

OPEN SOURCE SOFTWARE: FROM OPEN SCIENCE
TO NEW MARKETING MODELS

AN ENQUIRY INTO THE ECONOMICS AND MANAGEMENT
OF OPEN SOURCE SOFTWARE

Paola Giuri, Scuola Superiore Sant’Anna, Pisa

Gaia Rocchetti, Scuola Superiore Sant’Anna, Pisa

Salvatore Torrisi, Università di Camerino and Scuola Superiore Sant’Anna, Pisa

Second draft: July 2002

Abstract
This research report analyses several issues on the economics and management of Open Source Software

(OSS). It offers an historical description of the emergence of OSS and of heterogeneous types of actors involved
in the OSS phenomenon. From a theoretical perspective the paper discusses some crucial topics: the
organization and performance of the development process in open source and traditional proprietary models, the
incentives to innovation in different regimes of intellectual property protection, the ingredients of business
models based on open source software. From an empirical perspective it presents some data on the diffusion of
open source software in some segments of the software market and develops a detailed comparison of open
source and proprietary licensing models, also drawing some implications on the use of different types of open
source licences in the commercial market.

Keywords: Open Source Software, Intellectual Property, Licensing, Business Model.
JEL Classification: O31, O34, L86.

Acknowledgements. We thank Giuseppe Attardi, University of Pisa, Alfonso Fuggetta, Politecnico of Milano and
Guido Scorza, CIRFID, University of Bologna, for sharing with us their knowledge of technical and legal implications of
open source software. We also benefited from information and discussion with Icube S.r.l., Ksolutions S.p.A., Microsoft
Italia, and MLX S.r.l. (MadeinLinux) during the preparation of this report. The usual disclaimers apply.

1

 TABLE OF CONTENTS

1. EXECUTIVE SUMMARY ...5

2. THE EMERGENCE OF OPEN SOURCE SOFTWARE: HISTORY AND THE PROCESS OF DEVELOPMENT..
...15

2.1 What is Open Source Software ..15

2.2 History of OSS: source code availability vs. trade secret practices ...16

2.3 The Organisation of OSS Development ..21

3. DIFFUSION OF OPEN SOURCE SOFTWARE PRODUCTS: AN INTERNATIONAL OVERVIEW..................30

3.1 Introduction ..30

3.2 Open source software in the community of software developers ..31

3.3 Open Source Software Products: Web Server Software and Web Platforms33

3.4 Operating environments – revenues from open source and proprietary platforms.............44
3.4.1. The market for Linux in Italy .. 46

3.5 The market for e-mail servers...49

3.6 The demand for open source software ...49
3.6.1. The academic market .. 49

4. LICENSE MODELS: A COMPARISON BETWEEN PROPRIETARY AND OPEN SOFTWARE........................54

4.1 Introduction: Intellectual Property Rights and software ..54

4.2 Copyright and licensing open source and proprietary software ..57

4.3 An overview of the principal OSS Licence models...65
4.3.1. The GPL ... 66
4.3.2. The LGPL... 67
4.3.3. MPL/NPL: The Mozilla Public Licence and Netscape Public Licence 67
4.3.4. The BSD licences... 67

4.4 Other OSS licenses...71
4.4.1. MPL like licenses ... 71
4.4.2. The BSD like licenses.. 72

5. THE ECONOMICS AND BUSINESS OF OPEN SOURCE SOFTWARE ...75

5.1 Incentives to engage in open software: ‘gift culture’ or ‘exchange economy’?77

5.2 Open software and open science ...80

5.3 The competition between open source and proprietary software ...83

5.4 Business models..86
5.4.1. New business models centred on OSS .. 89
5.4.2. Linux Distributors ...91
5.4.3. The case of Red Hat.. 94

5.5 Conclusions and policy implications ...97

2

APPENDIX A THE OSI APPROVED LICENSES ..100

APPENDIX B FREE SOFTWARE FOUNDATION APPROVED LICENSES ...101

APPENDIX C OSS LICENCE MODELS...103

APPENDIX D DIFFUSION OF DIFFERENT LICENSE MODELS..111

APPENDIX E EXAMPLES OF OSS VENDORS...112

REFERENCES ..120

3

LIST OF FIGURES

Figure 3.1. Development status of Open source projects .. 32

Figure 3.2 Web Server Software Market Shares Across All Domains (August 1995-March 2002) 35

Figure 3.3 Web Server Market Shares Across all Domains (May 1998 - February 2002)... 37

Figure 3.4 Web Server Market Shares in Europe and United States... 37

Figure 3.5 The largest EU countries.. 38

Figure 3.6 Other countries (May 1998 - Feb 2002)... 39

Figure 3.7 Web server operating systems, Italy – Feb. 2002 ... 42

Figure 3.8. Share of operating systems in SSL sites, Italy. ... 43

Figure 3.9 Linux Vendors’ Revenues, Breakdown by Activity 1999-2001... 48

Figure 3.10 Primary Operating Systems Used in Teaching and Research, 2001... 51

Figure 3.11 Primary Language Used in Teaching and Research, 2001 ... 51

Figure 3.12. Importance of access to source code .. 53

Figure 5.1. Actors and Activities .. 75

4

LIST OF TABLES

Table 3.1. Distribution of open source projects by topic .. 32

Table 3.2. Distribution of open source projects by type of licence... 33

Table 3.3 April 2002 Web Server Software Market Shares.. 36

Table 3.4 Web Server software Market shares, March 2002 .. 37

Table 3.5 Worldwide Server Operating Environments - New Software Licence Shipments by Platform, 1999-

2000... 40

Table 3.6 Worldwide Unix Server Operating Environments New Software License Shipments by Vendor....... 40

Table 3.7 Operating Systems Used by Computers Running Public Internet Web Sites, 2001................................. 41

Table 3.8 Operating system adopted by the Top 20 hosting companies, Italy, February 2002................................ 43

Table 3.9 Worldwide Server Operating Environment Revenues by Platform, 1999-2000 ($M) 44

Table 3.10. Revenue per unit of shipment, 1999-2000 ($M).. 45

Table 3.11 Worldwide Integrated Collaborative Environments New Software Revenues by Operating

Environments, 2000-2006 ($M) ... 45

Table 3.12 Worldwide Web Server and Web Acceleration Software Revenues by Region and Operating

Environment 2000- 2006 ($M)... 46

Table 3.13 Linux Market in Italy, 1999-2003 (Value added, Millions of Euro)... 47

Table 3.14 Linux distributors’ revenues– Millions of Euros... 47

Table 3.15 Email Server Market Shares ... 49

Table 3.16 Operating Systems in the academic market, 1999... 50

Table 3.17 C/C++ tools Used in Teaching and Research - Europe 2001 (% of respondents using) 52

Table 3.18 Java tools Used in Teaching and Research - Europe 2001 (% of respondents using) 52

Table 4.1 A comparison of different software distribution models... 64

Table 4.2 OSS licences.. 70

Table 4.3 OSI Approved Licenses grouped by similar characteristics.. 71

Table 5.1 Worldwide Software Support Service Revenue by Product Type, Region, Operating Environment,

and Service Activity, 2000-2006 ($M).. 88

Table 5.2 OSI List of vendors ... 89

Table 5.3 Red Hat Sales by geographical area, 2000-2001.. 95

Table 5.4 Red Hat Sales by product and services, 2000-2001.. 96

Table 5.5 Red Hat products... 96

Table 1 Caldera software and services ..113

Table 2 SuSe software and services ...113

Table 3 Turbolinux software and services..114

5

1. Executive summary

This research report aims to analyse several crucial issues on the economics and management of

open source software from a theoretical and an empirical perspective. The Report offers an historical

description of the emergence of the open source software, and provides a comprehensive definition of

the OSS phenomenon, which includes several characteristics (the development process, the licensing

models, the different actors approaching OSS):

• OSS is a software whose source code is distributed with the object code;

• OSS can be distributed free of charge under terms of licences that guarantee the users the right to

use, copy, modify and distribute the source code. But it is not necessarily gratis, because it is possible

to sell the executable code and also to charge a fee for distributing the source code and for related

services and support;

• the OSS development process is characterised by the possibility for anyone (developer, user) to

download the source code, make modifications (further development of lines of code, debugging,

etc.) and send them to the project leader without receiving any monetary compensation. The

certification and distribution of certified modifications (add-ons etc.) is usually under the

responsibility of a limited number of core developers and project leaders;

• several companies have entered the market since the late 1990s to assemble different OSS modules,

to develop OSS interfaces that make the programs more user-friendly, to develop complementary

products like drivers and other applications, to provide technical support and services (e.g., Caldera,

RedHat, and Suse). On some occasions they have built their business models on popular OSS like

Linux or Apache, while in other cases the business model was centred on new OSS invented by the

company founders (e.g. Sendmail)

• Established proprietary software companies are changing their strategy both by revealing the source

code of their products and by supporting OSS projects.

History

The historical evolution of Open source and proprietary software can be summarised with the

following facts:

• During the 1960s and 1970s, it was quite common for software programmers working in academic

institutions such as the MIT and Berkeley, or in corporate R&D laboratories like the Xerox Palo

Research Center, to freely exchange their source code.

• At the same time, it was common practice for companies such as IBM to supply the code

embedded in their hardware, without distributing it under specific license arrangements.

6

• Since the unbundling of software sales from hardware in 1969, a new generation of both

proprietary, non freely available software was developed, with a significant amount of this software

being developed by the users themselves.

• Until very recently, in-house development of software and embedded software (i.e., programs

printed in various electronic devices) have represented a significant share of the total production of

software.

• In the 1970s Unix operating system was invented at the AT&T’s Bell Labs. Unix was freely

available to the community of software developers. In the 1980s Sun Microsystems entered the

market for Unix-based workstations and AT&T started to enforce its intellectual property rights

over Unix.

• The FSF was founded in 1983 by Richard Stallman from the MIT to promote the GNU/General

Public Licensing (GPL) scheme whose aims were to protect free software from being appropriated

by commercial companies, guaranteeing the free distribution of source code, and the possibility to

make copies, modifications and to distribute the software.

• In August 1991 Linus Torvalds was working on a free version of Unix kernel that could run on a

PC and he posted an e-mail to a newsgroup asking for help in bug fixing. The Linux version

number 0.01 was released in few weeks.

• In 1998 the Open Source Initiative (OSI) was created by a group of free software advocates. The

OSI proposed the Open Source Definition and an OSI Certification Mark applicable to OSS

licenses and introduced a new set of licenses that eases the commercial distribution of free source

software.

• Today, new firms have entered the market to assemble different OSS modules, to develop OSS

interfaces that make the programs more user-friendly, to develop complementary products like

drivers and other applications, to provide technical support and services (ex. Caldera, RedHat, and

Suse).

• Large incumbent proprietary software developers are revealing the source code for some of their

products (e.g., Sun, Netscape-Mozilla and Nokia). Other large companies are supporting OSS by

developing platforms running on Linux or other OSS (e.g., IBM, Apple).

Organisation of the process of development

Starting from the Raymond’s work “The Cathedral and the Bazaar”, which describes the

development process of Linux compared to the traditional software engineering process, several people

7

within the OSS community have been claiming that OSS is more successful than traditional proprietary

software in terms of efficiency of the process and quality of the product.

The reasons are found in the characteristics of the development process.

In the OSS model, open source developers are self-selected, OSS developers are free to express their

creativity and are highly motivated by fun, while developers working in traditional groups perform their

task mainly because of economic incentives; the intense activity of debugging makes software more

reliable and its pace of evolution more rapid. The main strength of OSS is that it relies on a potentially

large community of developers that constantly inspect code and fix bugs even though in fact the

number of core contributors is limited.

The traditional model, is characterised by distinct phases that must be followed sequentially: a)

analysis of users’ requirements which describes the target customers’ needs; b) a system level design

that describes all modules composing a software and the way in which they interact within a common

architecture; c) a detailed design that defines the characteristics of each module; d) codification or

compilation of the code and integration of each module in a whole package (implementation task); e)

testing that verifies if the software contains defects and bugs, followed by the process of correcting

errors and re-design the whole system in order to accomplish with the change required by bugs fixing.

However it is important to note that the strength and weaknesses of the two models have not been

tested yet. First, incremental, evolutionary change centred on sequential innovations is a key distinctive

characteristic of software industry in general and it is still to prove whether open source software

dramatically increases this feature.

Second, the evolution of software engineering, regardless of the openness of the source code, since

the 1960s has produced variety of approaches and models of software development - from very

structured ones, such as formal methodologies and integrated project support environments, to

unstructured and flexible ones, such as rapid prototyping, incremental and evolutionary development,

spiral lifecycle, rapid application development and extreme programming. The latter allow many forms

of interactions among developers and a quite flat organisation of labour that stimulate creativity and are

rewarding for individual developers.

Third, formal and structured methodologies for software development are adopted by a minority of

large software developers (e.g., the so-called ‘software factories’ of hundreds or thousands

programmers).

Finally, even if one admits than the bazaar style is more efficient thanks to its ‘peer-review’ feature,

in theory it is possible to apply the same method to proprietary/commercial software either in house or

by including users. Moreover, rising coordination costs may constraint the growth of OSS.

8

Therefore, further analysis is needed to provide substance to the claim that the open source software

development process is more efficient than the traditional one.

Diffusion of open source software products

An analysis of several sources of data explore the diffusion of open source software compared to

proprietary software.

The large number of projects hosted in the SourceForge web sites - over 40,000 - indicates the

massive interest in open source amongst software developers. However, most of these projects are at a

preliminary development stage. In fact, only 1.67 % of the projects are in a maturity stage and 15.02 %

in a production stage. The largest share of the projects (28.16 %) are still in a planning stage. This static

picture of the development stage of current projects does not say anything about their survival rate or

about their probability of progressing in the stages of development. Moreover, even for the projects in

the maturity stage, there is no evidence of the number of projects that are introduced in the market and

that gained commercial success.

We focus the empirical analysis on the products that have reached the market and gained significant

commercial success in selected segments of the software market. A synthesis of the main findings is the

following:

In the Web Server Software market, Apache is the most adopted web server software on the public

Internet since April 1996. Apache entered the market in 1995 and rapidly gained the leadership which

was previously owned by the server software of the National Center for Supercomputing Applications

(NCSA) of the University of Illinois. Microsoft entered later with the IIS product and became the

second player in 1998. After an early entry and a rapid initial growth, Netscape has progressively loosed

market shares while Zeus entered in 1997 and slowly gained the fourth position on active sites and very

recently the third position on all sites.

Apache is the leader in Europe, Russia, Canada and India, while Microsoft gained the leadership in

the United States and in China. Across Europe, only in Italy Apache and Microsoft shows very similar

shares.

In the Server Operating System market, Windows NT/2000 has the largest share of shipments both in

1999 (38.4%) and in 2000 (40.9%). Linux, the second player with a share of 29.6%, grows faster than

Windows in terms of shipments. Other server operating environments show declining shares and

negative or constant shipment growth rates.

9

Data at the country level shows differentiated patterns. Linux is the most adopted operating system

in the United Kingdom, France, Germany, Ireland, Portugal and Russia. Instead, in Italy and Spain

Microsoft Windows is the leader. Solaris is almost always the third most used operating system, except

in Germany, where Windows is the third OS with an 8% average share in the period and shows a

decreasing pattern over time, and the United Kingdom, where Solaris and Windows compete head to

head for the second position.

The time trend is also different across countries. In some cases (i.e., France) the growth of Linux has

occurred along with a slowdown of Windows, while in others (e.g., Portugal) Linux has grown to the

detriment of Solaris or other operating systems.

The analysis of the market shares of different platforms calculated on firms’ revenues shows that in

1999 and 2000 the highest revenues have been obtained with Unix platforms, followed by Windows

and Netware. Linux and other operating systems gained much lower revenues. However, Linux, Unix

and Windows experienced positive growth rates of revenues from 1999 to 2000. Comparing these data

with the shipments data, we may observe that although Linux experienced a high share of shipments,

the revenues have been quite low.

Moreover, in 2001 Windows had the largest share of Integrated Collaborative Environments (ICE)

revenues, followed by OS/400, Unix and Linux and other open source operating environments.

Finally, in 2001 66% of revenues from Web Server Software and Web Acceleration Software

(WEBS) derived from sales of products running on Unix platform, 28.1 % on the Windows operating

environment and lower shares in the other platforms. However, the market is expected to substantially

grow from 2002 to 2006 and Windows, Linux and other open source platforms to grow faster than

Unix, by hosting more WEBS and gaining largest market shares.

In the Italian market, the opportunities of revenues from Linux are growing and are expected to

grow in the next years. The value added from the Linux software have grown at a growth rate of 44%

between 1999 and 2000, 98 % from 2000 to 2001, and is expected to keep this pace in the subsequent

years. The growth rate of services and software for dedicated environment have been much stronger

and are expected to grow faster, suggesting that the opportunities for revenues in this market are larger

for specific software development and services.

Intellectual property rights: a comparison between proprietary and open software

In the software industry the appropriability of innovation, including intellectual property rights

(IPR), is quite weak. This is in part due to the relatively young age of this industry and in part to the

characteristics of software technology.

10

Since the unbundling of software from hardware in 1969, which gave rise to the birth of an

independent software industry, the issue of IPR in software has become the object of a lively debate

between the advocates of a strong legal protection, which point out the importance of incentives to

innovation, and the advocates of a weak protection, which highlight the social benefits of high entry

rates, competition among different technological standards and diffusion of technological knowledge.

In line with the supporters of a weak legal protection there is a stream of the literature which makes the

point that in industries characterised by strong network externalities, such as operating systems, where

competition between alternative standards is structurally weak, IPR should be weak to guarantee entry and

competition among complementary technologies within the standard (e.g., application software) (Merges,

1996; Cohen and Lemley, 2001). The advocates of weak IPR claim that a strong IPR is not a necessary

condition to guarantee a rapid rate of change in this industry since many important software

innovations have been introduced before a strong IPR have emerged (see Merges, 1996, for a wider

illustration of this point). On the other hand, they claim that a strong IPR may have negative effects on

the rate of technical change since many important innovations in this industry have been introduced by

new firms rather than established companies (Prusa and Schmitz, 1991).

Within the current legal system, copyright, patents and trade secrets are complement both in the US

and in Europe in that the same software invention can be protected under these three laws. In

particular, the absence (copyright) or weak disclosure obligations (patents) make it possible to cover

under trade secrets the source code and to license the object, executable code against the payment of

license fees.

The market for software is influenced by the property rights regime, which affects the scope of

property rights (from patents to copyleft), and the contractual regime, which provides the institutional

framework within which software technology can be transferred across individuals and organisations

(e.g., by different licensing arrangements).

OSS is different from proprietary software on both grounds – the property right regime and the

contractual regime. These differences are reflected in the organisation of marketing and distribution of

software products and services.

Proprietary commercial software is distributed under licenses that usually limit the use, and deny the

possibility to copy, modify and distribute (distribution is prohibited unless the distributor pays royalties

to the copyrights holder). Furthermore, commercial proprietary software is usually protected by trade

secret. Commercial software companies can then extract rents from their R&D activity, protecting their

innovation from competitors. Although software is technically pure information, proprietary software

can be produced and distributed as a partially private good thanks to IPR.

11

In licenses that accompany open source software, the copyrights holder maintains the right to use,

modify and distribute the software but gives up the trade secret over the source code and allow users

the same rights, therefore making the software a public good.

We describe four different types of software distribution (proprietary software, public domain

software, Open Source/Free software, Shared source software) and compare them according to several

characteristics of the adopted licence models.

Some general issues emerge from the comparison of these licenses.

First, while all OSS licenses overall guarantee the source code availability, proprietary software

licences generally do not allow the access to the source code.

Second, proprietary licences do not provide the right to copy, modify and distribute the software,

and impose several rules on the use. By contrast, OSS licenses ensure that users are free to use and

copy the software without limitations.

Third, proprietary licenses seem to fit better with national laws than OSS in general. For example,

the ‘viral clause’ of the GPL can conflict with the copyright law when the author of modifications or

integration to the original covered code can demonstrate that those modifications are original

intellectual works which rely on the original GPL covered code only to a limited extent.

Proprietary licenses written for specific categories of customers and different purposes may contain

explicit rules for solving third party claims and litigations, conflicts and violations.

Finally it is important to remark that, even though OSS generally is not against commercial software,

there are significant differences between proprietary and OSS licenses. Users typically do not buy a

proprietary software, they only acquire the right-to-use against the payment of a royalty or a fee.

Therefore proprietary software is ‘owned’ by the original developer who ‘holds’ the intellectual property

protected by patents and/or copyright. The level of the right-to-use fees is a function of the perceived

value of the software and the competition in the market for that particular software.

We also compare four OSS licences models (GPL, LGPL, MPL/NPL and BSD), also according to

some properties specific to OSS licences.

The analysis suggests that OSS licences share most basic characteristics, except for a few cases, i.e.

the BSD licence does not include initial developers special rights. Moreover, the conditions under

which the distribution is allowed with the BSD are slightly different than with the GPL since the BSD

does not include any obligation to distribute the source code nor limitations on the possibility to sell

the software. In addition, the MPL includes explicit rules in order to solve third party claims and

litigations, conflicts and violations. It is also more compatible with national laws both because it does

not contain any ‘viral’ clause and because it explicitly claims that the license shall be subject to the

jurisdiction in which the software is distributed.

12

The analysis of characteristics specific to OSS licenses suggests that licensing models like the MPL

and the BSD seem to be more appropriate for business actors compared with the GPL licence, which

does not allow to merge source code under GPL with proprietary software. As mentioned before, the

‘viral clause’ create problems for individuals and business firms that aim to develop or distribute

software programs under different licence schemes. The LGPL license presents almost the same

problems as the GPL but they can be used in commercial proprietary software that uses LGPL libraries

without modifying or including them in the executable code.

By contrast, the MPL and the BSD licences do not impose any ‘contamination’ clause on OSS users

and as such are compatible with proprietary software. Compared to the MPL, the BSD license does

not impose restrictions on source code availability but, on the other hand, it has the lowest degree of

protection of openness so that the code distributed can easily be appropriated by developers or

distributors of proprietary software.

Finally, all OSS licenses models allow for distribution fees (not license fees) and therefore provide

private incentives to commercial distributors.

The economics and business of open source software

Several recent works have studied the Open Source Software phenomenon focusing on different

issues: the incentives to develop software without monetary compensation, the heterogeneity of users

preferences that induce their involvement in the innovation process, the competition between OSS and

proprietary software, the business models for making profits from open source software.

About incentives of OSS developers, the economic literature has tried to understand the motivations

of actors by focusing primarily on the behaviour of hackers who participate in associations like the FSF

and the OSI. The literature has highlighted the following main motivations: ethical and political

reasons; reputation inside the community; need to adapt software available on the Internet to their own

requirements and to solve specific problems; pure fun.

However, those motivations do not clarify completely some key questions: is open source software

comparable to open science? If so, does it matter that a scientific discover in software be produced by a

OSS institution or proprietary software one? The economic literature has highlighted some links of

OSS with open science, mainly based on the fact that like scientists, OSS developers share a virtual

context and a common language that favour the exchange of information and share incentives typical

of the scientific community.

However, some models of competition between a community of philanthropic innovators (the OS

community) and proprietary producers highlights two kinds of externalities arising from the OSS that is

characterised by gift exchange and community values shared by philanthropic innovators. First, the

13

typical positive externalities which reduce the costs of proprietary software. In line with the new growth

theory, these externalities (“manna from heaven”) are positively associated with the number of goods

(competitors doing R&D activities) in the market. Second, philanthropic innovators produce also

negative externalities due to the low (around zero) prices of OSS. The low price reduces the demand

for proprietary software and as a consequence profits of proprietary software shrink. Therefore, OSS

‘steal business’ from proprietary software. These negative externalities reduce the ex ante incentive to

innovation of proprietary software firms and have negative consequences for growth in the long run

(even if the ‘manna from heaven’ may have positive short term effects).

Another economic model of competition analyses the possibility of a new OSS standard to replace a

dominant proprietary technology and the reaction strategies of incumbents.

Open source and proprietary companies compete through different strategies and business models.

In parallel with the diffusion of several new licence models associated with the OSS a variety of new

business models have been introduced into the market. The fundamental ingredients of a business

model in the software industry overall can be summarised as follows:

• The core business of the firm - new software development, improvement of existing products,

software distribution, services;

• The organisation of the development process and the division of labour with other organisations–

scale of the OSS developers team, type of software code disclosed and distributed, contractual

agreements with suppliers and distributors;

• The sources of firm’s revenues and related issues – software product pricing strategy, services

billing strategy or and pricing of complementary products;

• The IPR strategy and the licensing model (Open source vs. proprietary).

The traditional business model is characterised by internal software development (or subcontracted

to third parties). R&D investments represent a fixed cost that is recovered usually through proprietary

licence fees. The licence provides the right to use the software, but not to copy, modify and redistribute

it. The source code usually is not disclosed with the object code and a price is charged for the

acquisition of a particular copy of the programme (license fee) or for the temporary use (renting) of the

programme. A separate price is normally charged for support services. Prices in this sector are not

driven by marginal costs. Price discrimination is often operated across different of users (for example

business or academic customers) for the same product or service, according to the price elasticity of

demand and the market power of customers relative to vendors. Finally, distribution and post-sales

services are provided directly by the software company or by third parties – either affiliated vendors,

exclusive agents or independent resellers. The value added by third parties varies with the type of

14

software distributed (its unit value, and the complexity of its installation and maintenance). In typical

shrink-wrapped products, like PC operating systems and office automation applications, most of the

value is produced by the editor (e.g., Microsoft, Symantec or Adobe).

As for OSS business models, there are various types of business models that differ mainly for the

source of revenues (software development or services and distribution) and the licensing models:

1. business models centred on purely collective developed of software by a group of hackers (e.g.,

Linux or Apache). The source code is downloaded, assembled and sold together with support

services by commercial distributors (i.e., RedHat, Caldera, Suse). The quality of the output is

related to the individual and organisational capabilities of the group of developers (organizational

features such as the number of project administrators and developers, the management style, and

features related to the vitality of the project such as the number of fixed bugs, patches, external

contributors etc.). The bulk of revenues come from services.

2. business models based on open source software initially developed by a company and disclosed to

the community of OSS developers (e.g. Zope). The quality of the software depends both on the

company initial R&D efforts and the community contributions. The revenues come mainly from

software customisation and services.

3. mixed business models mostly adopted by commercial proprietary software developers. This

category includes firms that make open the source code of products previously closed (e.g.,

Netscape-Mozilla). On many occasions, the firms that adopt this mixed approach develop both

open and proprietary software. The revenues of this category of firms mostly derive from

hardware sales or other activities such as book publishing.

The report provides a short description of some OSS business models adopted by Linux

distributors, RedHat, Caldera, Suse, Turbolinux. A deeper understanding of these and other business

models that have emerged over the last years requires an ad hoc analysis that is beyond the scope of

this research.

15

2. The emergence of Open Source Software: history and the process of development

2.1 What is Open Source Software

Before the term open source software (OSS) became popular among business practitioners and

scholars, in the software community the concept of free software was used to mean voluntary

exchange of source code among developers working in different organisations (universities, public

agencies and for profit institutions). During the 1980s free software has taken the form of an

ideological opposition to proprietary software. As we discuss in subsequent sections, open source has

recently emerged as a more pragmatic variant of free software. Despite the differences that we shall

analyse later on, some scholars tend to consider open software as a synonym of free software. As a

matter of fact, free software and open software are substantially two wings of the same movement

which aims to promote a novel model of software engineering and new models of software

distribution. Except for the following section, where we shall analyse the distinctions between free and

open source software at length, in this work we adopt the term OSS to mean both free and open

software.

As E.S. Raymond (2000) wrote “The ideology of the Internet Open Source Culture (…) is fairly a

complex topic (…)”. In fact, different experiences and different motivations are joined in this

movement. To make this phenomenon even more complex, the contents of open source definition

have changed during the last years. Moreover, the OSS world involves different actors with

heterogeneous characteristics and motivations. Therefore, a simple definition of open source software

would underestimate the complexity of the phenomenon, that we can summarise as follows:

• OSS is a software whose source code is distributed with the object code1;

• OSS can be distributed free of charge under terms of licences that guarantee the users the right

to use, copy, modify and distribute the source code. But it is not necessarily gratis, because it is

possible to sell the executable code and also to charge a fee for distributing the source code and

for related services and support;

• the OSS development process is characterised by the possibility for anyone (developer, user) to

download the source code, make modifications (further development of lines of code,

debugging, etc.) and send them to the project leader without receiving any monetary

compensation. The certification and distribution of certified modifications (add-ons etc.) is

usually under the responsibility of a limited number of core developers and project leaders;

1 Source code is a computer program written by a programmer in a language readable by individuals; source code is input to
a compiler or assembler, in order to derive object code, that is the machine readable code.

16

In what follows we outline a brief history of open source software by highlighting how the open

source definition has evolved, and the motivations behind its changes (Section 2.2). Furthermore, we

describe the technical and institutional characteristics of the development process and point out some

puzzles that need to be solved through future careful empirical exploration (Section 2.3).

2.2 History of OSS: source code availability vs. trade secret practices

Over time, different actors have adopted heterogeneous behaviours with respect to the choice of

disclosing the source code of software, depending on their identity, their incentives and also the

historical and social context.

During the 1960s and 1970s, it was quite common for software programmers working in academic

institutions such as the MIT and Berkeley, or in corporate R&D laboratories like the Xerox Palo

Research Center, to freely exchange their source code. At the same time, it was common practice for

companies such as IBM to supply the code embedded in their hardware, without distributing it under

specific license arrangements. In the early days of general purpose computers for technical and

commercial applications users gave important inputs to the development of software. For instance, the

first operating system (called ‘monitor’) was developed at the General Motors Research Laboratories

for the IBM 701 mainframe in 1955. Both users and computer manufacturers then actively participated

to collective efforts aiming at developing and diffusing software. Through the 1960s computer

manufacturers begun to systematically develop the operating systems and software development tools

that helped users to develop their own applications (Torrisi, 1998, ch. 4). Obviously, users’ and

computer manufacturers’ incentives to cooperate were different. Computer manufacturers’ main

objective was to promote the sales of hardware while users were interested in improving their

applications running on expensive and unfriendly mainframes (Steinmueller, 1996).

The creation of ARPAnet in 1969 by the US Defence Department allowed continuous interactions

to groups of developers, even though we do not know to what extent this and other defence-related

projects implied free exchange of source code. A significant share of exchanged software for technical

and scientific applications followed the invention of the Unix operating system by Ken Thompson at

the Bell Labs in the early 1970s. Unix, entirely written in C language (invented by Dennis Richy in

1973), was further developed during the 1980s by different groups working separately for its portability

on different types of machines2. The possibility to connect machines by the telephone line was an

important innovation of Unix operating system. The creation of the USENET (more efficient than

ARPAnet), facilitated the communications among software developers.

2 For further details on the history of Unix development see McKusick (1999).

17

However, not every software circulating in those years was free and developed by the scientific

community. Since the unbundling of software sales from hardware in 1969, a new generation of

proprietary, non freely available software was developed, with a significant amount of this software

being developed by the users themselves. Until very recently, in-house development of software and

embedded software (i.e., programs printed in various electronic devices) have represented a significant

share of the total production of software. As mentioned before, this large amount of non traded

software has been facilitated by hardware manufacturers and by the increasing diffusion of high level

languages and development tools.

In the 1980s two major events marked the story of free software. First, Sun Microsystems entered

the market for Unix-based workstations and, second, AT&T started to enforce its intellectual property

rights over Unix. Proprietary and non free software producers reacted to AT&T by founding different

associations which supported various, mostly incompatible, versions of Unix. Among these, the

Berkeley Software Distribution and the Free Software Foundation (FSF). Later on, in the 1990s, the

Open Source Initiative was founded as an organisation distinct from the FSF.

The Free Software Foundation and Linux

The FSF was founded in 1983 by Richard Stallman from the MIT3. The FSF promoted the

GNU/General Public Licensing (GPL) scheme allowing the protection of free software from being

appropriated by commercial companies, guaranteeing the free distribution of source code, and the

possibility to make copies, modifications and to distribute the software.

In addition, the GPL contains a ‘viral’ clause for which any work that is distributed or published,

that in whole or in part contains or is derived from the GPL-ed code, has to be distributed as a whole

under the terms of GPL, de facto preventing from every commercial utilisation of GPL-ed software.

The philosophy of the FSF and its main goal, as stated by Stallman in his GNU manifesto (see

www.gnu.org), is the diffusion of software to guarantee the free access to knowledge to the maximum

possible number of customers, and then to contrast monopolistic practices of some companies (like

IBM in 1980s and Microsoft more recently) that may hamper people’s freedom. Stallman emphasises

the nature of software as scientific knowledge, not as a proprietary invention, and according to this

view software has to be shared among users to improve social welfare. He named the software

distributed under GPL ‘free software’, underlining that free stands for freedom of use and copy while it

does not mean ‘free of charge’.

3 For further details see R.M Stallman (1999) and http://www.gnu.org/ .

18

Since the 1980s Stallman and his community have actively tried to build a free version of the Unix

operating system by massively re-writing free utilities which drew on Unix’s utilities. By the early 1990s,

however, Stallman and the FSF had not managed to write a free Unix kernel yet.

The advent of the Internet in the 1990s and the introduction of Linux impressed a dramatic

acceleration to the diffusion of open software.

Linux was created by Linus Torvalds, a computer science student from the University of Helsinki.

In August 1991 Linus Torvalds was working on a free version of Unix kernel that could run on a PC

and he posted an e-mail to a newsgroup asking for help in bug fixing. He assured that he would have

included in future versions new features developed by others as long as they would have also been

freely distributable, according to the GPL licensing scheme.

The initiative had a great success, and the Linux version number 0.01 was released in few weeks

(September 1991). Further releases followed at a rapid pace (http://www.li.org/linuxhistory.php) and

the version 0.1 was released in December 1991.

In 1993 Torvald rewrote the kernel and a year later, when he released Linux 1.0, the operating

system could compete in stability and reliability with the commercial version of Unix. Linux was rapidly

adopted as Unix free kernel and attracted a large community of old and new hackers (Raymond, 1999a).

At the same time software vendors like Red Hat, Debian and Caldera created commercial

distributions of Linux that bundled the operating system with utilities, applications and graphical user

interfaces. In 1999 Red Hat went public successfully; and few months later LinuxCare, an important

Linux service provider, announced several alliances with large IT companies such as IBM, Dell and

Motorola.

The Open Source Initiative

In 1998 the Open Source Initiative (OSI) was created by a group of free software advocates. The

OSI proposed the Open Source Definition and an OSI Certification Mark applicable to OSS licenses.

The OSI introduced an important change to the GNU/GPL licensing scheme, introducing a new set of

licenses that eases the commercial distribution of free source software. Eric Raymond, one of the most

prominent founders of the OSI, and his collaborators aimed at making free software visible to a wider

public and facilitating its diffusion in the business world (Raymond, 1999a). 4

Raymond noted that Linux success contradicts the Brook’s Law, according to which as the number

of programmers involved in a project rises, the work performed scales up linearly, but complexity and

vulnerability to bugs rises by quadratic terms. More generally, in his “The Cathedral and the Bazaar”

4 See http://www.opensource.org/docs/history.html for a complete list of OSI founders.

19

(2001) Raymond describes the free/open source community and the reasons of its success. This book

has helped to spread the free/open source philosophy within the hacker community.

In 1998 Bruce Perens wrote for the OSI the Open Source Definition (OSD) which was adapted

from the Debian Software Distribution Guidelines (Perens, 1999). The OSD claims that OSS has to be

distributed in source code, distribution terms may not restrict any parts from selling or giving away the

software, or modified parts of it, as a component of an aggregate software distribution containing

different software from several different sources. An OSI approved license cannot require a license fee

and must not place restrictions on other software that is distributed along with the licensed code, for

example the license cannot require that software distributed on the same medium must be open source5

(see Box 1 for details).

Netscape Corporation was convinced by Raymond’s statements that a Linux-like development

process was the key for success and in 1998 decided to put in the web its Navigator to contrast

Microsoft on the browser market6. Netscape experiment has not had the success that its supporters

hoped, but the birth of the OSI and the focus they put on the possibility to commercialise open source

software, avoiding the GPL ‘viral’ clause, attracted many other business companies in the open source

world.

5 Note that also the GPL complies with this requirement, by stating that only the code that forms a single work with GPL-
ed one has to be distributed under GPL terms. See www.opensource.org/docs/definition.html for further details.
6 For further details on the Netscape experience see Hamerly, Paquin and Walton (1999).

20

Box 1 . The Open Source Definition provided by the Open Source Initiative (OSI)

Introduction
Open source doesn't just mean access to the source code. The distribution terms of open-source software must
comply with the following criteria:

1. Free Redistribution
The license shall not restrict any party from selling or giving away the software as a component of an aggregate

software distribution containing programs from several different sources. The license shall not require a royalty or
other fee for such sale.

2. Source Code
The program must include source code, and must allow distribution in source code as well as compiled form.

Where some form of a product is not distributed with source code, there must be a well-publicized means of
obtaining the source code for no more than a reasonable reproduction cost–preferably, downloading via the Internet
without charge. The source code must be the preferred form in which a programmer would modify the program.
Deliberately obfuscated source code is not allowed. Intermediate forms such as the output of a preprocessor or
translator are not allowed.

3. Derived Works
The license must allow modifications and derived works, and must allow them to be distributed under the same
terms as the license of the original software.
4. Integrity of The Author's Source Code

The license may restrict source-code from being distributed in modified form only if the license allows the distribution
of "patch files" with the source code for the purpose of modifying the program at build time. The license must
explicitly permit distribution of software built from modified source code. The license may require derived works to
carry a different name or version number from the original software.

5. No Discrimination Against Persons or Groups
The license must not discriminate against any person or group of persons.

6. No Discrimination Against Fields of Endeavour
The license must not restrict anyone from making use of the program in a specific field of endeavour. For example, it
may not restrict the program from being used in a business, or from being used for genetic research.

7. Distribution of License
The rights attached to the program must apply to all to whom the program is redistributed without the need for
execution of an additional license by those parties.

8. License Must Not Be Specific to a Product
The rights attached to the program must not depend on the program's being part of a particular software
distribution. If the program is extracted from that distribution and used or distributed within the terms of the
program's license, all parties to whom the program is redistributed should have the same rights as those that are
granted in conjunction with the original software distribution.

9. The License Must Not Restrict Other Software
The license must not place restrictions on other software that is distributed along with the licensed software. For
example, the license must not insist that all other programs distributed on the same medium must be open-source
software.”

Source: http://www.opensource.org/docs/definition.html , Version 1.9

Today pure hackers, organised in foundations and non-for-profit organisations, are important

members of the OSS development process. As Linux demonstrates, a relatively small number of core

volunteers that take the lead in early stages of development can attract a critical mass of developers

which in turn determine the take off of a project. As a matter of fact, two other categories of actors

have joined the Open Source movement:

• several companies have entered the market since the late 1990s to assemble different OSS

modules, to develop OSS interfaces that make the programs more user-friendly, to develop

21

complementary products like drivers and other applications, to provide technical support and

services (e.g., Caldera, RedHat, and Suse). On some occasions they have built their business models

on popular OSS like Linux or Apache, while in other cases the business model was centred on new

OSS invented by the company founders (e.g. Sendmail7)

• Large incumbent proprietary software developers that have begun to reveal the source code for

some of their products (e.g., Sun, Netscape-Mozilla and Nokia). Other large companies are

supporting OSS by developing hardware platforms (or complementary products) running on Linux

or other OSS (e.g., IBM, Apple).

2.3 The Organisation of OSS Development

One of the first attempts to describe the organisation of an OSS development project has been done

by E.S. Raymond in his seminal work “The Cathedral and the Bazaar”. He describes the development

process of Linux trying to understand the strengths of this new development style (the “bazaar”)

compared to the traditional software engineering process (the “cathedral”), and to identify the reasons

of its success in terms of efficiency of the process and quality of the product.

A key characteristic of the Linux development process - as described by Raymond - is the role

played by developers and users. The Linux community members (both users and developers) can

download the source code, make modifications (further development of lines of code, debugging, etc.)

and post it to the responsible of the project (i.e., Linus Torvalds). The project leader, along with core

developers, examines the proposed modifications and releases a new version of the programme to the

community. This organisation allows a rapid fixing of bugs, and the product evolves gradually thanks to

the continuous feedbacks and improvements from different users and developers.

The active participation of users is not a novelty if compared to the Unix community’s tradition for

which the free exchange of code was a diffused practise. However, as argued by Raymond, the

distinctive feature of the Linux process is that new releases including modifications, fixed bugs and

improvements are distributed quite rapidly, and it is often the case that new releases contain bugs

(“release early, release often”). This practice, which provides stimuli and rewards to the community

members, is common to other OSS projects. Raymond compares the development process of Linux

7 Sendmail ancestor called Delivermail, was originally written by Eric Allman while he

was a student and staff member at the University of California at Berkeley. The first version of Delivermail was shipped
with 4.0 and 4.1 BSD in 1979. Eric Allman stopped the development of Sendmail in 1982, and did not go back to it until
1990. In 1998, Sendmail Inc. was formed, to create a commercial version of the product.

22

(and OSS in general) to the traditional software engineering process, characterised by a rigid

hierarchical organisation in which each group of tasks is associated to a team of developers.

He argues that the OSS development process is more efficient than the traditional one, and yields a

higher level of product quality. He also argues that open source developers are self-selected, so that

only the most talented people participate in the process. Furthermore, according to Raymond, OSS

developers are free to express their creativity and are highly motivated by fun, while developers working

in traditional groups perform their task mainly because of economic incentives. Finally, according to

Raymond the intense activity of debugging makes software more reliable and its pace of evolution more

rapid (Raymond, 1999b).

The open source software’s advocates tend to apply Raymond’s statements to the entire landscape

of open source software, reinforcing the claim that the higher quality of the OSS development process

depends primarily on the large amount of motivated people that inspect and improve the code.

Moreover, the ‘evolutionary’ character of the process - i.e., the possibility to select among a great

number of solutions proposed by highly skilled developers - guarantees that only the best solution

among those proposed by developers will be integrated in each new release (Raymond, 2001).

Besides Raymond’s quite ‘ideological’ statements, however, there is no reliable empirical evidence

that demonstrates any significant association between open source code and quality of software

programmes (Fuggetta, 2001). Raymond himself admits that he does not have any statistics that can

show the alleged superiority of the open source software model, and can only induce this superiority

from the evidence that OSS products evolve by improving their performance fast compared to

proprietary software, that a large number of developers is involved in their development and mainly

that they work on problems they care about and try to solve them “for love” (Raymond, 1999b). It is

important to note that to compare OSS with proprietary software at this level of abstraction is very

arguable from a methodological perspective. A rigorous comparison should be made between projects

that are similar in all, or most respects (e.g. lines of code), but the fact that one is open and the other is

proprietary.

The OSS development model is quite different from the traditional software engineering model (the

so-called ‘waterfall model’). The latter is characterised by distinct phases that must be followed

sequentially. Vixie (1999) distinguishes among several different phases: a) analysis of users’

requirements which describes the target customers’ needs; b) a system level design that describes all

modules composing a software and the way in which they interact within a common architecture; c) a

detailed design that defines the characteristics of each module; d) codification or compilation of the

code and integration of each module in a whole package (implementation task); e) testing that verifies if

23

the software contains defects and bugs, followed by the process of correcting errors and re-design the

whole system in order to accomplish with the change required by bugs fixing.

According to OSS advocates, open source development represents “the best system-level testing in

the industry” due to the fact that users not paying for the software are more friendly and tend to

collaborate with the software distributor by signalling bugs, and are also more helpful if they can

inspect the code and work on it (Vixie, 1999). Furthermore, the great number of users/developers

guarantees that most flaws will be detected.

Only few OSS development processes contain all software engineering phases like, for example, the

commercial versions of BSD, BIND, and Sendmail (Vixie, 1999). A typical OSS project generally is

weak in both users’ needs analysis and design stages, while its strengths lie in the implementation task.

This is probably because the great majority of people involved in OSS development are voluntarily

contributing. They do not have access to sophisticated software tools for software engineering, and

often they are not interested in software design neither in users’ needs analysis. According to some

observers the design of an open source software is often implicit in the software itself and evolves over

time along with the software. Therefore a design actually exists but it is not written down. Wilson

(1999) argues that open source developers do not give the right weight to design first because in

developers communities (both proprietary and open source) “heroic efforts by individual programmers

had high status, while planning and testing did not” (Wilson, 1999). Moreover, many programmers do

not have competence on software engineering either because they have not taken a software

engineering course, or because courses do not actually teach them what they need for managing an

open source software development process. However, this is going to change since large business

companies have joined the open source movement (i.e. IBM, Netscape) and small companies like Red

Hat entered into the market to commercialise open source product packages and to supply

maintenance/support services (Wilson, 1999).

On the other hand, traditional development process is generally characterised by having both

detailed marketing plan and system design (Vixie, 1999) although a lot of industrial software is still

developed without following good software engineering methods (Wilson, 1999).

A typical description of the traditional development process - as in Raymond (2001) - is that the

organisation is strictly hierarchical with each group of tasks associates to a team of developers. Vision

and deliveries often depend on market requirements more than on users’ needs. Also, programmers are

less skilled than OSS developers, because a practice in the software companies is to bring people with

low skills, give them an intensive course in one or more programming language without allowing them

to learn how software has to be debugged (Raymond, 1999b). Moreover, they are less motivated than

open source developers because their main incentive is money, and they cannot choose which part of

24

the software to develop or which task to perform. Therefore, they produce a software of modest

quality (Raymond, 2001).

Again, these statements have not been tested yet. Moreover, the literature on OSS does not seem to

account some important points. First, incremental, evolutionary change centred on sequential

innovations is a key distinctive characteristic of software industry in general and it is still to prove

whether open source software dramatically changes this feature. Moreover, as we discuss later on, other

institutional innovations different from OSS could yield the same results as OSS (e.g., revisions of the

patent system that allow reverse engineering rights and a weak application of the ‘doctrine of

equivalents’). Second, the evolution of software engineering, regardless of the openness of the source

code, since the 1960s has produced a variety of approaches and models of software development -

from very structured ones, such as formal methodologies and integrated project support environments,

to unstructured and flexible ones, such as rapid prototyping, incremental and evolutionary

development, spiral lifecycle, rapid application development and extreme programming. The latter

allow many forms of interactions among developers and a quite flat organisation of labour that

stimulate creativity and are rewarding for individual developers (Fuggetta, 2001). Third, formal and

structured methodologies for software development are adopted by a minority of large software

developers (e.g., the so-called ‘software factories’ of hundreds or thousands programmers). The

majority of software firms, especially in the US and in Europe, are small, adopt ‘ad hoc’ and often

chaotic development methodologies, and focus on loose management style, which give individual

developers a great independence and creativity at the cost of inefficiency. Therefore, it is not true that

proprietary traditional software as such implies a rigid and hierarchical division of labour which depress

programmers creativity. Moreover, there is no evidence that a rigorous definition of development

stages and traditional management practices are bad for quality. The Japanese ‘software factories’, for

instance, are famous for their evolutionary, incremental approach to software development which

involve large numbers of developers and a high level of product quality even though there are no

examples of significant software innovations coming from those software factories (Bohem, 1981;

Cusumano, 1991; Torrisi, 1998).

Finally, even if one admits than the bazaar style is more efficient thanks to its ‘peer-review’ feature, it

is possible to apply the same method to proprietary/commercial software either in house or by

including users. Moreover, there is not evidence that the only way to motivate people is distributing the

source code (Fuggetta, 2001 p. 8).

Therefore, further analysis is needed to provide substance to the claim that the open source software

development process is more efficient than the traditional one. The main strength of OSS is that it

relies on a potentially large community of developers that constantly inspect code and fix bugs even

25

though in fact the number of core contributors is limited. For instance, in the case of Apache project

(web server software) there are about 20 core developers around the world while in the Perl project

(general-purpose programming language) there are 10-20 active programmers (including Larry Wall, the

initial devoper) (Čubranić and Booth, 1999; Lerner and Tirole, 2000).

OSS advocates often argue that the characteristics of the OSS development process itself (i.e.,

source code availability, peer review, frequent release) guarantee that OSS products are more robust,

reliable, and secure compared to proprietary software (Laing, 1999). Primarily, it is argued that the

availability of source code and the possibility to inspect it provide the chance for defending against

both accidentals fault due to bugs undetected, and against ‘malicious code’ hidden in the source code.

However, making a system’s source code publicly available is not a sufficient condition to improve

its security. First, source code availability may improve systems security only if the users have the

capability and resources to find security bugs that make the system vulnerable and to fix them. Also, it

could be quite hard for unskilled users to discover “back doors” in their system, even though today

there are sophisticated tools that scan the source to identify potentially dangerous constructions (Viega

et al., 2001). Second, it is possible to ensure source code inspection without giving up the intellectual

property rights on the distributed software. Some traditional software producers have already changed

their internal process for reviewing and testing the software by allowing qualified reviewers to inspect

the source code under non-disclosure agreements8. Also, there are compilers that improve the security

of the executable code without modifying the source code (Cowan, 1999).

By contrast, some argues that source code availability gives ‘attackers’ the opportunity to discover

some exploitable flaws; in addition, attackers have the possibility to introduce ‘malicious’ code into the

source code publicly available and freely downloadable from the Internet. As a matter of fact, OSS

software official sites often strongly recommend to be careful in downloading unofficial releases9. On

the other hand, it is argued that attackers can reconstruct any portion of executable proprietary code by

reverse engineering and that even employees that work in big companies are able to introduce back

doors in the software without software management’s knowledge (Witten et al., 2001).

There is very scarce evidence on the quantitative measurement of the security of systems. Wheeler

(2001) reports some data on the security of OSS and free software products compared to Windows (for

example Microsoft IIS vs. Apache or Windows vs. Linux). For example, analysing Microsoft IIS

security bulletins and Apache security advisories Wheeler found eight Microsoft bulletins concerning

dangerous vulnerabilities for IIS, published from June 1998 through June 2001, against zero

8 See for example Microsoft Shared Source Policy described in section 4.2.
9 See for example Red Hat alert on http://www.redhat.com/support/alerts/security_gpg.html.

26

vulnerabilities for Apache in the same period. In addition, he reported that incidents, web sites

‘defaced’ (i.e. web sites whose content was illegally changed), virus attacks and, mainly, dangerous

vulnerability are more frequent for Microsoft software than for the others. Therefore, he concluded

that both OSS and Microsoft products have security vulnerabilities but OSS products seem to be less

vulnerable.

However, the last Netcraft Survey published the 1st of July 200210 reports the existence of important

vulnerabilities in both Microsoft IIS and Apache systems that could affect the 45% of Microsoft IIS

sites and around 14 millions Apache sites (against 6 millions that have been upgraded and are now quite

secure). Netcraft reports that “With over half of the Internet’s web server potentially vulnerable,

conditions are ripe for an epidemic of attacks against both Microsoft IIS and Apache based sites (…)”.

Therefore, security seems to be a problem both for open source and proprietary web servers.

According to Wheeler (2001), the Apache architecture guarantees that attackers have only limited

‘privilege’ on the system, so that they cannot erase or modify most files, while Microsoft IIS

architecture allows the attacker the control of the entire systems (i.e. reading, modifying, and erasing

any file on the system). However, one can argue that this weakness of Microsoft IIS depends primarily

on its architectural design rather than the openness of its source code. At the same time, it is probably

true that computers viruses attack more often Windows than Linux operating environments, but this

may depend both on the fact that Windows is the most diffused operating system in the world.

Moreover, some technical characteristics of Windows (for example the execution of macros in Word)

may favour attackers regardless of the IPR under which Windows is distributed.

OSS advocates explicitly admit the OSS has also weaknesses. For example, the lack of an explicit

design can imply that the project’s quality is limited (Vixie, 1999). Moreover, the lack of an explicit

design and of a vision for further development may limit the possibility that an open source product

will experience a long term evolution.

Another possible weakness is due to the lack of strong economic incentives like those provided by

traditional property right institutions (copyright and patents) which could limit the incentives to

produce major product innovations. A preliminary, rough inspection of the largest OSS projects

suggests that most open source products heavily draw on previous software developed by university or

proprietary profit oriented institutions. The test of this hypothesis requires a more extensive empirical

analysis that is beyond the scope of our work.

Čubranić and Booth (1999) observe that the OSS development process could even be faster and

leaner than the traditional one, and could also yield more reliable products thanks to peer review. But

10 http://www.netcraft.com/survey.

27

they also point out the rising coordination costs that constraint the growth of OSS. As a project gains

success and the number of participants involved grows, the distributed division of labour typical of

OSS tends to become inefficient. Therefore Čubranić and Booth suggest that more effective knowledge

management and coordination techniques should be introduced in order to guarantee a sustainable

growth of OSS projects. The organisational limits demonstrated by the OSS projects are not new to

traditional software engineering. However, the literature generally points out that when a software

project grows in size, it becomes difficult to manage and, after a critical threshold, the lines of code

cannot grow more unless the overall design is reorganised (Lehman, 1985).

In contrast with this hypothesis, Raymond (2000, 2001) claims that in fact there are not strong

limitations to OSS development. He argues that heterogeneous developers interact through the Internet

according to consolidated rules that are defined by the community as a whole or by a leader - i.e. rules

that signal errors and possible developments, rules to submit to the community solutions to problems

posted by other developers, corrections and modifications, rules of acceptance of such modifications

and incorporation into the ‘official’ releases of the product. In general the leader, or the group of the

leaders, has a vision of the process development and gives the directions for further development by

establishing, for example, which contribution may be incorporated in the software and which feature

has to be developed. Thus, there are common rules followed by all participants. Each contributor

recognises the role of the leader, or of the board of direction, and follows his indications. The point

made by Raymond, however, confirms that the size of virtual development teams, like that of

traditional teams, is limited by coordination costs and other factors.

These limitations keep the number of relevant contributors relatively small and impose a well

defined division of labour among developers. Most successful projects - i.e. Linux (Godfrey and Tu,

2000), Apache (Mokus et al. 2000), and GNOME (Koch and Shneider, 2000) - are centred around a

small group of core developers that shape the direction, coordinate the development efforts, decide

which part of code has to be developed, evaluate and approve modifications submitted by other

members of the community, while the decision to perform each particular task is voluntary.

In the case of Apache only the members of the board have the possibility to modify the official

release and to distribute it. Another case in point, illustrated by Koch and Schneider (2000), is

GNOME which has grown dramatically since its start in January 1997 to about 1,800,000 lines of code

in November 1999. Koch and Schneider construct their metrics by calculating the difference between

the lines of code added to GNOME files and the lines of code deleted during the period under analysis,

taking data from GNOME CVS repository (i.e. the version control system of the project). It is

important to remind, however, that these data include also commentary lines of code (Koch and

Schneider, 2000, p. 2). According to Koch and Schneider, GNOME project has generated many

28

separate and self-contained sub-projects - each started at a different date and characterised by a diverse

rate of growth. Some modules, like the core module, seem to have stabilised their size while others (i.e.

gnome-libs) have grown. Thus it is possible that the total growth of GNOME project has been led by

the growth of specific projects in different times (Koch and Schneider, 2000, p. 9-10).

Linux shows a similar growth pattern as GNOME. Godfrey and Tu (2000) analyses the Linux

development process and show that Linux full distribution size has experienced a strong growth rate

despite Linux is a large software system developed by a process lacking of traditional management

tools. They measure the Linux size both by the number of byte of compressed file for the full kernel

release (including all source of the kernel, documentation on kernel, script, and other utilities – but

excluding executable files) and by the number of lines of codes extracted from the compressed file.

However, they also show that Linux’s growth has been mostly accounted for by addition of new

features and support for new architecture. For example, by subdividing the Linux kernel in subsystems

they observe that the drivers subsystem (i.e. the collection of software with the function of translating

each request the operating system does into a task that the hardware can execute efficiently) is the

largest one and grows very fast (from less then 100,000 lines of code in June 1994 to about 1,000,000

lines of code in December 1999) while kernel growth rate was more limited (from less then 100,000

lines of code in June 1994 to less then 200,000 lines of code in December 1999). They observe that the

growth and size of the driver subsystem distorts the idea of how large and complicated the Linux

system is (Godfrey and Tu, 2000, p. 139). In fact, several device drivers are usually supplied in each

kernel distribution (and most of them are large and complicated piece of software), one or more for

each type of hardware configuration. Then, according to Godfrey and Tu, Linux is not so large and

complicated as it seems since more then fifty per cent of it consists of device drivers that are external to

the kernel. Also, the drivers subsystem experience a “super-linear” growth rate while Linux kernel its

not growing so fast.

In many cases, like Zope (Fuggetta, 2001), Mozilla, Jikes Java compiler (Godfrey and Tu, 2000), and

Jun 3D Multimedia Library (Aoki et al., 2001), software development is mostly performed in house and

the source code is released for further improvement or bug fixing.

The limited size of OSS projects is confirmed by Krishnamurthy (2002), who has recently conducted

a survey of the 100 most active projects classified by Sourgeforge as mature stage software (about two

years of life). On average the projects analysed were founded in October 2000, and for most of them

have been released several versions. These projects overall account for about 20% of all mature

programs hosted in the Sourceforge website (www.Sourceforge.net). This survey shows that the great

majority of mature projects are developed by a small number of programmers: the mean number of

developers is 6.61; 29% of these projects had more than five developers; 22% of projects had only one

29

developer; and 51% of the projects had one project administrator. Furthermore, Krishnamurthy counts

the number of mailing list and discussion groups associated to each product, plus the number of

messages for each products (information that are available from the Sourceforge web site) and observes

that the majority of these project did not produce massive discussions and exchange of messages

through forums and mailing lists (33% of these projects had 0 messages). As the author argues, it seems

that most OSS programs are developed by individuals rather than communities. But apparently much

of these information flows do not occur through the Internet. We ask then how Kryshnamurthy knew

about these flows and what are the channels through which these information flow.

To conclude, the experience of successfully products – like GNOME, Linux and Apache - cannot

be taken as an example of the fact that open source development guarantees always greater efficiency

and quality. For instance, Linux’s success is due to project-specific characteristics, such as a large pool

of talents that contributed to develop it, a high modularity of its design (which arises from Unix) and

the great capabilities of its leader. These characteristics are not easy to replicate in all circumstances.

Linus Torvalds developed the basic design of Linux by reusing many concepts from Unix. At the time

of development these concepts were common knowledge among software developers and Torvald

took advantage of the intrinsic modularity of Unix to modularise its project by defining the functions

to be developed and the guidelines for each module. The developers who joined this project knew

exactly what to do and how to do it because the architecture of the system was well defined and well

known (Fuggetta, 2001, p. 9). Therefore the success of Linux is not enough to conclude that open

source software process is better, neither it demonstrates that it is enough to post on the web a piece

of software from ‘scratch’ to receive many useful responses that lead to a complex product such as

Linux.

Moreover, the open source development process is characterised by a well defined organisation

which is different from the typical bureaucracy and is more similar to a meritocracy where the best

developers coordinate the process and leadership is legitimated by technical and managerial abilities

(Mockus et al., 2000).

30

3. Diffusion of open source software products: an international overview

3.1 Introduction

This section presents some key empirical facts about the diffusion of open source software

compared to proprietary software. It describes some patterns of software adoption in specific market

segments (operating systems, web servers, and specific applications) and provides a few data on the

emergence of new commercial software distributors. Moreover, it exhibits some data on the revenues

gained within different operating platforms by software companies and commercial distributors.

Our overall analysis focuses on the world market while some disaggregated data concerning

operating systems and web servers segments are available for the largest European countries. Finally,

more detailed analysis on the patterns of adoption is also conducted for Italy.

It is important to point out that there are some inherent difficulties in collecting and comparing data

on software adoption, market shares, and revenues of proprietary and open source software. This is

due to several reasons. First, most open source software can be freely downloaded from the web or is

freely distributed by computer science magazines, and can be legally installed on many machines.

Moreover, software that is sold through traditional distribution channels (in the form of packages

contained in electronic media such as CD or DVD), and/or is downloadable from the web for a fixed

amount of money can be privately copied or installed on many machines (illegally for proprietary

commercial software, legally for open source software)11. This makes it difficult to estimate the number

of adopters, especially in the low end market of PC operating systems and applications.

Second, the price of open software can vary across different distributions. It can be zero or include

only the pure cost of distribution (CDRoms, boxes and instruction materials). Or, it can be virtually

impossible to determine if the software is bundled with services (e.g., installation, integration and

training) or sold in a single package with other costly software products. This makes it difficult the

estimation of market shares and revenues from software and services, and the comparisons of market

shares and revenues of companies adopting different business models.

In this context, most of the available data come from ‘ad hoc’ surveys on software users, producers

or distributors, or from web-based surveys that collect information on web servers or other kind of

11 As an example consider a Linux distribution such as Suse Linux. The package sold by Suse includes a CD (or DVD)
containing both open source software in object and source code (for example the operating system Linux, libraries, office
automation applications, utilities, games, drivers,…), and proprietary software. Primarily, it contains a proprietary “installer”
- distributed only in object code - that links together all Linux components facilitating the act of installing Linux on a
computer. Furthermore it contains freeware and shareware software (see section 4.1 for the software type definitions). The
software included in the CD - both open source and proprietary - can be freely installed on several machines. For further
details on product andservices sold by open source business companies see section 5.5 on business models.

31

software from different web sites. The data presented in this section have been drawn from various

sources which adopt different methodologies. This heterogeneity adds further complexity to our

analysis.

3.2 Open source software in the community of software developers

To analyse the importance of open source we start by investigating the number of open source

projects in the world community of software developers. Some of these projects have yielded products

that have not reached the market yet, others have reached the market only recently, while others are

largely diffused. The market diffusion will be illustrated in the next section. This section focuses on a

preliminary investigation of open source development and draws on information collected from

SourceForge (www.sourceforge.net), the largest worldwide repository of open source projects.

SourceForge collects source code and applications available on the Internet and provides free services

to open source developers, including project hosting, version control, bug and issue tracking, project

management, backups and archives, and communication and collaboration resources.

In this section we present some general statistics that illustrate the gross diffusion of open source

projects, and the distribution of these projects according to some dimensions like the stage of

development, the content, and the type of license adopted.

The large number of projects hosted in the SourceForge - over 40,000 - indicates the massive

interest in open source amongst software developers. However, most of these projects are at a

preliminary development stage. As Figure 3.1 clearly shows, only 1.67 % of the projects are in a

maturity stage and 15.02 % in a production stage. The largest share of the projects (28.16 %) are still in

a planning stage. This static picture of the development stage of current projects does not say anything

about their survival rate or about their probability of progressing in the stages of development. A

deeper analysis of their life cycle could provide more detailed data about the patterns of mortality of

these projects.

32

Figure 3.1. Development status of Open source projects

28.16%

18.78%

16.80%

19.58%

15.02%

1.67%

0% 5% 10% 15% 20% 25% 30% 35% 40%

1-Planning

2-Pre-Alpha

3-Alpha

4-Beta

5-Production/Stable

6-Mature

Source: Elaboration from www.Sourceforge.net.

 Table 3.1 shows that the most frequent objects of open source projects are Internet software,

System software, Software Development technology, and Games/Entertainment software12.

 Table 3.1. Distribution of open source projects by topic

Topic n° %
Internet 7692 17.49%
System 6288 14.30%
Software Development 5303 12.06%
Communications 5028 11.43%
Games/Entertainment 4804 10.92%
Multimedia 3800 8.64%
Scientific/Engineering 2489 5.66%
Database 1943 4.42%
Office/Business 1452 3.30%
Desktop Environment 1213 2.76%
Education 909 2.07%
Security 861 1.96%

Other/Nonlisted Topic 840 1.91%
Text Editors 840 1.91%
Terminals 204 0.46%
Printing 139 0.32%
Sociology 90 0.20%
Religion 85 0.19%

43980 100.00%
 Source: Elaboration from www.Sourceforge.net.

12 Note that totals for each table are different because there can be multiple entries, that is a project can be classified in more
than one topic, while it is less likely that it refers to more than one licence scheme.

33

Table 3.2. Distribution of open source projects by type of licence

LICENCE N° %
Public domain 857 3.08%
Other/Proprietary licence 551 1.98%

OSI approved licenses 26444 94.94%
TOTAL 27852 100.00 %

Source: Elaboration from www.Sourceforge.net.

Multiple-dimensional analysis like, for example, that yielded by simple cross tabulation of objective

and stage of development, can provide interesting insights into the patterns of open source software

development. Moreover, more specific analysis on the starting time of each project can allow more

detailed analysis of the life cycle of projects and their probability of reaching a mature stage.

Furthermore, SourceForge provides data on the size of the projects in terms of people involved (both

administrators and developers), operational characteristics of the projects like the vitality, as dependent

on several dimensions like the number of times projects are viewed and downloaded, the bugs fixing

activity, the number of patches requested and delivered, the requests for new features, the messaging

activity in the mailing lists and so on, that we could use in our future research on the quality and

performances of OSS. Finally, a comparison of project-level data with market data on the diffusion of

open source products could provide further evidence about the commercial success of different open

source projects and could also help to understand some success factors that are specific to the

development process, such as the number of contributors and the organisation of development

activities.

3.3 Open Source Software Products: Web Server Software and Web Platforms

This section introduces the analysis of open source products that have reached the market and

gained significant commercial success. They represent then only a subset of the outputs yielded by the

projects analysed in the earlier section.

We start our analysis with web server software and operating systems which include various

categories of system infrastructure software (EITO, 2001). More precisely, web server software includes

software that is run by web server computers connected to the world wide web. A web server receives

client requests from an Internet browser, locates the resources and make possible the access to the

requested resources by carrying out tasks such as security and authentication of users, shopping carts

provision for e-commerce and access to databases. Operating systems are a fundamental component of

34

system-level software that serve the function of operating the hardware platforms and communications

networks (e.g., LANs)13.

Web server software

An important source of information on installed web server software is represented by Netcraft

Web Server Survey (Netcraft, 2002a). Netcraft has been running its web server survey since August

1995. The survey reports by country and by region monthly analysis of web server software and

operating systems of web sites and Internet connected computers worldwide. The methodology used in

the survey is described at the Netcraft web page http://www.netcraft.com/survey/index-

200007.html#active:
“The Web Server Survey has run since August 1995, exploring the internet to find new web sites. At the end of each
month, an HTTP request is sent to each site, determining the web server used to support the site, and, through careful
inspection of the TCP/IP characteristics of the response, the operating system.

Over the last two years there has been significant growth in the internet's DNS, fueled by rife domain name speculation,
falling registration prices, easier and more efficient administrative procedures, and widespread publicity. It has become
more common practice for companies offering internet registration services to place a template site on the web for each
domain that they register. Additionally, some hosting service companies find it convenient to create new sites at the time
of customer signup, rather than at the point at which the customer is prepared to place real, personalised content on to
the web.

So, whereas in the early days of the web, hostnames were a good indication of actively managed content providing
information and services to the internet community, the situation now is considerably more blurred, with the web
including a great deal of activity, but also some considerable quantity of sites untouched by

human hand, produced automatically at the point of customer acquisition by domain registration or hosting service
companies.

The biggest domain registries are large enough to be significant even in the context of the 17 million sites found by the
June 2000 Web Server Survey. For example, register.com host some 1.4m domain names, the great majority of which are
template sites. Network Solutions have a system hosted at Digex which hosts around 750,000 template sites for domain
name holders. These two domain name registries presently account for about 12% of the hostnames found in the Web
Server Survey.

Additionally, many companies will register in more than one domain. For example, Netcraft holds the netcraft.com,
netcraft.net, and netcraft.co.uk domains, and currently uses three hostnames that will resolve to the Netcraft site. This
means that there are nine names in the DNS that will resolve to the same content;

www.netcraft.com, netcraft.com, ssl.netcraft.com, www.netcraft.net, netcraft.net, ssl.netcraft.net, www.netcraft.co.uk,
netcraft.co.uk, ssl.netcraft.co.uk,

Circa 1996-7, the number of distinct IP addresses would have been a good approximation to the number of real sites,
since hosting companies would typically allocate an IP address to each site with distinct content, and multiple domain
names could point to the IP address being used to serve the site content.

However, with the adoption of HTTP/1.1 virtual hosting, and the availability of load balancing technology it is possible
to reliably host a great many active sites on a single [or small number of] ip addresses. For example FreeServe has

13 A web server is “a server on the internet that holds World Wide Web documents and make them available for viewing by
remote browsers” (http://www.computeruser.com/resources/dictionary). Business companies and organisations may either
host their web sites on their own web server machines or ask to a hosting company that supplies the physical machine and
the management of the website. Typically private citizens have their web site hosted by an Internet Server Provider (ISP).
On each web server machine is installed a server operating system (i.e. Microsoft NT, Linux, Unix, Solaris); a web server
software (i.e. Apache, Microsoft-IIS, Netscape) run on the operating system regulating the information flows directed to and
from the Internet.

35

around 150,000 sites hosted on four load balanced IP addresses. These are substantially all active sites produced by real
people crafting HTML in FrontPage, Word, Netscape, text editors, etc”14.

The latest Netcraft Web Server Survey published in April 2002 shows that Apache is the most

adopted web server software on the public Internet since April 1996 (Figure 3.2). Apache entered the

market in 1995 and rapidly gained the leadership which was previously owned by the server software

of the National Center for Supercomputing Applications (NCSA) of the University of Illinois.

Microsoft entered later with the IIS product and became the second player in 199815. After an early

entry and a rapid initial growth, Netscape16 has progressively loosed market shares while Zeus entered

in 1997 and slowly gained the fourth position on active sites and very recently the third position on all

sites. As it is described in detail in Table 3.3, in April 2002 Apache had a market share of 56.38% on

all sites and 64.38 % on the active sites, followed by Microsoft with 31.96 % on all sites and 27.15 % on

active sites.

Over the last year, Apache has lost its share of total sites, while Microsoft has increased its share. In

the Active Site market, however, the pattern is the opposite.

Figure 3.2 Web Server Software Market Shares Across All Domains (August 1995-March 2002)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

August
1995

March
1996

March
1997

March
1998

March
1999

March
2000

March
2001

March
2002

Apache

Microsoft

Netscape

NCSA

Zeus Apache

Zeus

Netscape

NCSA

Microsoft

Source: Netcraft (2002a)

14 Further technical details on the detection of active sites are available at http://www.netcraft.com/survey/index-
200007.html#active and reported in Netcraft (2002c).
15 Microsoft is the sum of sites running Microsoft-Internet-Information-Server, Microsoft-IIS, Microsoft-IIS-W, Microsoft-
PWS-95, & Microsoft-PWS.

36

 Table 3.3 April 2002 Web Server Software Market Shares

All sites % Active Sites %

Apache 21191595 56.38 10509138 64.38

Microsoft 12014054 31.96 4431875 27.15

Zeus 850956 2.26 182918 1.12

Netscape 832474 2.21 278775 1.71

Others 2696154 7.17 920901 5.64

Total 37585233 100 16323607 100

Source: Netcraft (2002a)

Another survey of Web server software from May 1998 to date is provided by Security Space (E-

soft). The methodology of Security Space differs from that of Netcraft because Security Space polls the

‘well known’ web sites. The latter are those to whom at least another web site, which is also well known

(which in turn is a site to whom other sites are linked and so on) is linked. Because of this methodology

they actually visit only about 10% of all web sites. By focusing on a limited number of interconnected

sites this survey is most probably biased in favour of a limited number of technologies which are

adopted by organisations which share similar technological strategies.

Despite these potential limitations, the Security Space Web Server Survey published on April 2002,

confirms the leadership of Apache across all domains (Figure 3.3). Moreover, unlike Netcraft data,

these data show a steady increase of Apache’s market share and a decline of Microsoft between 2001

and 2002. They also show some differences across domains and particularly across country domains.

Apache is the leader in Europe, Russia, Canada and India, while Microsoft gained the leadership in the

United States and in China. Across Europe, only in Italy Apache and Microsoft shows very similar

shares. In Italy in May 2002 Apache has a market share of about 50% while Microsoft has 44.5 %

(Figure 3.4, Figure 3.5, Figure 3.6).

16 Netscape is the sum of sites running iPlanet-Enterprise, Netscape-Enterprise, Netscape-FastTrack, Netscape-Commerce,
Netscape-Communications, Netsite-Commerce & Netsite-Communications.

37

 Table 3.4 Web Server software Market shares, March 2002

All Domains % Italy %

Apache 3899382 65.64% 34205 49.80%

Microsoft 1503177 25.30% 30536 44.46%

Netscape 110758 1.86% 767 1.12%

Zeus 62570 1.05% 104 0.15%

WebSTAR 54583 0.92% 479 0.70%

WebSite 28588 0.48% 305 0.44%

thers 281207 4.75% 2285 3.33%

Total 5940265 100.00% 68681 100.00%
Source: Security Space (2002)

Figure 3.3 Web Server Market Shares Across all Domains (May 1998 - February 2002)

All Domains

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

May 1998 May 1999 May 2000 May 2001 Feb 2002

Apache

Microsoft

Netscape

OTHER

Source: Security Space (2002)

Figure 3.4 Web Server Market Shares in Europe and United States

Europe

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

May 1998 May 1999 May 2000 May 2001 Feb 2002

Apache

Microsoft

Netscape

OTHER

United States

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

May 1998 May 1999 May 2000 May 2001 Feb 2002

Apache

Microsoft

Netscape

OTHER

Source: Security Space (2002)

38

Figure 3.5 The largest EU countries

UNITED KINGDOM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

May 1998 May 1999 May 2000 May 2001 Feb 2002

Apache

Microsoft

Netscape
OTHER

ITALY

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

May 1998 May 1999 May 2000 May 2001 Feb 2002

Apache
Microsoft
Netscape
OTHER

GERMANY

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

May 1998 May 1999 May 2000 May 2001 Feb 2002

Apache

Microsoft

Netscape
OTHER

FRANCE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

May 1998 May 1999 May 2000 May 2001 Feb 2002

Apache

Microsoft

Netscape

OTHER

SPAIN

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

May 1998 May 1999 May 2000 May 2001 Feb 2002

Apache

Microsoft

Netscape

OTHER

PORTUGAL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

May 1998 May 1999 May 2000 May 2001 Feb 2002

Apache

Microsoft

Netscape

OTHER

Source: Security Space (2002)

39

Figure 3.6 Other countries (May 1998 - Feb 2002)

CANADA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

May 1998 May 1999 May 2000 May 2001 Feb 2002

Apache

Microsoft

Netscape

OTHER

RUSSIAN FEDERATION

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

May 1998 May 1999 May 2000 May 2001 Feb 2002

Apache

Microsoft

OTHER

INDIA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

May 1998 May 1999 May 2000 May 2001 Feb 2002

Apache

Microsoft

Netscape

OTHER

CHINA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

May 1998 May 1999 May 2000 May 2001 Feb 2002

Apache

Microsoft

Netscape

OTHER

Source: Security Space (2002)

Server operating systems

Several surveys analyse the adoption of different types of operating systems, by using data on

worldwide shipment units and sales.

For example, IDC has analysed the adoption of server operating environments in 2000 (IDC, 2000) and

exhibited unit shipment data for Windows NT, Windows 2000, Linux, Unix and Novell Netware17.

Table 3.5 reveals that Windows NT/2000 has the largest share of shipments both in 1999 (38.4%) and

in 2000 (40.9%). Linux, the second player with a share of 29.6%, grows faster than Windows in terms

of shipments. Other server operating environments show declining shares and negative or constant

shipment growth rates.

17 The IDC methodology is based on IDC models maintained by analysts based on the collection of financial data from
public and private companies. In this survey IDC counts new software shipments as new software purchases and full
versions upgrades (IDC, 2000).

40

Table 3.5 Worldwide Server Operating Environments - New Software Licence Shipments by Platform, 1999-2000

1999 2000 1999-2000
Platform Shipments Share (%) Shipments Share (%) Growth of

shipments (%)
Windows NT/Windows 2000 2086 38.4 2508 40.9 20.2
Linux 1322 24.3 1645 26.9 24.4
Novell NetWare 3.x, 4.x, 5.x 1064 19.6 1030 16.8 -3.1
Combined UNIX 826 15.2 826 13.5 0.0
Others 140 2.6 116 1.9 -17.4
Total 5437 100.0 6125 100.0 12.6
Source: IDC (2000)

In particular, the Unix platforms combined maintained the same number of shipments in 1999 and

2000, although there are relevant differences in the shipments across vendors (.

 Table 3.6).

Sun Solaris’ shipments show the largest growth rate (40.9%), HP grows at the 20 % rate, while the

shipments of IBM and Compaq grew at lower rates (around 10 %). Santa Cruz Operations (SCO)

platforms and Others showed a marked decline in shipments, in part to Linux’s advantage. The slow

growth rate of IBM’s shipments could reflect its recent openness towards the Linux platform.

 Table 3.6 Worldwide Unix Server Operating Environments New Software License Shipments by Vendor

1999 2000 1999-2000
Vendor Shipments Share (%) Shipments Share (%) Growth (%)
Sun Solaris/SPARC 186 22.5 262 31.7 40.9
IBM AIX 113 13.7 125 15.1 10.6
HP-UX 105 12.7 126 15.3 20.0
SCO OpenServer 194 23.5 124 15.0 -36.1
SCO UnixWare 119 14.4 93 11.3 -21.8
Compaq Tru64 Unix 31 3.8 34 4.1 9.7
Other Unix Server Operating
Environments

78 9.4 62 7.5 -20.5

Total 826 100.0 826 100.0 0.0

 Source: IDC (2000)

The Netcraft Web Server Survey mentioned before (Netcraft, 2002a) provides also data about

operating systems of web sites and computers on the public Internet. The survey is based on the number

of physical computers hosting websites rather than traditional counts of hostnames. To clarify the

underlying methodology it is useful to recall that Netcraft sends each month an http request to each

41

web site in its database, and determines both the web server used to support web sites, and the

operating systems through inspection of the TCP/IP characteristics of the response. In detail

“By arranging for a number of IP addresses to send packets to us near simultaneously, low level TCP/IP
characteristics can be used to work out, within an error margin, if those packets originate from the same computer,
by checking for similarities in a number of TCP/IP protocol header fields. To build up sufficient certainty that IP
addresses on the same computer have been identified, many visits to the sites in the Web Server Survey are
necessary, which takes place over a period of over a month” (www.netcraft.com/survey/index-
200106.html#computers).

This method can produce some counting errors (under-counting and over-counting) which are

reported in the Netcraft methodological notes18.

The results of the Netcraft survey on the operating systems published in June 2001 (Netcraft, 2001)

are in line with those of IDC discussed before. Microsoft Windows is the most widespread operating

system with a share of 49.6%, followed by Linux with 29.6% and Solaris with 7.1 % (Table 3.7).

Comparing these data with those on web server Software, it is useful to remind that Windows runs

less servers than Apache, which is largely adopted by hosting companies and ISPs usually running large

numbers of sites on one or few computers. Windows is most popular with end-users and self-hosted

sites, where the number of computer per host is much smaller. Netcraft reports that Linux has gained

shares, but not to the detriment of Windows. Instead, other operating systems have lost shares - mostly

Solaris and other proprietary operating systems and, and to a smaller degree, BSD operating systems.

 Table 3.7 Operating Systems Used by Computers Running Public Internet Web Sites, 2001

Operating System June 2001 March 2001
Windows (Windows 2000, NT4, NT3, Windows 95, Windows 98) 49.6% 49.2%

Linux 29.6% 28.5%

Solaris (Solaris 2, Solaris 7, Solaris 8) 7.1% 7.6%

BSD (BSDI BSD/OS, FreeBSD, NetBSD, OpenBSD) 6.1% 6.3%
Other Unix (AIX, Compaq Tru64, HP-UX, IRIX, SCO Unix,
SunOS 4 and others) 2.2% 2.4%

Other non-Unix (MacOS, NetWare, proprietary IBM OSS) 2.4% 2.5%

Unknown 3.0% 3.6%
 Source Netcraft (2001)

Diffusion of operating systems in Italy

For the Italian market we can report data from the Netcraft Survey which illustrate the adoption of

different operating systems amongst the top 20 hosting companies, which account for 63% of the total

18 For details on Netcraft’s methodology for counting computers see http://www.netcraft.com/Survey/index-
200106.html#computers.

42

number of web server operating systems. Figure 3.7 summarises the shares of Windows, Linux, Solaris

and other operating systems for respectively all sites, active sites and top 20 hosters. There are not

strong differences across these categories, and this is mainly due to the fact that in Italy most web sites

are physically hosted by few big hosting companies whose decisions heavily affect the global pattern.

Furthermore, Table 3.8 shows the adoption of Windows Linux and Solaris for the 20 Top hosting

companies ranked by number of active web sites. Only six out of 20 host companies adopt a single

operating system (either Linux or Windows) in more than 90% of their sites, while the remaining host

companies’ sites adopt two or more operating systems. Solaris is extensively used only by Telecom

Italia (20%) and SEAT Pagine Gialle (22%).

Figure 3.7 Web server operating systems, Italy – Feb. 2002

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

Windows

Linux

Solaris

Other

Top 20 Hosters -
Active Sites

All Web Sites

Active Sites

Source: Netcraft (2002b)

43

Table 3.8 Operating system adopted by the Top 20 hosting companies, Italy, February 2002.

Parenting Info Hosting Domain Total Sites Windows Linux Solaris Other
Telecom Italia interbusiness.it 65.989 47% 30% 20% 3%
Aruba.it aruba.it 64.948 100% 0% 0% 0%
Tiscali tiscalinet.it 38.578 0% 100% 0% 0%
Infostrada iunet.it 27.356 30% 15% 0% 54%
DADA SpA dada.it 20.484 27% 73% 0% 0%
BT Ignite inet.it 9.578 41% 28% 1% 29%
seeweb.it seeweb.it 9.571 11% 89% 0% 0%
9NetWeb SpA 9netave.it 8.009 97% 2% 0% 1%
217.73.227 217.73.227 5.304 0% 100% 0% 0%
Telenor nettuno.it 5.175 49% 31% 4% 16%
Blixer SpA blixer.it 4.974 66% 34% 1% 0%
Telia ita.tip.net 4.849 77% 21% 0% 2%
Worldcom uu.net 4.753 36% 61% 3% 0%
Alicom Italia alicomitalia.it 3.942 93% 7% 0% 0%
CDC SpA interfree.it 3.832 5% 95% 0% 0%
MC-Link SpA mclink.it 3.785 57% 6% 0% 37%
SEAT Pagine Gialle SpA tin.it 3.673 77% 0% 22% 1%
Cybernet flashnet.it 3.202 54% 46% 0% 0%
KPN Qwest comm2000.it 3.000 56% 41% 0% 2%
idc-ti.it idc-ti.it 2.933 95% 5% 0% 0%

Total for Top 20 Hosters (63% of Italy total) 293.935 51% 37% 5% 8%

Total for Italy (Hosted and Self-Hosted) 468.164 51% 38% 4% 7%
Source: Netcraft (2002b)

Finally, a survey of SSL sites, i.e. sites that use the SSL protocol for encrypted transactions on the

Internet, conducted in Italy by Netcraft in February 2002 confirms the lead of Windows, with a 38%

market share, followed by 25% of Linux and 10% of Solaris (Figure 3.2).

Figure 3.8. Share of operating systems in SSL sites, Italy.

Windows
48%

Linux
25%

Solaris
10%

Other
17%

Source: Netcraft (2002b)

44

To summarise the main results reported so far it is worth to recall that according to IDC’s estimates

Windows has the largest share in total shipments while Linux shows the best performance in terms of

shipment growth rates. Data collected by Netcraft on web server operating systems shows instead that

Linux is the most adopted operating system worldwide, although there are differences in the leadership

across countries.

3.4 Operating environments – revenues from open source and proprietary
platforms

While in the previous Section we have focused on the number of adopters of different software, in

this section we analyse the market shares of different platforms calculated on firms’ revenues. It is

important to remind that the comparison between open source platforms (Linux) and proprietary one

can be biased against the former because open source software licences do not allow license fees and

the average price of different distributions are considerably lower than those of the corresponding

proprietary software.

 The IDC report on Server Operating Environment (2000) shows that in 1999 and 2000 the highest

revenues have been obtained with Unix platforms, followed by Windows and Netware. Linux and other

operating systems gained much lower revenues. However, Linux, Unix and Windows experienced

positive growth rates of revenues from 1999 to 2000 (Table 3.9). Comparing these data with the

shipments data, we may observe that although Linux experienced a high share of shipments, the

revenues have been quite low. In fact, as exhibited in Table 3.10, the Linux revenue per unit of

shipment is the lowest and does not change in the two years. Unix shows the largest revenue per

shipment, which grew significantly from 1999 to 2000. Windows and Netware show lower and slightly

declining revenue per shipment ratios. Besides the different marketing models mentioned before, these

differences in prices across platforms reflect the differences in their target markets, with Unix

addressing the medium-high end segment of the market.

 Table 3.9 Worldwide Server Operating Environment Revenues by Platform, 1999-2000 ($M)

1999 2000 1999-2000
Platform Revenues Share (%) Revenues Share (%) Growth of

revenue (%)
Combined Unix 3041 56.5 3594 59.9 18.2
Windows NT/Windows 2000 1553 28.9 1719 28.6 10.6
NetWare 3.x, 4.x and 5.X 716 13.3 617 10.3 -13.9
Linux 30 0.6 38 0.6 25.3
Other NOS 40 0.7 35 0.6 -12.5
Total 5381 100.0 6002 100.0 11.5

 Source: IDC (2000)

45

Table 3.10. Revenue per unit of shipment, 1999-2000 ($M)

 1999 2000
Platform Revenue/Shipments Revenue/Shipments
Combined UNIX 3.68 4.35
Windows NT/Windows
2000

0.74 0.69

NetWare 3.x, 4.x, 5.x 0.67 0.60
Linux 0.02 0.02
Other 0.29 0.30
Total 0.99 0.98
Source: our elaboration from IDC (2000) data.

The IDC 2002 Survey on Integrated Collaborative Environments (ICE) (IDC, 2002a) shows the

revenues of ICE by Operating environments. IDC defines Integrated collaborative environments as

software that “provide a framework for electronic collaboration, typically within an organization, based

on shared directory and messaging platforms. The core functionality areas are e-mail, group calendaring

and scheduling, shared folders/databases, threaded discussions, and custom application development”

(IDC, 2002a).

 Table 3.11 shows that in 2001 Windows had the largest share of ICE revenue, followed by OS/400,

Unix and Linux and other open source operating environments. However, for 2002-2006 IDC

forecasts negative growth rates for all operating environments but for Linux.

Table 3.11 Worldwide Integrated Collaborative Environments New Software Revenues by Operating
Environments, 2000-2006 ($M)

XXXX 2000 2001 2002E 2003E 2004E 2005E 2006E 2001
Share
(%)

2001-
2006

CAGR
(%)

2006E
Share
(%)

Windows 32 and 64 1254 1192 994 853 736 645 594 75.9 -13.0 63.3
OS/400 148 117 98 83 69 59 47 7.4 -16.7 5.0
Unix 120 95 82 72 64 54 48 6.0 -12.7 5.1
Linux/otheropen source 42 55 95 133 164 190 207 3.5 30.5 22.0
Mainframe 36 31 24 21 18 15 13 1.9 -15.5 1.4
Other host/server 99 79 63 50 43 34 28 5.0 -18.5 3.0
Other single user 4 4 3 3 3 2 2 0.2 -8.7 0.3
Total 1703 1571 1359 1214 1095 999 940 100.0 -9.8 100.0
Growth (%) -21.1 -7.7 -13.5 -10.7 -9.8 -8.8 -5.9 XXXX
Source: IDC (2002a)

The market for web server software is also an increasingly important source of revenues for

software companies. The IDC survey on revenues in the Web Server Software and Web Acceleration

46

Software (WEBS)19 market (IDC, 2002b) by operating environments reveals that the revenues of

WEBS working in the Unix operating environment are expected to be the largest.

In 2001 66% of revenues from WEBS derived from sales of products running on Unix platform,

28.1 % on the Windows operating environment and lower shares in the other platforms (Table 3.12).

However, the market is expected to substantially grow from 2002 to 2006 and Windows, Linux and

other open source platforms to grow faster than Unix, by hosting more WEBS and gaining largest

market shares. Moreover, the expected growth of low price open source software could limit the future

growth of revenues in this market.

Table 3.12 Worldwide Web Server and Web Acceleration Software Revenues by Region and Operating
Environment 2000- 2006 ($M)

Operating
environment

2000 2001 2002 2003 2004 2005 2006 2001
Share (%)

2001-2006
CAGR (%)

2006
Share (%)

Unix 418.3 566.2 702.1 863.7 993.4 1138.5 1290.4 66.0 17.9 61.4
Windows 32 and
64

186.9 240.9 313.5 399.1 494.2 612.7 765.9 28.1 26.0 36.4
Mainframe 4.7 5.2 5.4 5.6 5.7 5.7 5.7 0.6 1.6 0.3
Linux/other OSS 4.5 7.6 10.1 12.4 14.9 17.8 21.4 0.9 22.9 1.0
OS/400 2.2 2.5 2.6 2.6 2.7 2.7 2.7 0.3 1.6 0.1
Embedded and
h dh ld

2.2 2.4 3.0 3.8 4.3 5.0 5.8 0.3 19.3 0.3
Other host/server 25.9 30.7 29.1 27.7 19.4 13.6 9.5 3.6 -20.9 0.5
Other single user 1.6 2.0 1.8 1.7 0.8 0.2 - 0.2 NA -
Total 646.2 857.5 1067.6 1316.5 1535.3 1796.2 2101.3 100.0 19.6 100.0
Growth (%) NA 32.7 24.5 23.3 16.6 17.0 17.0 XXXX
Source: IDC (2002b)

3.4.1. The market for Linux in Italy

In the Italian market, the opportunities of revenues from Linux are growing and are expected to

grow in the next years. A Survey conducted by Sirmi (2002) reports that the value added from the

Linux software have grown at a growth rate of 44% between 1999 and 2000, 98 % from 2000 to 2001,

and is expected to keep this pace in the subsequent years. The growth rate of services and software for

dedicated environment have been much stronger and are expected to grow faster (see Table 3.13),

suggesting that the opportunities for revenues in this market are larger for specific software

development and services.

19 Web server and Web acceleration software (WEBS) is software that “allows systems or nodes to access files stored on a
local server, or it can act as a relay station for information stored on other servers in the network” (IDC, 2002b).

47

Table 3.13 Linux Market in Italy, 1999-2003 (Value added, Millions of Euro)

1999 2000 2001 2002
E

2003
E

1999-2000
%

2000-2001
%

2001-
2002E %

2002-
2003E %

Linux 7.7 11.1 22 40.2 68 44% 98% 83% 69%
SW for dedicated
environment

- 1.8 3.6 8.2 19.3 - 100% 128% 135%

Total SW 7.7 12.9 25.6 48.4 87.3 68% 98% 89% 80%
Services 43.8 92.9 205 438 851 112% 121% 114% 94%
Total Linux 51.5 105.8 230.6 486.4 938.3 105% 118% 111% 93%
Number of Servers 9100 12300 19800 35000 53000 35% 61% 77% 51%

Source: Sirmi (2002)

This pattern is also confirmed by the analysis of the revenues of the main Linux distributors

(including two IBM partners) (see Table 3.14). It is apparent the effort of IBM to support Linux

through partnership with the main Linux distributors such as Red Hat and Suse. The revenues growth

rates of RedHat, Suse and Caldera have been impressively large, and the share of revenues accounted

for by services is substantial (Sirmi, 2001a).

Another survey on the Linux vendors in Italy (Sirmi, 2001b) also shows that most revenues come

from services and an increasing share derives from training activities, while the revenues from software

are declining (Figure 3.9).

Table 3.14 Linux distributors’ revenues– Millions of Euros

2000 2001 2000-2001 (%)
RedHat* 8.76 21.9 250 %

Software - 10
 Services - 11.9
SuSe* 3.2 12.4 388 %

Software - 6.2
 Services - 6.2
Caldera 2.06 3.5 170 %

*IBM partners
Source: Sirmi (2001a)

48

Figure 3.9 Linux Vendors’ Revenues, Breakdown by Activity 1999-2001

0%
10%

20%

30%

40%

50%
60%

70%

80%

90%

100%

1999 2000 2001

Software

Services

Training

Source: Sirmi (2001b)

49

3.5 The market for e-mail servers

There are not many data available on the adoption of other application software. Among the few

publicly available data there are those arising from a survey conducted by D.J. Bernstein between

September 27th 2001 and October 3rd 2001 on the market for email server software (Wheeler, 2002).

The survey is based on over one million of random IP addresses and shows that Sendmail is the leading

email server worldwide (Table 3.15). Microsoft Exchange and Unix qmail are the other most popular

products. Among the products reported in Table 3.15, Sendmail, Unix Postfix and Unix Exim are

open source software and cover altogether 46 % of the market.

Table 3.15 Email Server Market Shares

EMAIL SERVER(*) Market Shares
Sendmail 42%
Microsoft Exchange 18%
Unix qmail 17%
Windows Ipswitch Imail 6%
Unix smap 2%
Unix Postfix (Vmailer) 2%
Unix Exim 2%
Others 1%

(*) Sendmail, Unix Postfix and Unix Exim are OSS products.
Source: Bernstein Survey on random IP addresses (27 September 2001 - 3 October 2001).

3.6 The demand for open source software

There are not many studies available on the international demand for open source software.

In Italy a survey from Sirmi (2001b) on the Linux market reported that the target market for the

Linux vendors are large customers (like Daimler-Chrisler, BMW, Iveco, AEG, Banca d’Italia,

IlSole24Ore, SAI Assicurazioni, Sogei, Fiscali), ISP and ASP, and future efforts will be made to target

the SMEs (Small and Medium Enterprises). Ad hoc surveys can be developed to assess the demand for

open source software and the comparison with commercial proprietary software.

3.6.1. The academic market

Specific surveys have been carried out to analyse the adoption of open source and proprietary

operating system software in the academic market.

In April 1999, the Internet Operating System Counter (Zobelein, 1999) analysed all servers (running at

least http, ftp, and news services) on ‘.edu’ domains within the RIPE NCC network in Europe, Middle

East, North of Africa and parts of Asia (see http://www.ripe.net/ for more details), counted by

50

domain name. The survey shows that Windows is the first operating system in ‘.edu’ domains on the

public Internet (33.4%) followed by Solaris (22.4) and Linux (10.8 %).

Table 3.16 Operating Systems in the academic market, 1999

Operating System % adoption
Windows95/98/NT 33.4
Solaris/SunOS 22.4
Linux 10.8
Mac/Apple 8.8
IRIX 4
BSD Family 3.5
AIX 3.2
HPUX 2.8
DigitalUnix 2.8
NovellNetware 1.9
ReliantUnix/Sinix 0.8
SCOUnix 0.3
Others 5.3
Total 100

Source: The Internet Operating System Counter, www.leb.net/hzo/ioscount

Total Romtec (2001) carried out a survey on the university market for operating systems in four

European countries (Italy, France, Germany, UK and Sweden), through 588 face-to-face interviews

with research and teaching staff and PhD students in Computer Science and Computer related

Departments. They found that Microsoft operating systems are the most used for teaching purposes

(37 %) while Linux is the most used for research activities (38%) (Figure 3.10). However, there are

differences across countries. For teaching, the leadership of Microsoft is very marked in Italy (59%),

while in France and the UK Core Unix is the most adopted operating system and in Sweden the most

used is Linux (65%). In the research field Linux is the most adopted platform in all countries, except

for Sweden where Core Unix is the most used. In Italy the share of Microsoft OS is significant and very

close to that of Linux (respectively 39 % and 41 %).

51

Figure 3.10 Primary Operating Systems Used in Teaching and Research, 2001

0%

10%

20%

30%

40%

50%

60%

70%

EU UK Germany France Italy Sweden

Teaching

Microsoft

Linux

Core Unix

0%

10%

20%

30%

40%

50%

60%

70%

EU UK Germany France Italy Sweden

Research

Microsoft

Linux

Core Unix

Source: Exec deck Total Romtec, October 2001
% of respondents using of a primary OS

The Total Romtec Survey also analysed the adoption of programming languages in teaching and

research in European universities and found that C/C++ and Java are the most used language for

teaching. As far as teaching is concerned, C/C++ is the most preferred language in France and Italy

while Java is most popular in the UK and Sweden (Figure 3.11). For research activities, C++ is always

the most used language, followed by Java.

The survey also found that GNU C++ is the primary used C/C++ tool, and also the most generally

used (when multiple responses are allowed), followed by Microsoft as primary used and by Emacs as

used language (Table 3.17). As far as Java tools are concerned, Sun JDK is the most used, followed by

Emacs (Table 3.18).

It is worth to note that the tools and languages mostly used in the development of open source

projects (i.e. Java, GNU C++, Emacs) are also very extensively adopted by Universities.

Figure 3.11 Primary Language Used in Teaching and Research, 2001

0%

10%

20%

30%

40%

50%

60%

70%

EU UK Germany France Italy Sweden

TeachingAcademic Language

Java

C/C++

VB/VB Script

Other + Cobol

0%

10%

20%

30%

40%

50%

60%

70%

EU UK Germany France Italy Sweden

ResearchAcademic Language

Java

C/C++

VB/VB Script

Other + Cobol

Source: Exec deck Total Romtec, October 2001

52

Table 3.17 C/C++ tools Used in Teaching and Research - Europe 2001 (% of respondents using)

Primary Used*
MS Visual C/C++ 19% 39%
C/C++ tools other than MS (inc. 1 & 2) 67% 89%

GNU C++ (1) 37% 60%
Unix C++ (2) 14% 38%

Emacs 10% 46%
Generic tools for C/C++ other

than MS

4% 49%

Total 100 % -

Source: Exec deck Total Romtec, October 2001
* multiple answers

Table 3.18 Java tools Used in Teaching and Research - Europe 2001 (% of respondents using)

Primary Used*
MS Visual J++ 8% 16%
J/J++ tools other than MS (inc. 1 & 2) 67% 88%

Sun JDK (1) 43% 68%
IBM Visual Age for Java (2) 4% 10%

Emacs 16% 37%
Generic tools for J++ other than MS 9% 31%

Total 100 % -

Source: Exec deck Total Romtec, October 2001
* multiple answers

Finally, the survey analyses the type of licence used in the development of software and the

importance of access to the source code for teaching and research, and for the future of software

development. The survey reports that when software is developed for research aiming at the

publication of results, for teaching purposes or for research funded by the government or by the

European Union, it is mostly left on the public domain (no license is introduced). GNU/GPL licenses

and copyright are other most common strategies. When the software is developed for research funded

by the industry, the copyright is retained in most cases.

Although in some cases the scientists prefer to retain the copyright over their software, the access to

the source code is considered very important especially for research and for the future of the software

development (see Figure 3.12).

53

Figure 3.12. Importance of access to source code

65%

67%

70%

85%

52%

58%

33%

30%

3%

4%

3%

2%

11%

11%

4%

1%

13%

31%

27%

25%

2%

2%

1%

0% 20% 40% 60% 80% 100%

>=30

<=29

>=30

<=29

>=30

<=29

Very important Somewhat important Not very important Not at all important

The future of
software development

Research

Teaching

Source: Exec deck Total Romtec, October 2001

54

4. License models: a comparison between proprietary and open software

4.1 Introduction: Intellectual Property Rights and software

In the software industry the appropriability of innovation, including intellectual property rights

(IPR), is quite weak. This is in part due to the relatively young age of this industry and in part to the

characteristics of software technology.

Since the unbundling of software from hardware in 1969, which gave rise to the birth of an

independent software industry, the issue of IPR in software has become the object of a lively debate

between the advocates of a strong legal protection, which point out the importance of incentives to

innovation, and the advocates of a weak protection, which highlight the social benefits of high entry

rates, competition among different technological standards and diffusion of technological knowledge.

In line with the supporters of a weak legal protection there is a stream of the literature which makes the

point that in industries characterised by strong network externalities, such as operating systems, where

competition between alternative standards is structurally weak, IPR should be weak to guarantee entry and

competition among complementary technologies within the standard (e.g., application software) (Merges,

1996; Cohen and Lemley, 2001). The advocates of weak IPR claim that a strong IPR is not a necessary

condition to guarantee a rapid rate of change in this industry since many important software

innovations have been introduced before a strong IPR have emerged (see Merges, 1996, for a wider

illustration of this point). On the other hand, they claim that a strong IPR may have negative effects on

the rate of technical change since many important innovations in this industry have been introduced by

new firms rather than established companies (Prusa and Schmitz, 1991).

To our knowledge, this debate has not yielded so far any clear-cut conclusions as to the relationship

between IPR regime and rate of innovation in this industry. A deeper exploration of this issue however

should be addressed in future research.

To our purposes here, we begin by introducing very briefly the two traditional IPR systems –

copyright and patents. In the following sections we shall turn our attention to copyright in the context

of proprietary software and in the open source software community.

Until recently software has been considered as an intellectual activity whose products fall into the

‘artistic’ sphere and as such they should be protected by the copyright law. This law provides the author

with the rights to use, copy, modify, and distribute the code. It does not impose any obligation about

the disclosure of the source code together with the object code. Copyright holders typically sell the

right to use or modify the software to third parties through a license contract.

55

Like other mathematical formulae and mental processes, software inventions have not been

considered eligible for patent protection until recently20. During the 1980s and the 1990s the US courts

developed new doctrines that progressively recognised software as ‘useful art’ and then granted

software inventions patent protection while Europe kept a more conservative position. During these

two decades the US Patents and Trademarks Office (USPTO) has granted about 80,000 patents to

software-related inventions (Cohen and Lemley, 2001). The US courts officially recognise software

patentability for the first time in 1981. In the Diamond v. Diehr dispute21 the US Supreme Court allowed

software patents provided that they were used for running a machine or an industrial process. This

decision of the Court gave rise to ‘the doctrine of the magic words’ since after that decision a lot of

software patents were granted to software inventions associated to any physical element, even though

the only element of novelty was in software rather than hardware - ‘nearly any physical element or step

would suffice to render statutory a claim that recited’ the magic world that linked the unpatentable

software to ‘otherwise statutory process or apparatus’ (Cohen and Lemley, 2001, p. 9). Since 1994

software per se has been admitted as patentable provided that the claims explicitly referred to

‘computer programs implemented in a machine’ and the association with any physical devices was

definitely abandoned in 1998, when the Federal Circuit recognised that a “transformation of data”

producing “a useful, concrete ad tangible result” represents a practical application and is then

patentable22.

However, even before 1994 patents have been granted not only to software inventions bundled with

physical apparatus, but also to pure software in the form of data structure, data compression,

encryption algorithms, data processor for calculus. This happened because of some peculiarities of the

software technology and the institutions that govern the patent system: 1) until 1995 the Patent Office

did not hired any computer scientists among its patent examiners; 2) due to the ‘doctrine of the magic

word’ most software patents were classified in the field of physical applications (e.g., pizza ovens and

20 Courts declared mathematical formulae and algorithms as non patentable subject matter in the Court case Gottschalk v.
Benson in 1972, 409 U.S. 63 (Cohen and Lemley, 2001).
21 450 U.S. 175, 1981 (Cohen and Lemley, 2001).
22 Appalat Federal Circuit Decision F.3d 1526 (Fed. Cir. 1994) and the State Street Bank & Trust Federal Circuit Decision
149 F.3d 1368 (Fed. Cir. 1998) (Cohen and Lemley, 2001). In Europe, the European Patent Convention signed in 1973
states that computer programs ‘as such’ are not useful inventions and therefore cannot be patented (art. 52). However, a
recent of EU directive to the European Parliament has recognised the most recent doctrine developed by the European
Patent Office Board of Appeal). According to the proposal computer programs have by definition a technical dimension
and can be considered as patentable inventions. In line with the patent law, a software invention has to provide a technical
contribution in a technical field, that is advancement of the “state of the art’’ which should result non obvious to a “skilled
practitioner”. Unlike the US judicial practice, then the EU law is oriented to maintain a formal link between software and
hardware since software inventions can be protected as products (i.e., a programmed computer or computers network) or as
processes (i.e., a sequence of operations made possible by the execution of a software program). The EU proposed
directive then excludes the protection of software programs per se. Non technical inventions, like commercial methods
developed, for instance, to run e-commerce services, are not patentable in the EU while they have been granted the status of
patentable invention in the US.

56

other machines) rather than in computer science fields; and this made it difficult to keep record of the

prior art which is important to establish patent infringements.

Even today, however, the application of the standard patent law to software is problematic. Besides

the issues discussed before, it is worth to remind that technical progress in software is characterised by

a flow of incremental, modular and sequential innovations. More than in other technical fields, initial

software inventions are rapidly followed by many generations of subsequent incremental inventions

that, taken all together, may depart significantly from the initial invention. Along with modularity and

interoperability, incremental technical change gives rise to interdependences across different

generations of sequential innovations and therefore increases the probability of infringement litigations.

Another peculiarity of software is represented by the lack of formal systems of scientific and technical

documentation like publications in journals. Unlike other more established engineering fields, most

software inventions are described by the source code, which is kept secret by inventors (Cohen and

Lemley, 2001).23 It is important to note that the patent law does not impose specific disclose obligations

over software inventors. But even if the patent law were modified to impose the disclosure of source

code this would not be enough to guarantee a full disclosure of information that is a key principle of

the patent system in general. To understand the whole structure of a software programme a ‘skilled

practitioner’ has to gain access to the entire source code of the programme; however, the patented code

is normally only a subcomponent of the whole programme. But, unlike the copyright law, which allows

reverse engineering for specific purposes (‘fair use doctrine’), the patent law precludes the possibility of

reverse engineering (either black box reverse engineering and decompilation) because reverse

engineering (by decompilation) would require making a temporary copy of the programme in RAM

memory. For these reasons, some are in favour of a narrow patent scope for software (e.g., Merges,

1996; Cohen and Lemley, 2001). For example, Cohen and Lemley (2001) argue that the application of

current patent law to software should take into account the peculiarities of this industry, such as

sequential innovations and the lack of documented prior art. In light of these peculiarities a broad

patent scope in software would introduce significant distortions in the market for software technology.

To minimise the negative effects of the patent system Cohen and Lemley propose: i) the courts (and/or

the legislator) allow a limited right to reverse engineer patented software in order to allow ‘inventing

around’ existing software inventions- i.e., to gain access and study unprotected elements of patented

programs, to duplicate these elements and make improvements; ii) that the courts apply the ‘doctrine of

equivalents’ narrowly in infringements cases. This doctrine aims to establish the existence of substantial

equivalence between the elements of a patented program and those of an allegedly infringing program.

57

If the elements of the two programs appear to be interchangeable to a ‘skilled practitioner’ at the time

of the alleged infringement then the accused program does not pass the test of equivalence. Cohen and

Lemley suggest that the courts should refuse a finding of equivalence if the accused element is

‘interchangeable’ with prior art that should have narrowed the original patent or if the infringing

improvement is several generations away from the initial invention (p. 4).

 Within the current legal system, copyright, patents and trade secrets are complement both in the US

and in Europe in that the same software invention can be protected under these three laws. In

particular, the absence (copyright) or weak disclosure obligations (patents) make it possible to cover

under trade secrets the source code and to license the object, executable code against the payment of

license fees.

4.2 Copyright and licensing open source and proprietary software

The market for software is influenced by the property rights regime, which affects the scope of

property rights (from patents to copyleft), and the contractual regime, which provides the institutional

framework within which software technology can be transferred across individuals and organisations

(e.g., by different licensing arrangements).

OSS is different from proprietary software on both grounds – the property right regime and the

contractual regime. These differences are reflected in the organisation of marketing and distribution of

software products and services.

In this section we focus on different contractual arrangements (license models) that are adopted by

proprietary and open source software producers to distribute products and services.

Proprietary commercial software is distributed under licenses that usually limit the use, and deny the

possibility to copy, modify and distribute (distribution is prohibited unless the distributor pays royalties

to the copyrights holder). Furthermore, commercial proprietary software is usually protected by trade

secret. In this way commercial software companies can extract rents from their R&D activity, also

protecting their innovation from competitors. Unlike pure information, proprietary software is then

produced and distributed as a private good.

In licenses that accompany open source software, the copyrights holder maintains the right to use,

modify and distribute the software but gives up the trade secret over the source code and allow users

the same rights, therefore making the software a public good.

23 The alleged lack of information published in scientific and technical journal is something that should be proved. As a
matter of fact, there are important international journal such as the IEEE magazine, which provide access to software

58

Open Source Software has stimulated significant contractual innovations that are documented by

the proliferation of licensing schemes. In general terms, the licensing schemes define the degree of

protection of the source code, the ways in which the code can be used or distributed, the level of

enforcement of the code protection. Appendix A presents the list of software licences drawn from the

Open Source Initiative web site24. In sections 4.2 and 4.3 we group these licences into few broad

categories which share similar characteristics.

We describe four different types of software distribution (proprietary software, public domain

software, Open Source/Free software, Shared Source software) and compare them according to several

characteristics of the adopted licence models (Table 4.1).

‘Proprietary’ software

Proprietary software is software that is usually distributed in object, machine-readable (binary) code.

The copyright holder does not provide the user with the right to copy, modify and distribute the

software (this software is also referred to as ‘closed’ software by the advocated of open source

software). It is also possible that proprietary software is distributed with the source code, but the rights

of copying, modifying or distributing the source code are usually not provided to the users. However,

it is not unusual that users of (proprietary) custom or bespoke software obtain the source code along

with the object code. Proprietary software includes three categories of software: proprietary commercial

software, shareware, and freeware.

Proprietary commercial software is a closed software distributed in the form of packages in exchange

for a fixed fee (or a royalty) or bespoke programmes (e.g., applications that meet the specific

requirement of a customer).

Shareware is usually distributed on a trial basis with the agreement that the user can buy it or

extended version of it later on. For example, software developers may offer a shareware version

of their program with a built-in expiration date so that users have to underwrite a right to use

license in order to use the software afterwards (e.g., Symantec’s Norton Antivirus). Other

shareware is offered for free but with some functionality disabled, while the full version is

available for a fee. Users can redistribute copies but subsequent users have to pay a license fee

to the holder of the copyright.

scientific and technical advances .

59

Freeware is software that is offered in object form at no usage cost (no license fees). However,

only private use is allowed of the software. Licence agreements characterising freeware permit

free copy and distribution only for non commercial purposes (i.e., private use or training

purposes). In general, freeware licences claim that the ‘underwriter’ may use, copy and distribute

- for non commercial purposes - the executable software, provided that any copy contains all

the original software copyright, trademark and other proprietary notices. However, the

‘underwriter’ cannot i) modify, translate, reverse engineer, disassemble or otherwise attempt to

reconstruct or discover the source code of the software (except to the extent to which

applicable laws specifically prohibit such restrictions); ii) create derivative works based on the

licensed software; iii) rent, lease, loan or resell the software. 25

Free Software/Open Source..

Free or Open software is software whose source code is distributed together with the object, binary

software. It is distributed under license contracts that allow anyone (developer, user) to download the

source code, make modifications (further development of lines of code, debugging, etc.) and

redistribute it either for free or for a fee. The difference between free software and open source

software is to a large extent an issue of emphasis on the constraints to users to limit the distribution of

a piece of free code. The meaning of free software today is associated to the Free Software

Foundation, founded by Richard Stallman in 1983, and the GNU General Public License

(GNU/GPL) which establishes very strong users’ rights (Stallman, 1999). As a matter of fact, GPL

allows users to have access to the source code on condition that he/she will make the source code

freely available (or at the distribution costs which tend to be zero with the Internet) to third parties

(copyleft property).26 Therefore, the underwriter can distribute the object code for a fee but cannot

charge a price for the source code that must remain free. The term ‘open source’ was introduced

during a meeting held in February 1998 in Palo Alto, California by ‘hackers’ that aimed at reacting to

Netscape’s announcement that planned to give away the source of its browser. Among the participants

to this event there was Eric S. Raymond that had been invited out by Netscape to help them to plan

24 See http://www.opensource.org/ for information about OSI and OSI approved licences. See also
http://www.gnu.org/licenses/licenses.html for a complete list of licences approved by Free Software Foundation (FSF).
25 An example of freeware is Ipswitch WS_ftp. Its license claims that “Ipswitch grants you a non-exclusive license to use the
Software free of charge if a) you are a student, faculty member or staff member of an educational institution (K-12, junior
college, college or university); b) you are a United States federal, state or local government employee; or c) your use of the
Software is exclusively at home for non-commercial purposes. Government contractors are not considered government
employees for the purposes of this Agreement.”
26 It is important to remind the FSF first copyright the software and then add the distribution terms described above with
the aim of protecting the ‘freedom’ of users.

60

the release and subsequent actions. After the announcement a part of free software developers realised

that it was possible to build a strategy to show to the business world the superiority of an open

development process. It was decided to substitute the term ‘free software’, often associated to an

idealistic position against commercial software, with the new label ‘open source’ contributed by Chris

Peterson (www.opensource.org/history.html). When the Open Source Initiative (OSI) was created in

February 1998, the Open Source Definition was derived from the Debian Free Software Guidelines

edited by Bruce Perens in 1997, removing Debian’s specific references

(www.opensource.org/definition.html). The OSI approach to users’ rights and intellectual property

rights is more pragmatic than that of the FSF. To put is simply, underwriters of GNU/GPL licences

sponsored by the FSF accept the idea underlying the ‘viral clause’ according to which any derivative

work of a program licensed under the GPL has to be distributed under the same licence scheme. This

applies to “any work that you distribute or publish, that in whole or in part contains or is derived from

the Program or any part thereof”. The Open Source Initiative allows license arrangements that give up

the ‘viral clause’ and therefore permits that combinations of proprietary and non proprietary software

are distributed in bundles27. According to the OSI this approach aims to establish an easier ground for

marketing free software overall (www.opensource.org). Neither OSI nor FSF however are against

commercialisation of software since they share the view that what matters to guarantee user’s freedom

is the access to the source code of the program, not the cost of the (object) code that can be charged

to the user (hence free or open software as ‘free speech and not free beer’, see

www.gnu.org/philosophy.html). Even if we do not explicitly distinguish between free and open

source software, the differences between these two approaches are reflected in the license models

analysed here.

Often the terms freeware and free software are confused. Richard Stallman has clarified that “free it’s for

freedom and not for price” (see http: // www.gnu.org / philosophy / categories.html for further

details). The term ‘free’ software refers to the right of using, modifying and distributing the source

code, not to the possibility of getting the software without paying. By contrast, freeware can be freely

downloaded without paying a fee but the source code is not supplied and reverse engineering is not

allowed

27 The OSI claims that only software linked with GPL-ed libraries forming a single work inherits the GPL, not any software
which is distributed with GPL-ed Libraries (www.opensource.org/docs/definition.html).

61

Shared Source code

This is software distributed both in the form of object and source code in order to allow particular

customers, partners, and developers (such as big companies, public administration, and university) to

solve problems or to adapt the software to specific needs. For example, Microsoft offers different

license agreements to specific customers allowing to analyse and reference source code, adapt it to

specific purposes such as enhancing system’s security, customise the software for high-end customers,

adapt hardware, and research-didactical uses. However, users generally have not the right to modify and

distribute the software except for licensing programs applied to universities and other research

organisations28. According to Microsoft29 this new licensing policy is flexible enough to guarantee the

satisfaction of specific users’ needs. In addition, it improves feedbacks and debugging while maintaining

the intellectual property rights “needed to support a strong software business”.

• Public domain software is software for which the developer has given up all his/her copyright (or

these rights have expired). So there is no ‘ownership’ over the software that can be freely copied

and distributed. Since public domain software is available in the form of source code, it can be

modified, packaged and sold at a price above zero. It is one of the most popular way for

distributing software in the scientific community.

In this section we compare these four types of software distribution according to the following

characteristics of the license contracts :

• Source code availability: availability of the source code together with the object code;

• Underwriter’s patrimonial rights: right to use, copy, modify and distribute the original code;

• Underwriter’s moral rights protection: degree of protection of moral rights like the acknowledgement of

authorship;

28More precisely, Microsoft provides license agreements that allow business enterprises, system integrators, governments,
and OEMs (Original Equipment Manufacturers) to analyse and reference the source code of Microsoft platforms (Windows
2000, Windows XP, and Windows.Net Server) under a non-disclosure agreement; however, the underwriters of these
particular licenses cannot modify the source code. Microsoft Research Source Licensing Program authorises faculty, staff
and students to use, reproduce, and modify Windows platform source code for “educational purposes and sponsored
government and commercial research” (www.microsoft.com/licensing/sharedsource/licensing); the agreement may be
extended also to organisations affiliated with a university research centre. Moreover, Windows CE Shared Source Licenses
Program “allows the user to access more than 1.5 million lines of Windows CE source code for any non-commercial
purposes, including distributing derivative works” (www.microsoft.com/licensing/sharedsource/licensing). Further details
on Shared Source Licensing agreement, including C#/Jscript/CLI implementation Shared Source Licensing and Windows
CE .Net Shared Source Academic Curriculum License, are available at
www.microsoft.com/licensing/sharedsource/licensing.
29 “The Microsoft Shared Source Philosophy” at www.microsoft.com/licensing/sharedsource/philosophy.asp/ and “The
Commercial Software Model”, May 3 2001, at www.microsoft.com/presspass/exec/craig/05-03sharedsource.asp/.

62

• Initial developer’s ‘special’ rights. We check whether individuals or organisations that hold the copyright

have any right that people whom the software is distributed do not have;

• Is the software under the licence gratis? We analyse whether the software is available without paying a fee

and whether people who receive the rights from the copyright holder can apply a fee or sell

software packages based on the covered code;

• Provisions for warranty, liability, responsibility for claims. We analyse the responsibility towards users and

third parties (e.g., holders of property rights over software distributed under traditional license

arrangements).

• Provisions for third party claims. We analyse whether the licence contains explicit rules for third party

claims;

• Compatibility with National Laws. We analyse whether the rules established by the licence are in

conflict or not with national laws; we also check whether each rule contained in the license can be

enforced without problems in any jurisdictions;

• Litigations/Conflicts/Violations. We analyse whether the licence contains explicit rules for litigations,

conflicts or violations.

Table 4.1 summarises the above characteristics for the four types of software distribution and

highlights different levels of attribution and protection of patrimonial and moral rights in Open Source

and proprietary software distributions. At this stage of our analysis we compare different types of

distribution with a ‘representative’ OSS licence which takes into account the common features of

different OSS licenses. In the next section we enter into the details of the most popular OSS models.

Some general issues emerge from the comparison of these licenses.

First, while all OSS licenses overall guarantee the source code availability, proprietary software

licences generally do not allow the access to the source code. This restriction is an important constraint

especially for sophisticated users (like scientists) or for users who need the source code to develop

custom software. Shared Source licences meets in part these categories of users and represent an

exception among proprietary software.

Second, proprietary licences do not provide the right to copy, modify and distribute the software,

and impose several rules on the use. For example, they often include limitations on the number of

machines on which the software can be installed and the location of the machines. By contrast, OSS

licenses ensure that users are free to use and copy the software without limitations. However, as we

shall see later on, there are also significant difference across OSS licences, with the GPL being the most

rigid in protecting the ‘freedom’ of users to see and modify the original source code even when free

63

software is distributed in combination with ‘non free’ software. The implications of the ‘copyleft

property’ and the ‘viral clause’ mentioned before will be analysed at length in the next section.

Third, proprietary licenses seem to fit better with national laws than OSS in general. For example,

the ‘viral’ clause of the GPL can conflict with the copyright law when the author of modifications or

integration to the original covered code can demonstrate that those modifications are original

intellectual works which rely on the original GPL covered code only to a limited extent. Moreover, the

GPL does not contain explicit export rules and can conflict with restrictions on exporting particular

kinds of software – such as source code for encryption algorithms - to certain countries. On the other

hand, license contracts for proprietary software are usually written for the purposes of specific

customers and countries and even when this is not the case (e.g., with widespread software packages

such as Office or SAP) the standard license contains explicit rules for making it compatible with

national laws (for example specific rules about limitation of liability and the possibility to do reverse

engineering) of the country in which the package is distributed. For example, the Microsoft Windows

98 license claims that if the software is bought in an European country it is forbidden to convert, de-

codify, de-compile, and disassemble the code beyond the purposes allowed by national laws.

Proprietary licenses written for specific categories of customers and different purposes may contain

explicit rules for solving third party claims and litigations, conflicts and violations.

Finally it is important to remark that, even though OSS generally is not against commercial software,

there are significant differences between proprietary and OSS licenses. Users typically do not buy a

proprietary software, they only acquire the right-to-use against the payment of a royalty or a fee.

Therefore proprietary software is ‘owned’ by the original developer who ‘holds’ the intellectual property

protected by patents and/or copyright.30 The level of the right-to-use fees is a function of the perceived

value of the software and the competition in the market for that particular software.

In the OSS community original developers possess the original code and as such they are holder of

copyright to it. As Eric Raymond has recently claimed “the owner of a software project is the person

who has the exclusive right, recognised by the community at large, to distribute modified versions”

(emphasis in the original) (Raymond, 2001, p. 71). How this right is used by the holder depends on the

characteristics of license contracts. In general, in the OSS context users are free to use, copy, modify,

and distribute software without paying any royalty but he/she may be asked to pay a fee in order to

download the code, or may buy directly a low price package containing the OSS software. Even the

GPL, which is the most extreme type of OSS license model, explicitly allows to charge a fee for the

physical act of transferring a copy of the source, and allows to offer warranty protection in exchange

30 An exception is represented by bespoke software whose property is often transferred to customers.

64

for a fee. At the same time the possibility to sale the software in executable form is not explicitly

excluded but no (right-to-use) license fee is allowed under this licence scheme (see Hecker, 2000, p. 4).

Table 4.1 A comparison of different software distribution models

LICENCE ‘Proprietary’ software Shared Source Free/Open Software Public Domain
Software

Commercial:
Microsoft Office

Shareware WinZip,
Norton Antivirus (trial

version)

Product Examples

Freeware Microsoft
Internet Explorer,

Eudora Email 5.0, Tcl

Windows 2000, XP,
.Net Server for

Enterprise, System
Integrators,

Governement, OEM
and Research
Organisations;

C#/Jscript/CLI
implementation;

Windows CE .Net

Gnu-Linux, Red Hat
7.2, SuSe, AA-Lib.,
PHPLib, Netscape
Navigator, Xfree86

SQLite, PHP pdf
creation, CMU
Common Lisp

Source Code Availability No Yes, conditioned Yes Yes
Right to Use Yes, conditioned Yes conditioned Yes Yes
Right to Copy Not generally;

Freeware licences allow
copying for non-profit

purposes

Yes, conditioned.
Microsoft Research
Source Licensing

Program gives the right
to reproduce source code.

Yes Yes

Right to Modify No Yes, conditioned.
Microsoft Research
Source Licensing

Program gives the right
to modify source code.

Yes Yes

Right to Distribute Not generally;
Freeware licences allow

distributions for
non.profit purposes

Yes, Windows CE .Net
Shared Source

Academic Curriculum
License admits

distribution for non-
profit purposes.

Yes, conditioned Yes

Moral Rights Protection Yes Yes Yes No
Initial Developer ‘special’
rights

Yes Yes Yes (No in the case of
BSD)

No

IS the software under this
licence distributed for
free?

In general it is NOT for
free. The right to use is
transferred against the
payment of licensing

fees. Only freeware is
always available for free

No, the right to deal
with the source code is

usually transferred
against the payment of a

fee

Generally MAY BE
gratis (no right-to- use
license fees), but a fee
can bee charged for

distributing copies of
the software

Yes

Warranty/Liability/
Claims

Total disclaimer of
warranty; limitations on

liability

Total disclaimer of
warranty; limitations on

liability

Total disclaimer of
warranty; limitations on

liability

No explicit rules

Third Party Claims Explicit rules depending
on contractual

agreement among
parties

Explicit rules depending
on contractual

agreement among
parties

From total disclaimer of
responsibility (GPL,
LGPL) to absence of
explicit rules (BSD)

No explicit rules

National Laws Total compatibility Total compatibility Problems of
compatibility could arise

(GPL, LGPL)

Total compatibility

Litigations/Conflicts/
Violations

Explicit rules depending
on contractual

agreement among
parties

Explicit rules depending
on contractual

agreement among
parties

No explicit rules except
for MPL/NPL

No explicit rules

65

4.3 An overview of the principal OSS Licence models

All OSS licences share a set of fundamental characteristics. First, they specify if an individual or a

company producing the code has the copyright on it. Second, they contain rules that provide the users

with a list of rights (to use, modify, and distribute the software) and obligations (i.e., citation of the

author in each of the following distribution). Third, the copyright holder often introduces rules in order

to guarantee that any work derived from the original product is also open source. Despite these

common features, OSS licence schemes differ with respect to other basic characteristics such as the

degree of source code protection from free riding behaviour, the complying with commercial business

models and with national and international laws.

This section analyses OSS licences with the aim of highlighting two main aspects. First, we

investigate which licences better guarantee the contributor or the user of open source software to

develop ‘proprietary’ software together with open source software and commercialise them as a whole

work or separately. Second, we analyse whether and to what extent the licences guarantee that open

source software cannot be appropriated by free riders (i.e., individuals or firms that develop proprietary

software by using open source software without complying with the OSS rules). These specific

properties, together with the general ones analysed in Table 4.1, make it possible to distinguish the OSS

licences that can be used to support sustainable business models from OSS licences that do not

guarantee software developers and distributors to extract rents from their activities.

We analyse four OSS licences models, adding to the general characteristics illustrated in Table 4.1

the following properties that are specific to OSS software:

• ‘Mixability’ with other OSS licensed products. We analyse whether the software under a specific licence

can be combined with and distributed as a part of other OSS-licensed products;

• ‘Mixability’ with proprietary licensed products. We analyse whether the software under a licence can be

combined with and distributed as a part of proprietary-licensed products;

• Degree of openness protection. This amounts to see the degree of protection of the users’ rights to use,

modify and distribute software: we analyse whether the licence preserves from the risk that part of

the covered code is appropriated by individuals or organisations who violate the rights of

contributors and users. The maximum degree of protection is ensured by the ‘copyleft’ property.

As mentioned before, ‘copylefted’ software is software distributed with the source code and whose

distribution terms do not allow the distributor to add any restrictions that limit the right of using,

modifying and distributing the software;

• GPL compatibility. A license is compatible with GPL when the code under its terms can be

combined with modules of GPL-ed covered code to form a larger work that could be distributed.

66

The license schemes analysed here - GPL, LGPL, MPL/NPL and BSD - were selected because each

represents a template for many other subsequent licences approved by the Open Source Initiative. In

what follows, we briefly describe the history and peculiarities of these four templates and illustrate their

main differences (see Table 4.2)31.

4.3.1. The GPL

The GNU General Public License (GPL) was developed by Richard Stallman in 1988 to prevent

that parts of GNU32 Project’s code could be subtracted from free distribution among users and

developers. The first version of this licence was applied to the free text editor Emacs and then made

extendable to any application in 198933. The GPL has the highest degree of openness protection

among the OSS/free software licenses. This licence assures that the source code available and free

through a complex set of rules such as: a) the ‘copyleft’ property claiming that distributors cannot add

any other rule on the covered code to constraint the users’ freedom to copy, modify and distribute the

source code (neither they can charge a license fee); b) the ‘viral’ clause requiring that any derivative

work based on software covered by the GPL, as well as any new code merged with GPL-ed code, must

also be distributed under the GPL conditions34.

These two rules are intended to ensure that a software developed freely by a community of

volunteers cannot be appropriated by producers and distributors of proprietary software. They also

tend to discourage the use of GPL-ed code in commercial development by traditional software

companies and other for-profit organisations.

The introduction of the GPL is viewed by its advocates as a major challenge to the established

institutions of intellectual property right. By contrast, legal experts claim that it can be simply viewed as

a new type of contract through which copyright holders commit themselves to a non conventional use

of their patrimonial and moral rights over their intellectual works.

What is certainly true is that the diffusion of the GPL through software products like Linux has

challenged traditional licenses and established business strategies.

For the purposes of commercial distribution, however, the GPL is problematic since it discourage

the combination of proprietary software and open source software. The ‘viral clause’ is problematic for

31 Appendix B contains a detailed description of the characteristics of these OSS licenses.
32 The GNU Project was launched in 1984 to develop a complete free Unix-like operating system - the GNU system (GNU
is a recursive acronym for ``GNU's Not Unix''). The terms “free” software refer to users' freedom to run, copy, distribute,
study, change and improve the software (see www.gnu.org and www.gnu.org/philosophy/free-sw.html for further details).
33 For a GPL detailed history see www.free-soft-org/gpl_history.
34 A derivative work of a GLP-ed program is defined as “any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof”.

67

those who aim to use GPL-ed code to develop proprietary software and for proprietary software

developers who aim to convert a proprietary software into an open source software. Consider, for

example, a proprietary software which share some source code with other proprietary software of the

same firm or includes third party proprietary code. Once the proprietary software becomes GPL

covered software all other products that share with it a piece of source code become derivative works

and as such must be comply with the GPL (see Hecker, 2000, p. 12). For a detailed description of the

GPL see the Appendix B.

4.3.2. The LGPL

The GNU Library General Public License (LGPL) was developed by the Free Software Foundation

in 1991 in order to permit the use of free libraries of programs into ‘proprietary’ executable

programmes. The LGPL share with the GPL all restrictions described before. Unlike the GPL,

however, it allows a proprietary programme to call LGPL–ed code (e.g., routines) without the

derivative work becoming a GPL work. This makes the LGPL less restrictive than the GPL allowing

the use of the code in proprietary works. Only changes to the LGPL library itself have to be distributed

under the LGPL terms. The LGPL license is completely compatible with the GPL license.

4.3.3. MPL/NPL: The Mozilla Public Licence and Netscape Public Licence

The Netscape Public Licence (NPL) was created in 1998 by Netscape in order to distribute its

browser (Navigator) under an open source licence. At the same time, they created the Mozilla35

Organisation and the mozilla.org web site for stimulate developers to collaborate on this project. The

Mozilla Public Licence (MPL) is virtually the same as NPL, except that NPL contains a set of rules that

Netscape reserves for itself, i.e., NPL gives to Netscape the privilege of re-licensing modifications made

by contributors under other distribution terms and to keep private any modification that they want to

use for specific purposes. This provision is due to the fact that when Netscape decided to make its

product free, it had already signed contracts with companies that committed Netscape to distribute the

software Navigator under closed licensing terms. As a matter of fact, MPL was created in order to solve

this problem.

4.3.4. The BSD licences

The BSD licence was originally used for the Unix distribution released by the University of

California at Berkeley (BSD stands for Berkeley Software Distributon). BSD is a non-copyleft, free

35 Mozilla is the name of both the open source project to create a free web browser and the browser itself.

68

software licence and is the most permissive among the OSS/Free Software licences. The copyright

holder gives the permission to use, copy, modify and distribute the software almost without limitations,

provided that a copyright notice and a disclaimer of warranty is included in each copy distributed.

Furthermore, the underwriter has to be fully informed of the rights provided by the licence. It is

possible to modify and distribute the software in the form of object code without distributing the

source code.

The comparison of OSS licences reported in Table 4.2 points out several commonalties but also

some relevant differences among them.

The first part of the table, which includes the same characteristics included in Table 4.1, suggests

that OSS licences share most basic characteristics, except for a few cases, i.e. the BSD licence does not

include initial developers special rights. Moreover, the conditions under which the distribution is

allowed with the BSD are slightly different than with the GPL since the BSD does not include any

obligation to distribute the source code nor limitations on the possibility to sell the software. In

addition, the MPL includes explicit rules in order to solve third party claims and litigations, conflicts

and violations. It is also more compatible with national laws both because it does not contain any ‘viral’

clause and because it explicitly claims that the license shall be subject to the jurisdiction in which the

software is distributed.

The analysis of characteristics specific to OSS licenses suggests that licensing models like the MPL

and the BSD seem to be more appropriate for business actors compared with the GPL licence, which

does not allow to merge source code under GPL with proprietary software. As mentioned before, the

‘viral clause’ create problems for individuals and business firms that aim to develop or distribute

software programs under different licence schemes. The LGPL license presents almost the same

problems as the GPL but they can be used in commercial proprietary software that uses LGPL libraries

without modifying or including them in the executable code.

By contrast, the MPL and the BSD licences do not impose any ‘contamination’ clause on OSS users

and as such are compatible with proprietary software. Compared to the MPL, the BSD license does

not impose restrictions on source code availability but, on the other hand, it has the lowest degree of

protection of openness so that the code distributed can easily be appropriated by developers or

distributors of proprietary software.

Finally, Table 4.2 shows that all OSS licenses models allow for distribution fees (not license fees)

and therefore provide private incentives to commercial distributors.

69

The Appendix D reports data on the diffusion of different licenses in open source software projects.

These data were obtained by analysing over 40,000 open source projects at different development

stages (SourceForge, 2002). Over 94.9% of all projects adopt an OSI approved license and about 80% a

GNU/GPL or a LGPL license.

The analysis of these data suggests that despite the existence of 32 OSI approved licenses (most of

them created to better perform in the business world), the great majority of open source software is

distributed under GPL terms. In our view this could depend on several factors.

First, the GPL license strongly prevent any attempt to include in commercial ‘proprietary’ products

any software developed by individual programmers or by new, small business companies that develop

and distribute OSS. Second, there could be a ‘lock-in’ effect due to the fact that most OSS actors are

either developing software based on GPL-ed software (Linux, for example) or are using GPL-ed

software to develop their own applications. Finally, it is possible that free software ‘evangelists’ use

GPL as an instruments against commercial software and push for GPL-ed software diffusion. Although

these hypothesis have not been tested yet, our interviews strongly suggest that commercial players

operating in the OSS world perceive the GPL as the licensing scheme that better protect their

development efforts from free riding behaviour while permitting to benefit of a large pool of talented

developers. Also, the GPL licensing scheme ensures new entries that the OSS they develop is not

appropriated by their own customers.

70

Table 4.2 OSS licences

LICENCE GPL LGPL MPL/NPL BSD licence type
Product Examples Gnu-Linux, Red Hat

7.2, SuSe
AA-lib, PHPLib,

Quicktime for Linux
Netscape Navigator Xfree86, Tcl, Wine

Source Code Availability Yes Yes Yes Yes
Right to Use Yes Yes Yes Yes
Right to Copy Yes Yes Yes Yes
Right to Modify Yes Yes Yes Yes
Right to Distribute Yes, conditioned to

a) source code
availability;

b) notice about
modifications

Yes, conditioned to
a) source code

availability;
b) notice about
modifications

Yes, conditioned to
a) source code

availability;
b) notice about
modifications

Yes, conditioned to
attach copyrights

notice and
disclaimer of
warranty and

limitation on liability
Moral Rights Protection Yes Yes Yes Yes
Initial Developer ‘special’
rights

Yes Yes Yes. No protection.

Is the software under this
licence gratis?

Yes, it is generally
gratis, but fee is

allowed and sales are
not banned

Yes generally gratis,
but fee is allowed
and sales are not

banned

Yes generally, but
both sale and a fee

are allowed

Yes generally gratis,
but there are not

rules that ban sales
and fees

Warranty/Liability/
Claims

Total disclaimer of
warranty; limitations

on liability

Total disclaimer of
warranty; limitations

on liability

Total disclaimer of
warranty; limitations

on liability

Total disclaimer of
warranty; limitation

on liability
Third Party Claims No explicit rules No explicit rules Yes, explicit rules

are included
No explicit rules

National Laws Problems of
compatibility could

arise

Problems of
compatibility could

arise

High compatible High compatible

Litigations/Conflicts/
Violations

No explicit rules No explicit rules Yes, explicit rules No explicit rules

SPECIFIC CHARACTERISTICS OF OSS LICENCES
‘Mixability’ with OSS
Licensed Product

Yes Yes Yes Yes

‘Mixability’ with Proprietary
Licensed Product

No Yes Yes Yes

Degree of ‘openness’
protection

Maximum
protection by

‘copyleft’ property

Maximum
protection by

‘copyleft’ property

High-Medium
Protection

Medium-Low
Protection

Is the licence GPL
compatible?

- Yes, high
compatibility

Partial compatibility Partial compatibility

71

4.4 Other OSS licenses

In addition to the licenses described above there are a considerable number of other licenses

allowing source code modifications and distribution. Among them, the licenses approved by the OSI

(Open Source Initiative) are 32. The OSI list include GPL, LGPL, MPL and BSD, but not the NPL

license that gives Netscape proprietary rights for modifications made to the software. Netscape

contends that the last version of its license, the NPL 1.1, satisfies the OSI criterion but the license has

not been included in the list yet. Most OSI approved licenses can be clustered in four main groups. As

Table 4.3 clearly shows, the majority of these licences are modelled around the MPL and the BSD

templates.

Table 4.3 OSI Approved Licenses grouped by similar characteristics

MPL like licenses BSD like licenses Others

Pure BSD
� MIT License
� University of Illinois/NCSA
Open Source License
� X.Net License

� Sun Public license
� Motosoto Open Source License
0.9.1
� Jabber Open Source License
� Nokia Open Source License
� Ricoh Source Code Public
license
� Sun Industry Standard Source
License (SISSL)

BSD plus additional rules
� Apache Software License
� Eiffel Forum License v.1
� Intel Open Source License for
CDSA/CSSM
� Sleepycat License
� Vovida Software License 1.0
� W3C License
� Zope Public License

� Zlib Licence
� Open Group Test Suite License
� IBM Public License 1.0
� Common Public License 0.5
� Apple Public Source License
� MITRE Collaborative Virtual
Workspace License (CVW License)
� Nethack General Public License
� Artistic License
� Q Public License
� Python License
� Python Software Foundation
License

4.4.1. MPL like licenses

� The Sun Public License is obtained from MPL 1.1 by substituting the term “Mozilla” with

“Sun”.

� The Motosoto Open Source Licence 0.9.1 and the Jabber Open Source License are derived

from MPL applying some ‘cosmetics’ changes. Furthermore, both licenses explicitly claim that 1)

the license grants exclusively the right indicated in it, and does not apply to any other intellectual

property right hold by the licensor; 2) the license does not grant rights on licensor’s trademark, and

3) it does not prevent licensor to license covered code under different terms.

72

� The Nokia Open Source License (NOKOS Licence) is derived from the MPL 1.1. Nokia made

the following changes to the MPL36: 1) Nokia will be the only user of its license, that is in addition

to using the company name throughout the license, it removed the provision of the MPL that

permits others to use it as a template for new licenses; 2) Nokia limits its liability to US$50; 3) This

license is to be interpreted under the copyright law.

� The Ricoh Source Code Public Licence is a mix between MPL v. 1.0 and MPL v. 1.1 plus

explicit rules on trademark usage. For example rules concerning contract termination are drawn

from MPL 1.1, whilst both rules about grants given up by the copyrights holder and contributor,

and rules on claims, are from imported MPL 1.0. The trademark usage clause claims that: 1) All

advertising materials mentioning features or use of the Governed Code must display the

acknowledgement that the product includes software developed by Ricoh; 2) The names "Ricoh,"

"Ricoh Silicon Valley," and "RSV" must not be used to endorse or promote contributor versions

or larger works including the original covered code without the prior written permission of the

company; 3) Contributor versions and larger works including original covered code cannot be

called "Ricoh" nor may the word "Ricoh" appears in their names without the prior written

permission of the company.

� The Sun Industry Standard Source Licence (SISSL) is a MPL like license but distributions

obligations are different: 1) only the Initial Developer can grant, with the license agreement, any

right to copy, modify, and distribute to users. It is worth recalling that the MPL license instead

contains two license models, one from the Initial Developer and another one for other

contributors, and sets the rules about third party claims and patents that contributors have to

follow; 2) any modification has to comply with a standard defined in the license body; otherwise,

3) like in MPL, any deviation from the standard protocol and the documentation of the process of

modification have to be published. Modifications have to be distributed in form of source code.

4.4.2. The BSD like licenses

It is possible to classify the BSD like licenses in two groups: 1) licenses created by university

institutions that simply adopt the scheme of BSD (pure BSD); 2) BSD like licenses that add further

provisions such as trademark and distribution clauses (BSD plus additional rules). Among the latter, the

licences enforced by companies or organisation that commercialise their products, include a clause on

trademark (Apache, Vovida, and Zope).

36 These differences are extracted from OSI commentary at www.opensource.org/licences.

73

� The MIT License is a simplified version of the BSD license.

� The University of Illinois/NCSA Open Source License is obtained directly from BSD licence.

� The X.Net License is a simplified version of BSD license.

� The Apache Software Licence is a BSD license plus a trademarks options and an

acknowledgement requirement.

� The Eiffel Forum Licence v. 1, is a BSD license plus a distribution rule. The license allows the

object code distribution, but if the binary programs depend on a modified version of the covered

code, the distributors must publicly release the modified version of the source code.

� The Intel Open Source Licence for CDSA/CSSM is obtained by adding to a BSD licence an

export notice that attributes to the licensee the responsibility to comply with any export regulations

applicable in the licensee jurisdiction.

� The Sleepycat License is a BSD like license plus a distribution provision ensuring the availability

of complete source code that resembles the GPL rule.

� The Vovida Software Licence 1.0 is a BSD license plus a trademark clause stating that the

software derived from Vovida’s “Vocal” software, cannot be called “Vocal” nor it can contain the

term “Vocal” in their name without prior written permission by the company.

� The W3C License is a BSD like license plus a distribution rule. The license gives the right to use,

copy, modify, and distribute the original covered code with or without modifications. Furthermore,

it states that the distributor has to attach to all copies of the software, including the modifications,

any pre-existing intellectual property disclaimer, notice, or term and condition. Notice of any

change or modification to the W3C files, including the data of changes, are required.

� The Zope Public Licence (ZPL) is a BSD like licence plus a distribution and a trademark rule.

The license states that if a file is modified, the ‘underwriter’ has to include in the following

distribution a notice stating what has been changed, when the modification occurred and the

author of modifications. Furthermore, ZPL states that the licence does not give to the user the

right to use Zope Trademarks or Servicemarks. The use of them is regulated in a separate

agreement.

The other OSI approved licenses, amongst those listed above, show peculiar characteristics mainly

associated to the type of product, market, organisation or company that distribute the software.

74

Appendix B reports the complete list of licenses approved by the Free Software Foundation. The list

includes three categories of licenses: i) GPL-compatible free software licenses; ii) GPL-incompatible

free software licenses; and iii) non-free software licenses (http://www.gnu.org/licenses/licenses.html).

All free software licenses - both in the first and in the second category - guarantee the distribution of

source code and the freedom for users to copy, modify and distribute it. They are approved by FSF, but

they differ with respect to the GPL-compatibility. The difference between the first two categories

depends on whether the code under the license can, or cannot, be combined with modules of GPL-ed

covered code to form a larger work that could be distributed. GPL-incompatible free software licenses

are those that cannot be combined with modules of GPL-ed in the sense stated above, whilst GPL-

compatible licenses can. Non-free software licenses are those for which the right to deal with source

code and its distribution are limited in some way, therefore FSF does not approve them (see below the

reasons to reject Apple Public License). Comparing free FSF approved licenses with OSI approved

license we note that the FSF has approved 15 license more than the OSI. We have not analysed yet the

reasons for this differences. There are five licenses (Guile License, Gnu ADA Compiler License,

Standard ML License, iMatrix License and OpenLDap License version 2.7) that are GPL compatible

but are excluded from the list of the OSI. Public licenses adopted by Arphic, xinetd, Open Ldap 2.3,

Vim, Phorum 1.2, Latex, Netizen, Interbase 1.0, Freetype, and PHP are free software-incompatible

licenses ‘approved’ by the FSF but not are OSI approved. Finally, note that FSF does not consider the

Apple Public Source License (APSL) as a free software license, whilst OSI has approved it. This is

because Apple Public License claims that any modified version developed by an organisation, for

internal use or for distribution within the organisation (except for R&D use and/or personal use) has to

be published. APSL then seems to violate users’ and developers’ freedom. The reasons why OSI does

not recognises this violation will be subject of further analysis.

75

5. The economics and business of open source software

Several recent works have studied the Open Source Software phenomenon focusing on different

issues: the incentives to develop software without monetary compensation, the heterogeneity of users

preferences that induce their involvement in the innovation process, the competition between OSS and

proprietary software, the business models for making profits from open source software (see, for

example, Lerner and Tirole, 2000; Lakhani and von Hippel, 2000; Franke and von Hippel, 2002).

These studies point out different reasons for the rising diffusion of OSS products. Our work focuses

on the incentives and organisation of different agents involved in the development of OSS –academic

institutions, communities of hackers, commercial developers, pure distributors and, more recently,

established proprietary software firms.

These agents contribute to technical progress and diffusion of OSS in various ways. They show

different strategies – from vertical integration to specialisation in specific activities such as development

of core products (e.g., kernels), packaging and commercial distribution of legacy OSS products (e.g.,

Linux and Sendmail).

Figure 5.1 illustrates different actors and their location in the space of R&D and commercialisation

activities.

Figure 5.1. Actors and Activities

 Activities/
Institutions

Basic/applied

research

Development Distribution Services

Academic institutions XXX X - -

Non profit developers
(individuals and OSS
communities)(1)

? XXX X X

OSS commercial
developers

? XXX XX XX

OSS pure distributors - - XXX XXX

Proprietary firms (2) XXX XXX XX XX
Legend: X = of limited importance; XX = important; XXX = very important.
Notes: (1) This category includes sophisticated users such as web administrators and scientists engaged in developing tools
or software programs to support their core research activity. (2) This category includes producers of complementary
products like computers and books.

In the OSS world, besides the academic institutions (that distribute their free software) and hackers

communities associated to the FSF and the OSI, who focus on development activities and are not

engaged in distribution, there are new companies developing new software, with the contribution of

voluntary developers, which aim to make profits not primarily from software (which can be given for

76

free or for a limited fee) but on related services. These firms download open source software from the

Internet, package the software and sell installation and maintenance services. They face low barriers to

entry, because they make very small investments in software development - e.g., add-ons like GUIs and

customisation of kernels to specific user need.

At the opposite side, incumbent proprietary firms carry out different software development

activities, including programming, and typically do not disclose the source code of their programs. They

also provide technical support and related services. These companies do not have incentives to disclose

information, but on the contrary to protect it by means of various instruments of legal protection

(copyright, patents and trade secrets). For reasons discussed later, some of these firms have begun to

disclose some source code. However, sometimes established proprietary companies have disclosed their

source code only in later advanced stages of their innovation process, or after having internalised most

of the returns from innovation. In some instances, the reaction of commercial firms to OSS appear to

be too late and too little. For instance, Netscape’s decision to make part of its browser source code

(Mozilla) open is probably too late if we consider that in 1998 the fundamental features of Nescape’s

Internet browser have been already developed and probably only minor improvements remained to be

introduced. Moreover, a commercial firm cannot easily credibly commit itself to an OSS project (Lerner

and Tirole, 2000).

All individuals and institutions engaged in OSS production and commercialisation share a common

key feature that is the disclosure of the source code to users. The reasons why source code is disclosed

vary across different categories of agents. In general, however, what is most challenging to the

economic theory is why rational agents voluntarily reveal their information if they know that its

economic value will tend to zero afterwards. If we believe that OSS can be represented as a ‘gift

economy’, where non-pecuniary motives, such as the desire to reciprocate or the desire to avoid social

disapproval, are more important than monetary incentives, then the source code is used to signal to the

OSS community our adherence to the social norms of that community.

Then the question arises as to what are the benefits and costs of being part of that community. A

related question is whether this community can be compared with the community of ‘open science’. As

David (1991) and Dasgupta and David (1987, 1994) have noted, individuals and organisations engaged

in open science share social norms and institutions that are different from those of industrial research

or ‘technology’. Scientists aim at full disclosing their discoveries, public replication of results and

verification of claims. They are motivated by non monetary benefits such as priority in discovery and

scientific reputation established through a collective, peer review system. Their professional (monetary

and non monetary) awards depend on reputation.

77

But not all participants engaged in OSS production and distribution seem to be motivated by the

typical incentives of the ‘gift economy’. Commercial developers and distributors, like proprietary

software firms that have begun to disclose their source code, are most probably motivated by the

pecuniary incentives of the ‘exchange economy’. They share with the traditional model of software

production norms and incentives to engage in innovation that are typical of the ‘technology’

community – i.e., expected profits and ‘exclusion’ mechanisms or appropriability systems (lead time,

trade secrets, copyright and patents). In the case of software, more than in other technologies,

‘exclusion’ mechanisms, including patents, impose limited disclosure obligations over proprietary

information. As discussed before, even the patent law does not impose the disclosure of the source

code to inventors. Why then profit oriented institutions such as computer manufacturers and software

publishers engage in the production of OSS and therefore voluntarily disclose their proprietary

information? As we discuss later on, a main reason for this strategy is the need to react to the threats

arising from the commercial success of OSS products like Linux and Apache. Another reason is due to

the fact that the distinction between basic research or open science and applied research or technology

is arbitrary and blurred. Profit oriented institutions are then spurred to carry out basic research with the

consequence that they have also to accept to some extent the norms of ‘open science’.

In the subsequent sections we discuss first the motivations of OSS developers, the similarities and

the differences between OSS and open science. Secondly, we analyse the competition between OSS and

proprietary software. Finally we briefly mention some potential implications of OSS for growth and

social welfare.

5.1 Incentives to engage in open software: ‘gift culture’ or ‘exchange economy’?

As mentioned before, OSS developers are driven by different motivations. The economic literature

has tried to understand these motivations by focusing primarily on the behaviour of hackers who

participate in associations like the FSF and the OSI. The literature has highlighted the following main

motivations:

• ethical and political reasons;

• altruism;

• reputation inside the community;

• need to adapt software available on the Internet to their own requirements and to solve specific

problems;

• pure fun.

78

Ethical and ideological reasons motivate a large portion of the hacker community, that Raymond

(2000) defined as the “very zealous and very anti-commercial” segment of the OSS world. The Free

Software Foundation developed a great amount of free software to guarantee the maximum diffusion of

knowledge and preserve users’ right to freely copy, modify, and distribute the source code. Users’

rights are opposed to the IPR. As Richard Stallman, the founding father of the FSF, argued “copyright

is not a natural right, but an artificial government-imposed monopoly that limits the user’s natural right

to copy” (Stallman, 1999).

But why inventors should give up their property rights? One reason, according to the advocates

of the OSS, is that OSS contributors do it for the “joy of programming”, that is the satisfaction

derived from writing a good software and to solve a problem, and “personal itch” (Raymond, 2001).

Another motivation is “altruism”. Eric Raymond, one of the founder of the OSI and developer of

the OSS Fetchmail, in his “Homesteading the Noonsphere” (2000) argues that in a world

characterised by abundance of resources, a ‘gift economy’ tends to substitute the ‘exchange

economy’. Moreover, individuals’ reputation rises with the gifts they offer to the community and

not with the goods they can exchange. In a software community, which is usually characterised by

abundance of resources (resources, as Raymond wrote, are disk space, network bandwidth,

computer power), the only available measure of success is reputation among peers. Then the

community members are motivated to contribute freely, and with high-value gifts, to the software

development.

Lerner and Tirole (2000) agree that reputation is one of the driving force of this community but they

disagree with the ‘altruistic’ hypothesis submitted by Raymond. They assume that developers are

rational economic agents who decide to allocate their efforts to develop OSS rather than proprietary

software on the basis of a cost-benefit analysis. Lerner and Tirole distinguish between direct and

delayed benefits. Direct benefits derive from solving specific problems - i.e. fixing a bug - faced by the

programmer or somebody else or taking immediate monetary compensation (whenever the developer

works in a company that develops OSS) while ‘delayed benefits’ arise from signalling to the market to

be a good programmer. These benefits can take the form of a good or a better job position, access to

venture capital and an improved reputation amongst experts. Then ego satisfaction arising from peer

recognition can be transformed in ‘economic’ compensation. Then, according to these authors,

developers are mainly driven by career concerns.

Obviously, these benefits have to be compared with opportunity costs. Lerner and Tirole note that

in the OSS community opportunity costs are lower compared with the proprietary software market

because of the “alumni effect”: “because the source code is freely available to all, it can be used in

79

schools and universities for learning purposes; so it is already familiar to programmers. This reduce

their cost of programming for UNIX, for example” (Lerner and Tirole, 2000).

Dalle and Jullien (2001a) have also underlined the role of career concerns that are becoming more

and more important with the emergence of service companies (that they call “ancillary business

companies”) offering support, maintenance and customisation for installed open source software.

However, they underline that this motivation can explain only the kernel developers’ behaviour.

Services companies are often created by kernel developers that can obtain venture capitals thanks to

their prior signalling activity described before; at the same time these companies employ kernel

developers, so that open source contributors have incentives to signal their skills by sharing their code

with the community. These motivations do not apply to “obscure developers” who develop less

creative parts of code – because for them expected profits associated to their contribution is low.

Among “obscure developers” there are most probably “innovative users” (Von Hippel, 1988), who

develop software for their own purposes. Sophisticated users may contribute to software development

or debugging because they do so for solving their own needs, or just for fun (von Hippel, 2001).

Their opportunity costs are probably low, especially when the costs of outsourcing the same

development tasks is made high by idiosyncratic, sticky information. Von Hippel (2001) observes that if

individual users have sufficient incentives to innovate, to reveal their knowledge freely and possess the

capability to do so, then a community of innovation and trial arises. When the product developed by

these innovative users can compete with commercial production and distribution, as for open source

software, it is possible that a community of innovative users can compete with traditional, supply-led

innovation. Like any other economic agent, users participate in the development and innovation

process if they expect the benefits of innovating will exceed their costs. The costs of participating in

development activities can be very low, as Lakhani and Von Hippel (2000) show in the case of the

Apache Usenet community which offers “field support” to users of the Apache web server software.

They find that the action of delivering help is really costless. Information providers spend just few

minutes to reply if they know the answer, or they can look for it on the Apache forum, eventually

learning more on the product (in this case they extract an immediate benefit). Lakhany and Von Hippel

(2000) also find that developers often disclose their knowledge if they think that other have the same

information and are going to disclose it; and in this case the loss of intellectual property value

associated with disclosure is zero. Since priority is important in this community, imperfect information

and expectations about what knowledge other contributors could offer to the community should drive

to a disclosure race whose long term consequences for the economics of OSS and proprietary software are

not fully explored in the literature.

80

Moreover, Lakhani and von Hippel point to the organisational limits of this model. They note that

in the Newsgroup discussion forums on the Apache Usenet a relatively limited number of questions are

posted to the system if compared with the very large number of web sites run by Apache server (about

8 million sites in the early 2000). They also estimated that only about 100 information providers

account for over 50% of response messages. They conclude that if the number of questions posted to

the Usenet rose significantly the system would be put under a tremendous pressure. This system has

proved to be robust to a rising, albeit limited number of questions, thanks to other complementary

support services such as specialised books, on-line journals and FAQ databases. But the growth of a

support service industry could be critical to the future growth of this and similar systems (Lakhany and

Von Hippel, 2000).

A recent empirical survey performed by Hars and Ou (2001) provides further support to the

hypothesis of economic rewards - that is the opportunity of direct or indirect monetary compensation,

self marketing and peer recognition. Among these, the desire of improving their own skill base (with

88.3% of responses) is the most relevant for all interviewees. The survey also shows that open source

communities are composed of different actors, including students, hobbyists, programmer paid for

developing open source software, and different incentives structures seem to apply to different groups

of developers. For example, hobbyists and students are the ones most motivated by altruism and sense

of community, while programmers paid for OSS development are those most motivated by selling the

product and self marketing.

Finally, pure fun leads many people to develop software and fix bugs. Especially in the segment of

software games, students and in general young people, greatly contribute to the product improvement

(Jeppesen, 2001).

All motivations discussed above mainly apply to individual developers, whilst the motivations of

companies, i.e. software companies providing OSS and services and/or large commercial software

companies, for developing OSS are discussed later. An interesting issue for future research is whether

OSS represent a stage in the individual developer’s early training stage which is followed by a different

pattern of development in subsequent stages of her career.

5.2 Open software and open science

The open source developers motivations illustrated before do not clarify completely a key questions

raised before: is open source software comparable to open science? If so, does it matter that a scientific

discover in software be produced by a OSS institution or proprietary software one? The links of OSS

with open science have been highlighted by the economic literature (Lerner and Tirole, 2000).

81

According to a fascinating theory, the birth of open science can be traced back to the sixteenth and

seventeenth centuries as the result of the competition among imperfectly informed noble patrons

concerned with the “ornamental” and “status-enhancing” utility of the sponsorship of natural

philosophers (David, 1991). The formal sophistication of methods used and outputs yielded by natural

philosophers made it extremely difficult to the patrons to observe the true ability of scientists

(“qualifications and comparative merits”) and gave rise to a typical principal-agent problem to which

the institution of open science provided an efficient solution. Imperfectly informed patrons could

delegate the evaluation and selection of experts to other experts drawing on a set of norms and

organisations (full disclosure, reputation and priority) that modern science has inherited from the feudal

system with minor changes. Over time, with the formation of national states and universities, open

science became largely independent from patronage. Today, due to its public good nature, two-thirds of

basic research is founded by the state (Rosenberg, 1990).

Whatever the origins of OSS, the incentive structure of the OSS community (especially hackers and

non profit organisations) is similar to that of today ‘open science’.

Like scientists, OSS developers share a virtual context and a common language that favour the

exchange of information. While refereed journals and public conferences represent the natural loci for

disseminating research outputs, the Internet and the projects leaders control the flow of information

amongst developers and certify the quality of each contribution. After this development stage, the

market (or more generally the community of users) will test the innovation. Unlike the proprietary

software organisation, not only the number of participants in the scrutiny of each innovation is

potentially very large, but also the nature of evaluators is different. In proprietary software, the number

of people that participate in a process is necessarily limited by the size of the internal network of

researchers and by reasons of secrecy. Moreover, for proprietary software the ultimate scrutiny is made

by the market.

There are also some problems that complicate the comparison with open science. First, the system

of validation and replication of results in most branches of natural sciences, including computer

science, is very rigorous and the access to the status of ‘expert’ requires long formal training and the

compliance with national and international certification standards. OSS advocates argue that OSS

represents an important training ground for computer skills. This is probably true but the training

system and related standards are not specific to OSS, as they have been developed by the academic

communities, often in collaboration with technical communities. Also, today several proprietary

software firms (including Microsoft recently) have agreed to disclose their source code for

experimental and training purposes.

82

Second, discoveries and theories in many scientific disciplines, including computer science, are

published in technical and scientific journals and are open to peer evaluation37. These mechanisms work

for the computer science in general, not for OSS in particular. It is possible, of course, that a

proprietary software firm has the incentive to retard or give up the publication of a patented or

copyrighted invention. But this is an issue for empirical analysis. As a matter of fact, some authors

have pointed out that the growth of the patent system in the US, and the involvement of universities in

the patent race, may have yielded distortion effects on the allocation of resources to inventive activity

and the diffusion of knowledge. A careful analysis of patents (USPTO and EPO) and publications in

technical journals (e.g., IEEE Computer Magazine, IEEE Transaction of Software Engineering, IEE

Software Engineering Journal) could probably help to understand these effects.

Third, as noted by Rosenberg (1990), the separation of open science (and basic research) from

technology (applied research) is “a highly artificial and arbitrary” one. This is demonstrated by the fact

that many celebrated scientific discoveries have resulted as a by-product of applied research, i.e.,

problem solving activities in the wine industry (bacteriology), mechanical engineering (thermodynamics)

or telecommunications (radio astronomy). This mixture of pure and applied science is a reason why

profit oriented institutions engage in pure research or open science. In the computer and software

industry too established firms like IBM and Microsoft invest their money in basic research to have

access to new knowledge either directly (from their in-house research activities) and indirectly (by

gaining access to outside discoveries). These firms know that in order to have access to the scientific

community, they have to pay an ‘entry ticket’ which consists in resources dedicated to pure research

and a minimum of disclosure of results that is needed to be accepted by the community. The question

is then what does exactly mean to be part of the open science community and whether the OSS is

different from proprietary software because it is closer to open science.

Fourth, the organisation of open science is typically different from that of the OSS communities.

Experimental disciplines need expensive research facilities and formal organisation. As Kargon, Leslie

and Schoenberger (1992) have pointed out, “Big Science is marked, as is well known, by the hierarchical

organised team, led by a principal investigator-manager, with co-principal investigators…we can call

this kind of organisation a vertical integration within the scientific enterprise” (p. 335). It is possible that

the scientific enterprise in software is different but the experience of academic departments such as

Stanford University or Carnegie Mellon University and the basic research conducted in industrial

research labs such as IBM or Xerox Parc suggest that research teams can be large and well organised.

This means that the idea of scientific research as a virtual college activity is largely undocumented in the

37 As discussed before, some argue that in the case of software there is a lack of documented scientific knowledge which
makes it difficult to establish priority (Cohen and Lemley, 2001). This is probably true for minor, incremental innovations.

83

empirical evidence. Of course, there are many networks of researchers which cut across regional and

national boundaries. However, the physical dimension of research is still an important characteristic in

the organisation of scientific activity (this is also demonstrated by the regional concentration of R&D in

clusters around universities or large industrial research or state-owned labs). In this respect, the OSS

model represents an alternative to the current dominant model of scientific research organisation. And

it is to far to be clear how it will behave in condition of rising size and complexity of research targets.

Also, it is not clear whether the scale and low concentration of resources represents a constraint in the

pursuit of radical technical innovations and scientific discoveries which, almost by definition, are

characterised by high costs and uncertainty.

5.3 The competition between open source and proprietary software

Before turning our attention to the business models emerged with the OSS, we analyse the

competition between open source software and proprietary software. Can these two models coexist or

will one dominate over the other? And what are the implications of the competition between the two

models for economic growth?

A couple of recent theoretical papers address these questions. Dalle and Jullien (2001b) study the

competition between OSS and proprietary software in a diffusion model which takes into account users

heterogeneity (users have idiosyncratic preferences over the two models that in this context are treated

as two alternative technological standards), different distribution of individual preferences (adoption

thresholds) and network externalities. The simulation run by the authors show that the possibility that a

new OSS standard replace a dominant proprietary technology depends on a series of factors:

i) the importance of local externalities (which are positively related to the number of agents in the

neighbourhood which adopt the same technology) and global externalities (related to overall

improvements in quality and performance during the diffusion of the technology);

ii) the initial distribution of potential adopters with absolute (idiosyncratic) preference for the new

OSS technology. For instance, a initial mass of skilled users with a psychological and ideological

motivations and a component of ‘evangelism’ helped the take off of Linux among servers while

for the same reason Linux has never took off in the clients markets;

iii) the compatibility with the proprietary standard. The greater is compatibility the larger the

opportunity to steal business to the incumbent standard because compatibility reduces

switching costs;

iv) product differentiation is also important when the are two distinct sub-populations of potential

adopters with heterogeneous preferences. With strong network externalities, product

But probably for major discoveries this is not the case. Again, this issue should be explored by empirical analysis.

84

differentiation helps to target market niches with absolute preference for OSS products and to

gain rapidly market share.

Dalle and Jullien (2001b) also analyse the reaction strategies of proprietary software incumbents.

The latter have two main choices: do nothing or modify their strategy as soon as the OSS competing

standard reaches a critical market share. The potential reactions strategies are centred respectively on

price reduction, R&D increase (with the aim of improving the quality and efficiency of the proprietary

product) and distribution. The latter strategy in reality has been tried by incumbent proprietary firms,

which have shifted from product selling to product renting. By renting a software programme against

the payment of a royalty, customers gain immediate access to bug corrections and improvements while

with the acquisition of a package product improvements come only with new releases of the product.

The simulations show that no reaction strategy among those examined yield effects significantly

different from the ‘no reaction’ strategy. As noted by the authors, these apparently surprising results

indicate the strength of path dependence effects. Once a critical mass of adopters of the OSS standard

has been reached reaction strategies become ineffective because the adoption choices are bounded by

the network externality effects.

However, incumbents can try another more effective reaction strategy that is hybridisation. By

hybridisation an established technology (e.g., combustion engine in automobiles) took a specific

characteristic from a competing new technology (e.g., the electric starter from electrical engines).

Hybridisation yields two potential results: first, a positive effect on adoption due to the improvements

of the product; second, the strategy can modify the preferences of potential adopters – some adopters

with absolute preference for the new technology may decide to adopt the old, improved technology.

Simulation results presented by these authors show that this can be an effective strategy. As a matter of

fact this strategy has been adopted by several proprietary software firms such as Netscape (Mozilla),

Sun (OpenOffice) and IBM.

Saint Paul (2001) analyses the competition between OSS and proprietary software in a model of

endogenous growth. He highlights two kinds of externalities arising from the OSS that is characterised

by gift exchange and community values shared by philanthropic innovators. First, the typical positive

externalities which reduce the costs of proprietary software. In line with the new growth theory, these

externalities (“manna from heaven”) are positively associated with the number of goods (competitors

doing R&D activities) in the market (Grossman and Helpman, 1991). Second, philanthropic

innovators produce also negative externalities due to the low (around zero) prices of OSS. The low

price reduces the demand for proprietary software and as a consequence profits of proprietary software

shrink. Therefore, OSS “steal business” from proprietary software. These negative externalities reduce

85

the ex ante incentive to innovation of proprietary software firms and have negative consequences for

growth in the long run (even if the “manna from heaven” may have positive short term effects).

 These consequences are even more marked if one takes into account in the model also the fact that

philanthropic developers may have no great incentives to invent “plain new (free) goods rather than

free versions of an existing patented good” (Saint-Paul, 2001, p. 13). Put in another way, the OSS sector

benefits from positive externalities generated by the private software sector which further reduce the ex

ante incentive to innovate by proprietary software inventors. The net effects on growth and welfare

depend on the relative importance of these two forms of externalities. We must also consider that the

producers of OSS generate another kind of externality in favour of the proprietary software. Non only

the latter enjoy the cost externalities discussed before. They have also free access to OSS products that

can be imitated and transformed into proprietary ones. This can be positive for growth but reduces the

ex ante motivations of philanthropic innovators. The elaboration of strict license schemes (e.g., the

GPL) by the OSS communities is intended to reduce the probability of free riding by proprietary

software.

To summarise, the competition between OSS and proprietary software can have positive effects

since it may stimulate innovation in a sector characterised by network externalities that reduce the room

for competition among alternative standards. However, different types of externalities generated by the

two sectors can have negative effects on the inventive rate and growth in the long run.

86

5.4 Business models

As discussed earlier, the boundaries of the OSS extend well beyond the communities of voluntary

developers to include a variety of commercial companies which specialise in different activities – from

distribution of open software and provision of related technical support services to development of

open source software and provision of kernel customisation and technical support services. The market

for commercial OSS is also populated by established proprietary software companies and hardware

manufacturers.

In parallel with the diffusion of several new licence models associated with the OSS a variety of new

business models have been introduced into the market. The new OSS-based business models compete

with traditional business models based on proprietary software.

The fundamental ingredients of a business model in the software industry overall can be summarised

as follows:

• The core business of the firm - new software development, improvement of existing products,

software distribution, services;

• The organisation of the development process and the division of labour with other organisations–

scale of the OSS developers team, type of software code disclosed and distributed, contractual

agreements with suppliers and distributors;

• The sources of firm’s revenues and related issues – software product pricing strategy, services

billing strategy or and pricing of complementary products;

• The IPR strategy and the licensing model (open source vs. proprietary).

The traditional business model is characterised by internal software development (or subcontracted

to third parties). R&D investments represent a fixed cost that is recovered usually through proprietary

licence fees. The licence provides the right to use the software, but not to copy, modify and redistribute

it. The source code usually is not disclosed with the object code and a price is charged for the

acquisition of a particular copy of the programme (license fee) or for the temporary use (renting) of the

programme. A separate price is normally charged for support services. Prices in this sector are not

driven by marginal costs. Price discrimination is often operated across different users (for example

business or academic customers) for the same product or service, according to the price elasticity of

demand and the market power of customers relative to vendors. Finally, distribution and post-sales

services are provided directly by the software company or by third parties – either affiliated vendors,

exclusive agents or independent resellers. The value added by third parties varies with the type of

87

software distributed (its unit value, and the complexity of its installation and maintenance). In typical

shrink-wrapped products, like PC operating systems and office automation applications, most of the

value is produced by the editor (e.g., Microsoft, Symantec or Adobe).

As for OSS business models, there are various types of business models that differ mainly for the

source of revenues (software development or services and distribution) and the licensing models.

A key characteristic common to most OSS business models is that the source code is open and

several voluntary people share responsibility for developing, distributing and maintaining programs.

This implies that the value delivered to customers results from the cooperation among several

developers and distributors. In order to preserve the right to free access to the source code and avoid

free riding that would undermine the motivations of voluntary contributors, this class of business

models requires that specific licensing models are devised.

The pricing strategy is usually based on low prices for the executable code (including the cost of

assembling, writing documentation, and development of complementary software such as graphical

user interfaces development and hardware drivers). Higher prices are charged for the provision of

installation, maintenance, training, customisation and other customer services. The bulk of the revenues

then normally arise from services rather than software. For this reason it is important to focus on the

potential market for this particular type of services.

Unfortunately, there are not significant data on open source-based software services. However, we

can get an approximate idea of the potential market for these services if we look at the software

support market overall.

Recent IDC (IDC, 2002c) estimates show that the worldwide software support market generated

revenues of about $21 billions in 2001 (about 5.2% of the world market for IT services), with an 11%

increase over 2000’s $19 billion in revenue. IDC projected that the compound annual growth rate

(CAGR) will be 13% from 2001 to 2006 and the total revenues are then expected to reach $38.4

billions in 2006 (Table 5.1).

IDC estimates that over the same time period support services for development tools will increase at

a faster rate than those for applications and system software (16.3% vs. respectively 11.3% for

applications and 12.1% for system software). Moreover, telephone support and software maintenance

will maintain the largest market share but maintenance and remote diagnostics will be the best

performers in terms of growth rate (35% and 55% CAGR respectively). According to IDC “these fast

growing services reflect the importance of support technologies that enable proactive, self-service

support models; it also highlights the movement in the support industry to transform the support

organization from a reactive cost centre to a valuable, important, and revenue-generating business

88

model” (IDC, 2002c). Linux and other open source software environments account for less than 0.5%

of total software support market in 2002 and, despite the volume of sales are expected to grow very fast

between 2000 and 2001 (over 57% CAGR), its market share is expected to remain small (about 1.4% by

2006) (IDC, 2002c, p. 25).

Table 5.1 Worldwide Software Support Service Revenue by Product Type, Region, Operating Environment, and
Service Activity, 2000-2006 ($M)

2000 2001 2002 2003 2004 2005 2006 2001-2006
CAGR (%)

Product Type

Applications 7,399 8,217 9,205 10,296 11,445 12,752 14,061 11.3
Application development 4,464 4,936 5,642 6,522 7,672 9,032 10,498 16.3
System Software 7,035 7,819 8,773 9,717 10,981 12,413 13,814 12.1
Total 18,898 20,972 23,621 26,536 30,098 34,197 38,373 12.8

Region

Americas 10,665 11,714 13,027 14,663 16,670 18,934 21,261 13.0
EMEA 6,339 7,319 8,408 9,413 10,627 12,036 13,116 12.4
Asia/Pacific 1,894 1,939 2,186 2,460 2,801 3,227 3,636 13.4
Total 18,898 20,972 23,621 26,536 30,098 34,197 38,373 12.8

Operating environment

Mainframe 2,842 2,773 2,674 2,621 2,572 2,567 2,571 -1.2
OS/400 621 619 612 605 598 587 556 -2.1
Unix 5,721 6,455 7,268 8,024 8,825 9,543 9,977 9.1
Linux/other open source 28 56 105 177 285 442 537 57.2
Other host/server 868 833 802 756 720 681 637 -5.2
Windows 32 and 64 7,254 8,628 10,450 12,542 15,205 18,336 21,949 20.5
JVM/platform independent 46 77 111 178 260 339 357 36.0
Mobile and embedded 378 492 594 707 835 988 1,151 18.5
Other single user 1,141 1,079 1,003 926 800 715 637 -10.0
Total 18,898 20,972 23,621 26,536 30,098 34,197 38,373 12.8

Service activities

Telephone support 10,772 11,765 12,873 14,064 15,621 17,406 18,841 9.9
Remote diagnostics 661 839 1,087 1,433 1,926 2,599 3,530 33.3
Electronic support 1,890 2,307 2,834 3,450 4,214 5,130 6,140 21.6
Software maintenance 3,591 3,985 4,488 4,909 5,297 5,642 6,025 8.6
Onsite software support 1,814 1,846 1,984 2,149 2,348 2,565 2,801 8.7
Predictive/preventive
maintenance

170 231 354 531 692 855 1,036 35.0

Total 18,898 20,972 23,621 26,536 30,098 34,197 38,373 12.8

Growth (%) NA 11.0 12.6 12.3 13.4 13.6 12.2

Source: IDC (2002c)

89

5.4.1. New business models centred on OSS

The Open Source Initiative (OSI) provides a list of companies actively involved in open source

software production and distribution (Table 5.2).

Table 5.2 OSI List of vendors

IBM
Apple Computers
SGI
Cygnus Solution, Inc.
Cyclades, Inc
Linux Mall
Red Hat Software
Riverace Corporation
C2Net Software, Inc.
Netscape Communication, Inc.
Walnut Creek Software
Cobalt Microserver, Inc.
Whistle Communication, Inc.
Caldera, Inc.
Corel
ArsDigita
ActiveState
Lutris Technologies
Sleepycat Software, Inc.
Covalent Technologies

Source: www.opensource.org/products.html

As a first attempt to classify different business models, we can distinguish among three categories of

business models:

1. business models centred on purely collective developed of software by a group of hackers (e.g.,

Linux or Apache). The source code is downloaded, assembled and sold together with support

services by commercial distributors (i.e., RedHat, Caldera, Suse). The quality of the output is

related to the individual and organisational capabilities of the group of developers (organisational

features such as the number of project administrators and developers, the management style, and

features related to the vitality of the project such as the number of fixed bugs, patches, external

contributors etc.). The bulk of revenues come from services;

2. business models based on open source software initially developed by a company and then

disclosed to the community of OSS developers (e.g. Zope). The quality of the software depends

90

both on the company initial R&D efforts and the community contributions. The revenues come

mainly from software customisation and services.

3. mixed business models mostly adopted by commercial proprietary software developers. This

category includes firms that make open the source code of products previously closed (e.g.,

Netscape-Mozilla). On many occasions, the firms that adopt this mixed approach develop both

open and proprietary software. The revenues of this category of firms mostly derive from

hardware sales and from complementary products sales.

Two critical aspects of OSS business models are represented by management strategy and marketing

strategy.

• With respect to the management strategy, the key ingredients are represented by the quality of the

core team dedicated to the management of the open source projects, the existence of an

infrastructure for external developers, the modularisation of product design that allows the

integration of incremental external contributions, including lead users.

• As far as the marketing strategies are concerned, although the final commercial product is provided

with the source code, it is important that the product is provided in binary form which is easy to

install for customers that are not interested in having the source code. A significant component of

the marketing strategy is represented by the management of the legal procedures involving the

licences of the pieces of software included in the final product and the licence accompanying the

product must be carefully addressed. Another critical component is pricing. Some OSS business

models recall a typical entry price strategy adopted to price (proprietary) information goods which

requires low initial profits in exchange for a high stream of future profits. This strategy is quite

popular in industries like cellular phones, elevators, photocopiers and printers. The acquisition of

an initial large installed base of customers may set in motion a process of cumulative causation and

increasing returns which is typical of industries characterised by network externalities (Murtha,

1998).

Drawing on the concepts described earlier and examples drawn from the www.opensource.org web

site, Hecker (2000) has defined four specific types of business models that emerge in the OSS market.

The first model is called “Support Sellers”. It is based on the provision of software without fee (or

with a very small fee to cover the costs of distribution of the software) and the sales of services,

support and documentation. Examples of this category of business model are Caldera, RedHat, Suse,

91

Mandrake, which package Linux kernel and utilities and provide support and documentation. Other

firms like Cygnus Solution provide services for GNU compilers. The most common license adopted by

these firms is the GNU/GPL. The revenues come from the sales of physical items (like media and

hardware documentation) and services.

The “Loss Leader” model is characterised by the free provision of an open source software

associated with a proprietary product which accounts for the bulk of their revenues. The typical

licences used in this model are the Mozilla and BSD licences. Examples are Netscape and Sendmail.

The “Widget Frosting” business model is based on distribution of open source software together

with a core business hardware product. The aim of the hardware company (for which software is a cost

rather than a source of profits) is to get better drivers and interface tools cheaper. Examples are Corel /

Netwinder and VA Linux.

Finally the “Accessorizing” model is based on the sales of accessories, like books or other hardware,

with pre-installed open-source software. Examples of this business model are represented by O'Reilly

Associates, SSC, and VA Research.

Other business models suggested by Hecker (2000) are based on the provision of open source

software which is sold along with on-line services.

In the following section we briefly describe the characteristics of a subset of “Support Sellers”, i.e.

Linux distributors, and provide a preliminary analysis of the Red Hat business model. In Appendix E

we report examples of other open source vendors classified into two categories: a) Linux distributors

(Caldera, Turbolinux, and Suse); b) proprietary commercial software and hardware companies that have

entered the OSS market with some of their products (i.e. Apple, IBM, Netscape, Sun, Zope).

5.4.2. Linux Distributors

The Linux operating system is composed of a kernel and a set of GNU programs. There are about

164 Linux versions, 145 of which are in English language and 126 are Intel compatible

(www.linux.org/dist/list.html).

Most versions of Linux – for both clients and servers - can be downloaded from the web free of

charge. However, downloading Linux from the web presents some disadvantages. First, users should

have a high speed connection to Internet or a drive that writes on blank CDs in order to download fast

and to store the software on an electronic medium. Second, if Linux has to be installed on a computer

that already run another operating system the user has to be skilled in partitioning the hard disk. Finally,

users may only have technical support from mailing lists provided by the community of developers, not

92

from vendors (www.linux.org/dist/download_info.html). New business companies have entered the

market since the early 1990s to supply the Linux software in versions that are easier to install and

manage than the free versions available on the web, and to provide support, documentation and

services.

We report below some common features of the leading Linux distributors (Red Hat, Caldera, SuSe,

Turbolinux), which account for the largest share of the market.

• Many Linux distributors allow users to download freely their own Linux version directly from the

website, both in object code and in source code; they also sell Linux versions both for professional

and for home users workstations and servers. They offer the following Linux products and

services:

a) Linux desktop versions for home users (i.e. Linux desktop/client/workstation) may also be

freely available on CDs supplied in magazines. Manuals on the Linux operating system may

also provide a free distribution on CDs. These ‘commercial’ distributions (even when they are

freely distributed by magazines) are easier to install because the Linux main distributors

include an ‘installer’ that facilitates the operation. The boxes sold are generally supplied with

documentation; office packages; manuals and support services for a limited number of days

(generally 60); a graphical interface (GNOME or KDE); software maintenance (i.e. for

downloading and installing new releases, patches, new versions with bugs fixed).

b) professional workstations for business companies or other institutions, which also include

office applications and applications for LANs. Professional distributions are also supplied with

more sophisticated support services compared with home versions.

c) Linux server, a platform suitable for (among others) e-mail exchange, Internet and application

services usually supplied with application packages for server and business applications.

Further support is supplied with specific contracts that define both the kind of support the

adopter will receive (for example installation and configuration support by phone or by web)

and the way in which support is supplied (for example, Red Hat offers Monday to Friday

9am-9pm customer assistance with response in 4 hours or 24×7 with response in 1 hour).

Moreover, maintenance services (i.e. for downloading and installing new releases, patches, new

versions with bugs fixed) are supplied.

• Some distributors sell software internally developed for server and database management. This

software can be both open source and proprietary, and can be based both on OSS and proprietary

code. For example the Red Hat database integrates Red Hat Linux and PostgreSQL, while SuSe

supplies a database server, distributed with the source code, based on the IBM DB2. Distributors

93

also supply platforms for multiple servers system management through a graphical interface, e-

commerce suite, workflow management software, firewall software (Suse Linux Firewall is supplied

with the source code).

• They sell high value added services, that is consulting, Internet connections, security strategies and

database management. They also provide e-learning and Linux courses.

• They offer customised solutions (i.e. software solutions including planning, implementation,

maintenance, support and training).

• There are differences across distributors in the share of software and services in total sales. For

example, in 2001 software sales accounted for about 44% of Red Hat’s revenues while Caldera

drew over 84% of its revenues from software (data source: www.hoovers.com).

Recently Caldera, SuSE, Turbolinux and the Brazilian Conectiva have announced an alliance which

aims to produce a common operating system kernel called UnitedLinux. The new distribution will

comply with the Linux Standards Base (LSB), which is a project aiming at standardising Linux across

the industry. This is an attempt to cope with the problem of inconsistencies among the Linux

distributions and could make more easier for ISVs to develop applications running on Linux.

According to Larry Seltzer38, this agreement is likely to yield advantages for important vendors, like

Borland, that are currently forced to adapt their product to different versions of the kernel and

different versions of code libraries. As a matter of fact the alliance is supported by several companies

including Borland, Computer Associates, and IBM39.

The market strategy underlying the UnitedLinux agreement is not clear. As a matter of fact, the

partners announced that they will develop a unique kernel but that each partner will continue to offer

different versions of the UnitedLinux package (each containing different additional products and

services) under their own brand name in different markets. Some argue that the main target of this

agreement is to contrast the market power of Red Hat, the largest Linux distributor in the United

States. However, the four partners reply that the agreement is open to all Linux distributors, including

Red Hat and Mandrake40.

In the next subsection we present a preliminary description of the Red Hat business model. Our

further research on this issue will take into account more carefully Red Hat’s market strategy and

specific characteristics of its community of developers.

38 Tech Update, June 19, 2002.
39 Michelle Delio, Mired News, May 30, 2002 at www.wired.com/news.
40 Michelle Delio, Mired News, May 30, 2002 at www.wired.com/news.

94

5.4.3. The case of Red Hat

Red Hat is the leading commercial supplier of Linux. It was founded in 1995 as Red Hat Software

Inc. It went public in 1999. Its main products are high-end server product and development tools. Red

Hat’s staff is made of 300 engineers and includes the top 10 Linux kernel developers and seven of the

top 10 open source development tools engineers41.

• Core business Initially Red Hat based its core business on packaging and distributing Linux

operating systems to end users, deriving revenues primarily from technical manuals and support.

Now its focus is mainly on the web server market; furthermore, Red Hat is focusing on the

provision of services, especially custom development for embedded applications, and new products

such as new applications for database management and e-commerce. It also sell manuals; the

company has partnered with Hungry Minds, Inc. to publish various publications on Linux or other

open source products. These books are available for previewing online, as well as for purchasing

usually through Amazon.com. A description of product and services offered by RedHat is

presented in Table 5.5.

We can place Red Hat in the space of R&D and commercialisation activities in the following way:

Activities Basic/applied
research

Development Distribution Services

Red Hat - X XXX XXX
 Legend: X = of limited importance; XX = important; XXX = very important.

• Relations with Open Source Community Red Hat actively participates to open source software

production. It has contributed to the development of several projects (Linux kernel and device

drivers, Apache, Cygwin, GNOME, GNU Tools) and it is a member of many Linux associations

(for example, Linux Standard Base to standardise the elements of Linux-based operating systems).

Also, Red Hat provides web, FTP, and other Internet hosting services for several open source

community projects (for example, GCC the GNU compiler collection)42. Red Hat hosts a Red Hat

community mailing list and a Red Hat user group program (see

http://www.redhat.com/apps/community/).

41 Source: Dan Farber, Tech Update, June 20, 2002.
42 Further exploration will aim to collect data on the number of developers actively participating to the open source software
that Red Hat includes in its products.

95

• Revenues In 200043 Red Hat’s revenues totalled about $103.4 millions (and decrease to 78.9

million in 2001) while gross profits were about $4.9 millions. Over 44% of revenues came from

software subscriptions, 55% from services and 1% from other activities. Furthermore, 81% of the

revenues were realised on the US market and 19% in other countries (data from www.hoovers.com,

see Table 5.3 and Table 5.4). In 2001 47% of its revenues came from software subscriptions by

enterprises and 7% from embedded software; 31% of revenues were from services related to open

source software and 15% were related to services on embedded development. In addition, 70% of

the revenues were realised on the US market, 15% in Europe and 15% in Asia Pacific and Japan.

• IPR Strategy and Licensing Model Red Hat packages contain several software elements

developed by different sources (e.g., Sun Staroffice and Loki games in the Red Hat Linux 7.2

Standard Edition distributed in Europe). Red Hat licenses state that each component has his own

end user license and that underwriters have to review the on-line documentation and comply with

each licence terms. According to this policy, the Linux software is distributed under GPL. Red Hat

license for Linux states that the underwriter has the right to transfer his copy of Red Hat Linux to

other parties but only the original underwriter has the right to receive technical support. Despite the

open source community position on software patents, Red Hat recently has applied for three

software patents: two of them for methods and apparatus for atomic file lookup; and the third one

for Embedded Protocol Objects (Source: www.Freego.it). Open source developers and companies

such Red Hat usually argue that software patents hamper innovation, and today it very difficult to

create software that do not use previous patented software (see for example

http://www.fsfeurope.org/). Red Hat has also claimed that it is adopting the tactic to maintain a

defensive patent arsenal, in case it need to launch a counter-suit for patent infringement. Also, Red

Hat said it will not attempt to enforce its patents when they are used in open source software,

except for software covered by BSD licence, since software covered by BSD can be integrated into

proprietary software44.

Table 5.3 Red Hat Sales by geographical area, 2000-2001

2000 $ mil. % of total 2002 $ mil. % of total
North America 83.4 81 North America 55.6 70
Other 20.0 19 Asia Pacific & Japan 11.7 15
Total 103.4 100 Europe 11.6 15

Total 78.9 100
Source:www.hoovers.com

43 Red Hat set its fiscal year-end on February. So data on sales in 2000 are those declared in February 2001 and data on sales
in 2001 are those declared in February 2002.
44 Source: M. Broersma, ZDNet May 31, 2002.

96

Table 5.4 Red Hat Sales by product and services, 2000-2001

% of total Software Subscription $ mil. % of total
Services 55 Enterprise 36.8 47
Software Subscription 44 Embedded 5.5 7
Other 1 Services
Total 100 Open Source 24.3 31

 Embedded Development 12.3 15
Total 78.9 100

Source:www.hoovers.com

Table 5.5 Red Hat products

Free downloadable software

(Source:www.redhat.com/apps
/download)

� Red Hat Linux 7.3
� Source navigator a source code analysis tool for edit source and build project
� RPM package manager a tool that allows user to take source code for new software

and package it into source and binary form
Linux Products

(Source:
www.redhat.com/products)

� Red Hat Linux 7.3 Personal for final end user
� Red Hat Linux 7.3 Professional workstation for professional use in small network

and small business
� Red Hat Linux for ItaniumTM Processor workstation designed for enterprise
� Red Hat Linux Advanced Server (Standard, Premium and Advanced) a server

Linux; to different edition correspond different support services.
Other Red Hat Software � CMM Red Hat Content and Collaboration Management Software Tools for

management of complex activities in a business organisation (i.e. supply the complete
set of task to perform, assign the tasks to worker, assign each task a deployment rule).
Red Hat CMM is delivered with the source code allowing easy extensibility and
customisation of the implementation by Red Hat, or by the organisation's own
developers. Specific solutions for different companies are provided. In this sense this
software can be viewed as a customise software

� Red Hat Database a database management system that integrates Red Hat Linux 7.1
and PostgreSQL 7.1.2 plus a Red Hat Installer

� Red Hat E-Commerce Suite Open source software solution that helps small and
mid-sized businesses build and manage e-commerce applications. Includes several
modules, including the Red Hat Linux Database and the Red Hat Linux 7.1 operating
system.

� Red Hat eCos vl_3 an open-source, royalty-free, configurable, operating system for
embedded systems. It is targeted at applications in consumer electronics,
telecommunications, automotive and other cost-sensitive and lightweight applications.

� Red Hat Stronghold 3 Web server based on the open source Apache technology.
Other products � Manuals; clothing and accessories.
Services � Support, consulting, training, personalised solutions, custom development for

embedded applications. Note that many support services are supplied by contract with each
packages distribution.

97

5.5 Conclusions and policy implications

According to several scholars the OSS model represents a significant organisational innovation in

the software industry and it is often referred to as an example for other industries as well (e.g. Kogut

and Turcanu, 1999; Lerner and Tirole, 2000). A key characteristic of this model is represented by the

modularity, which comes from the Unix environment. Modularity is enhanced by the use of the last

generation programming languages (object-oriented languages such as C++ and Java). Another related

characteristic is the distributed development. Task partitioning made possible by the modularity of

process technologies and the diffusion of the Internet allow a rising physical distribution of innovative

activities. In particular, a major organisational feature of OSS is associated with the possibility to

develop a wide array of innovations (or product varieties) to meet heterogeneous users’ needs. As

Franke and von Hippel (2002) have illustrated in the case of the Apache web servers, OSS offers

customers with heterogeneous needs the possibility to rely on a powerful and relatively easy-to-use

toolkit for developing innovations that no commercial software supplier would have enough incentive

to supply. This model of innovation, which is in part common to proprietary software (a distributed

environment can be emulated by large firms and their networks of partners), is a potentially important

source of innovation for this industry, which relies on lead users as a major source of innovation. The

free access to the source code to a potentially large number of contributors can have positive effects on

incremental technical change. In fact, however, we do not know how many people are interested in the

source code. Probably a majority of users (including very sophisticated ones) are not interested in the

source code as such but are more interested in freely available programs that can be used as a stand

alone product or development tool.

Moreover, except for few cases such as Apache, Sendmail and Perl, OSS software often produces

improvements of existing (often proprietary) software (e.g., StarOffice). Future empirical research

should explore whether the OSS community is able to provide enough incentives to produce radical

innovations or major departures from existing proprietary inventions. Advocates of proprietary

software argue that OSS poaches on the pool of proprietary knowledge thus producing a negative

externality (with negative consequences for the ex ante incentives to innovate). Advocates of OSS, on

the contrary, reply that in the history of software innovation is a social construction or a combination

of sequential unpatentable ideas. Moreover, the strength of the proprietary system can distort the

incentives of the OSS developers and industry observers have claimed that patent examiners have

granted too broad patent protection to applicants that have heavily relied on software developed in the

OSS community (Lerner and Tirole, p. 30). Then potentially negative externalities are generated by

both communities with negative net effects on innovation and growth. Future research in this field

98

should investigate the patterns of inventions generated in different OSS projects and ask what is the

value of the knowledge disclosed for ‘philanthropic innovators’.

Another issue is about the links with open science. We are interested to see whether OSS developers

publish their results in scientific journals and patent their inventions. Moreover, future research should

explore the coexistence of different regimes of property rights. As discussed before the two regimes

analysed in this work tend to produce global negative effects on growth so long as they also compete in

the market for software goods. A classical solution to this dilemma is to separate software R&D from

software distribution. The R&D sector is obviously subject to market failure and as such should receive

public support. In practice, public support to both ‘philanthropic innovators’ and profit oriented firms

could be conditioned upon their pre-commitment to full or partial disclosure of the source code. On

the other hand, in the distribution sector firms can appropriate the benefits of their inventions by

relying on the available array of legal instruments, including patents. In order to favour the diffusion of

patented software inventions, limited reverse engineering rights and access to the source code for

experimental/research reasons could be introduced.

The advocates of OSS have emphasised the advantages of the large scale of voluntary developers

and users who contribute to the improvement and debugging of products. However, with few

exceptions few have addressed the issue of coordination costs associated with this model of innovation.

Coordination costs in large scale projects can offset the advantages of distributed development.

Čubranić and Booth (1999) discuss different solutions to the coordination problem adopted in different

OSS projects. Most solutions rely on the division of tasks between leaders (who are usually the first

developers) and a limited number of key developers/administrators who help the leaders in the scrutiny

of new contributions, certification and integration of the new patches into the kernel. Despite the

division of labour, the growing complexity of many OSS projects (e.g., Linux have reached over 1.5

million lines of code recently) results in longer release time (e.g. Linux version 2.2 took longer than

expected and Mozilla took over one year to pass the official beta test). These coordination problems

raise the question of scarcity. Raymond and his colleagues argue that OSS is a community founded on

the abundance of resources. But the lack of coordination skills (and leadership), that are not easy to

reproduce and to find in the market can become an important bottleneck that severely constraint the

future growth of OSS.

Finally, the peculiar characteristics of the OSS business models described by Hecker (2000) and

briefly analysed in section 5.4 highlight an important issue. Packaged software based on OSS products

are often sold at very low price. For example, a Suse Linux 7.3 Professional Edition is sold at 68 Euro

while Red Hat Professional 7.2 is sold at 211,67 Euro45. At the same time Wheeler (2001) computes

45 Source: Ulrick B. and Zucchelli D., PC Professionale, January 2002.

99

that the cost to configure a server is about $1510 for installing the Windows 2000 operating system on

25 clients, and $156 for installing the Red Hat Linux operating system on an unlimited number of

clients. Therefore some argue that the cost savings from the adoption of OSS can be fairly large.

However, the right way to evaluate the cost of adopting an OSS product is to look at the total cost

of ownership (TCO). As a matter of fact, the adopter has to consider all costs involved in acquiring,

installing, configuring, supporting, maintaining, using, and upgrading the software. These costs depend

on the underlying assumptions used to build the cost model (Wheeler, 2001), the local technical and

market environment in which the software is used, and the availability and cost of computer technicians

with the necessary skills (Rusten and Moses, 2002). Also, TCO depends on the specific characteristics

of the adopted product. It is not correct then to conclude that TCO for any OSS product is lower than

for proprietary products. As far as we know, there are not reliable empirical data on the TCO of

software, and to be informative, those data should be distinguished according to the type of user, i.e.

individuals, enterprises or public administrations. For example, the decision of introducing OSS

instruments in educational computer environments must be supported by a TCO specific model, which

considers all costs associated with building the capacity of educators to integrate new instruments into

teaching and learning activities. These costs might be very high when teachers have to be re-trained,

when there is a lack of technical support so that small technical problems can prevent an effective use,

or there is a lack of educational software applications that can operate on Linux (Rusten and Moses,

2002).

Our interviews suggest that OSS business actors have the perception that TCO is lower for open

source products because the initial low price. However, our interviews also indicate that the estimated

TCO of OSS is still high because of high level of skills required to manage and use the software, and

the limited availability of complementary products (including documentation). But our interviews also

point out that TCO for OSS is declining because of the introduction of GUI (graphical user interfaces),

that reduce the level of skill required to use the software, and the availability of a huge amount of

documentation on the web.

100

Appendix A
The OSI Approved Licenses

1. GNU General Public License (GPL)
2. GNU Library or ‘Lesser’ Public License (LGPL)
3. BSD license
4. MIT license
5. Artistic license
6. Mozilla Public License v. 1.0 (MPL)
7. Qt Public License (QPL)
8. IBM Public License
9. MITRE Collaborative Virtual Workspace License (CVW License)
10. Ricoh Source Code Public License
11. Python license (CNRI Python License)
12. Python Software Foundation License
13. zlib/libpng license
14. Apache Software License
15. Vovida Software License v. 1.0
16. Sun Industry Standards Source License (SISSL)
17. Intel Open Source License
18. Mozilla Public License 1.1 (MPL 1.1)
19. Jabber Open Source License
20. Nokia Open Source License
21. Sleepycat License
22. Nethack General Public License
23. Common Public License
24. Apple Public Source License
25. X.Net License
26. Sun Public License
27. Eiffel Forum License
28. W3C License
29. Motosoto License
30. Open Group Test Suite License
31. Zope Public License
32. University of Illinois/NCSA Open Source License

101

Appendix B
Free Software Foundation Approved Licenses

� GPL-Compatible Free Software Licenses

1. GPL
2. LGPL
3. The Guile License
4. The License of the run-time units of the GNU Ada compiler
5. The X11 license
6. Expat license
7. Standard ML of New Jersey Copyright License
8. The Cryptix General License
9. The modified BSD License (BSD license without advertising clause)
10. The Zlib License
11. The iMatix Standard Function Library License
12. The W3C Software Notice and License
13. The Berkeley Database License (Sleepycat Software Product License)
14. The OpenLDAP License, Version 2.7
15. The License of Python 1.6a2 and earlier versions
16. The License of Python 2.0.1, 2.1.1, and newer versions
17. The Perl License
18. The Clarified Artistic License
19. The Artistic License, 2.0
20. The Zope Public License version 2.0
21. The Intel Open Source License (as published by OSI)
22. The Netscape Javascript License

� GPL-Incompatible Free Software Licenses

1. The Arphic Public License
2. The original BSD license (with advertising clause)
3. The Apache License, Version 1.0
4. The Apache License, Version 1.1
5. The Zope Public License version 1
6. The license of xinetd
7. The License of Python 1.6b1 and later versions, through 2.0 and 2.1
8. The old OpenLDAP License, Version 2.3
9. The license of Vim, Version 5.7
10. IBM Public License, Version 1.0
11. Common Public License Version 0.5
12. The Phorum License, Version 1.2
13. The LaTeX Project Public License
14. The Mozilla Public License (MPL)
15. The Netizen Open Source License (NOSL), Version 1.0
16. The Interbase Public License, Version 1.0
17. The Sun Public License
18. The Nokia Open Source License
19. The Netscape Public License (NPL)
20. The Jabber Open Source License, Version 1.0
21. The Sun Industry Standards Source License 1.0
22. The Q Public License (QPL), Version 1.0
23. The FreeType license

102

24. The PHP License, Version 2.02

� Non-Free Software Licenses

1. The (Original) Artistic License
2. The Apple Public Source License (APSL)
3. The Sun Community Source License
4. The Plan 9 License
5. Open Public License
6. The Utah Public License
7. eCos Public License
8. The Sun Solaris Source Code (Foundation Release) License, Version 1.1
9. The YaST License
10. Daniel Bernstein's licenses
11. The ‘Aladdin Free Public License’
12. The Scilab license

103

Appendix C

OSS Licence Models

The GPL

Source code
availability

Yes. Source code has to be available for each distribution of the program or work based on
the program. The code, or modified parts of it, can be distributed in executable form
provided that the source code is available under the GPL terms.

Right to USE No limitations. The act of running the program is not restricted, and the output from the
program is covered by GPL only when the program copies part of itself into the output.

Right to COPY No limitations.
Right to
MODIFY

Yes, providing that the modified files carry a notice stating who has modified the program
and the date of modification; each modification has to be distributed under the GPL terms.
Note that who adopts the GPL-ed software is free to make modifications and use them
privately without ever releasing them. But if the ‘underwriter’ decides to release the
modified version, he or she has to make the modified code available under the GPL
conditions.

Right to
DISTRIBUTE

Yes. Any copy of the program and work based on the program have to be distributed under
the GPL terms, that is distributors have to publish on each copy of the product the original
copyright notice and the disclaimer of warranty; distributors have to give any another
recipients the same rights to use, copy and modify that he or she has received.

It is possible to distribute only executable code if a written offer to distribute the source
code later is provided, and a price no greater than the cost required to physically distribute
the source code has to be charged. As a special exception, the source code distributed does
not need to include anything that is normally distributed as a component of the operating
system on which the executable runs.

Moral rights
protection

Yes. The GPL requires all copies of covered code to carry a copyright notice including the
name of the copyright holder.

Initial developer
‘special’ rights

Yes. The original copyright holder may add an explicit geographical distribution limitation
excluding those countries for which the distribution and/or use of the program is restricted
either by patents or by copyrighted interfaces. In such cases, the licence incorporates the
limitations ‘as if’ written in its body.

Generally, the original copyright holder can release the software under different non-
exclusive licences, including proprietary licenses.

The original copyright holder can modify the terms for distributions of GPL covered
software if an ‘underwriter’ asks for it. He or she can decide, for example, to allow the
‘underwriter’ to merge covered code with a proprietary product. But this can be done
provided that the original code under the licence remains free, such that when other people
modify the program, they do not have to make the same exception.

IS the software
under the licence
gratis?

Usually the software is free of charge but GPL does not ban sales, therefore distributors
may sell copies of the object code and charge a fee for the physical act of transferring copies of
the programme. The distributor may also offer warranty protection in exchange for a fee.
Finally, he/she can charge a fee for the corresponding source code which cannot exceed the
‘cost of physically performing source distribution’ (see GPL Section 3)

Warranty/
Liability/Claims

Disclaimer of warranty to the extent permitted by the applicable law. The ‘underwriter’
alone assumes the entire risk as to the quality and performances of the program and if the
code proves defective, the ‘underwriter’ assumes the cost of all necessary servicing, repair or

104

correction requested by subsequent users.

The ‘underwriter’ may offer warranty protection in exchange for a fee.

No liability, in no event unless required by applicable law or unless there is an explicit
agreement with the copyrights holder or following distributors.

Third party
claims

No explicit rules

National law
compatibility

Compatibility problems could arise. For example, the ‘viral clause’ can conflict with
copyright law when the author of modifications or integration of original covered code can
demonstrate that those are original creations that rely only to a minimal extent to the
original GPL covered code.

The GPL claims that if in a given country it is not possible to distribute the program under
conditions that guarantee the compliance with the obligations of the GPL and any other
pertinent obligations (such as court judgement and allegation of patent infringement) then
the ‘underwriter’ may exclude that country from the list of country where the distribution is
allowed (GPL, Section 8).

Litigations/
Conflicts/
Violations

No explicit rules to solve conflicts are present. In case of violations of GPL terms, the user
(or the company) looses the right the license gave him, but parties that have received copies
of software or the rights from him/her will not have their licence terminated.

Moreover, the Free Software Foundation strongly recommends to communicate them
eventual violations, and to return back to them the rights of improvements any work based
on the covered code in order to give the FSF the right to sue against infringements.

SPECIFIC CHARACTERISTICS OF OSS LICENCES
‘Mixability’ with
OSS licensed
product

GPL is compatible with those licences for which is ‘technically’ possible to combine parts of
GPL covered code with any module of code under a different licence in a larger work
satisfying both licences at once.
Generally, this applies to free software licences with copyleft property.
For example GPL is compatible with the following licences: LGPL, Zlib licence, W3C,
Sleepycat Software Product Licence, Python 1.6a2 and earlier version, Python 2.0.1, 2.1.1
and newer version, Clarified Artistic Licence, Zope Public Licence, Intel Open Source
Licence.

‘Mixability’ with
proprietary
licensed product

No, unless the original copyright holder makes an exception.

Degree of
openness
protection

Maximum degree by copyleft property. Richard Stallman (GNU Organisation and Free
Software Foundation) created the term ‘copyleft’ in opposition to copyright: with the term
‘copylefted software’ Stallman refers to free software whose distribution terms do not let
distributors add any additional restriction when they redistribute or modify the software.

105

The LGPL

Source code
availability

Yes. The source code has to be available for each distribution of the program or work based
on the program. The code, or modified parts of it, can be distributed in executable form
provided that the source code is available under the LGPL terms.

Right to USE No limitations. The act of running the program using a LGPL-ed library is not restricted.
The output from the program is covered only if its contents constitute a “work based on the
library”, that is a work containing the library or a portion of it, either verbatim or with
modifications.

Right to COPY No limitations.
Right to
MODIFY

Yes, providing that a) the modified work is itself a software library; b) the modified files
carry a notice stating who has modified the program and in which date; c) the whole work
has to be licensed at no charge to all third parties under the terms of the licence; d) it is
possible to add facilities which refer to functions or tables of data supplied by an application
program, provided that if the application does not supply those functions or tables, the
facilities still operate and perform the parts not requiring the functions or tables.

Right to
DISTRIBUTE

Yes. LGPL distribution rules are quite complex. It is useful to distinguish among works
based on the library and works that use the library. A “work based on the library” is a work
containing the library or a portion of it, either verbatim or with modifications; furthermore,
each work that is not derived from the library but is distributed as part of the whole which
is a work based on the library, has to be considered as a work based on the library itself. A
work that uses the library is code designed to work with the library in that it is compiled
(or linked) with the library but does not contain portions of original library nor modified
parts of it.

The ‘underwriter’ of the LGPL licence can distribute the covered code or works based on
the library provided that the whole work is licensed at no charge to all third parties under
the terms of the LGPL licence. Complete source code has to be made available, that is
distributors have to supply all the source code for all modules the library contains, any
associated interface definition files, the scripts used to control compilation and installation
of the library. Furthermore, each copy has to be accompanied by the copyright notice, a
disclaimer of warranty, and a copy of the licence. Distribution of executable code without
supplying the source code is allowed provided that the object code is accompanied by a
written offer, valid for at least three years, to give the users the source code for a charge no
more than the cost of performing the distribution.

Generally a work that uses the library, in isolation, is not a derivative work and LGPL
terms do not apply on it. But, the licence contains a list of exceptions and particular cases.
For example, the object code of a work that uses material from a header file that is part of
the library could be a work based on the library (the rules that distinguish a derivative from
the covered code from a work that uses a library are not clearly defined by law). In that case
the object code, or the executable that contains it, can be distributed provided that the
source code of the ORIGINAL library and its modified parts is supplied. It is possible not
to supply source code if the object code is accompanied by a written offer, valid for at least
three years to give the users the source code for a charge no more than the cost of
performing the distribution.
For an executable, the required form of the work that uses the library must include any data
and utility programs needed for reproducing the executable from it. However, as a special
exception, the materials to be distributed do not need to include anything that is normally
distributed (in either source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless that component
itself accompanies the executable.

Furthermore, if the code is a work that is linked with the library in order to create an
executable, that work has to be considered a derivative on the library. LGPL allows to

106

distribute this work provided that both object and source code of this work are supplied in
order to allow users to modify the work and re-link them whenever they need. It is allowed
to use a suitable shared library mechanism for linking with the library instead of distributing
source code. This mechanism uses at run time a copy of the library already present on the
computer of the user and will operate properly with a modified version of the library if the
user installs one.

As an exception of distribution rules, it is allowed to combine or link a work that uses the
library with the library to produce a work containing portions of the library and distribute
that work under terms other than LGPL provided that the terms allow modifications of the
code for customer’s own uses and reverse engineering for debugging such modifications.

Finally, section 7 states that it is allowed to place library facilities that are a work based on
the Library side-by-side in a single library together with other library facilities not covered
by the LGPL, and to distribute such a combined library, provided that the separate
distribution of the work based on the library and of the other library facilities is otherwise
permitted, and provided that: a) the distributors accompanies the combined library with a
copy of the same work based on the library, and not combined with any other library
facility. This must be distributed under the terms of LGPL for work based on the library; b)
it gives prominent notice with the combined library of the fact that part of it is a work based
on the library, and explaining where to find the accompanying not combined form of the
same work.

Moral rights
protection

Yes. The LGPL requires all copies of covered code to carry a copyright notice including the
name of the copyright holder.

Initial developer
‘special’ rights

See GPL

IS the software
under the licence
gratis?

Usually is free of charge but LGPL does not ban sales, therefore distributors may sell copies
of the software. The distributor may offer warranty protection in exchange for a fee, or
charge a fee for the physical act of transferring copies.

When distributors supply only the executable code, they can provide the source code and
charge a price no larger than the cost needed to perform the distribution.

Warranty/
Liability/
Claims

Disclaimer of warranty to the extent permitted by applicable law. The ‘underwriter’ alone
assumes the entire risk as to the quality and performances of the program and if the code
prove defective, the ‘underwriter’ assumes the cost of all necessary servicing, repair or
correction requested by subsequent users.

The ‘underwriter’ may offer warranty protection in exchange for a fee.

No liability, in no event unless required by the applicable law or unless there is an explicit
agreement with the copyrights holder or following distributors.

Third party
claims

No explicit rules.

National law
compatibility

See GPL

Litigations/
Conflicts/
Violations

No explicit rules to solve conflict are present. In case of violations of LGPL terms, the user
(or the company) looses the right the license gave him but parties that have received copies
of software or the rights from him/her, will not have their licence terminated.

Moreover, the Free Software Foundation strongly recommends to communicate them
eventual violations, and to returns back them the rights of improvements any work based
on the covered code in order to gives the FSF the right to sue against infringements.

SPECIFIC CHARACTERISTICS OF OSS LICENCES
‘Mixability’ with
OSS licensed
product

Yes, provided that the original library and its modifications are supplied with the source
code. An executable which contains or uses original LGPL-ed library’s code could be
distributed under others licences agreements, provided that the user has the possibility and

107

the right to isolate original library code from the executable and work on it applying the
LGPL rules. An executable for which this rule is applied could be composed of (for
example): code linked to LGPL-ed original library code; code that uses the library’s header
file; facilities that enriched original library; combination of LGPL library components and
library under others license agreements.

‘Mixability with
proprietary
licensed product

Yes, see the cell above.

Degree of
openness
protection

High degree. The licence imposes the ‘copyleft’ property on original library covered by the
license.

Is the licence
GPL-
compatible?

Yes, if a library is under LGPL terms distributors may opt to apply the GPL terms on it, but
once this change is made in a given copy, it is irreversible for that copy so GPL applies to all
following copies and derivative works.

108

MPL: The Mozilla Public Licence

Source code
availability

Covered code and any modification made by contributors must be available in source code.
Covered code can be available in executable form under a different licence, providing that the
source code is available. At the same time, the definition of ‘modifications’ does not apply to
pieces of code that are not derived from the original code and are stored in a separate files.

Right to USE No limitations.
Right to COPY No limitations.
Right to
MODIFY

Modifications are subject to the following conditions: 1) acknowledge first the author and the
name of the original covered program; 2) distribute original source code except for added part
of code not derived from original covered code; 3) distribute file-documenting changes.
Furthermore, in MPL 1.1 contributors have to declare that they believe their modifications or
improvement are original creations.

Right to
DISTRIBUTE

Yes. MPL allows ‘underwriters’ to merge open source code with software distributed under
other licence schemes (including proprietary ones) and to distribute also the executable
version under other licence schemes (including proprietary ones) provided that they distribute
the source code of the original covered software.

Moral rights
protection

Yes. The ‘underwriter’ has to notify the name of the original developer and the original
product name in each distribution and in every documentation.

Initial
developer
‘special’ rights

In MPL 1.1 version the initial developer has the right to designate portions of covered code
as “Multiple-Licensed”. So that, the person, or society, whom the Initial Developer gives up
her rights, can use portions of the covered code under alternative licence schemes, if any,
specified by the initial developers.

IS the software
under the
licence gratis?

Yes, it is generally gratis but sale is allowed. The distributors may apply a fee to warranty
protection and a fee in exchange for specific services (indemnity, support, and liability).

Warranty/
Liability/
Claims

Total disclaimer of warranty. The distributor alone assumes the cost of any necessary
servicing, repair or correction.
Limitation on liability except cases in which the applicable law prohibits such limitation. The
distributor can offer, and charge a fee for, warranty, indemnity or liability obligations. This
new provision does not affect the original covered code and the distributor agree to
indemnify the original developer and contributors for any liability incurred as the result of the
new grants that distributors offer.
MPL 1.0 The licence is subject to third party intellectual property claims; third party claims
have to be included in a LEGAL file.
The distributor is responsible for damage arising, directly or indirectly, out of the utilisation of
rights under the licence, based on the number of copies of code that made available, the
revenues that received from utilising such rights, and other relevant factors. The ‘underwriter’
agrees to work with affected parties to distribute liability on equitable basis.

 Third party
claims

MPL 1.1. Beyond the conditions concerning third parties claims mentioned before, each part
is responsible for any damage arising, directly or indirectly, out of its utilisation of rights
under the licence. The ‘underwriter’ agrees to work with the initial developer and contributors
to distribute such responsibility on an equitable basis.

National law
compatibility

If MPL is in conflict with national laws (statute and regulations), even about limitation on
liability, the ‘underwriter’ has to comply with the terms of MPL as much as possible and
describe limitations in a LEGAL file. Note: this section was included to allow to put under
the licence also software, as cryptographic code, which may have legal restriction placed on its
broad and public distribution.

Litigations/
Conflicts/
Violations

MPL 1.0 The licences include terms for termination of the contract and a list of grants that
will survive termination. The licences also specify which law - and with which exceptions -
they are governed by and by which jurisdiction.

109

MPL 1.1 The licences include terms for termination of the contract when there is a litigation
about patent infringement claim and a list of grants that will survive termination. The licences
also specify which law - and with which exceptions - they are governed by and by which
jurisdiction.

SPECIFIC CHARACTERISTICS OF OSS LICENCES
‘Mixability’
with OSS
licensed
product

Yes, MPL allows ‘underwriters’ to create a larger work by combining covered code with
other not governed by the terms of the MPL and distribute it as a single product. In fact, this
kind of licence was created in order to allow a company who usually distributes proprietary
code to enter the open source world.

‘Mixability with
proprietary
licensed
product

Yes, see the cell above.

Degree of
openness
protection

High/Medium protection. Any modification made by contributors must be available in
source code (so that the software remains free), but the definition of modifications does not
apply to ‘subroutines’. The MPL allows this new and separate piece of code to be distributed
with covered code in a larger work under a different licence - even a proprietary one.

Is the licence
GPL-
compatible?

MPL 1.0 is not compatible with the GPL. In fact, MPL has a loophole that allows the
‘underwriter’ to make his/her own modifications private. MPL 1.1 allows in section 13 a
software (or part of it) to be covered by another licence. If the ‘underwriter’ chooses the
GPL, the two licences become compatible. Moreover, mozilla.org is providing the
distribution of its product under a triple licence MPL1.1/GPL/LGPL.

110

The BSD licence

Source code
availability

Yes.

Right to USE No limitations.
Right to COPY No limitations.
Right to
MODIFY

No limitations

Right to
DISTRIBUTE

Yes, distribution both in source and in object code are allowed provided that copyright notice
and disclaimer of warranty is included in each copy distributed. Furthermore, underwriter has
to be fully informed of the rights the licence gives him/her.

Moral rights
protection

Yes, the first author and the contributors have to be mentioned in each copy of the licence.
Some experts define this licensing type a “free marketing style” because programmers can
show their skills to the business world simply giving away their product.

Initial
developer
‘special’ rights

None.

IS the software
under the
licence gratis?

Generally gratis but there are not rules that ban sales and fees.

Warranty/
Liability/
Claims

The software is provided ‘AS IS’ without warranty of any kind; in no event shall the author or
copyrights holder be liable for any claim, damages or other liability (except for countries
where such clauses are in contrast with the law)

Third party
claims

No explicit rules.

National
compatibility

High compatible.

Litigations/
Conflicts/
Violations

No explicit rules.

SPECIFIC CHARACTERISTICS OF OSS LICENCES
‘Mixability’
with OSS
licensed
product

Yes, The BSD licence model is highly permissive. The ‘underwriter’ can do almost anything
with the software received.

‘Mixability with
proprietary
licensed
product

Yes. See the cell above.

Degree of
openness
protection

Low protection: source code distribution is allowed but not required.

Is the licence
GPL-
compatible?

Yes, except for the old BSD licence used until 1999. That version contained a clause requiring
that any advertisement mentioning the BSD-software had to mention that the software was
developed at the University of California. This additional clause is in conflict with the copyleft
property of GPL. The Apache Licence 1.0 and 1.1 have still the same problem.

111

Appendix D
Diffusion of different license models

LICENCE N° %
Public domain 856 3,11%
Other/Proprietary licence 549 1,99%
OSI approved licenses 26124 94,90%

GNU General Public License 19096 69,37%
GNU Library or Lesser General Public License
(LGPL) 2653 9,64%
BSD License 1812 6,58%
Artistic License 767 2,79%
MIT License 420 1,53%
Apache Software License 335 1,22%
Mozilla Public License 1.0 (MPL) 227 0,82%
Mozilla Public License 1.1 (MPL 1.1) 160 0,58%
Python License (CNRI Python License) 158 0,57%
Qt Public License (QPL) 139 0,50%
zlib/libpng License 129 0,47%
Common Public License 46 0,17%
IBM Public License 37 0,13%
Sun Industry Standards Source License (SISSL) 28 0,10%
Jabber Open Source License 20 0,07%
Apple Public Source License 17 0,06%
Nethack General Public License 16 0,06%
Intel Open Source License 11 0,04%
Python Software Foundation License 11 0,04%
Ricoh Source Code Public License 6 0,02%
Eiffel Forum License 5 0,02%
MITRE Collaborative Virtual Workspace License
(CVW) 5 0,02%
Nokia Open Source License 5 0,02%
Sleepycat License 4 0,01%
Sun Public License 4 0,01%
Open Group Test Suite License 3 0,01%
University of Illinois/NCSA Open Source
License 3 0,01%
W3C License 3 0,01%
Zope Public License 3 0,01%
Vovida Software License 1.0 1 0,00%
Motosoto License 0 0,00%
X.Net License 0 0,00%

TOTAL 27529 100,00 %
Source: elaborations on SourceForge (2002)

112

Appendix E
Examples of OSS vendors

A. Linux Distributors

Caldera

Caldera was founded in 1994 in the United States. In 2001 it bought the Unix products and services

of Santa Cruz Operation (SCO) and became the latest owners of the ‘official’ Unix source code; after

this acquisition it changed its name in Caldera International. In January 2002 Caldera decided to release

some of the older UNIX versions under an open source license. Today Caldera provides complete

solutions for development, deployment and management of unified Linux and Unix platforms. In 2001

its revenues were about 40.4 millions of dollars, 48% of which arising from sales in the US market, 37%

in Europe, 11% in Asia, and 4% in Canada and Latin America (source: www.source.com). It sells open

source based products (OpenLinux workstation and server, OpenUnix and SCO Open Server) and

supplies support and services for those products. OpenLinux is distributed under GPL terms, and

under the licenses of the other software integrated in the package46.

Caldera offers customised solutions based on its products, support services for all major brands of

Linux, consulting and training services. For example, Caldera OpenLearning sells Linux courses

downloadable from their online stores for preparing the Linux certification exams and for other

specific topics such as, for example, Linux system administration

(www.caldera.com/education/courseware/). They also sell single lessons on specific topics (i.e. lesson

on KDE desktop). Despite of the wide spectrum of services they provide, only 16% of sales are from

services, while 84% are from software (Source: www.hoovers.com).

Caldera actively participates in free software production47. It has contributed to the development of

several projects (Linux kernel, Java, Netscape, WordPerfect). Furthermore, Caldera supports several

open source community projects (for example, Caldera Open Administartion System, Apache, KDE,

Samba).

Table 1 shows a selected list of the main Caldera services and products.

46 see for example www.caldera.com/support/docs/openlinux/1.3/english/license.html).

47 see www.caldera.com/developers/community

113

Table 1 Caldera software and services

� Selected Products
OpenLinux (fully integrated Linux operating system)
OpenServer (UNIX-based server software)
OpenUnix (UNIX-based business application)
Volution (Web and directory-based network management)

� Selected Services
Consulting
Custom Engineering
Project Management
Technical support
Training

Source: www.hoovers.com

SuSe

SuSE is a leading European Linux distributor providing operating systems and application software

for both individuals and corporations. It was founded in 1992 and has received financial spport from

Silicon Graphics, Inc., IBM, and Intel (www.hoovers.com). Suse’s enterprise packages contain

applications for servers, data exchange, and multimedia functions.

The company has recently expanded its product line providing – among others - the SuSE Linux

Firewall both in object and source code. Open source products are also freely downloadable from

SuSE websites. It is possible to dowload several versions of SuSE Linux (i.e. i386, PowerPC, AXP,

SPARC, S/390); updates, patches and versions with bugs fixed for all SuSE Linux version; KDE and

GNOME packages, language support, applications and development packages. Finally, SuSE sells

gadget as T-shirts and fashion accessories. SuSE provides also support services mainly available online

(see for example http://support.suse.de/psdb/ for online support provided to business customer).

Furthermore, SuSE offers consulting services and integrated solutions for business (i.e. planning,

software implementation, maintenance and services).

SuSE Linux software is distributed under the GPL license. However, since the SuSE Linux package

usually contains third parties software, each software is accompanied by a specific licence.

Table 2 shows a selected list of SuSE products.

Table 2 SuSe software and services

� Selected Products
Linux e-mail server
Linux enterprise server
Linux firewall
Linux groupware server
Linux database server
Linux network server

Source: www.hoovers.com

114

Turbolinux

Turbolinux Inc. was founded in 1992 in the United States and has received backing from August

Capital, Dell, Intel and Fujitsu. Moreover, Oracle and IBM are among its key partners (data from

www.hoovers.com). Turbolinux is the Linux leading supplier in Asia Pacific. In China Turbolinux is

also contributing to the transformation of the digital infrastructure of the country.

The company provides Linux operating systems for clients and servers – such as Turbolinux 7

Workstation and Turbolinux 7 Server – and software for data-server that work on IBM DB2 and

Oracle. It also provides PowerCockpit as software for “provisioning” (i.e. deploying and changing

computing assets in a network) UNIX, Linux and Windows servers on a single platform. PowerCockpit

seems to be the key competitive advantage of Turbolinux with respect to the other Linux distributors

(www.turbolinux.com/about). In addition, Turbolinux provides clustering technologies like

TurboLinux EnFuzion - a software that clusters (i.e. shares operations on multiple machines) all

available computing resources on a company network to create a “virtual supercomputer” - and

Turbolinux Cluster Server 6 for managing clusters. The company also provides support services

(including free user-browseable documentation, FAQs, and package updates online) to business

customer, consulting services and education.

Turbolinux is also supported by a community of users and developers. It invites the community

members to test its beta version of software (http://www.turbolinux.com/beta/) and allows the users

to participate to the development process by posting their contributions by ftp. Turbolinux is involved

in the Linux-SNA open source project (http://www.linux-sna.org/) that has the aim to bring SNA - a

set of network protocol developed by IBM – to Linux (www.turbolinux.com/devzone).

Table 3 shows a selected list of Turbolinux products and services.

Table 3 Turbolinux software and services

� Selected Software
TurboLinux Cluster Server (integrates Linux, Windows, and UNIX servers)
TurboLinux EnFuzion (uses existing computing resources for intensive
calculations)
TurboLinux DataServer with IBM DB2 (for running IBM databases on Linux)
TurboLinux DataServer with Oracle 8i (for running Oracle databases on Linux)
TurboLinux 7 Server (Linux operating system for servers)
TurboLinux 7 Workstation (flagship operating system software for PCs and
workstations)

� Services
Customer support
Product optimization and engineering
Training

Source: www.hoovers.com

115

B. OSS and traditional commercial companies

Several traditional commercial software companies are developing open source software or releasing

the source code of their products. Other hardware or software companies are supporting the

development of open source software for their hardware or software platforms. In this section we

briefly describe few examples of these companies which illustrate how hybridization strategies discussed

before work in practice. Our future research will focus more deeply on these strategies and the

implications of coexistence of proprietary and open source licensing models.

Netscape Communications

Founded in 1994 in the United States. Netscape is an Internet pioneer and a leading provider of web

browsers. Its Navigator held 85% of market shares before the entry of Microsoft Internet Explorer in

the client browser software market. Reacting to Microsoft threat in 1998, Netscape announced its

intention to release its client software, including Netscape Communicator and Netscape Navigator, as

open source software. At the same time, they created the Mozilla Organisation and the mozilla.org web

site for stimulating developers to collaborate on this project. Netscape then released Communicator 4.5

with a 10 billions of dollars marketing campaign. America On Line (AOL) acquired Netscape in March

1999 (data from www.hoovers.com).

Today Netscape, as a division of AOL Time Warner, draws on open source Mozilla technology for

its Netscape communication commercial browser. Mozilla software is also used in other open-source

browsers, such as the Galeon browser for Linux.

The Mozilla.org members actively supports the browser development. They provide technical and

architectural directions for the project, help authors to synchronise their work, and periodically release

new source code by incorporating the best contributions. They also coordinate discussion forums

(mailing lists, newsgroups, or other appropriate groups) and bug lists. In addition Mozilla members

keep track of works in progress and advertise it; they also suggest improvements to the code and point

to projects based on that code. It is worth to note that most code approved and distributed by

Mozilla.org is written by Netscape engineers and other organisations in the net (see

http://www.mozilla.org/mission.html). Netscape Communicator is distributed under the Netscape

Public License (NPL) while Mozilla software is distributed under the Mozilla Public License (MPL).

Zope Corporation

Founded in 1995 in the United States (Fredericksburg, VA), Zope Corporation (www.zope.com)

provides high-end custom solutions for big business companies (mainly media/telecommunication

firms, newspapers, Internet business and Fortune 1000 companies) and public institutions (i.e.,

government, military, educational institutions). The company provides consulting services, web site

116

hosting services, technology partnerships, support and training. Its main product is the Zope

application server, that enables the teams to collaborate in the creation and management of web based

business applications such as portals.

In 1997 Zope corporation released its software as open source. Today, Zope source code is

developed by the Zope Community (www.zope.org). There are no licensing fee for downloading and

using the software; at the same time Zope sells personalised solutions of its software and provides con

sulting services, technology partnerships, support, training and custom vertical applications. However ,

customers are not dependent on particular vendors for supporting and bug fixing because they can

always find another supplier in the community48.

In 2000 Zope acquired PythonLabs, which produces the open source object-oriented language

Python (www.python.org). Today the Zope and Python communities are strictly integrated

(http://www.pythonandzope.com).

The Zope software is distributed under the Zope Public License (ZPL) approved by the Open

Source Initiative (OSI) board in February 2002 (http://www.opensource.org).

Apple Computers

Founded in 1976, Apple Computers, Inc. supplies desktop computers (iMac) and laptops (iBook)

based on processors produced by IBM and Motorola. Its targets are high-end consumers and

professionals involved in design and publishing. It also provides multimedia and publishing software

and offers Internet services such as web pages hosting. It holds a majority stake in FileMaker, a

producer of database software. Apple was the first traditional computer company to enter the open

source community. It has contributed in several open source projects mainly related to Mac OS X

(http://developer.apple.com/darwin/projects/). For example, in 1999 Apple released the core of Mac

OS X server as open source called Darwin (http://www.opendarwin.org/) and distributed it under the

BSD license; today software produced in Darwin project are distributed under the Apple Public License

(http://developer.apple.com/darwin/licensing.html). It has also put open source the Quicktime

Streaming Server and the OpenPlay network gaming toolkit

(www.opensource.org/docs/products.html). Today it collaborates with the Apache Group and other

open source developers for the development of the Mac OS X platform.

In 2001 its revenues were about 5,363 million of dollars, 25% of them from sales to schools (data

from www.hoovers.com). Apple open source software (Darwin, Streaming Server, CDSA, OpenPlay,

48 http://www.zope.com/Corporate/CompanyProfile .

117

HeaderDoc, and documentation on projects) are distributed under the Apple Public License (see

http://developer.apple.com/darwin/projects/).

Apple supports a Darwin community whose members voluntarily contribute to develop software for

the core operating system of Mac OS X, and for the Streaming Server.

IBM

IBM is one of the world’s largest computer company. It produces software, PCs, mainframe and

server systems, notebooks, microprocessors, and peripherals. It also supplies services including

consulting, web hosting and training. In 2001 its service business accounted for about 40% of its total

sales (data from www.hoovers.com). In the last years IBM has reorganised its hardware business, by

merging its desktop and laptop operations and concentrating on its leading enterprise server and

storage products. Today its focus is mainly on e-commerce infrastructures, databases, messaging and

server software while it is moving away from operating system (www.hoovers.com).

This strategic repositioning was also characterised by the decision to strongly support the Linux

development community. IBM has been contributing to many open source projects (see http://www-

106.ibm.com/developerworks/). IBM has made strong interoperability efforts to allow its hardware

and software products to work with Linux operating system and currently participates in Linux

Internationalisation Initiative. It develops drivers to allow its hardware work with Linux; IBM is also

improving and extending Linux for its hardware (i.e., Linux for S/390 and zSeries;

www.ibm.com/S/390/linux). In addition, IBM has disclosed the source of an open source journaled

file system technology (JFS), distributed under GPL terms, a key product for running intranet and other

high-performance e-business file servers. IBM is offering this technology to the Linux open source

community with the hope that it will be adapted to the Linux operating system (http://www-

124.ibm.com/developerworks/oss/jfs/).

At the same time IBM has donated software to the open source community, mainly software

programming tools, to spur the creation of applications for e-business and web services on the Linux

operating system. Through the organisation Eclipse (whose members include Red Hat and SuSE) IBM

donated the Eclipse-based tools that run on both Linux and Windows and allow developers to create a

single application rather then first create the software on Windows and then transferring it to Linux49.

In addition, IBM donated the software code for a Java application programming interface (a technology

called UDDI for Java) that connects business actors to the giant online “Yellow Pages” that was

created by Microsoft and IBM. Several companies are now supporting the UDDI for Java open-source

project (for example Compaq, Bowstreet, Cross, DataChannel) that is a key technology for building a

49 Source: Wong W., at http://zdnet.com.com/2100-11-527550.html, Update January 24, 2001.

118

system in which customers will not have to buy and install software on a personal computer, but will

able to download what they need over the Internet50 (as already Microsoft technology .Net allows to

do).

IBM hosts open source projects on its web site also providing tools for active community members

participation. We have not complete data on how each of these communities is organised. As an

example, for the JFS project IBM provides a downloading area, the CVS repository to track all

members activities on source code, documentation, mailing lists, and an area for reporting bugs. The

JFS project is managed by a small, core group of contributors known as the JFS core team. They have

read-write access to the JFS source code repository, decide which features go into which releases,

decide who has access to the JFS source code repository, approve the check-in of new or changed

source code and documentation, nominate new members of the core team.

IBM open source products are distributed under various licensing terms. They are often distributed

under IBM Public License and Common Public Licence, but Linux software development is usually

distributed under GPL terms.

Sun Microsystems

Sun Microsystems, founded in 1982, is the leading distributor of UNIX-based servers; it also

provides computers – from desktop workstations to high-end servers – that run with Sun SPARC chips

and Sun Solaris operating systems. The company also provides application servers, suite offices, data

storage equipment, and network management software. In addition Sun offers for support, consulting

and training services. Since 1995 Sun focused on the Internet computing, developed the Java

programming language and introduced the Java-based network. Today, the Java source code is available

to users that want to examine and modify the code, but it is not open source since developers cannot

distribute it. In 1999 Sun formed with Netscape and AOL a joint-venture called iPlanet to develop e-

commerce software. The join-venture with AOL expired in 2001 and iPlanet was then absorbed by Sun

(www.hoovers.com).

In 1999 Sun began to participate in several free and open source projects (see www.sunsource.net).

Since 2000 Sun is also providing server machines running Linux. It participates in Linux-related open

source projects; for example it is working to guarantee the compatibility between the Sun Solaris

operating system and Linux. Recently Sun has announced a free Platform Edition of its new Sun ONE

Application Server 7 that allows to build commercial web sites (Eric Knorr, ZDNet June 21, 2002).

50 Source: Junnarkar S., at http://zdnet.com.com/2100-1104-275388.html, Update November 5, 2001.

119

Sun has launched several open source communities. The Sunsource.net (www.sunsource.net),

founded by Sun, allows users to participate to its open source product development. Communities

members interact through the CollabNet platform, a web based development environment that enables

geographically dispersed groups of developers to collaborate. Also, Sun supports a discussion list for

general discussions about free and open source software, Sun policies and its use of open source

licenses. In 2000 Sun founded the Netbeans.org – for open source development tools - and the

OpenOffice.org for office productivity applications. In 2001 Sun launched a community on its Jxta, a

project for distributed computing protocols.

Sun contributes to open source projects through its engineers working on several projects, such as

OpenOffice.org, GNOME.org, Mozilla.org, Jxta.org, and Apache.org. It disclosed StarOffice code

through OpenOffice.org and the code of Forte for Java IDE – cross-platform compatible development

tools that enables the development on the Solaris Operating Environment, Linux and Windows

platforms - through NetBeans.

Sun enjoyed several benefits by supporting open source projects. Several Sun commercial software

including StarOffice and Forte is based on software developed by OSS communities. Recently Sun has

stopped free downloads of StarOffice v 5.2 to sell StarOffice 6.0, making proprietary the software

based on OpenOffice (M. Broersma ZDNet, May 27, 2002 at http://zdnet.com.com/2100-1104-

923039.html).

Sun distributes its products under different licenses schemes. Open source products are distributed

under GPL, Mozilla, or BSD terms, and also under traditional proprietary terms. OpenOffice is

distributed under a dual licence strategy, that is i) GPL, which has the aim of receiving the contribution

of the open source community; and ii) Sun Industry Standard Source License (SISSL) which is aimed at

allowing commercial partners to utilise the technology within their product and/or provide branded

versions of the technology.

120

References

Aoki A. et al. (2001), “A Case Study of the Evolution of Jun: an Object-Oriented Open-Source 3D
Multimedia Library”, IEEE Software Engineering, pp. 524 –533.

Bohem B. W. (1981), Software Engineering Economics, Prentice-Hall, Edgewood Cliffs.

Cohen J. E., Lemley M.A. (2001), “Patent Scope and Innovation in the Software Industry”,
http://www.georgetown.edu.

Cowan C. (1998), “Automatic Detection and prevention of Buffer-Overflow Attacks”, Proceedings 7th

Usenix Security Symposium, Usenix, San Diego, pp. 63-78.

Cŭbranić D., Booth K. (1999), “Coordinating Open Source Software Development”, IEEE Proceedings,
8th International Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises, (WET ICE '99), pp. 61–66.

Cusumano M. (1991), Japan Software Factories. A Challenge to the US Management, Oxford University Press,
New York.

Dalle J., Jullien N. (2001a), “Libre Software: Turning Fads into Institutions?”,
http://opensource.mit.edu/online_papers.php.

Dalle J., Jullien N. (2001b), “Open-source vs. Proprietary Software”,
http://opensource.mit.edu/online_papers.php.

Dasgupta P., David P.A. (1987), “Information disclosure and the Economics of Science and
Technology”, in: G. Feiwel (ed.), Arrrow and the Ascent of modern Economic Theory, New York
University Press, New York.

Dasgupta P., David P.A. (1994), “Towards a new economics of science”, Research Policy, Vol. 23, pp.
487-521.

David P. (1991), “Reputation and Agency in the Historical Emergence of the Institutions of “Open
Science”, Stanford University, CA, March, mimeo.

Di Bona C., Ockman S., Stone M. (eds.) (1999), Open Sources: Voices from the Open Source Revolution,
O’Reilly: Sebastopol, California.

EITO (2001), European Information Technology Observatory.

Franke N., von Hippel E., (2002), “Satisfying Heterogeneous User Needs via Innovation Toolkits: The
Case of Apache Security Software”, MIT Sloan School of Management Working Paper # 4341-02.

FSF (2002), Categories of free software, http://www.gnu.org/philosophy/categories.html.

FSF (2002), Licenses, http://www.gnu.org/licenses/licenses.html.

FSF (2002), Philosophy, http:// www.gnu.org/philosophy.html.

Fuggetta A. (2001), “Open Source Software: an evaluation”, Politecnico di Milano, mimeo.

121

Godfrey M.W., Tu Q. (2000), “Evolution in Open Source software: A Case Study”, IEEE Software
Maintenance, pp. 131 –142.

Grossman G., Helpman E. (1991), Innovation and Growth in the Global Economy, MIT Press, Cambridge,
Mass.

Hamerly J., Paquin T., and Walton S. (1999), “Freeing the Source - The Story of Mozilla”, in Di Bona
C., Ockman S., Stone M. (eds.) (1999), Open Sources: Voices from the Open Source Revolution, O’Reilly:
Sebastopol, California.

Hars A., Ou S. (2001), “Working for Free? – Motivations of Participing in Open Source Projects”,
IEEE Proceedings , 34th Annual Hawaii International Conference on System Sciences, pp. 2284 –
2292.

Hecker F. (2000), “Setting Up Shop: The Business of Open-Source Software”,
http://www.hecker.org/writings/setting-up-shop.html.

IDC (2000), Server Operating Environment: 2000 Year in Review, Bulletin#23731.

IDC (2002a), Worldwide Integrated Collaborative Environments Forecast 2002-2006, Bulletin#26579.

IDC (2002b), Worldwide Web Server and Web Server Acceleration Software Forecast 2002-2006,
Bulletin#26519.

IDC (2002c), Worlwide Software Support Services Forecast and Analysis 2001-2006, Bulletin#27177.

Kargon R., Leslie S. W., Schoenberger E. (1992), “Far Beyond Big Science: Science Regions and the
Organization of Research and Development”, in Galison, P. and Hevly, B. (eds.), Big Science. The
Growth of Large-Scale Research, Stanford University Press, ch. 13, pp. 334-354.

Koch S., Schneider G. (2000), “Results from Software Engineering Research into Open Source
Development Projects Using Public Data”, Vienna University of Economic and BA,
http://opensource.mit.edu/online_papers.php.

Kogut B., Turcanu A. (1999), “Global Software Development and the Emergence of E-Innovation”,
Carnegie Bosch Institute, Carnegie Mellon University, Pittsburgh, mimeo, October.

Krishnamurthy S. (2002), “Cave or Community? An Empirical Examination of 100 Mature Open
Source Projects”, First Monday, Vol. 7, n. 6, http://firstmonday.org/issues/issue7_6/.

Jeppesen L.B. (2001), Making Consumer Knowledge Available and Useful. The Case of the Computer
Games, Department of Industrial Economics and Strategy, Copenhagen Business School,
mimeo.

Lakhani K., von Hippel E. (2000), “How open Source software works: ‘Free’ user-to-user assistance”,
MIT Sloan school of Management WP No. 4117.

Laing D. (1999), “Is GNU/Linux commercially viable?”,
http://www.smuts.uct.ac.za/∼ dlaing/essay/is_linux_commercially_viable/Is_Linux_Commercially_Vi
able.html.

Lehman M.M. (1985), Program Evolution: Processes of software Change, Academic Press.

122

Lerner J., Tirole J. (2000), “The Simple Economic of Open Source”, NBER Working Paper n. 7600
(http://www.nber.org/papers/w7600).

Lerner J., Tirole J. (2001), “The Open Source movement: Key research questions”, European Economic
Review, Vol. 45, pp. 819-826.

McKusick M.K. (1999), “Twenty Years of Berkeley Unix - From AT&T Owned to Freely
Redistributable”, in Di Bona C., Ockman S., Stone M. (eds.) (1999), Open Sources: Voices from the
Open Source Revolution, O’Reilly: Sebastopol, California.

Merges, R. (1996) “A Comparative Look at Property Rights and the Software Industry”, in D. Mowery
(a cura di) The International Computer Software Industry. A Comparative Study of Industry Evolution and
Structure, Oxford University Press, Oxford, pp. 272-303.

Mockus A., Fielding R.T, Herbsleb J. (2000), “A Case Study of Open Source Software Development:
The Apache Server”, IEEE Software Engineering, pp. 263 –272.

Murtha R. (1998), “Open Source Software (OSS): A NewBusiness Paradigm?”,

http://is.gseis.ucla.edu/impact/f98/Projects/murtha/.

Netcraft (2001), Web Server Survey Methodology, http://www.netcraft.com/Survey/index-
200007.html#active.

Netcraft (2001), Operating System Survey Methodology, http://www.netcraft.com/Survey/index-
200109.html#computers2001.

Netcraft (2002a), Web Server Survey, http://www.netcraft.com/survey/.

Netcraft (2002b), Web Server Operating Systems in Italy, Netcraft for Microsoft.

Netcraft (2002c), Netcraft Primer V1.1 – March 2002.

OSI (2002), OSI Approved Licenses, http://www.opensource.org/license/index.html.

OSI (2002), The Open Source Definition, http://www.opensource.org/docs/definition.html.

OSI (2002), The Open Source History, http://www.opensource.org/history.html.

Perens B.(1999), “The Open Source Definition”, in Di Bona C., Ockman S., Stone M. (eds.) (1999),
Open Sources: Voices from the Open Source Revolution, O’Reilly: Sebastopol, California.

Prusa T.J., Schmitz J.A. (1991), “Are New Firms and Important Source of Innovation?”, Economic
Letters, 35; 339.

Raymond E. S. (1999a), “The Revenge of Hacker”, in Di Bona C., Ockman S., Stone M. (eds.) (1999),
Open Sources: Voices from the Open Source Revolution, O’Reilly: Sebastopol, California.

Raymond E.S. (1999b), “Linux and Open-Source Success”, IEEE Software, Vol. 16, pp. 85-89.

Raymond E. S. (2000), “Homesteading the Noonsphere”,
http://tuxedo.org/~esr/writings/homesteading/homesteading/.

123

Raymond, E. S. (2001), The Cathedral and the Bazaar. Musings on Linux and Open Source by an Accidental
Revolutionary, O’Reilly, www.o.reilly.com.

Rosenberg N. (1990), “Why Do Firms Do Basic Research (with their Own Money)?, Research Policy, 19,
165-174.

Rusten E., Moses K.D. (2002), “Open Source Software: No Free Lunch?”, TechKnowLogia, January-

March 2002, pp. 75-79, http://www.TechKnowLogia.org.

Saint-Paul G. (2001), “Growth effects of non-proprietary innovation”, CEPR Discussion Paper Series

No. 3069, http://cepr.org/pubs/dps/DP3096.asp.

Security Space (2002), Security Space Web Server Survey, April,
https://secure1.securityspace.com/s_survey/sdata/200203/index.html.

Sirmi (2001a), Il mercato Linux 1999-2003, Sirmi for Microsoft.

Sirmi (2001b), Mercato Linux, June 2000, Sirmi for Microsoft.

Sirmi (2002), Linux Survey, January 2002, Sirmi for Microsoft.

SourceForge (2002), www.sourceforge.net.

Stallman R. (1999), “The GNU Operating System and the Free Software Movement”, in Di Bona C.,
Ockman S., Stone M. (eds.) (1999), Open Sources: Voices from the Open Source Revolution, O’Reilly:
Sebastopol, California.

Steinmueller W.E. (1996), “The U.S. Software Industry: An Analysis and Interpretative History”, in
Mowery D. (ed.), The International Computer Software Industry: A Comparative Study of Industry Evolution
and Structure, Oxford University Press, Oxford.

Torrisi S. (1998), Industrial Organisation and Innovation. An International Study of the Software Industry, E.
Elgar, Cheltenham.

Total Romtec (2001), University Market Survey, October 2001, Total Romtec for Microsoft.

Vixie P. (1999), “Software Engineering”, in Di Bona C., Ockman S., Stone M. (eds.) (1999), Open
Sources: Voices from the Open Source Revolution, O’Reilly: Sebastopol, California.

Viega J. et al. (2001), “A Static Vulnerability Scanner for C and C++ Code”,
http://www.cigital.com/papers/download/its4.pdf.

Von Hippel E. (1988), The Source of Innovations, MIT Press.

Von Hippel E. (2001), “Learning from Open Source Software”, Sloan Management Review, Summer,
2001.

Wheeler D. (2002), “Why Open Source Software/Free Software (OSS/FS)? Look at the Numbers!”,
http://www.dwheeler.com/oss_fs_why.html.

124

Wilson G. (1999), “Is the Open-Source Community Setting a Bad Example?”, IEEE Software, Vol. 16,
pp. 23 –25.

Witten B., Landwehr C., Caloyannides M. (2001), “Does Open Source Improve System Security?”,

IEEE Software, Vol. 18, pp. 57 –61.

Zoebelein (1999), http://www.leb.net/hzo/ioscount, (ref. http://dwheeler.com/oss_fs_why.html).

