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Abstract

This paper uses a dynamic factor model recently studied by Forni,
Hallin, Lippi and Reichlin (2000) to analyze the response of 21 U.S.
interest rates to news. Using daily data, we find that the news that
affects interest rates daily can be summarized by two common factors.
This finding is robust to both the sample period and time aggregation.
Each rate has an important idiosyncratic component; however, the
relative importance of the idiosyncratic component declines as the
frequency of the observations is reduced, and nearly vanishes when
rates are observed at the monthly frequency. Using an identification
scheme that allows for the fact that when policy actions are unknown
to the market the funds rate should respond first to policy actions,
we are unable to identifying a unique effect of monetary policy in the
funds rate at the daily frequency.

1 Introduction

Factor analysis has been widely used in economics and finance in situations
where a relatively large number of variables are believed to be driven by
relatively few common causes of variation. In particular, factor analysis has
been applied widely in analyzes of financial markets because alternative debt
instruments are merely promises made by different economic entities to pay
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various sums of money at various future dates. Economists and financial
market analysts believe that most of the variation among interest rates on
alternative debt instruments is determined by default and market risk, the
latter being positively related to the term to maturity. If financial markets are
efficient, the long-run equilibrium real return on alternative debt instruments
should differ only by default and market risk premiums.

Of course, in the short run interest rates will differ for wide variety of
causes, represented by news affecting the markets each day. However, though
the source of the news can change from day to day, the response of the interest
rates is likely to compress their informational content into a few main causes
of variation. In particular, the news will affect the interest rates by changing
the market perception about the real interest rate and expected inflation.

We investigate the common components to news by analyzing daily changes
in U.S. interest rates using the dynamic factor model (DFM) studied re-
cently by Forni, Hallin, Lippi and Reichlin (2000) (FHLR henceforth). Like
principal components (PC), DFMs identify common factors associated with
changes in interest rates. However, because the common components are
loaded through (finite or infinite) polynomials in the lag operator L, unlike
static PC, DFMs permit each rate to have a different dynamic response to
news. If financial markets are fully efficient, the reaction to news will be
immediate–daily changes in market interest rates will reflect completely the
information received by the market that day. If markets are not fully ef-
ficient, however, the response of rates to each day’s news will evolve over
time. Hence, information about the extent of financial market efficiency is
obtained by comparing the common factors obtained with PC with those
obtained using the DFM.

The DFM is similar to the moving average version of a vector autoregres-
sion (VAR) model; however, unlike VARs, the number of common factors is
permitted to be small relative to the number of variables considered. In ad-
dition, factor analysis provides a straightforward measure of market specific,
and other idiosyncratic shocks associated with particular interest rates, and
a method of determining whether these components have a lasting affect on
that rate. In addition, it provides a measure of the relative importance of
the idiosyncratic component to that of the common factors for each rate.

Summing up, this paper attempts to answer several questions concerning
the response of interest rates to news, such as: Can the response of a variety
of interest rates to news be summarized by a few common factors? How
many common factors are there? How important are idiosyncratic shocks to
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interest rates relative to the response to news that affects all rates? How is
the idiosyncratic component of rates affected by time aggregation? Can one
of the factors that interest rate respond to be identified as a monetary policy
shock?

We analyze 21 U.S. interest rates on debt instruments with varying de-
grees of default risk and maturities ranging from overnight to 20 years at
the daily frequency. Because we are interested in identifying common fac-
tors associated with news that affects the market, we analyze changes in the
daily rates on the assumption that the daily change in interest rates is the
best measure of their response to news. Despite the fact that we make no
specific allowance for differences in default risk or term to maturity, we find
that two factors account for most of the variation in these rates. This finding
is robust to both the sample period and time aggregation. Moreover, each
rate has an important idiosyncratic component whose relative importance,
however, declines as the frequency of the observations is reduced; and nearly
vanishes when rates are observed at the monthly frequency.

The remainder of the paper is organized as follows. Section 2 presents the
data. Section 3 presents the results obtained from applying dynamic factor
analysis to the interest rates described in Section 2. This section presents the
analysis of alternative specifications and several robustness checks. Section
4 presents the results obtained by applying the factor analysis to weekly
and monthly data. Some implications of this analysis are drawn. Section 5
investigates whether either of the factors identified in the previous sections
can be attributed to monetary policy actions of the Fed. The conclusions
and program for further research are presented in Section 6.

2 The Data

Our data consists of daily observations on 21 interest rates ranging in ma-
turity from overnight to 20 years and covers the period, January 2, 1974
through August 15, 2001. There are rates on 1- and 3-month financial and
nonfinancial commercial paper, fcp1, fcp3, nfcp1, and nfcp3 ; the 1-, 3-, 5-
, 7-, 10-, and 20-year constant maturity U.S. Treasury yields, t1 through
t20 ; the 3-, 6- and 12-month rate on U.S. Treasury bills in the secondary
market, tb3, tb6 and tb12 ; the London bid rate on 1-, 3-, and 6-month Eu-
rodollar deposits, ed1, ed3, and ed6, the secondary market rate on 1-, 3-,
and 6-month negotiable certificates of deposit, cd1, cd3, and cd6 ; the effec-
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tive federal funds rate, ffr ; and the overnight rate on repurchase agreements
secured with Treasury obligations, rp. The U.S. Treasury rates are free of
default risks. Other rates, such as ffr, are completely unsecured and, hence,
may reflect a significant risk premium.

Figure 2.1 Interest rates: Levels
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Daily figures: From January 2, 1974 to October 15 2001.

Figure 2.1 presents all 21 interest rates over the entire sample period.
While the rates clearly differ from one another, it is unquestionably the case
that they share many of the same characteristics. Hence, it is not surpris-
ing that the much of the variance of the levels can be accounted for by a
few common factors (see e.g., Litterman and Scheinkman, 1991). The same
graph for first differences would show important short-run differences among
different rates. Table 2.1 presents the correlations between first differences of
all pairs of the 21 rates considered. The rates are arranged by maturity from
overnight to 20 years. The correlation between the funds rate and alterna-
tive rates declines nearly monotonically as the term to maturity lengthens,
and the correlation between the first-difference of the funds rate and the
longer-term Treasury rates is very low. Generally speaking correlation is
higher between rates of similar maturity. The correlation is also generally
higher among similar assets of different maturities. This is particularly true
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for Treasury rates. For example, the correlation between tb3 and any of the
Treasury rates is higher than any of the other 3-month rates. This suggests
that there may be market-specific news that affects rates in a particular
market, but not other markets.1

Table 2.1. Correlation between rates: first differences.

ffr rp cd1 ed1 fcp1 nfc1 cd3 ed3 fcp3 nfc3 tb3 cd6 ed6 tb6 tb12 t1 t3 t5 t7 t10 t20

ffr 1.00

rp 0.49 1.00

cd1 0.28 0.47 1.00

ed1 0.16 0.19 0.35 1.00

fcp1 0.20 0.37 0.57 0.22 1.00

nfc1 0.29 0.55 0.79 0.33 0.70 1.00

cd3 0.24 0.36 0.85 0.35 0.54 0.73 1.00

ed3 0.15 0.24 0.56 0.49 0.39 0.52 0.64 1.00

fcp3 0.08 0.17 0.39 0.17 0.49 0.43 0.41 0.31 1.00

nfc3 0.23 0.41 0.78 0.33 0.65 0.86 0.81 0.59 0.49 1.00

tb3 0.14 0.17 0.33 0.10 0.28 0.31 0.39 0.21 0.25 0.33 1.00

cd6 0.24 0.32 0.77 0.33 0.49 0.66 0.93 0.63 0.39 0.75 0.40 1.00

ed6 0.16 0.26 0.56 0.58 0.42 0.54 0.63 0.77 0.32 0.59 0.24 0.60 1.00

tb6 0.15 0.15 0.35 0.13 0.28 0.30 0.43 0.24 0.26 0.35 0.87 0.45 0.24 1.00

tb12 0.14 0.12 0.33 0.12 0.25 0.27 0.42 0.25 0.26 0.33 0.78 0.46 0.24 0.91 1.00

t1 0.15 0.13 0.33 0.14 0.25 0.28 0.43 0.25 0.26 0.33 0.77 0.48 0.25 0.90 0.97 1.00

t3 0.13 0.10 0.32 0.13 0.23 0.25 0.42 0.26 0.23 0.31 0.64 0.47 0.24 0.78 0.86 0.87 1.00

t5 0.11 0.07 0.28 0.09 0.20 0.22 0.38 0.23 0.21 0.28 0.59 0.43 0.22 0.74 0.83 0.83 0.94 1.00

t7 0.10 0.06 0.26 0.09 0.18 0.19 0.35 0.22 0.20 0.26 0.55 0.41 0.21 0.69 0.78 0.79 0.91 0.96 1.00

t10 0.09 0.04 0.23 0.08 0.17 0.17 0.32 0.20 0.19 0.24 0.53 0.37 0.18 0.67 0.76 0.76 0.88 0.93 0.96 1.00

t20 0.09 0.04 0.23 0.08 0.17 0.17 0.31 0.20 0.18 0.23 0.51 0.36 0.18 0.64 0.72 0.72 0.83 0.88 0.92 0.94 1.00

1There are very large daily spikes in ffr that occur from time to time. We undertook
our analysis by deleting and not deleting these spikes. The results presented here were
relatively unaffected by these observations, so these spikes are not deleted for our analysis.
Sarno, Thornton and Wen (2002), who have used a subset of our data set, also report
obtaining qualitatively identical results when such spikes were are were not deleted.
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3 Dynamic Factor Analysis Using Daily Data

3.1 The generalized dynamic factor model

The dynamic factor model used here is summarized in this section. The
interested reader will find details in FHLR. Consider a dataset consisting of
n time series, each a realization of a stationary process, and assume that the
following representation holds

xit = Ai1(L)u1t + · · · + Aiq(L)uqt + ξit, (1)

for i = 1, 2, . . . , n, where Ut = (u1t · · · uqt) is an orthonormal white-noise
vector, i.e. ujt has unit variance and is orthogonal to ust for any j �= s.
Aij(L) =

∑∞
k=0 aij,kL

k is a polynomial (finite or infinite) in the lag operator
L, whose coefficients represent the impulse response function of xit to the
shock ujt. The polynomials Aij(L) fulfill

∑∞
k=0 a2

ij,k < ∞. Obviously the
stationarity assumption on the x’s does not rule out data sets containing
non-stationary series, as stationarity can be induced either by deterministic
detrending or by differencing, according to their generating process.

The shocks Ut and the components χit = Ai1(L)u1t + · · · + Aiquqt are
referred to as common shocks, common factors, or common components,
respectively. We interpret the common shocks u1t, u2t, . . . uqt as macroeco-
nomic shocks that affect all the variables xit, e.g. a demand shock, a technol-
ogy shock, a monetary policy shock, etc. While the shocks are unique, each of
the variables response can be different, and is represented by the polynomials
Aij(L).

Some of the assumptions below are formulated for n → ∞. Moreover, all
estimation results are obtained asymptotically as both n and T , the number
of observations in each series, tend to infinity. Conceptually, our dataset is
assumed to be embedded in a doubly infinite panel. In empirical situations,
however, both n and T are finite, so that the reliability of our results requires
that the number of series in the dataset be fairly large.

To better understand what is meant by common factors, suppose that
q = 2, and that Ai1(L) = ci(L)A11(L) and Ai2(L) = ci(L)A12(L) for all
i > 1. In this case model (1) could be rewritten as follows:

χ1t = A11(L)u1t + A12(L)u2t = B1(L)vt

χit = ci(L)[A11(L)u1t + A12(L)u2t] = ci(L)B1(L)vt = Bi(L)vt for i > 1
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In other words, the first and second factor would collapse into one composite
factor, so that u1t and u2t could not be identified and estimated. Hence,
if two or more macroeconomic factors affects all interest rates in precisely
the same way, it would be impossible to distinguish between them. Thus,
in order for the number q in (1) to make sense, it is important that each
variable be permitted to respond differently to the common shocks, i.e. that
the polynomials Aij(L) are sufficiently different across different variables.

The components ξit in equation (1) are referred to as the idiosyncratic
components. We suppose that ξit is orthogonal to all components of Ut

at any lead and lag, and therefore orthogonal to χst at any lead and lag.
The usual additional assumption is that the idiosyncratic components ξit are
mutually orthogonal at any lead and lag, i.e. that ξit contains information
that is specific only to xit. Here, however, following FHLR we use a weaker
assumption, whose introduction requires the spectral density matrix of the
vector (x1t x2t · · · xnt), which is denoted by Σn(λ). Orthogonality between
the ξ’s and the χ’s implies that

Σn(λ) = Σχ
n(λ) + Σξ

n(λ),

where Σχ
n(λ) and Σξ

n(λ) denote the spectral density matrices of the vec-
tors of common and idiosyncratic components respectively. Denote the j-
th eigenvalues (in descending order) of Σn(λ), Σχ

n(λ) and Σξ
n(λ) by λnj(λ),

λχ
nj(λ),λξ

nj(λ), respectively.

Assumption 1. For n → ∞ and j ≤ q, the eigenvalues λχ
nj(λ) → ∞ for

almost any λ ∈ [−π π].

Assumption 2. There exists a positive real Λ such that λξ
n1(λ) ≤ Λ for any

n.

Assumption 2 is a generalization of the case in which the idiosyncratic
components are mutually orthogonal and their variance is bounded with re-
spect to n (this is why the model is called a generalized dynamic factor
model). Thus, some limited covariance is not ruled out for the idiosyncratic
components. Assumption 1 guarantees that the factors ujt do not collapse
into a smaller number of factors. Forni and Lippi (2001) prove that Assump-
tion 1 and 2 are equivalent to the following assumption, which is formulated
in terms of the “observable” matrix Σn(λ).

Assumption 3. For n → ∞ and j ≤ q, the eigenvalues λnj(λ) → ∞ for
almost any λ ∈ [−π π]. There exists a positive real M such that λn,q+1(λ) ≤
M for any n.
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Assumption 3 can be used as a basis for a heuristic criterion to select the
number of factors. Given the number n of variables in our dataset, we can
compute the spectral matrices and the corresponding eigenvalues for each
m ≤ n. The number q should correspond to the number of clearly diverging
eigenvalues.

Figure 3.1 Eigenvalues as functions of the number of variables
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The graphs in the first row, from the left, correspond to the frequencies 0, π/3,
in the second row to 2π/3, π.

Under Assumption 3, and additional technical assumptions, FHLR con-
struct a consistent estimator for the components χit and ξit based on the
dynamic principal components. This will not be discussed here. It is im-
portant to point out, however, that estimation of the common components
does not imply identification of the common shocks. In other words, once
the χ’s have been consistently estimated, there exist an infinite number of
representations, like the one in (1),

χit =
q∑

j=1

Bij(L)vjt,

where Vt = (v1t v2t · · · vqt) is an orthonormal white-noise vector linked to
the structural vector Ut by Vt = SUt, S being a unitary matrix. Identifica-
tion of Ut among all possible vectors of shocks requires restrictions, just like
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identification of SVAR models. The advantage of the dynamic factor model
(1) approach is that the number of shocks does not increase with the number
of variables. In contrast, in Structural VAR (SVAR) models the restrictions
required to achieve identification increases as the square of the number of
variables included in the VAR.

Figure 3.2 Variance-ratio of idiosyncratic component to the variable
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The four lines, from top to bottom, correspond to the frequency band [0 ρ], with
ρ taking the values π, π/4, π/16, π/32. The variables, indicated in this Figure,
as well as in Figures 4.1, 5.1, 5.2, by numbers from 1 to 21 are fcp1, fcp3, nfcp1,
nfcp3, t1, t3, t5, t7, t10, t20, tb3, tb6, tb12, ed1, ed3, ed6, cd1, cd3, cd6, ffr, rp.

3.2 Dynamic Factor Analysis of the Interest Rates

The asymptotic results in FHLR do not change if the variables are rescaled.
In particular, estimation of χit is not affected by normalization (each vari-
able divided by its standard deviation) as n tends to infinity. When n is
finite, however, the relative variances of the variables xit may matter. This
is especially true when n is relatively small, as in our case. Consequently,
all of the interest rates have been normalized. Figure 3.1 plots the eigen-
values of the spectral density matrix of the vector (∆R1t ∆R2t · · · ∆Rmt),
for m = 1, 2, . . . , 21 (obviously the s-th eigenvalue exists only from m = s
onward), for the frequencies 0, π/3, 2π/3 and π. The first two eigenvalues
stand out and explain a large proportion of the total variance. Indeed, at
frequencies 0 and π the contributions of eigenvalues following the second
are essentially nil. At the central frequencies, there is some contribution for
the eigenvalues following the second; however, the contribution is relatively
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small. Consequently, based on Assumption 3, we estimate a dynamic factor
model with q = 2.2

Figure 3.2 presents the variance ratio var(ξit)/var(∆Rit) for all 21 inter-
est rates for the frequency bands from zero to π (all periods), π/4 (periods
of 8 days or longer), π/16 (32 days or longer), π/32 (64 days or longer) re-
spectively. The integer numbers on the horizontal axis represent the interest
rates from 1 to 21. Figure 3.2 shows that the contribution of the common
components to the variance of each of the interest rates is far more impor-
tant at lower frequencies. With the exception of ffr and rp, the ratio falls
beneath 0.1 when the band [0 π/32] is considered. Consistent with Duffee
(1996) the variance of the idiosyncratic component of the 3-month t-bill rate
also remains somewhat large at low frequencies. In any event, two factors
appear to explain much of the variation in the 21 interest rates at low fre-
quencies and are sufficient to explain nearly all of the long-run variation in
rates. These results imply that when the data are aggregated over time, the
variance ratio of idiosyncratic components for each rate will become smaller.
Indeed, as we see in Section 4, the idiosyncratic component of rates almost
disappears with monthly data.

The spectral density of the idiosyncratic components, at each frequency,
for nfcp1, ed1, t10, and ffr are graphed in Figure 3.3, together with the
corresponding total spectral densities (sum of the common and idiosyncratic
spectral densities). The idiosyncratic spectral density increases slightly for
nfcp1, ed1 and t10, but increase substantially for ffr (and for rp) . In contrast,
the corresponding total spectral densities are either downward sloping, or in
the case of ffr, increase less than the idiosyncratic component. Interestingly,
the spectral density of the ffr has three outstanding peaks that match quite
closely those obtained by Sarno, Thornton and Wen (2002) using a different
(parametric) estimation technique.3

It is interesting to note that spectral densities of the idiosyncratic com-
ponents of all the rates is nearly zero at the zero frequency. This is suggests
that all of the idiosyncratic shocks are temporary, having no permanent effect
on individual rates and, consequently, the structure of rates. While there
is nothing that requires all idiosyncratic shocks to be temporary, we are in-

2The exercises presented below in Sections 3.2, 4 and 5, based on the two-factor model,
have been replicated within a three-factor model, with no qualitative changes for the
results.

3It should be noted, however, that the “idiosyncratic” component identified by Sarno,
Thornton and Wen (2002) differs from the one estimated here.
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clined to interpret this as evidence that our DFM has correctly identified the
idiosyncratic component of rates.

Figure 3.3 Spectral density of the variable and the idiosyncratic component
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The variables in the first row, from the left, are nfcp1 and ed1, respectively.
The second row reports t10 and ffr, respectively. Cycles per day on the horizontal
axis.

The results suggested by Figure 3.2 are confirmed for all but the overnight
rates. For the overnight rates, the relative variance of the idiosyncratic com-
ponent increases rather than decreases as the frequency is reduced. The
relative variance of the idiosyncratic component of the overnight rates is
more than 45 percent at frequency π/32, and remains relatively larger even
at frequencies very near zero. Hence, it appears that the idiosyncratic com-
ponent of the overnight rates has become both larger and more persistent
(essentially permanent) since 1994. Finally, the spectral density of ffr has
lost it three peaks.
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4 Dynamic Factor Analysis Results Using Weekly

and Monthly Data

To further investigate the effects of time aggregation, the analysis in the
previous section is repeated using weekly and monthly average data. Time
aggregation per se does not affect results on the number of factors. An
analysis equivalent to that reported in the previous sections indicated that
there are two common factors. Given the result in the previous section that
high frequency cycles contribute very little to the spectral density, we expect
that this will hold for time-aggregated data as well.

Moreover, we expect that this result will occur for both period-average
and end-of-period data. To understand why, let xt be I(1), where t indicates
days. Stationarity is achieved by taking first differences xt − xt−1. Suppose
that one wants to sample weekly. This can be done in two steps: (1) fifth
differencing, i.e. taking xt − xt−5, for which we have

xt−xt−5 = (xt−xt−1)+ · · ·+(xt−4−xt−5) = (1+L+L2 +L3 +L4)(1−L)xt,

and (2) sampling the fifth difference at times 0, 5, 10, . . .. As is well known,
the gain of the filter (1 + L + L2 + L3 + L4) used in step (1) is mainly
concentrated in the low-frequency band, so that sampling weekly entails a
considerable smoothing. An even more serious smoothing effect arises if we
aggregate over time. In that case we firstly take (1 + L + L2 + L3 + L4)xt,
then take the fifth difference and then sample, so that the final filter is
(1 + L + L2 + L3 + L4)2(1− L). Step 2, i.e. sampling, has a less clear effect;
however, in no case does it offset the effect of the smoothing filters.

To investigate the effects of time aggregation on the relative importance
of the idiosyncratic components of our dynamic factor analysis, we repeated
the exercise conducted in Section 3.2 using weekly and monthly observations,
with both period-average and end-of-period data. As expected, the analysis
again strongly suggests that there are but two common factors.

Figure 4.1 reports the variance-ratio of the idiosyncratic component (over
the frequency band [0 π] for all 21 interest rates using daily data, and for
weekly and monthly period-average data. As expected, the relative impor-
tance of the idiosyncratic component declines substantially as the horizon of
the time aggregation increases. Indeed, with the exceptions of ffr and rp, the
contribution relative variance of idiosyncratic component for monthly period-
average data is very similar to that measured at frequency π/32. For ffr and
rp, the relative variances for monthly data are nearly twice that measured
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at frequency π/32. As expected, the results with end-of-period observations
are essentially the same and, consequently, not reported.

Figure 4.1 Variance-ratio of idiosyncratic component to the variable
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The three lines, from top to bottom, correspond to daily, weekly, monthly figures
respectively. The top line is identical to the top line in Figure 3.2.

These results suggest that each market interest has a significant idiosyn-
cratic component when measured at the daily frequency. Since, by construc-
tion, the idiosyncratic component of each rate is nearly orthogonal to that of
the other rates, it reflects market specific shocks. This is consistent with the
fact that the idiosyncratic components are relatively large for the overnight
rates (ffr and rp), the Eurodollar deposit rates (all three maturities) and both
of the commercial paper rates. The relative importance of the idiosyncratic
component is relatively small for the Treasury rates with the exception of
tb3, which is consistent with Duffee’s (1996) finding. For all rates, however,
the relative importance of the idiosyncratic component declines dramatically
with time aggregation.

5 Does One of the Factors Represent a Mon-

etary Policy Shock?

The fact that the response of interest rates to news can be summarized by
a few common components has important implications for macroeconomic
analyses. For example, in SVAR literature the variations in short-term in-
terest rates that cannot be accounted for by the past and contemporaneous
behavior of economic variables that precede ffr in the VAR, are assumed
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to reflect the effect of exogenous monetary policy actions on interests via
the “liquidity effect.” If the news that interest rates respond to—news about
monetary policy, industrial production, consumer confidence, inflation, the
list goes on and on—is concentrated in a few common factors, however, sep-
arating the effect of one source of news from others will be complicated.

Hamilton (1997) has criticized the recursive SVAR (RSVAR) approach to
identifying monetary policy shocks, arguing that, because policy actions are
frequently the response of the Fed to new information about the economy,
“The correlation between such a “policy innovation” and the future level of
output of necessity mixes together the effect of policy on output with the
effect of output forecasts on policy.”4 He suggests that the identification of
an exogenous policy action is best measured using daily data.

Because the response to rates to “new information” is represented by
a few common factors, the identification of monetary policy shocks will be
difficult even with daily data. Nevertheless, we attempt to identify monetary
policy shocks with our DFM. As with SVAR’s, identification in DFM requires
identifying restrictions. Like Hamilton (1997) and Thornton (2001) we use
daily data and rely on aspects of the Fed’s operation procedure to identify
monetary policy. The approach is novel in that it relies on the fact that
monetary policy actions that are unknown to the public should initially affect
only the federal funds rate. Other interest rates will change only when the
market is aware of a persistent change in the funds rate.

The Trading Desk of the Federal Reserve Bank of New York (hereafter,
desk), carries out open market operations with the expressed purpose of tar-
get the federal funds rate at the level set by the Federal Open Market Com-
mittee (FOMC). Since 1994 the FOMC has announced target change upon
the decision to change the target. Hence, it is now the case that the funds rate
and other rates change upon the announcement. This means that the desk
need not immediately engage in open market operations in order to affect the
federal funds rate and other short-term rates (e.g., Taylor, 2001). More im-
portantly, this means that, since 1994, monetary policy actions should be no
more reflected in the federal funds rate than in other short-term rates. Prior
to 1994, however, the Fed did not announce changes in the funds rate target.
Moreover, Poole, Rasche and Thornton (2002) show that there were only a
few occasions when the market knew that the target had changed on the day
that the action was taken. Hence, as a general rule, monetary policy actions

4Hamilton (1997, p. 80). See Rudebusch (1998) and Sarno and Thornton (2003) for
additional criticisms of this approach to identification.
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(i.e. desk open market operations designed to change the level of the funds
rate) should have impacted the funds rate immediately. Hence, if one of the
two macroeconomic shocks is a monetary policy shock, its impact should be
reflected immediately in the ffr and only subsequently in other rates. In
contrast, after 1994 all the rates should be affected contemporaneously by
announcements of funds rate target changes.

To understand how we operationalize our identification procedure, we
respecify model (1) with n = 21 and q = 2,

xit = χit + ξit = Ai1(L)uit + Ai2(L)u2t + ξit

= ai1,0u1t + ai1,1u1t−1 + · · ·
+ ai2,0u2t + ai2,1u2t−1 + · · ·
+ ξit

(2)

If u1t is identified as the shock to monetary policy, and we assume that ffr is
impacted before the other rates, then the following restrictions hold

ai1,s = 0 for all i �= 20. (3)

Since (u1t u2t) is an orthonormal white noise, orthogonal to the idiosyncratic
components, the restrictions given by (3) are equivalent to

cov(u1t, xit) = cov(u1t, χit) = 0 for all i �= 20. (4)

Hence, the restrictions given by (3) are nothing other than the usual recursive
identification restriction that require one variable to be affected before the
others by the shock. The SVAR model would be just identified with two
shocks and two variables. However, our model contains two shocks and 21
variables, so that with (3) the model is overidentified.

We do not undertake a formal analysis of these overidentifying restric-
tions. Rather, we simply investigate the likelihood that these restrictions
will hold. To see how this is done, consider two of the common factors, the
one for ffr and the j-th, with j �= ffr. From (2):

χffr ,t = Affr ,1(L)u1t + Affr ,2(L)u2t

χjt = Aj1(L)u1t + Aj2(L)u2t (5)

Suppose now that the matrix

Bj(L) =

(
Affr ,1(L) Affr ,2(L)

Aj1(L) Aj2(L)

)
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is invertible5and let

Cj(L) = Bj(L)−1 =

(
Cffr ,1(L) Cffr ,2(L)

Cj1(L) Cj2(L)

)
.

We may rewrite (5) as

Cffr ,1(L)χffr ,t = −Cffr ,2(L)χjt + u1t

Cj2(L)χjt = −Cj1(L)χffr ,t + u2t. (6)

By an obvious change in notation, the first equation in (6) can be rewritten
as

χffr ,t = α1χffr ,t−1 + α2χffr ,t−2 · · ·+ β0χjt + β1χjt−1β2χjt−2 + · · ·+ vt, (7)

where vt = γu1t, γ being the reciprocal of cffr ,1,0.
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Figure 5.1 Correlation between vt, obtained as the residual in (7) with j = 9,
and χkt, k = 1, 2, . . . , 21.

5For a thorough discussion of this point see Forni, Lippi and Reichlin (2002).
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The restrictions (3) imply that vt is orthogonal to χjt. Thus (7) is the
projection of χffr ,t on χjt, past values of χffr ,t and past values of χjt. Moreover,
the residual of (7) should be independent of j, up to a multiplicative constant.

Regression (7) has been run for all possible values of j. The correlation of
the residual vt with χkt, k = ffr , rp, ...,T20 , is σ2

v for k = ffr , approximately
zero for k = j by construction, and should be approximately zero under
restriction (3) for k �= ffr and k �= j. Figure 5.1 shows the correlations
between vt and χkt when (7) is estimated with j = t10. The shape of the
figure is fairly typical of those obtained using other rates as the j-th rate,
with some correlations low but others rather high. Moreover, essentially the
same results are obtained using weekly and monthly data.
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Figure 5.2 Correlation between vt, obtained as the residual in (7) with j = 9,
and χkt, k = 1, 2, . . . , 21. Period 1985-1993, solid line. Period 1994-2001, dashed
line.

While not conclusive, the size of the correlations in 5.1 strongly suggest
that the restrictions in 3 are unlikely to hold. To further investigate the
strength of these results, the same analysis is applied to data after 1993.
Because the Fed announced funds rate target changes after 1994, we should
expect to find a marked difference in the information initially reflected in
ffr between the periods 1985-1993 and 1994-2001. In Figure 5.2 we report
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the same correlations as in Figure 5.1 for the period 1985-1993, solid line,
1994-2001, dashed line. The second subsample corresponds to the period in
which the FOMC announces target changes. There is little change in the
pattern of correlations. If anything, some of the correlations for the 1994-
2001 period are lower than those for the 1985-1993 period, suggesting that
there was a “increase of uniqueness” for the funds rate after the Fed began
announcing target changes. The rise in the uniqueness of ffr does not appear
to be particularly large, however. In any event, evidence suggests that ffr did
not uniquely reflect monetary policy shocks before 1994.6 Moreover, there
is little evidence of a marked change in the contemporaneous information
reflected in interest rates at the daily frequency in response to the dramatic
changes in the FOMC’s procedures. Given the evidence that the idiosyncratic
components of rates declines markedly when the data are time aggregated,
the results should be even be less compelling using weekly or monthly data.

6 Conclusions

This papers uses a DFM to analysis the information content of news that
affects market interest rates. We find that, while market rates are buffeted
by news from a variety of sources, the response of rates to news appears to
be represented by two common factors. Because interest rates are thought
to have both real and expected inflation components, it is natural to think
that one of these factors represents the ”real” component of rates while the
other represents the ”inflation expectations” component. This cannot be
established without additional identifying assumptions, however, which is
beyond to scope of the present analysis.

The fact that information from a variety of sources appears to be reflected
in a few common factors has implications for researcher’s ability to identify
specific sources of shocks to interest rates, e.g., monetary policy. This problem
is likely to be more severe the higher the degree of temporal aggregation
for two reasons. First, because the information that market interest rates
respond to occurs at relatively high frequencies, say daily, distinguishing
between the response of alternative sources of news requires high frequency
data. It is well known that time aggregation can distort the effect of high

6This is consistent with the evidence provide by Garfinkel and Thornton (1995) and
Sarno, Thornton, and Wen (2002) who show that information in the funds rate is not
unique.
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frequency information. Hence, attributing a “shock” identified at the monthly
or quarterly frequencies to a specific high-frequency source is problematic at
best.

Second, reducing the frequency of the data also increases the likelihood
that interest rates reflect information that is not publicly known or an-
nounced. Private information, that causes one rate to change relative to
other rates, creates arbitrage opportunities. As market participants exploit
these opportunities, the effect of private information–that was initially re-
flected in one rate–will propagate to other market rates. Generally speaking,
the longer the period of time over which interest rates are measured, the
more likely it is that information that was initially reflected only in one rate
affects other rates.

Our analysis also shows that each rate analyzed has an important idiosyn-
cratic source of news that decreases with the level of temporal aggregation,
and nearly vanishes at the monthly frequency. This suggests that while mar-
ket specific information plays a role in the variability of interest rates at the
daily frequency, such information is much less responsible for the variance of
rates at lower frequencies. Moreover, the fact that the spectral densities of
the idiosyncratic component of all rates at the zero frequency is essentially
zero suggests that idiosyncratic shocks to rates have no permanent effect on
the structure of rates.

Finally, we attempt to identify a monetary policy shocks to interest rates
at the daily frequency by using the fact that policy actions that are un-
known to the public should effect the funds rates contemporaneously and
only subsequently other rates. Unfortunately, we were unable to identify
a unique monetary policy shock. This is disconcerting because the effect of
open market operations should be reflected initially in the federal funds mar-
ket. Nevertheless, this result is consistent with other attempts at identifying
monetary policy shocks using daily data (e.g., Thornton, 2001, 2003).
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