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Abstract

In this paper we present a general model of organizational problem-
solving in which organizations engage into an activity of cognition (un-
derstanding the world in which they operate) and an activity of action
(implementing those policies which cognition indicates as targets which
better fit the world’s characteristics). Both cognition and action are
adaptively determined as the organization faces limitations in the cog-
nitive capabilities of its members and in its control functions. Interde-
pendencies among relevant dimensions of the environment and among
basic operational tasks are only partly understood. The model allows
us to study various combinations of decompositions of cognition and ac-
tion and various stylized reward systems. In particular, we can address
issues of centralization vs. decentralization of cognition, production
and rewards schemes and the possible complementarities among these
choices.
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1 Introduction

One of the most fundamental facts about organizations is their hierarchical
nature (Michaels (2000), Simon (1981)). Hierarchy is not only an issue for
those interested in issues of power and authority structures. Hierarchy is also a
central factor if we are to understand organizations as problem-solving entities
(Simon 1981) or complex adaptive systems (Lane 1993). As a result, there is an
important gap in the evolutionary theory of the firm as originally articulated
by Nelson and Winter (1982). While the routine is a powerful unit of analysis
with which to explore questions of firm capabilities and differential selection
among firms, the puzzle remains as to how organizational routines aggregate
and if there is any hierarchical structure to this aggregation. In an important
follow-on work, Cohen et al. (1996) pose the idea of a hierarchy of routines.

We suggest that at the apex of this hierarchy of knowledge and capabilities,
lie cognitive representations of the environment. What elements in the problem
space seem to be interrelated? In what respects is the problem-space decom-
posable? Given a representation, there is the question of what constitutes a
more or less effective strategy. If a firm views the world as being composed of
a variety of market positions, as defined by its representation, which of these
does it view as being more or less favorable?

Strategy, as an articulation of desired position, is potentially quite distinct
from realized behavior. Often, in the business strategy literature, this gap is re-
ferred to as the strategy implementation problem (Hrebiniak and Joyce 1984).
Within this perspective, such a gap is viewed pejoratively. The organization is
viewed as knowing an appropriate course of action but for a variety of incentive
and coordination reasons is not realizing that set of policies. Alternatively, the
literature on emergent strategy (Mintzberg 1973), (Burgelman 1994) suggests
that the divergence between expressed strategy and actual behavior may be
a favorable circumstance. The search and discovery that results from such
discrepancies may yield the identification of a superior set of actions than that
which would be suggested by the conscious choice of strategy.

However, the exploration of the space of possible actions does not, nor
should it, be free of constraints or guidance. The space of possible actions is
typically vast and large subsets of this space may have disastrous consequences
for the firm. Guidance as to what constitutes more or less desired lower-level
action may either come from the firm’s strategy, based on the conformance
between the lower-level action and this strategy, or, alternatively, based on
feedback from the environment. The challenge with respect to the latter form
of guidance is that the mapping from any given set of lower-level actions to
organizational-wide consequences, such as firm’s profit or loss or change in
market share is quite problematic. Furthermore, such a mapping typically
reflects the firm’s beliefs about the appropriate decomposition of the problem
space in the form of organizational substructures such as product divisions, or
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profit and cost centers.
We provide an analytical structure that allows us to engage, in at least a

stylized manner, this full range of processes. First, we must characterize the
problem environment that the firm faces. How binding are the constraints of
bounded rationality is a joint consequence of the limits of human cognition
(Simon 1955) and the demands of the task environment. In particular, task
environments may be more or less complex. A critical facet of complexity is
the degree to which a task can be partitioned (Page (1996); Marengo (2000);
Marengo et al. (2000)). Tasks that can be partitioned into separable sub-
problems can be solved via parallel, local problem solving. In contrast, task
that cannot be partitioned in this manner, require global, integrated solution
efforts, both reducing the speed of solution due to the reduction of parallelism
and increasing the span of the required search process.

Given some true task environment, there is the question of how the orga-
nization represents this environment. For instance, the true task environment
may be nearly decomposable, but the organization may treat it as being rel-
atively non-decomposable. Alternatively, the organization may view the task
as being separable into relatively fine-grained chunks, yet the true problem
environment is non-decomposable.

The representation structure specifies what elements in the task environ-
ment the organization perceives as related or distinct from others. For a given
representation, there remains the question of what strategies or policies to
specify. This specification of strategy provides a target for lower-level actions.
With respect to the organizations internal reward system, though not neces-
sarily the external world, actions that correspond to the espoused strategy
should be more highly rewarded than others. Thus, the firm’s strategy, and
its associated implications for the firm’s incentive structure, becomes an arti-
ficial, or designed, landscape that actors within the organization climb so as
to obtain a higher payoff (Levinthal and Warglien 1999). Actors experiment
with alternative behaviors so as to enhance their performance on this artificial
landscape. This search itself is constrained by a division of labor within the
organization. A subunit can only experiment within the space of behaviors
that are controlled by the subunit.

One might naturally assume that the desired division of labor corresponds
to the firm’s cognitive representation of the task environment. However, such
a presumption is not merited. A division of labor that is at odds with the rep-
resentation may usefully compensate for an incorrect representation. Even if
the representation is correct, a finer-grained division of labor may enhance the
rate of organizational problem-solving. Indeed, it is to explore the interactions
among the cognitive representation, the search for appropriate strategies, and
the search for alternative behaviors that prompts our modelling effort.

The following section develops the analytical structure that forms the basis
for our modelling. The modelling faces the standard conflicting imperatives
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of parsimony and completeness. In addition, we wish to provide a structure
that is cumulative and connects with prior related efforts. We build on the
conceptual foundations of Simon (1981) and subsequent formalization efforts,
in particular Page (1996) and Marengo (2000), among others. In the subse-
quent analysis section, we characterize the basic conceptual insights that are
derivable from the model. The effort is not to explore the full combinatoric
of parameter settings, but identify the qualitatively distinct behaviors that
emerge under distinct and identifiable model conditions. Finally, we conclude
with some more general speculations as to the meaning of the current findings
and the possible avenues of future research.

2 Model structure

Our model is made up of two elements: the problem space, which is exoge-
nously given and characterized by a given degree of difficulty (expressed in
terms of sub-problem decomposability) and the problem solving organiza-
tion which searches in the problem space for superior solutions and tries to
implement them. We assume that the organization is boundedly rational and
therefore carries out its activities through a process of adaptive trial-and-error;
at the same time, we also assume that this adaptive search is not purely random
but is based on a (albeit possibly wrong) representation of the problem-space.

2.1 Problem Space

The problem-space is an extension and generalization of Kauffman’s NK model
of fitness landscapes (Kauffman 1993). A fitness landscape is simply a mapping
from a vector characterizing an entity’s form to a payoff value. The original
structure developed by Kauffman postulated a random interaction structure
where a given element interacted with K randomly specified other elements. In
the spirit of Simon’s work on nearly decomposable systems and building on the
modelling approaches of Marengo (2000), Marengo et al. (2000) and Ethiraj
and Levinthal (2002), we characterize problem environments as potentially
consisting of more structured patterns of interaction.

More formally, the problem space is defined by N interdependent features
which, for simplicity and without loss of generality, can assume only two states,
labelled 0 and 1. The set of features comprising the problem space consists
of ℵ = {x1, x2, . . . , xN}, with xi ∈ {0, 1} . A particular configuration, that
is a possible solution to the problem, is a string xi = xi

1x
i
2 . . . xi

N . The set of
configurations is characterized as: X = {x1, x2, . . . , x2N}. The value, or fitness
function, consists of a mapping from the set of configurations to the positive
real numbers: V : X → <+. A problem is therefore defined by the couple
(X, V ).
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As the size of the set of configurations is exponential in the number of
components, whenever the latter is large enough, the state space of problem
becomes much too vast to be extensively searched by agents with bounded
computational capabilities. One way of reducing its size it to decompose1 it
into sub-spaces. Let = = {1, 2, . . . , N} be the set of indexes, and let a block
di ⊆ = be a non-empty subset of this set, and let | di | be the size of block
di, i.e. its cardinality.

We define a decomposition scheme (or simply decomposition) of the
space ℵ as a set of blocks:

D = {d1, d2, . . . , dk} such that
k⋃

i=1

di = =

Note that a decomposition does not have necessarily to be a partition; that
is, there may be some overlap among the particular decompositions di.

Decompositions structure the nature of the organization’s search process.
Search for alternative basis of action does not take place on a holistic, system-
wide basis but tends to be local and to approach different facets of the problem
in a sequential manner (Cyert and March 1956). In this spirit, a new config-
uration is generated and tested by picking a block dj ∈ D at random and
some (at least one and up to all) components in this block (and only in this
block) are mutated, obtaining a new configuration xh which may differ from
the original configuration xi only in those components belonging to block di. If
V (xh) ≥ V (xi), then xh is retained and becomes the new current configuration;
otherwise, xh is discarded and xi continues to be the current configuration.

We say that a decomposition scheme D∗ is an optimal decomposition of the
problem if multiple iterations of this search procedure are always able (after
repeated random mutations) to locate the globally optimal configuration(s),
starting from any initial configurations. That is, the scheme is such that there
is no lock-in into suboptimal configurations. In general, there are many op-
timal decomposition2. For instance, if D∗ is an optimal decompositions, all
decompositions which can be obtained by the union of some of its blocks will
also be optimal decomposition. However, among the set of decompositions
satisfying this criterion, we are particularly interested in the finest optimal de-
composition(s), i.e. the one(s) whose blocks have minimal cardinality. Blocks
in the finest optimal decompositions represent the smallest sub-problems into
which the overall problem can be decomposed and still be optimally solved.

We can classify problems in terms of their finest optimal decomposition.
In particular, the following types will be widely referred to in our subsequent

1A decomposition can be considered as a special case of a search heuristic. Search heuris-
tics are in fact ways of reducing the number of configurations to be considered in a search
process.

2See Marengo (2000) for a more formal and detailed account of the properties of optimal
and sub-optimal decompositions and for an algorithmic procedure which computes them.
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analysis:

1. Non-decomposable problem, for which the finest optimal decomposition
is the degenerate one: D∗ = {1, 2, . . . , N}

2. Nearly-decomposable problems (Simon 1981) whose finest optimal de-
composition is made of non-disjoint (partially overlapping) blocks, for
instance: D∗ = {1, 2, 3, 4}, {3, 4, 5, 6}, {5, 6, 7, 8}}

3. Decomposable problems, whose optimal decomposition is made only of
disjoint blocks. Furthermore, this decomposition of disjoint blocks can
be:

• coarse, if blocks are not all singletons

• fine, if all blocks are singletons

Only in this last case is the problem ”simple” and optimally solvable
through N separate local search processes.

2.2 Organizational Problem-Solving

To this point, we have characterized the problem environment, we now turn
our attention to the characterization of the process of organizational search.
Organizational search is viewed as being a mix of off-line, cognitive processes
and on-line, experiential search (Gavetti and Levinthal 2000). In this spirit,
we distinguish two activities within the organization: cognition and action.

Cognition consists of two facets. One is a belief about the appropriate
decomposition of the problem-space, which we denote by ∆C :

∆C = {δ1, δ2, . . . , δh} such that
h⋃

i=1

δi = =

In general, we assume that the organization does not know the correct
structure of interdependencies of the problem space (that is ∆C 6= D∗).

The conjectural decomposition of the problem space is a sort of template
that forms the basis for generating new tentative configurations. These tenta-
tive configurations comprise the second facet of the belief structure over the
relative value of different sets of behaviors. More precisely, the organization
specifies a configuration, i.e. binary string of length N that specifies a target
solution.

The two elements of cognition interact in the following manner. A block
δi is selected at random. Some, at least one and up to all, randomly selected
features belonging to δi are mutated. Thus, how the target strategy varies over
time is constrained by the structure of the decomposition. This re-specification

6



of the target strategy occurs every tC periods. The initial cognition string is
randomly generated.

The actual behavior of the organization need not correspond to this target
policy string – what we at times have referred to as its strategy. Action, as well
as the target, is comprised of a binary string of length3 N . The organization
adapts its behavior towards the target policy string. However, this adaptive
process is constrained by the decomposition of action, or more traditionally
expressed, the division of labor within the organization. Responsibility for
action is decomposed in the following manner:

ΘC = {θ1, θ2, . . . , θg} such that
g⋃

i=1

θi = =

This decomposition describes the division of labor within the organization
(each block can be thought of as a department or production team). The
decomposition defines the units whereby operations are coordinated in order
to achieve the target set by the cognitive schema.

We assume that the cognition string sets a target sub-string for each ac-
tion block θi as the most preferred pattern of action for such a block. All
other possible sub-strings for that block will be randomly ranked 4. So, for
instance, assume that 0110100 is the current target string and that the action
decomposition is: ΘA = {{1, 2, 3}, {4, 5}, {6, 7}}. Consider now block {1, 2, 3}:
its target is to produce string 011 and this will be the most preferred string,
whereas all the other 23 − 1 strings will be randomly ranked.

Search in the space of actions proceeds according to the following mecha-
nism:

• a block θi is selected at random

• some (at least one and up to all) randomly selected bits belonging to θi

are mutated

• if the new sub-string has higher ranking it is retained, otherwise it is
discarded and the initial one is retained

3It would be interesting to examine a structure in which the target is of lower-
dimensionality than the actual behavior. This reduced dimensionality of the target would
pose additional complexities in the mapping from behavior and progress towards the target
state.

4This structure results in a difficult search space over the set of possible actions as
movement towards the target need not be rewarded. At the other extreme, one might
specify a reward that is decreasing in the Hamming distance between the actual behavior
and the reward. Such a reward structure would make the problem of searching for behavior
that achieves the target trivial. Any intermediate structure of reward essentially requires
developing fuller cognitive theory on the part of the higher-order actors specifying what
constitutes progress towards the target. We assume that the ability to engage in such
theorizing is limited and, for simplicity, postulate a random reward for policies that differ
from the target.
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This sequence is carried out each period5.
The search for an appropriate action sequence and a desired target strategy

interacts in the following manner. Given the cognitive decomposition, a target
strategy is specified, xi

C . This strategy is held fixed for tC periods. During this
interval, the organization searches the space of possible action so as to match
the target strategy. Let us call xi

A the action string that is the outcome of
such adaptation and let V (xi

A) be its value. Now, a new target configuration
xh

C is generated and left unchanged for the following tC iterations, after which
a new action string xi

A of value V (xh
A) will emerge. If V (xh

A) ≥ V (xi
A) , then

xh
C will be kept as the current configuration, otherwise it will be discarded and

xi
C will become the new configuration.

A key element of this structure is that the target policy does not receive
any direct feed-back from the environment, but only through its, possibly in-
complete, implementation through action. As a result, the value attributed to
a target policy string may differ from its ”true” value. Such discrepancies are
more likely when the division of labor at the action level is coarser; a coarser
division of labor accentuates the problem of matching the target string with
actual behavior. However, as we see in the subsequent analysis, the discrep-
ancy between strategy and action that results may compensate for incorrect
cognitive decompositions and help the organization avoid low-level equilibria
that may be associated with incorrect cognitions. At the same time, coarser
decompositions of labor slow the speed of adapting behavior to the target and
in the case of more correct cognitive representations or finer-grained actual
problem environments may inhibit overall organizational adaptation.

3 Results

3.1 Decomposable Problem Environments

To develop some initial intuition for this structure, we consider the setting
in which the true problem environment is perfectly decomposable. In partic-
ular, we consider an environment with N = 15 dimensions and specify the
environment to be made of three separate blocks of five dimensions each:

D∗ = {{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}, {11, 12, 13, 14, 15}}
. In characterizing the results, we present in our graphs average fitness values
over 100 simulation with different random generator seeds, and we normalize
such values as deviations from the global optimum (set equal to 1). We ex-
plore the impact of different decompositions of cognition ”C” and labor ”A”

5We assume that the pace of adaptation for the action is in general faster than that for
cognition, which undergoes mutations every tC > 1 iterations. In addition to its plausibility,
this difference is also necessary in order to let action adjust, though possibly imperfectly, to
the target before changing the target itself.
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for a given environment. Figure 1 reports the results under these different
structures, the number associated with the letter C and A indicate how many
blocks comprise the decomposition. Thus, C3 implies that the cognitive de-
composition consists of 3 blocks of 5 elements each such that6:

∆C = {{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}, {11, 12, 13, 14, 15}}

Along the same lines, the label A15 indicates that the decomposition of labor
consists of 15 blocks of one element each, the finest decomposition possible,
that is:

ΘA = {{1}, {2}, {3}, ., {15}}
i.e. each dimension is treated as independent from the others.

INSERT FIGURE 1 ABOUT HERE

Figure 1 shows that the global optimum is reached by an organization whose
cognition is based upon the right decomposition and has the finest possible
division of labor at the action level. This is easily explained because when the
cognition has the right decomposition and is therefore capable of climbing to
the global optimum, then it is more efficient to maximize the division of labor at
the action level because in this way targets set by cognition are more promptly
and correctly achieved. If instead the cognition is still based upon the correct
decomposition but action upon a coarser decomposition, then adaptation of
action to cognition is slower. This implies that since cognition’s fitness is not
observable and learning about the appropriateness of the cognition is driven by
fitness of the actions, if the actions are imperfectly adapted to cognition then
the value of good cognitions may not be recognized. This observation explains
why C3 A3 results in a poorer performance than C3 A15, even though the
former provides the ”correct” decomposition for action as well as for cognition7.

Obviously, there is no reason to presume that the organization can identify
the correct cognitive decomposition. An interesting question then becomes
whether there is an asymmetry between over and under specified decomposi-
tions and how errors in cognitive decomposition affect the value of alternative
decompositions of action. There are a couple of forces at work underlying the

6For simplicity, we assume that the sequencing of elements is correct, that is in numerical
order, but that the bracketing of these sequences may be misspecified. This allows us to
represent the degree of misspecification purely as a function of the fineness or coarseness of
the decomposition, without having to consider the large possible combinations of possible
sequencing of the individual policy choices.

7This latter problem of coarser action decomposition can be reduced by allowing longer
time for action to adapt to cognition, i.e. by reducing the frequency at which cognition
is updated. This, however, of course would cause a decrease in the speed of the overall
adaptation of the organization.
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answer to these questions. First, narrow decompositions of the task structure
lead to relatively rapid adaptation of the action string to the firm’s espoused
strategy. When the cognitive decomposition is broken up more finely than the
true problem structure, there is a danger of the organization converging on
a low-level equilibrium in the space of possible cognitions. Under such a set-
ting, deviations from the target strategy with respect to a single sub-set of the
decomposition may yield inferior results even though a different target may
provide the opportunity for higher performance. A decomposition of action
that is finer than the decomposition of the cognitive representation will not
create an opportunity for broader learning about the set of possible cognitions.
A coarser grained task structure effectively creates a link among elements that
lie in distinct sub-sets of the cognitive decomposition. These links facilitate
broader learning about the space of possible cognitions. Even though the cog-
nitive substring may only consist of three elements, if the task substructures
comprise, say 5 elements, than the payoff to matching one subset of the task
structure to the cognition potentially reflects the value of 5 elements of the
cognitive representation.

There is a second way in which a more coarse-grained task structure may
compensate for a overly narrow cognitive representation. The finer than cor-
rect decomposition at the cognitive level tend to be trapped into local optima.
If action quickly adapts to the target set by cognition, then the entire or-
ganization will quickly lock into such local optima due to incorrect cognitive
representations. On the contrary, if adaptation at the action level is slower
and less precise, then these traps can be avoided. Cognition does not directly
receive a payoff signal, but only through the mediation of action implementa-
tion;, if this implementation is imperfect (i.e. actions differ from targets), then
it may happen that an inferior cognition receives a higher payoff and therefore
an (local) optimum may not be perceived as such. Of course, there are dimin-
ishing returns to introducing such gaps between action and cognition. If we
were to maintain the false cognition represented by C5, but shift the action
partition from A5 to A1, learning about alternative strategies is impeded and
the rate of adaptation, correspondingly slowed.

3.2 Nearly Decomposable Problem Environments

We now consider, what Simon (1981) suggests is perhaps the more common
problem environment, one that is nearly, but not fully decomposable. We
consider a nearly decomposable environment of size n=16 made of partially
overlapping blocks. The finest optimal decomposition is the following:

D∗ = {{1, 2, 3, 4, 5}, {4, 5, 6, 7, 8}, {9, 10, 11, 12, 13}, {12, 13, 14, 15, 16}}
where bits 4,5,12,13 are in common between two blocks. The peculiarity of this
kind of environment is that it is apparently decomposable only into two blocks
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of size eight each; however, the structure may actually be more efficiently
searched by a finer decomposition which exploits the presence of interface bits
(bits 4, 5 and 12,13 respectively) which are common to two otherwise separable
blocks. In fact, the two decompositions:

∆C = {{1, 2, 3, 4, 5}, {6, 7, 8}, {9, 10, 11, 12, 13}, {14, 15, 16}}

∆C = {{1, 2, 3}, {4, 5, 6, 7, 8}, {9, 10, 11}, {12, 13, 14, 15, 16}}
can optimally search the landscape. Bits 4,5 and 12,13 have a key role in the
search process. Once they are properly adjusted within a block, they allow
a reduction of difficulty in the other blocks to which they belong. Moreover,
these interface bits which simultaneously belong to more than one block should
not be subject to parallel search. Adaptation within block, say {1, 2, 3, 4, 5},
might be disrupted by changes of bits 4 and 5 determined by the parallel
search process within block {4, 5, 6, 7, 8}. As a result, interface bits should be
assigned only to one block in the correct decomposition8.

We refer to such cognitive decompositions as being ”modular”, because
they exploit the distinction between the interface modules and the otherwise
separable modules, which characterizes nearly decomposable systems (Baldwin
and Clark 2000) and denote them by Cmod . Figure 2 shows that this modular
decomposition of the cognition (Cmod) combined with the finest decomposi-
tion of action is the most efficient in solving the problem, whereas search based
on a cognitive decomposition of two blocks of size eight also reaches the global
optimum. but more slowly (because of its larger size).

The Cmod decomposition is finer-grained than the actual problem structure
decomposition. In contrast, decomposing the cognition into two components
provides a coarser than actual decomposition. However, both decompositions
yield a superior adaptive behavior than a decomposition that shares the same
number of partitions as the actual problem structure. In particular, in Figure
2 we also consider the decomposition:

C4 = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}}

. The course grained decomposition of C2 internalizes the interaction among
elements 4 and 5 with both subsets 1, 2, and 3, as well as the subset 6, 7, and
8. In contrast, the structure Cmod, partials out the linking policies 3 and 4
and 10 and 11. This allows for the identification of useful cognitions regarding
substrings, such as 1, 2, and 3, as well as 6, 7, and 8 conditional on given
values for policies 3 and 4. In this manner, the modular structure allows for

8Another possible way of managing the interface bits is by hierarchical control, which
in turn can take the form of veto power (Dosi et al. (forthcoming); Rivkin and Siggelkow
(2002)) by which mutations within block {4, 5, 6, 7, 8} are stopped if they decrease the fitness
value for block {1, 2, 3, 4, 5}, or by direct superordinate control of the interface bits, which
cannot be freely mutated by individual blocks.
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more effective adaptation than the C4 structure where the implications of a
cognition for 1, 2, 3, 4 will be contingent upon the cognition for policy 5 which
lies in a distinct partition of the decomposition.

INSERT FIGURE 2 ABOUT HERE

4 Conclusions

One of the most fundamental facts about organizations is that they provide
some form of hierarchy. As Simon (1981) has suggested, hierarchy is a com-
mon feature of adaptive systems. Hierarchy is present not simply in the form
of authority structures but, as Cohen et al. (1996) argue, is present in the
nested structure of routine behavior. At the apex of this set of routinized
behavior lies broad heuristics. In our modelling efforts here, we start with the
fundamental heuristic of how actors conceptualize their environment. How
do they dimensionalize their problem spaces? Are individual components of
choice considered a distinct dimension or are these components grouped into
more aggregate clusters. Given some structure to the decomposition of the
problem space, some articulation of intended or desired action must be spec-
ified. Beliefs about the desirability of a particular course of action, we term
a cognition or a strategy. Finally, how are lower level actors motivated and
guided to realize such articulate strategies?

In a very stylized manner, we provide a particular representation of this
hierarchy of representation, cognition, and action. This structure allows us to
begin to explore the interactions among these levels. We find that distortions
in one level, of excessive or under decomposition, may be compensated for
by opposite distortions at lower levels. In addition, narrow decompositions of
the task structure yield rapid adaptation of action to cognitions. However, in
settings in which the representation is ill-specified, such rapid adaptation is
likely to lead to a premature lock-in to inferior solutions.

Organizations think and they act. As social scientist we have tended to
fallen prey to Descartes mind-body distinction. Neo-classical economics tend
to focus exclusively on the mind — explicit choice processes. Behavioral the-
ories, particularly formal models of learning, largely concern themselves with
problems of action, and the resulting stimulus-response learning. Real orga-
nizations do both. They develop crude belief structures about the world and
make choices based on those structures and try to guide action based on those
choices. Errors are present at all levels in this process, but so is intentionality.
Furthermore, the sequence is not merely linear. Action can influence thinking.
As we act in the world, we may be motivated to change our cognitions and
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possibly even the higher order change of shifts in our representations. While
clearly preliminary, the current effort attempts to counter this mind-body di-
vide that tends to permeate our modelling of organizations and to provide a
platform for more integrative analysis of organizational behavior.
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