99,

θ = 0.20.

for three populations characterized by L0 = 5, 25, 55. The two initially highly connected

populations (i.e. L0 = 25, 55) quickly converge to a steady-state with very high H
t
values.

Average payoffs πt for these two populations quickly converge towards 1.

Incidentally, notice that the average H
t

index follows a s-shaped pattern, i.e. the

signature of a diffusion process (Dosi, 1991). Indeed, when the two groups start forming,

an agent which is not yet part of any group can simply join one of them by selecting a

linked agent in the other group, similarly to what happens in an epidemic process.

Only the L0 = 5 population fails to stabilize. The H t
i values are rather small, as

well as the population-average of weights. This prevents the worst performing links from

falling below the deletion threshold. Therefore, agents cannot effectively employ network

adaptation to reach coordination.

However, if the cutoff value increases, agents find it easier to get rid of badly-performing

links. To see whether this is sufficient to trigger convergence to the efficient state, we raised

on-the-fly (around t = 1550) the cutoff values of agents belonging to the L0 = 5 population
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to µ = 0.80. Figure 7 shows the continuation of the simulation presented in Figure 6. Now

the initially weakly-connected population is also able to converge to the efficient stable

state.

4 Concluding Remarks

In this paper, we study a local version of the MG, where agents initially hold directed

edges connecting them with other players in the population. Agents can only observe the

state chosen by their opponents in the last-period and care about being in the minority

of their own interaction group. To choose their next-period state, agents employ simple,

best-reply rules.

We have explored two network evaluation setups. In the first, links are non-weighted

and agents simply count the number of their opponents in either state to decide which side

to take in the next period. In the second, links (that is, opponents) are attached a weight.

A weight evolves in a path-dependent way through time: its value increases only if the

information provided by the linked agent has been helpful in the past.

We start from a scenario where networks are frozen (links cannot be deleted/added)

and we then move to a system where endogenous networks are assumed (agents can discard

badly-performing links and replace them with other ones chosen at random).

Our results indicate that the very possibility of playing the MG locally and endoge-

nously acting over the network structure might strongly affect the efficiency of collective

behavior. For example, even when agents cannot display path-dependent discrimination

among connections and must stick to an exogenously given network, efficiency can be in-

creased if agents hold small, local interaction groups. In a sense, individual memory can

be substituted for the information locally gathered by the players in a myopic way.

Furthermore, simulations show that the efficiency of the system can be greatly enhanced

by allowing players to act upon the structure of the network. Indeed, our results suggest

that populations playing a WMG over frozen networks are able to self-organize and build
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transient clustered networks that attain high payoff levels. These self-organized configura-

tions are very sensitive to subsequent network reassessments: their disruption may generate

abrupt fluctuations in average payoffs.

Such huge fluctuations, as well as sub-optimal payoff levels, may be avoided, however,

if agents are able to delete badly performing links and replace them with random ones.

Then, the population is able to “globally win” the WMG and consistently reach a stable

state where all agents get a positive payoff. Provided that agents are sufficiently willing

to discard links, this conclusion holds independently of the initial number of connections

assigned to each player.

These promising results should be more carefully scrutinized vis-à-vis an extensive

Monte-Carlo analysis over the entire parameter space. For example, the role of the fre-

quency of state updating (θ) in shaping long-run properties of the system should be ad-

dressed in more detail.

Furthermore, we have shown that an adequate level for the cut-off parameter µ is able to

quickly move the whole population towards an efficient state. Although we were interested

here in studying the very possibility of this event, it might be interesting to investigate

more deeply how this threshold value varies with N and L0. Preliminary exercises show

that the cut-off level required to trigger the replacement of badly performing links seems

to depend on the absolute number of links L0 only, rather than on the ratio L0/N , as one

could expect. The reason why this happens could be traced back to the initial distribution

of link weights {η0
ij}. In fact, our link replacement process possesses a self-reinforcing

nature: if agent i replaces a link at time t, its average evaluation ηt
i increases. This makes

more likely that agent i will replace another link at t + 1. This process goes on until all

links have very similar evaluations. However, to start the replacement process in the first

place, we need at least one link falling sufficiently below the average level, and this may

depend on the distribution of evaluations of the initial, randomly drawn evaluations over

the L0 links.

Finally, the relationships between network structure and collective behavior should be
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studied more deeply. For example, it might be interesting to assess how the fine properties

of the network structure initially in place (e.g., presence and number of cycles, structural

and locational properties, etc.) affect the coupled network-state dynamics in the system

(as well as the emergent network structure). More generally, the robustness of our results

might be tested against alternative network formation processes allowing for score functions

different from (4) and endogenously changing interaction group sizes.
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