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Abstract

It is widely accepted that in liberalized electricity markets log-returns display fat-
tailed densities. Besides qualitative assessments, so far precise characterizations of the
shape of the distribution have been seldom provided. In this work, we characterize
the conditional and unconditional probability density functions of daily electricity log-
returns, and of the underlying shocks from the NordPool market, for each of the 24
hours, through a very flexible and general family of distributions, namely the Subbotin
family.

Our study contributes with novel results in the field. First, we show that price
fluctuations in electricity markets are additive in nature. We do this by exploiting a
scaling relationship between price level and volatility, which is in turn a new result in
the electricity markets literature. Second, in line with recent studies, we uncover the
existence of multiple regimes in price dynamics, and we characterize the distributional
shape for each of them. Interestingly, the shocks behind electricity price dynamics are
approximately Laplace if one conditions on low price levels, and closer to a Gaussian in
correspondence of high initial price levels.

These results are at variance with the evidence from financial markets. The peculiar
non-storable nature of electricity, and the varying strength of correlations between bid-
ding behaviors at different load levels are suggested as possible key factors behind the
specificities of electricity markets outcomes.
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1 Introduction

As an outcome of the liberalization policies pursued in several countries from the 80s on, the so-
called day-ahead electricity market provides economists with a very challenging phenomenon.
Electricity cannot be economically stored, which implies that demand and supply must be
continuously balanced, so that the market price mainly reflects the demand and supply condi-
tions prevailing at the very moment it has to be delivered to final users. Then, rather complex
market systems have been set up, with the aim of reaching a reasonable trade-off between
economic efficiency and system reliability. These systems are built around a market operator,
whose task is to manage uniform-price, sealed-bid, bilateral auctions in order to construct ag-
gregate demand and supply curves, and to determine equilibrium prices and quantities. The
knife-edge character of such a price setting mechanism is furtherly pushed to the extreme by
a very low price elasticity of demand, and by technical constraints which time by time lead to
network congestion (see [18] and [17] among others). As an implication, the structure of price
fluctuations in power markets is expected to be extremely interesting.
The existence of multiple periodic patterns, spikes, and time dependent volatility in one

and the same process has indeed spurred efforts towards appropriate modelling of the time
dependencies in electricity prices and their changes. Less attention has been paid to charac-
terizing the shape of the distribution of electricity log-returns. While it is widely recognized
that daily price fluctuations in energy markets display very fat tails (see [33], [23], [19], [1]),
modelling of the probability density functions is still in its infancy. Such a lack of contributions
in this area might be attributable to the strong serial dependencies in log-returns and in their
volatility, which make it hard to obtain a desirable i.i.d. sample.
In this paper, we characterize the conditional and unconditional probability density func-

tions of daily electricity log-returns, and of the underlying shocks from the NordPool market,
for each of the 24 hours, through a very flexible and general family of distributions, namely
the Subbotin family. Our study contributes with many novel features and results in the field.
First, we show that price fluctuations in electricity markets are additive in nature. We do
this by exploiting a scaling relationship between price level and volatility, which is in turn
a new result in the electricity markets literature. Second, in line with recent studies ([16]),
we uncover the existence of multiple regimes in price dynamics. However, for each one we
also characterize the distributional nature. The shocks underlying electricity log-returns are
approximately Laplacian, if one conditions on prices below some price threshold, and closer
to Gaussian above that.
The plan of the paper is the following. After reviewing some background literature in

Section 2, we introduce the Subbotin family of distributions (Section 3), as well as the dataset
and variables used in the present work (Section 4). Section 5 is devoted to the statistical
analysis of log-returns. Time dependencies are dealt with in Section 6, and the distributions
of the shocks underlying electricity price dynamics are fitted in Section 7. Conclusions and
discussion in Section 8 pave the way for future research.

2 Background

Virtually all analyses of electricity log-returns find evidence of fat-tailed distributions, although
through different approaches.
Widespread is the so-called jump-diffusion model, stemming from the early work in [25],

and from [24]. Within this approach, usually one models log-returns as a mean-reverting
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component, plus a Poisson number of jumps, with a given intensity, say λ. Each jump is
drawn from a given distribution with first cumulant equal to θ. The distribution of log-
returns is thus conceived as a mixture of distributions with Poisson mixing density. It turns
out to be asymmetric if and only if θ 6= 0, and leptokurtic if and only if λ > 0. Among the
several applications to electricity markets, we signal [9], [19], [23], [14], [15], and [31]. All of
them find λ > 0, which indirectly hints at fat tails.
In a more direct approach, one fits a power law to the tails of the distribution. The relevant

parameter is the so-called tail index, which sets how quickly the tails of the distribution
decay. A positive tail index is evidence of fat tails. In [1] values around 0.25 are found for
Omel (Spain), 0.43-0.52 for the NordPool, 0.18-0.20 for Leipzig Power Exchange, 0.33-0.42
for ElecPool. In [6], the estimate for the NordPool log-returns right tail is 0.30. [10] find
values between 0.31 and 0.38 for the PJM, and around 0.25 for the CalPX. Similar results are
reported in [11] for the Australian National Energy Market.
Finally, it is worth noting that very few studies have so far dealt with the body of the

distribution. Such an approach allows to give a more complete description of the distribution
under analysis, including features such as its peakedness. In [10] a Cauchy-Laplace mixture
is fitted to PJM and CalPX log-returns. [13] fit a Generalized Hyperbolic to NordPool log-
returns. In both cases, non-Gaussian behavior is detected.

3 The Subbotin Family of Distributions

First used in economics by [5], the Subbotin probability density function reads (see [29]):

f(x) =
1

2ab1/bΓ(1 + 1

b
)
e−

1

b
|x−µ
a

|b (1)

with parameters a (width), b (shape), and µ (position). Γ(.) is the gamma function. The
Subbotin reduces to a Laplace if b = 1, and to a Gaussian if b = 2.1 As b gets smaller, the
density becomes fatter-tailed and more sharply peaked.2

It has been proved by [32] that the Subbotin can be obtained as a mixture of normal
distributions, with α-stable mixing density. A special case of this theorem holds for the
Laplace, which is a geometric-stable law ([20]). Hence, a Subbotin approach is consistent
with the intuition behind jump-diffusion processes. Moreover, compared to previously fitted
distributions, the Subbotin has a more parsimonious specification: just 3 parameters need to
be estimated (2 if the data are demeaned). Finally, the Subbotin distribution allows greater
flexibility with respect to the tail behavior, whereas distributions such as the Generalized
Hyperbolic only admit exponential tail decay.

4 Data and Variables

As a rule, in day-ahead wholesale electricity markets, each day 24 auctions are performed
simultaneously, in order to determine prices and quantities for each of the 24 hours of the

1The Subbotin reduces to a degenerate if b = 0, and to a Continuous Uniform if b =∞.
2The Laplace case deserves special interest, in that it has been widely detected in very diverse phenomena:

from price changes in financial markets ([21]) to the growth of economic organizations (firms in Stanley et al.,
1996, and in [5]; countries in [22]).
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subsequent day. Due to non-storability, withdrawals and injections of power must be continu-
ously balanced. Towards this aim, a market operator constructs aggregate demand and supply
functions on the grounds of the bids collected. The electricity price for hour h - what we are
interested in - is set at the intersection between the aggregate curves for hour h. Daily changes
are thus due to the joint dynamics of demand and supply curves, which in turn reflect a number
of technological, behavioral and institutional determinants, related to demand characteristics
(e.g. very low price elasticity, periodic patterns), and to bidding strategies. The latter are en-
abled by the specific institutional design, and bounded by technological constraints (network
transmission constraints, ramp rates, and the balance between fixed, quasi-fixed and marginal
costs are some examples).3
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Figure 1: Time series of Price P for the sample period January 1997-December 1999. Two
different hours of the day are reported.

In this study, we focus on the NordPool, the market covering Norway, Sweden, Finland
and Denmark. Although the market was set up in 1992, we focus on just the 1997-1999 period
(1095 observations per hour), which preliminary Kolmogorov-Smirnov tests indicate as a fairly
stable one. Fig. 1 depicts the time series of prices for two hours, 9 am and 12 pm. Notice the
multiple periodic patterns (seasonal in both, weekly at 9 am), and the huge spikes in the 9
am series.
All this given, daily log-return series are built for each hour. For the sake of interpretation,

we keep hours separated, and analyze them as though they were outcomes of independent
stochastic processes.4 Let us denote the price at hour h of the day t as Ph,t, and let us define
the logarithmic price as ph,t = logPh,t. The normalized log-price reads:

p∗h,t = ph,t− < ph,t >t (2)

where < . >t denotes a sample average computed along the time dimension. The daily
log-return is given by:

rh,t = ph,t − ph,t−1 (3)

The normalized log-return is used as well:

3For details on the mentioned constraints, see [7], and [26], among others.
4This is just a preliminary approximation. We acknowledge there are significant comovements between

log-returns in different hours, if anything, because prices for all hours are set at once, and each generator can
- and usually does - bid for many hours.
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r∗h,t = p∗h,t − p∗h,t−1
(4)

5 Statistical Properties of Log-Returns

As a first step, we explore some basic properties of the 24 rh,t series.

5.1 Preliminary Analysis

Log-returns for selected hours (9 am and 24 pm) are plotted in Fig. 2, top panels. Table 1
summarizes descriptive statistics for daily log-returns, hour by hour. Standard deviations are
between 0.066 and 0.179, pretty high values, if compared to log-returns in foreign exchange
markets, for instance.5 The highest volatility is observed between 7 am and 10 am, i.e. the
beginning of the working day. Log-returns are negatively skewed during the evening, while
there is positive or null asymmetry in all other hours, especially at early morning and late
afternoon. Kurtosis ranges from 8.5 (12 pm) to 40.3 (6 pm), and it is generally higher during
night hours.
A look at the autocorrelograms in Fig. 2 (middle panels) reveals that different dynamic

structures characterize daily log-returns in different hours. Significantly positive correlations
at weekly-to-monthly lags signal a periodic pattern in hours from 6 am to 10 pm. Night-time
hours (i.e. 11 pm - 5 am) show a much simpler structure: weekly and monthly periodicities
are basically absent. The slow decay of weekly autocorrelations might signal an underlying
long-range dependence in NordPool energy log-prices.6

From Fig. 2 (bottom panels) it is also clear that volatility is autocorrelated for all hours.
Autocorrelograms of absolute log-returns |rh,t| uncover the existence of time dependencies in
high order moments, with some significant weekly structure during the day.

5.2 The Distribution of Log-Returns

A priori, one would expect different autocorrelation structures to map into quite different
distributional shapes. Surprisingly, this intuition happens to be wrong.
Table 1 displays Maximum Likelihood estimates of the Subbotin parameters a and b for

normalized log-returns.7 Log-return densities for all hours are well described by a Subbotin
with shape parameter b between 0.572 (8 am) and 0.822 (11 pm). See also Fig. 3. Stated
otherwise, NordPool log-returns have fatter-tailed and more sharply peaked densities even with
respect to a Laplace law. This is even more true of night hours. Consistent with summary
statistics, the highest values for the width parameter a, and relatedly the highest standard
deviations, are detected for the early morning hours.
We also fitted asymmetric Subbotin laws, with no significant changes in the estimated

parameters. Hence, log-returns densities can be considered symmetric up to a fair degree of
confidence.

5As reported in [8], the standard deviation of the daily log-return of the USD-DEM exchange rate (between
1987 and 1993) equals 0.019. Similar values are found for other currencies.

6On this issue, see [27] and the references therein.
7See [4] for documentation on the estimation procedures used here.
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Figure 2: NordPool daily log-returns, for 9 am (left) and 12 pm (right). Top: time series plots.
Middle: autocorrelograms of r∗. Bottom: autocorrelograms of |r∗|.
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Table 1: The estimated Subbotin parameters of the normalized log-Returns r∗ together with descriptive statistics in different hours.

Hour Subbotin Param. Descriptive Statistics

b Param. a Param. Mean Std. Skewness Kurtosis Min. Max. Median Obs.

1 0.720 0.038 -0.000 0.074 -0.271 11.5 -0.488 0.581 -0.001 1461
2 0.643 0.042 -0.000 0.097 -0.253 27.6 -0.897 1.090 -0.000 1461
3 0.574 0.045 -0.000 0.121 0.044 26.2 -0.958 1.360 -0.001 1461
4 0.629 0.048 -0.000 0.112 0.711 30.8 -0.908 1.450 -0.001 1461
5 0.636 0.050 -0.000 0.115 0.686 23.6 -0.789 1.360 -0.001 1461
6 0.632 0.054 -0.000 0.124 0.549 17.5 -1.030 0.961 -0.003 1461
7 0.585 0.060 -0.000 0.147 1.160 16.1 -1.140 1.210 -0.001 1461
8 0.572 0.069 -0.000 0.165 1.240 11.7 -1.000 1.250 -0.001 1461
9 0.579 0.075 -0.000 0.179 0.882 13.4 -1.290 1.390 -0.010 1461
10 0.647 0.069 -0.000 0.147 0.890 13.3 -1.050 1.260 -0.010 1461
11 0.713 0.063 -0.000 0.121 0.685 12.7 -0.951 1.100 -0.008 1461
12 0.736 0.058 -0.000 0.108 0.770 14.2 -0.912 1.030 -0.008 1461
13 0.740 0.056 -0.000 0.104 0.788 14.5 -0.927 0.953 -0.009 1461
14 0.728 0.056 -0.000 0.107 0.911 14.6 -0.952 0.988 -0.009 1461
15 0.706 0.056 -0.000 0.109 1.040 14.1 -0.929 0.981 -0.009 1461
16 0.716 0.055 -0.000 0.106 1.170 12.8 -0.875 0.823 -0.010 1461
17 0.704 0.052 -0.000 0.105 1.290 18.6 -0.752 1.160 -0.009 1461
18 0.699 0.050 -0.000 0.108 0.360 40.3 -1.360 1.300 -0.007 1461
19 0.776 0.047 -0.000 0.086 1.070 17.2 -0.646 0.939 -0.006 1461
20 0.799 0.043 -0.000 0.076 -0.045 10.2 -0.582 0.490 -0.002 1461
21 0.814 0.042 -0.000 0.074 -0.083 15.1 -0.616 0.644 -0.001 1461
22 0.786 0.039 -0.000 0.072 -0.386 15.2 -0.659 0.550 -0.000 1461
23 0.822 0.038 -0.000 0.066 -0.483 14.4 -0.671 0.434 -0.001 1461
24 0.814 0.038 -0.000 0.066 -0.340 8.5 -0.514 0.339 -0.001 1461
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Figure 3: Binned empirical densities of the normalized log-returns r∗ together with the Sub-
botin Maximum Likelihood fit. Notice the log scale on the y-axes. (see Tab. 1 for the values
of the estimated coefficients and other descriptive statistics).

6 Time Dependencies

The persistent and systematic nature of the time dependencies in electricity log-returns and
in their absolute values emerges very clearly. Our results might have been affected by such
dependencies to a considerable extent. Furthermore, one might want to study the distribu-
tion of some more fundamental driving force. Filtering the time dependencies away is thus
advisable.
In order to do so, we first deal with the linear autocorrelation structure, and then we tackle

the issue of non-linear dependencies via the exploration of scaling relationships between price
level and volatility.

6.1 Application of a Linear Filter

Linear filtering is accomplished by acknowledging that any stationary time series, y = (y1, ..., yT )
′,

can be represented, up to second order, by a Cholesky decomposition of the series’ covariance
matrix and a set of uncorrelated residuals.
The filtering procedure is based on the Cholesky factor algorithm, a model-free bootstrap-

ping method introduced by [3].8 It goes through the following steps:

1. Estimate the covariance matrix Σ of the vector r∗, as the Toeplitz matrix built on the
autocovariance vector γ9;

2. Calculate C as the Cholesky factor of Σ, i.e. C: CC ′ = Σ;

3. Extract the linearly uncorrelated, standardized residuals ε as follows:

8See also [12] and [2].
9A Toeplitz matrix is a matrix which has constant values along negative-sloping diagonals. In our case,

given the autocovariance vector γ = (γ0, γ1, ..., γT ), the matrix Σ is defined as follows:
γ0 γ1 γ2 ... γT

γ1 γ0 γ1 ... γT−1

γ2 γ1 γ0 ... γT−2

...
...

...
. . .

...
γT γT−1 γT−2 ... γ0
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ε = C−1r∗ (5)

On these grounds, one can envisage log-returns r∗ as generated by applying a linear dy-
namical structure to the underlying ε shocks.

6.2 Scaling

Because the Cholesky filter is a linear one, its outcome retains the heteroskedastic properties
of the original series r∗. It is thus necessary to try and construct subsamples which at least
approximately meet the stationarity requirements. In order to do so, we investigate upon the
existence of some relationship between the volatility of ε and the initial price level P .10

For any given hour, price levels P are binned, and standard deviations of the associated ε
are computed. Next, all such data are pooled together, and the log-standard deviations are
regressed on the logarithm of the mean price level within the corresponding bins, and on a
constant.
We find that the width of the distributions of the ε shocks scales as a power law of the

initial electricity price level:

σ(εh,t|Ph,t−1) ∝ P
β
h,t−1

(6)

with a scaling exponent β around -1 for most hours (see Table 3). In other words, there
exists a negative relationship between the price level and the conditional volatility of shocks:
when the price is high, its dynamics over the subsequent day tends to be relatively tranquil,
while very noisy price changes follow low price realizations. More specifically, σ tends to
behave as 1

P
. Fig. 4 provides graphical illustration of this relationship for two hours (8 am

and 12 pm).
As a deeper implication, this results provides circumstantial evidence that the electricity

price process is as additive process. The usual logarithmic transformation, and the entailed
definition of log-returns, both justified for multiplicative processes (e.g. stock market prices),
turn out to be inappropriate for the analysis of electricity prices.
To see this, let us assume the sequence Pt is a realization of an additive process, such that

Pt = Pt−1 + εt, with εt a zero mean, finite variance shock. Let us then suppose the process
is believed to be a multiplicative one, and that log of the former, additive representation is
taken. This yields: logPt = log(Pt−1 + εt) = log(Pt−1(1 +

εt
Pt−1
)) = logPt−1 + log(1 +

εt
Pt−1
) ≈

logPt−1 +
εt

Pt−1
; i.e., a process with the same scaling relationship as we have detected here.

7 Distributions of Shocks

We can now study the conditional and unconditional distributions of the underlying shock
sequence ε, whose basic properties for various hours are reported in Table 2.

10This approach has been chosen after having unsuccessfully applied GARCH models. An alternative way
could be to fit models with long-memory in volatility.
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Table 2: The estimated Subbotin parameters of the residuals ε together with descriptive statistics in different hours.

Hour Subbotin Param. Descriptive Statistics

b Param. a Param. Mean Std. Skewness Kurtosis Min. Max. Median Obs.

1 1.004 0.680 -0.000 1.000 -0.398 8.9 -7.000 7.850 0.025 1461
2 0.930 0.626 0.000 1.000 -0.400 17.5 -8.570 9.040 0.030 1461
3 0.946 0.633 0.000 1.000 -0.170 17.4 -8.750 10.000 0.049 1461
4 0.944 0.635 -0.000 1.000 0.202 18.6 -7.320 10.700 0.032 1461
5 0.945 0.640 0.000 1.000 0.275 15.2 -6.780 9.580 0.023 1461
6 0.970 0.653 0.000 1.000 -0.420 12.9 -8.120 8.740 0.047 1461
7 0.991 0.666 -0.000 1.000 -0.660 13.4 -8.990 8.120 0.014 1461
8 1.055 0.713 -0.000 1.000 -0.169 5.8 -6.300 6.590 0.024 1461
9 1.026 0.690 0.000 1.000 0.050 8.3 -6.490 7.460 0.014 1461
10 1.079 0.721 0.000 1.000 0.029 7.6 -7.380 7.190 -0.005 1461
11 1.154 0.762 -0.000 1.000 -0.146 5.2 -7.700 5.090 -0.001 1461
12 1.186 0.776 0.000 1.000 -0.184 4.8 -7.700 5.330 0.004 1461
13 1.212 0.787 -0.000 1.000 -0.161 4.7 -8.180 5.120 -0.005 1461
14 1.229 0.793 0.000 1.000 -0.093 4.8 -8.260 5.280 -0.019 1461
15 1.205 0.783 -0.000 1.000 -0.038 4.4 -7.700 5.160 -0.044 1461
16 1.170 0.767 -0.000 1.000 0.004 4.1 -7.090 4.700 -0.044 1461
17 1.079 0.719 0.000 1.000 -0.048 7.2 -6.990 7.270 -0.016 1461
18 1.006 0.667 -0.000 1.000 -0.305 19.9 -11.100 8.970 -0.008 1461
19 1.110 0.738 -0.000 1.000 -0.085 7.0 -7.320 7.310 -0.020 1461
20 1.191 0.772 0.000 1.000 -0.508 6.2 -8.370 5.000 0.026 1461
21 1.118 0.733 -0.000 1.000 -0.611 10.6 -9.660 6.230 -0.020 1461
22 1.116 0.729 -0.000 1.000 -0.835 12.8 -10.300 5.560 -0.006 1461
23 1.102 0.730 0.000 1.000 -0.767 9.6 -9.010 4.810 0.034 1461
24 1.095 0.736 -0.000 1.000 -0.494 4.9 -7.340 4.550 0.032 1461
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Figure 4: The volatility of the ε shocks, σ, scales as a power law of the initial price level P .
Two hours are shown: 8 am (left), 12 pm (right). See Tab. 3 for the values of the estimated
coefficients in all the 24 hours.

7.1 Unconditional Distributions

First, we fit the Subbotin to the 24 series of the ε shocks.11 As data are standardized by
definition, only 2 parameters need to be estimated. Results in Table 2 make clear that the
shocks underlying the electricity log-returns are well described by Laplace laws: regardless of
the hour considered, the shape parameter b is quite close to 1. Fitted Subbotin distributions
are superimposed to the empirical ones in Fig. 5. However, some deviation from the Laplace
shape exists: night hours display slightly lower b than peak-load hours. Despite the apparently
systematic nature of such deviations, perhaps they are too small to be significant. Again,
estimating asymmetric Subbotin models does not yield significant differences with respect to
the patterns detected here.
It is worth noting that the filtered shocks ε are less leptokurtic than the log-returns r. At

first sight, this can look surprising. Indeed, if one thinks of the moving average representation
of r, the latter can be conceived as a weighted sum of the ε shocks. If the central limit theorem
held, the shape of the distribution of r ought to be closer to Gaussian. However, one of the
assumptions behind the CLT, i.e. homoskedasticity of the ε shocks, is not satisfied here. Our
conjecture is that non-linear time dependencies contribute to increasing the fat-tailedness of
electricity log-returns.

7.2 Conditional Distributions

Based on the detected scaling relationship, we can now group data in rather homoskedastic
classes. We choose 6 equipopulate groups of 162 observations each, dubbed from I to VI in
ascending price order.12 An interesting point here is that, according to the detected scaling
relationship, higher (lower) volatilities correspond to lower (higher) price levels. But, to the
extent that price levels are in a one-to-one correspondence with demand levels, they proxy for

11For a correct interpretation of the findings to be described, it is worth noting that these shocks display an
autocorrelated volatility structure.

12Here we report minima and maxima prices (in NOKs/kwh) for each of the 6 groups, for 9 am. Group I:
70.39-98.31. Group II: 98.45-117.22. Group III: 117.23-128.82. Group IV: 128.87-138.75. Group V: 138.81-
153.13. Group VI: 153.13-190.18. Because groups are equipopulated, group boundaries for other hours are
generally different. Bins corresponding to prices below the minimum of group I and above the maximum of
group VI have been selected out. The main reason is that log-returns associated to very high prices display a
spiky behavior. Thus, they can hardly be thought of as homegeneous to log-returns in other groups.
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Figure 5: Binned empirical densities of the residuals ε together with the Subbotin Maximum
Likelihood fit. Notice the log scale on the y-axes. (see Tab. 2 for the values of the estimated
coefficients and other descriptive statistics).

system capacity utilization rates, a variable which is commonly recognized as an extremely
important one in shaping generators’ bidding behavior.
A Subbotin distribution is fitted to each subsample, yielding the results in Table 3. In order

to easen the interpretation of results, in Fig. 6 we plot kernel estimates of the relationship
between estimated Subbotin parameters (a and b) versus mean prices for the corresponding
bins, for all hours pooled together.
What we find is that, up to approximately a price equal to 110 NOKs/MWh, estimated b’s

cluster around 1, only to increase up to a region around 1.5. Such an increase is not gradual:
rather, it looks like a regime change. The a parameters decay with respect to increasing price
levels, which is consistent with the scaling law in (6). A similar interpretation can be given
to the 3-dimensional representation reported in Fig. 7. In it, each combination of the a and
b parameters (horizontal axes) is associated to a price level (vertical axis). Fig. 7 shows that
low prices are associated to high values of a (i.e. high volatility) and low values of b (namely,
very fat tails). The opposite holds for high price levels. We can thus conclude that, following
a low price realization, the shocks underlying electricity price dynamics display high volatility
and fatter tails, than after a high price.
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Table 3: Scaling parameters and the estimated Subbotin parameters of the residuals ε in different hours, for six groups.

Hour scaling b a

α β I II III IV V VI I II III IV V VI

1 4.700 −1.042± 0.153 0.940 1.002 1.217 1.184 2.061 2.035 0.859 0.885 0.645 0.564 0.609 0.662
2 5.197 −1.173± 0.151 1.153 0.772 1.376 1.543 1.717 1.924 0.897 0.750 0.641 0.517 0.562 0.504
3 3.999 −0.914± 0.160 1.107 0.922 1.215 1.831 1.770 0.999 0.925 0.761 0.568 0.533 0.558 0.425
4 4.840 −1.107± 0.106 1.143 0.915 1.002 1.565 1.902 2.181 1.063 0.804 0.523 0.509 0.520 0.506
5 4.712 −1.078± 0.098 1.083 1.078 0.955 1.996 2.159 2.019 1.069 0.836 0.520 0.583 0.562 0.493
6 5.095 −1.152± 0.113 0.930 1.136 0.932 2.028 2.248 2.005 1.000 0.836 0.539 0.607 0.536 0.477
7 4.938 −1.091± 0.157 1.247 1.012 1.075 1.374 2.225 1.532 0.972 0.784 0.737 0.578 0.582 0.458
8 3.822 −0.829± 0.149 0.874 1.244 1.026 1.118 1.409 1.342 0.837 0.762 0.567 0.623 0.642 0.510
9 3.663 −0.803± 0.188 1.096 1.548 1.253 1.533 1.124 1.011 0.851 0.706 0.545 0.629 0.620 0.538
10 3.195 −0.699± 0.197 1.171 1.438 1.415 1.092 1.215 1.047 0.822 0.716 0.607 0.626 0.650 0.598
11 3.172 −0.682± 0.169 1.117 1.364 1.271 1.797 1.854 1.269 0.834 0.776 0.617 0.781 0.776 0.730
12 3.903 −0.837± 0.190 1.003 1.156 1.329 1.460 1.645 1.189 0.814 0.707 0.641 0.752 0.693 0.668
13 4.436 −0.949± 0.160 1.061 1.238 1.219 2.433 1.258 1.637 0.867 0.786 0.638 0.778 0.616 0.699
14 4.676 −1.001± 0.141 1.203 1.191 1.342 1.636 1.409 1.291 0.914 0.813 0.653 0.741 0.658 0.622
15 4.745 −1.018± 0.116 1.051 1.198 1.161 1.605 1.544 1.374 0.886 0.802 0.619 0.712 0.658 0.653
16 4.203 −0.910± 0.170 1.047 1.170 1.183 1.719 1.538 1.730 0.841 0.781 0.655 0.717 0.672 0.714
17 3.388 −0.741± 0.179 1.162 1.112 1.606 1.525 1.173 1.201 0.862 0.736 0.695 0.594 0.623 0.639
18 2.795 −0.633± 0.210 1.276 1.397 1.660 1.867 1.095 0.999 0.799 0.767 0.629 0.567 0.597 0.546
19 3.923 −0.850± 0.170 1.145 1.137 1.971 1.551 1.137 1.206 0.838 0.791 0.830 0.571 0.622 0.612
20 4.461 −0.967± 0.158 1.067 0.964 1.541 1.356 1.771 1.020 0.823 0.749 0.791 0.591 0.650 0.534
21 4.887 −1.061± 0.150 0.895 0.993 1.284 1.232 1.568 1.465 0.741 0.783 0.718 0.545 0.577 0.615
22 4.761 −1.036± 0.184 1.036 0.969 1.634 1.145 1.376 1.235 0.811 0.755 0.729 0.542 0.553 0.598
23 4.835 −1.050± 0.183 1.348 0.957 1.384 1.412 1.249 1.238 0.939 0.786 0.760 0.591 0.513 0.584
24 4.495 −0.984± 0.136 0.852 1.098 1.480 1.326 1.198 2.018 0.807 0.865 0.743 0.652 0.534 0.672
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8 Discussion and Conclusions

Let us briefly review our findings:

1. The distribution of normalized log-returns r∗ is well approximated by a Subbotin, with
shape parameter b between 0.5 and 0.8.

2. Once the linear autocorrelation structure is filtered out, the underlying shocks ε are
distributed according to a Laplace law (Subbotin with b = 1), regardless of the hour
considered.

3. The volatility of shocks ε scales as a power law of the initial price level P , with scaling
exponent around -1. This is typical of an additive process;

4. Conditional on the initial price level, the estimated b is around 1 (Laplace) for prices
below a certain price threshold, between 1 and 2 above it.

Finding 1 means that electricity log-returns are extremely fat-tailed. Technically, this
might be reflecting that r∗ can be seen as a linear combination of lagged heteroskedastic
shocks, more specifically Laplacian shocks (Finding 2).
The volatility of the ε shocks is related to the price level according to a scaling law (Finding

3). Day-ahead price dynamics is thus generally more noisy after a low price than following a
high one. Notice that scaling relationships are commonly found in the economic growth and
industry dynamics literatures, while no such regularities are detected in financial markets. In
a way, this signals that electricity markets have little to share with markets such as the foreign
exchange markets, or stock exchanges. The additive nature of the electricity price process, as
compared to the multiplicative nature of, say, stock marhet prices, makes this distinction even
clearer.
As suggested by Finding 4, conditional distributions display heterogeneous shapes, depend-

ing on the initial price level. Besides being more volatile, price dynamics following a low price
level is also characterized by relatively extreme fluctuations. The detected heterogeneity in
distributional shapes across price levels also means there is no evidence of universality, which
defines a further specificity of electricity markets.
In sum, the sequence of price levels P is an additive process. More specifically, it is the

outcome of the time aggregation of Laplacian shocks ε, whose volatility is autocorrelated at
weekly frequencies. The ε sequence is in turn resulting from superposition of shocks whose
distributions depend on the price level, each one corresponding to a different regime.
These findings pose a major research question as to what features of electricity markets

are behind the detected specificities. The peculiar nature of electricity as a non-storable
commodity, technical constraints in the generation and transmission of electicity, as well as
the set of behavioral rules enabled by the day-ahead market design - all of them might be
crucial in this respect.
Theoretical results already available in the literature can give us some guidance towards a

preliminary interpretation of at least some of our results. For instance, as regards the observed
heterogeneity in distributional shapes, it is worth noting that, to the extent that price levels
proxy for the system capacity utilization rates, distributional shapes are not independent of
how far is the system from full capacity load.
It has been shown by [30] that the (deterministic) low-demand Nash equilibrium strategy

for generators is to bid at marginal cost. The intuition is that, as long as demand is far
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below system capacity, bidding above marginal cost engenders the risk of not being called into
operation. On the contrary, when demand is high, the uniform price converges to the highest
admissible price - say, the price cap imposed by regulators. This is because, when demand
approaches system capacity, all generators, even the less efficient ones, are very likely to be
called into operation. Demand uncertainty makes this dichotomy only a bit milder. Hence,
market design implies that at low demand levels competition is relatively fierce. Consistently,
empirical evidence reported in [34] and [35] shows that mark-ups set by generating companies
are increasing in the marginal cost level of their plants. Bids submitted by owners of base-
load plants - the market clearing plants at low demand levels - tend to be closer to the
actual marginal cost, a parameter out of their control. While base-load bidders behavior is
significantly constrained, higher degrees of freedom are allowed to generators when demand
is high. Differences in distributional shapes in correspondence of different price levels might
reflect this.
Before getting too deep into theoretical speculations, we acknowledge that further research

need to be devoted towards more precise assessments of the regularities uncovered in this
paper. However, in light of the theoretical intuitions just recalled, the preliminary evidence
presented in this paper looks quite promising towards a deeper understanding of the peculiar
nature and dynamics of electricity markets.
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