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Abstract

We present a simple agent based model aimed at the qualitative description of trading
activity in a “stylized” financial market. A two assets economy is considered, with a
bond providing a riskless constant return and a risky stock, paying constant dividends,
whose price is fixed via Walrasian auction. The market participants are speculators
described as myopic utility maximizers provided with limited forecasting ability. If one
varies the parameters describing the market and the agents behavior, the model presents
many distinct “phases”. In particular, the no-arbitrage “fundamental” price can emerge
as a stable fixed point, while for different parameterizations the market shows chaotic
dynamics with speculative bubbles and crashes.

1 Introduction

This paper is devoted to the formulation and study of an agent-based model intended to
describe the dynamics of a bare-bone financial market. We consider a two assets economy:
one riskless bond and one risky equity whose price is determined via Walrasian auction.

The market participants are described as myopic utility maximizers acting as short-horizon
speculators. They choose their portfolio composition taking in consideration the forecasted
price dynamics. Inside this general framework we consider two stylized classes of trading be-
haviors: trend followers who obtain future prices predictions starting from past price history
and fundamentalist traders whose forecasts are based on the asset fundamental value. More-
over, agent-specific idyosincratic components are introduced in terms of independent random
shocks affecting personal demand for assets.

The present analysis extends previous contributions (Brock and Hommes, 1998, 2001;
Hommes, 2001; Gaunersdorfer, 2000) by considering traders who explicitly take in considera-
tion the risk involved in their market positions. One finds that, with this natural extension,
the set of possible market dynamics is strongly enriched. The non-arbitrage price is recovered
as a fixed point of the dynamics. Its possible instability however can lead to non-trivial (i.e.
non constant or explosive) dynamics even in the limit of single representative agent. These
findings seem to militate against the presumed necessity of having heterogeneous strategies
and agents who switch with high-frequency between them in order to generate non trivial
aggregate dynamics. As to this problem, notice that this presumption constitutes a common
point that almost always appears in the discussion about the agent-based models in finance.



Particularly so in the models bred from the “complex system” paradigm (Arthur et al., 1997),
where not only different trading strategies are competing, but also the number and structure
of the competing strategies do change over time. These models display many interesting fea-
tures, nevertheless their systematic study is made impossible by the enormous number of their
degrees of freedoms.

More recently a different approach has emerged, focusing on more “sober” and treatable
settings, in some sense reverting to the pioneering investigations dating back to the ‘70s (see
LeBaron (2000) for a review of early contributions). The main novelty in this new stream of
literature is constituted by the introduction of some form of “bounded rationality” (or better
“inductive rationality” as in Arthur (1994)) that accounts for the agents decisions (see Levy et
al. (2000) for a critical review). In these models, however, the heterogeneity in agents behavior
and a strong dynamics in agents believes play again prominent roles in shaping the aggregate
dynamics. The basic idea is that only an heterogeneous population of traders, characterized
by a dynamics switching between different “trading strategies” (or, more generally, “visions of
the world”) induced by an (apparent) difference in their relative “rewardingness” (Brock and
Hommes, 1998; Chiaromonte et al., 1999) or by imitative behavior (Lux, 1995; Kirman and
Teyssiere, 2002) can actually lead to interesting market dynamics.

The approach followed in this paper is, in some sense, simpler and can be considered
builded upon the recent investigations of the effect of generic “trading rules” on the market
aggregate dynamics (Farmer, 1998; Farmer and Joshi , 1999; Farmer and Lo, 1998; Levy
et al., 2000). After the introduction of an heterogeneous population of traders we take the
“large market” limit, i.e. the limit in which the number of agents is sent to the infinity, to
obtain a deterministic dynamical system that completely describes the behavior of the model.
The analysis of this simpler framework leads to two interesting conclusions: first, under very
natural assumptions, an infinitesimal deviation from perfect rationality can generate market
dynamics that finitely and persistently deviate from the rational expectation benchmark,
with a consequent enormous reduction in market “efficiency”. Second, that the hypothesis of
“herding behavior” and “evolving believes” are not always necessary to generate these effects.

The outline of the paper is as follows: in Sec. 2 the model of market participation is
introduced and the various assumptions discussed. In Sec. 3 the “large market” limit is
considered and the low-dimensional system of equations describing the dynamic of the model
is obtained. The analytical and numerical study of this system is performed in Sec. 4 while
Sec. 5 contains some final remarks and suggestion on possible future developments.

2 Model structure and trading behaviors

The present model depicts the market dynamics emerging from the interaction of speculative
traders described as bounded rational utility maximizing agents. These agents shape their
trading activity only on the basis of their possible wealth one step in the future. We consider
a simple economy of two assets, a risky stock paying constant! dividend D and a riskless
bond with return R. We begin the Section with the description of the market participation
for a generic “prototypical” agent satisfying the mentioned requirements. The subsequent
introduction of specific “trading attitudes” will allows us to use this prototype to implement
different classes of traders.

At the beginning of each trading round agents form their personal demand functions decid-
ing the amount of risky asset they want to buy or sell for any possible value of the transaction

I The effect of introducing random dividends in the model is briefly discussed in Appendix A



price. The decisions of each agent are based on the estimate of the wealth of his own post-
trading portfolio. The procedure is straightforward: suppose that at the end of period ¢, after
his participation to the market, the agent possesses B(t) riskless assets and A(t) risky assets.
The agent wealth then reads

W(t) = B(t) + A(t)p(t) (1)

where p(t) is the stock price fixed by the market at time t.

Let = be the fraction of agent wealth invested in the risky asset. The future wealth of the
agent portfolio (i.e. its wealth at the beginning of the next time step) depends on the future
return on the stock price h(t) = p(t + 1)/p(t) — 1 and reads

W(t+1;h(t)) =z W(t) (h(t) — R+ D/p(t)) + W(t) (1 + R) (2)

where the dividends D are paid after the payment of the riskless interest R at the end of time
t.

The future value of the portfolio depends on the future price of the stock. Supposing that
the agent possesses some forecasting ability concerning the future price return h he would be
able to formulate expectations on his own future wealth. The problem of the agent becomes
to maximize its utility U consistently with his expectations.

In this framework, a natural idea would be to refer to the “expected utility theory” EUT
(see, for instance, Fama and Miller (1972)) and to pretend that the agent behavior is obtained
by the maximization of his expected utility with respect to the forecast on the probability
distribution of the portfolio future value. In principle different expressions can be devised
for the exact form of the agent utility (For a recent discussion and critical review on the
various choices found in literature see Levy et al. (2000)). However, a generic choice of the
utility function would easily lead to difficult analytical expression and, more important, in
its generality this theory requires the agent to forecast a whole probability distribution for
future wealth, which is a rather strong requirement compared to the portfolio management
techniques today applied by the majority of traders on the real financial markets.

Being aware of these difficulties we prefer to follow a different direction and (analogously to
what done in e.g. Brock and Hommes (1998) and Kirman and Teyssiere (2002)), we suppose
that the agent utility depends only on his forecast of expected price return and variance.
This choice is consistent with the “mean-variance portfolio theory” that can be considered a
“standard” procedure to compare different investment possibilities (Elton and Gruber, 1981).
In contrast to a more general EUT approach this choice allows to model an agent who takes in
consideration a “finite” (possibly small) amount of information in his decision processes and
it guarantees the possibility of performing some analytical study of the resulting dynamics.
It is interesting, however, to observe that, as some empirical investigations have shown (see
Kroll et al. (1984) and Levy and Markowitz (1979)), in real applications the use of a mean-
variance approach with respect to a more demanding utility maximization leads to a reduction
of efficiency in the portfolio of less than 5%.

We choose as the expression of the agent utility the simplest function of the expected
return and variance (Brock and Hommes, 1998; Hommes, 2001; Kirman and Teyssiere, 2002)

U(0) = Ba W+ 1)) = SVeaW (e + 1) ®)

where E; 1[.] and V; ;[.] stand respectively for the expected return and variance computed at
the beginning of time ¢, i.e. with the information available at time ¢ — 1, and where 3 is the



“risk-aversion” parameter?.
Using the expression for W in (2) one obtains

B [W(t+1)] = 2 W () (B [h(t)] — R+ D/p(t)) + W(t) (1+ R) (4)

and
ViaW(t+1)] = 2 W(t)* Vi [p(t)] . (5)

The portfolio position chosen by the agent is the one that maximizes its utility. Using (4)
and (5) and remembering the definition of z from the first order condition one obtains

E,_1[h(t)] — R+ D/p(t)
BVialh(®)]p(?)

where the quantity of stock AA(t) the agent is willing to trade (i.e. to buy if it is positive or
to sell if it is negative) at time ¢ is related to the stock price p(t).

As said before, the demand curve in (6) represents the model of market participation for
a single “prototypical” agent. Keeping constant the form of the utility function, one can
describe different types of agents by implementing different methods to obtain the forecasted
quantities Fy 1[.] and V;_1].] and by choosing different values for the risk aversion parameter
B. For the present discussion we limit our specifications to two distinct classes of agents,
intended to represent the most “basic” attitudes observed among real traders.

The first class represents trend following agents behaving as “naive econometricians” who
obtain forecasted variables using EWMA (exponentially weighted moving averages) predictors.
The expressions for their expected returns and variance become:

E q[h@)] = (1-2) ZT:Q ATh(t —T) (7)
Vidlh(@)] = (1= X) 5, Mh(t = 712 = By W)

AA(t) =—-At—-1)+

(6)

where A\ € [0,1] is a weighting coefficient setting the “time scale” on which the averaging
procedure is performed. Notice that the expression for V; i[h(t)] is analogous to the one
proposed by the RiskMetrics group (see the RiskMetrix Technical Manual), and widely applied
by the real operators in their forecasting activity?.

The second class represents fundamentalist traders who, following Hommes (2001), we
denote as “Efficient Market Believers” (EMB). We assume that the forecasted price for an
EMB trader is “somewhere in between” the present price and a “fundamental” price p that
they believe to be the correct price of the asset. Under the no arbitrage hypothesis, the future
p(t+ 1) and present p(t) value of the risky asset must satisfy the relation

p(t+1)+D=pt)(1+ R) (8)

Indeed the left hand side is the value, at time ¢ + 1, of a portfolio made up of a single asset
bought at time ¢, while the right hand side is the value, always at time ¢ + 1 of an equivalent
(equally valued) portfolio made up of riskless assets. Equation (8) defines the fundamental
price* p = D/R. We choose as the EMB recipe for the forecasted future price the simplest

2Note that, in this particular case, the same expression can be obtained from EUT with a negative expo-
nential utility function U(W) = — exp (—fw) under the hypothesis of normally distributed returns.

3The RiskMetrics group actually proposes an EWMA estimator of the volatility, defined as the second
moment of the returns distribution. The expression above represents its natural extension to central moment

10f course (8) posses also a non-stationary divergent solution with an exponentially increasing price which
is sometimes referred as “rational expectation bubble”. Since, as we will discuss in the following, the dynamics
of the present model is bounded, this solution can be safely ignored.
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linear combination p(t) + 6(p — p(t)) where the parameter 6 € (0,1) can be thought as the
agent rough estimate of the market “reactivity” in recovering the equilibrium price when
moved away from it. The associated expression for the forecasted return is

p
Eia[h(t)] 9(p(t) 1). (9)
Concerning volatility, we assume that the fundamentalist estimation is equal to the trend
follower estimation® in (7).

Using the two definition provided above for the forecasted variables one can build to classes
of agents. Moreover, one can add heterogeneity at the level of the single agent inside each
class. Following Levy et al. (1994, 2000) we assume that the actual demand curve for a given
agent i is a noisy perturbation around the demand curve defined in (6), namely

AAi(t) = AA(L) + &) (10)

where € are independent (across agents population) stochastic terms with mean 0 and where
the unperturbed part AA(t) is builded using one of the two “recipes” in (7) or (9).

The model derived from the agents market participation described above present an essen-
tial stochastic character which is builded in the noisy terms introduced in (10). The study of
dynamical models based on stochastic process is in general difficult. Extensive Monte Carlo
numerical investigations are indeed required to identify and understand the effect of the dif-
ferent realization of the noisy terms. The analytical investigation presents in general many
difficulties. Particularly so if one introduces budget constraints on agent behavior, for in-
stance requiring that no short positions in stock can be achieved. This kind of non-analytical
constraints introduces many sources of non-linearity in the system dependence on parameters
and is likely to make direct study of the system impossible.

In the rest of this paper we take a different direction and we restrict the analysis of the
model to a particular case, that we call “large market limit”. In this limit, the number of
traders and of outstanding asset shares are both sent to the infinity. The effect is that the
system behavior is now completely characterized by a low-dimensional deterministic system,
the so called “deterministic skeleton”, and its analysis is consequently greatly simplified.

Due to the abstractness of the model discussed, it’s maybe pretentious to justify this
limit simply recalling that the number of shares and of active traders are, in any main stock
exchange, very large. For the present purpose it is sufficient to say that the study of the
“deterministic skeleton” is enough to reveal the features we are interested in (see Introduction)
and that these features do not in general disappear with the (re)introduction of the noisy
components.

3 The “large market” dynamics

As said before, the present model assumes that the stock price is determined via a Walrasian
auction. The individual demand curves AA;(p) are “aggregated” in a global demand curve and
the asset present price p(t) is computed through the market clearing condition ), AA;(p(t)) =
0.

5This assumptions is in accordance with the observed behavior of real traders among which the risk esti-
mation based on historical data seems largely adopted even when “fundamentalist” approach is recommended
for returns forecasting.



Consider a market composed of N; trend followers and N, fundamentalists for a total of
N = N; + N, agents. Using the previous definitions for the personal demand curve in (6)
and for the forecasted variables in (7) and (9) the market clearing condition Y N AA;(t) +
N AA;(t) = 0 can be written:

Vi h(0] (5% = ) 0 = D i (Besh(0)] - B plo)+ 72 (0 -

0+ R)p(t))
ah)

where Aror is the total amount of the asset outstanding shares and f; = N;/N and fo = No/N
are respectively the fraction of trend followers and fundamentalists operating on the market.
From (11) one has that when N increases the contribution of the independent random
perturbations ¢;, as a result of the Law of Large Numbers, is progressively reduced. If one
considers the “large market” case and takes the limit N — oo and Aror — oo keeping the
average quantity of stock per agent A = Aror/N finite the random perturbations disappear
and the market clearing condition becomes
_ ) D
BAVA BP0 = D + 1 (Ecalh(0] - ) o)+ 12 (07— 0+ B)p(0)) . (12)

This equation defines the deterministic price behavior obtained by considering the inter-
action of the two classes of agents defined in the previous Section when the number of agents
belonging to each class is assumed extremely large.

Using the positive root of (12) and a recursive expression for the quantities in (7) we can
finally write the dynamical equations governing the evolution of the market

p(t) = (B alb(®)] = v + VEABD] - 17 + 5V [BD]d) / 29V [a()
Eifh(t+1)] = AE_[h@®)]+ (1 —=Nh(t-1)
Vilh(t+1)] = AVialh(®)] + (1= M) (h(t — 1) = i [h(6)])?

(13)

where

Y = ﬁ/_l/fl
r = R(1+ fo0/R)/fi (14)
d = D1+ f0/R)/fi

and where h(t) = p(t + 1)/p(t) — 1 stands for the realized return at time t.

Notice that the analysis of the system for different mixtures of the two groups of traders,
i.e. for different values of f; and f5, can be easily performed since it simply maps in the
redefinition of the three parameters in (14).

As expected, the system described in (13) possesses a fixed point in (p,0,0) where p =
d/r = D/R corresponds to the no-arbitrage “equilibrium” price, i.e. the present value of the
future stream of dividends. Quite interestingly, however, this fixed point is not always stable.
In the next Section we will analyze the dependence of the stability of the “no-arbitrage” fixed
point and, more in general, of the system trajectories on the values of the various parameters.
For now, however, it is useful to mention a couple of qualitative features that generally shape
the model behavior.

First of all, notice that the dynamic path of p(t) described by (13) is bounded. Indeed if
the forecasted return tends toward a constant value, the variance is progressively reduced and
the price increases. This behavior rules out the possibility of an indefinite exponential increase

6
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Figure 1: The price history computed with g = 2.5, d = .01, A = .95, r = .01 after a transient
of 1000 time steps. The initial conditions are p(0) = 100, E;[h(1)] = .01 and V;[h(1)] = .0001.
Prices fluctuate in a bounded region around the fundamental price p = d/r = 1.

of the price (as in the case of Rational Expectation Bubbles). Second, if the forecasted return
Ey; 1]h], after a period of explosively (i.e. more then exponentially) increasing prices, scales of
a factor a, the forecasted variance V;_;[h] scales of a factor a® but then the price scales down
of a factor 1/a. This implies that the system cannot display a sustained explosive dynamics.

A typical® price history is shown in Fig. 1: with the chosen parameters (see caption) the
dynamics is stuck in a periodic cycle. The boundedness of the dynamics manifests itself as a
relative slow rise in price followed by a sudden fall, that reminds the “crashes after speculative
bubbles” dynamics found in financial markets.

To see how these “crashes” are generated, we can inspect the few steps that precede one
of them. Figure 2 reports the price, forecasted return and forecasted variance of the same
simulation as in Fig. 1 for the time interval 30 — 40 that precedes one price crash at around
41 — 42. As can be seen from the first steps, the constant increase in price comes both
from an increase in forecasted returns and a decrease in the forecasted variance. Indeed in
the computation of the forecasted variance the high contribution from the last price crash
is progressively discounted. Nevertheless, the contribution from the progressively increasing
returns keeps V;[h(t + 1)] bounded away from zero so that, at a given point, the progressive
decrease in the forecasted variance starts to slow down. This slowing down, in turn, decreases
the price growth rate and consequently the value of E;[h(t 4 1)], generating a feedback effect
on the same forecasted variance and strengthening its slowing trend. After few steps, the
reversed trend in returns is so high that the same variance starts to increase. At this point,
the price starts to go down. This generates a big jump in the forecasted return value and,
consequently, on the forecasted variance and, thanks to the feedback mechanism, a sudden

6Tn the next Section we will see that in fact the model possesses many phases and, depending on the
parameters values, displays quite different trajectories. In this respect, here “typical” has to be intended as
both “not strange” and “not trivial”.
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Figure 2: The same simulation as in Fig. 1. Here price (top), forecasted return (middle) and
forecasted variance (bottom) are shown for few time steps preceding a sudden crash.

price change is generated in a very short time.

Finally, notice that previous works (Brock and Hommes, 1998; Hommes, 2001) used the
same form (3) for the agents utility function but did not introduce an agent forecasting rule
for the price variance, simply assuming that all the agents equated this variance to a given
constant value. From the discussion above, it is clear that this approximation, apart from being
inconsistent with the generated time series, which typically show strong volatility dynamics,
does essentially change the nature of the model. For a discussion of this approximation and a
comparison with (13) see Appendix B.

4 Studying the deterministic dynamical system

This Section is devoted to the study of the dynamical system defined by (13). The first part
consists in the stability analysis of the fixed point associated with the no-arbitrage price of
the stock. As we will see, depending on the values of the different parameters, this point can
become unstable and, consequently, the model can display highly volatile dynamics. In the
second part of the Section a qualitative description of the different “phases” of the model is
presented, together with a characterization of the geometrical structure of the system steady
states. The global analysis is mainly performed using numerical tools (c.f. Brock and Hommes
(1998))".
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Figure 3: (A, a) parameter space. The fixed point stable region is the bottom right region
delimited by the thickest (denoted with “stable” in the legend ) line. The region inside the
two other lines (denoted with “complex” in the legend) is where the eigenvalues are complex.
Notice that both these regions are unbounded from above.

4.1 Stability analysis of the fixed point

In order to simplify the analysis of the market dynamics it is convenient to rewrite the system
in (13) as

(t)—r++/ (y(t)—r)2+4s2(t)
z(t+1) = fy(t),2(t) ="~ gz(t)

YE+1) = dy(n)+ (1 - ) (LG22 1) (15)

A1) = Aslt) + A0 - X) (L9201 y ()

a(t)

where z(t) = vp(t), y(t) = Eih(t + 1)], 2(t) = Vi[h(t + 1)] and s = d. This system is
completely specified by only three positive parameters r, s and A. Notice that the parameter
v, proportional to the agents risk aversion, has been absorbed in a rescaling of both the prices
and the paid dividends.

With these new variables, the “fundamental” price becomes Z = s/r and (Z, 0, 0) is a fixed
point for the dynamics. Notice that even if (15) is only defined for z > 0 and y > 0 it can be
extended continuously to z = 0 when y < r. It is easy to check that the system does not posses
any other fixed point apart from (Z,0,0). But what about the stability of this point? Does
there exist a region in the parameters space where the system evolves constantly towards this
equilibrium price? This region would characterize a “rational” market constantly pricing the
stock with its fundamental value. Since this situation would constitute an optimal outcome
from the point of view of market efficiency it’s interesting to check to want extent it can be
realized by the model under study.

"The software used for the simulations is distributed as a part of a package called YAFIMM and can be
directly downloaded from http://www.sssup.it/~bottazzi/
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Figure 4: Bifurcation diagram. The z support of a 500 steps orbit (after a 1000 steps transient)
is shown for 800 distinct values of A in [0,1] ( » = .1 and s = 1). The initial condition is
(1,.01,.0001).

In order to answer this question, notice that the partial derivatives

8yf(y’ Z) = fy(y’ Z) = f(y= Z)/\/(y - T)Q + dsz (16)
8zf(y’z) = fz(y’ Z) = (S/\/(y - T)2 + 4sz — f(ya Z))/Z

are continuous for the domain D = {y > 0,z > 0} | {y < r,z = 0}. In particular f,(0,0) =
s/r? and f,(0,0) = —s®/r®. Since the dynamics described in (15) is bounded in {z > 0,z > 0}
one can conclude that there is a neighborhood of the fixed point (Z,0,0) such that in its
intersection with the largest invariant set of the dynamics, the system is differentiable with
continuous derivatives. This is enough to use the following theorem, which can be applied to
slightly more general cases than the one at hand.

Theorem Suppose that a system dynamics is described by a set of equations analogous
to (15) with a generic function f continuous in (0,0) with continuous first derivatives. Then
if a = 9, In(f(0,0)) the point (f(0,0),0,0) is stable when

1
a<i— (17)
Moreover, the stability of the fixed point is lost by an Hopf bifurcation (Katok and Hasselblatt,
1995) (i.e. by two complex conjugate eigenvalues that cross the unit circle) when a = 1/(1—X).

Proof See Appendix C.

The curve defined in (17) is plotted in Fig. 3 together with the region in which the Jacobian
of the system computed in the fixed point possesses two conjugated complex eigenvalues.
The above result suggests some considerations:

e The validity of the theorem for a “generic” function f unties the obtained result from our
choice for the utility function in (3). The existence of a stability region for the fixed point,

10



when the agent evaluates future prices starting from forecasted returns and variances, is
thus guaranteed whatever expression one chooses for the utility as long as d,f(0,0) > 0.
This is a rather general assumption in a speculative trading framework. Moreover, it’s
easy to check that when f; — 0in (11) one has a — 0, since f no longer depend on y,
and the fixed point is always stable. We recover the quite natural condition that, when
only fundamentalist traders operate on the market, the price steadily converges to the
non-arbitrage value whatever its initial value.

e A market can be perfectly stable, with asset priced at its fundamental value, even when
only trend follower traders are present (i.e. f; = 1). This suggests that the general
idea of technical trading as a destabilizing force of the market is not always true or , at
least, is not enough to generate highly volatile dynamics, when risk evaluation is taken
in account.

e The characteristic time of the EWMA procedure defined in (7) is 1/(1 — A). Then, the
expression in (17) tells us that long memory agents, i.e. agents smoothing their forecasts
on time scales that are large if compared to a, behave like fundamentalists, even if they
base their choices only on the forecasted price movement.

e With the expression of f as in (15) and following (16), one has a = 1/r and (17)
becomes A > 1 — r. Remembering (14) one can conclude that the market tends toward
the equilibrium fixed point when the riskless return and/or the share of fundamentalists
in traders population are relatively high and the agents forecasting behavior sufficiently
“smooth”.

e Quite surprisingly, for the expression of f defined in (15) , the s parameter does not play
any role in the stability of the fixed point. This means that the existence of a stable
fixed point does not depend either on the dividend d or on the value of the “aggregate”
risk aversion 7.

4.2 Bifurcations and the structure of steady states

The stability analysis of the fixed point performed above revealed that in a large region of the
parameters space the asymptotic behavior of the model does not converge to the fixed point
steady state implied by the non-arbitrage hypothesis. In this respect two questions naturally
emerge: when the fixed point ¥ is stable, is it a global attractor or, on the contrary, does it
possess a bounded basin of attraction? And when the point is no more stable, what is the
structure of the model’s steady state? We are not able to discuss these points in general terms
and, in what follows, we will refer to the expression of f defined in (15).

Let us postpone the discussion of the fixed point attraction domain and proceed with a
straightforward inspection of the system behavior when one leaves the stability region in the
parameters space. Keeping fixed r = .1 and s = 1 we plot the support for the x values (after a
suitable “transient” period) when the A parameter is varied, to obtain a bifurcation plot. The
result is reported in Fig. 4. As can be seen, for A > .9 the system is stationary in the stable
fixed point. This is in fact our expectation, following the previous analysis and the chosen
value for r.

As the nature of the bifurcation suggests, when the level of A\ crosses the .9 boundary,
the system moves toward quasi-periodic, multi frequency orbits (this cannot be detected from

11
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Figure 5: The system largest Lyapunov exponent as a function of A and a = 1/r. The values
are obtained with a simulation length of 3000 steps, after discarding the first 1000 as transient

(s=1).

Fig. 4 due to its coarse grain, but can be directly checked). Moreover, when )\ keeps moving
towards lower values, we see the subsequent appearance of regions in which the system shows
clear periodic behavior intermixed with other regions where the density of the support suggests
the presence of strange attractors (i.e. attractors whose dimension is not integer) and chaos.

This can be confirmed studying the values of the system Lyapunov exponents for different
parameterizations. In Fig. 5 the largest Lyapunov exponent is shown as a function of both
A and r. This plot confirms again the presence of “periodic” regions (with below 0 largest
exponent) and “chaotic” regions, heavily intermixed. Even if the Jacobian is a smooth function
of A\, the Lyapunov exponents show, at least as a first inspection, non-smooth behavior with
respect to this parameter (this fact is reported as typical in Eckmann and Ruelle (1985))8.

Another noticeable fact is that the “mountains landscape” of Fig. 5 seems to show rather
stable valleys or hills along the r direction. This would suggest that the central role in the
determination of the attractor structure is played by A much more than by r.

As an extensive numerical investigation shows, this is actually the case. The two parame-
ters mostly shaping the global structure of the system are s and A. It turns out that even if
the parameter s does not play any role in the stability of the fixed point, its role is of major
relevance in the characterization of the domain of attraction of the latter. Let us start by
investigating this role in the region where the fixed point is stable, i.e. for A > 1 —7r. In
general, if one takes sufficiently small values for s, the stable fixed point is a global attractor.
When the parameter s increases, however, a new attractor constituted by a periodic orbit ap-
pears and the domain of attraction of the fixed point shrinks rapidly to a small neighborhood
of z. This can be directly checked considering simulations with different initial conditions
(Z,y(0), 2(0)) and plotting the trajectory average distance from (Z,0,0) after a sufficiently
high number of steps. The results of this analysis for » = .1 and A = .91 have been reported

8 A typical shape of a strange attractor is shown in Fig. 9.
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Figure 6: The boundaries of the fixed point domain of attraction in the y — z plane. The
domains lays “outside” the lines depicted for the different values of s (a tiny strip of width
about .01 around the vertical axis at y = 0 has been omitted for clarity). Each point represent
an initial condition for the y and z values. The initial condition for z is chosen equal to z.
The system is then iterated for 20, 0000 steps and the initial condition is assumed to belong to
the domain of attraction if |z — Z| + |y| + |z| < .00001. The chosen values for the parameters
are r = .1 and A = .91. Notice that the choice of the threshold value and the form of the
distance function are asymptotically irrelevant but introduce noticeable effect at finite time
lengths. Thus, the lines in the present plot must be read as a qualitative guess of the real
boundaries. No attempt has been made to obtain any estimate of the error.

in Fig. 6. The boundaries reported there delimit the fixed point attracting region for different
values of s. As can be seen, when s increases above a given threshold, the attraction domain
rapidly shrinks. For s > 3.3 it becomes a small neighborhood of the fixed point while for
s < 3.03 the fixed point is a global attractor. This threshold value is an increasing function of
A and diverges for A — 1 ( where the system dynamics is definitely frozen). Two attractors
coexist also for low values of s, if A is slightly higher then r. We can conclude that a quite
complex picture emerges. However, using extensive numerical simulations it is possible to let
a rough qualitative picture emerge.

In what follows will refer generically to “orbits” for the various structures appearing in the
analysis since the actual topological nature of these objects, i.e. periodic orbits, quasi periodic
orbits or strange sets, depends generally in a non smooth way on the parameters values as
suggested by Fig. 5.

The qualitative behavior of the system for A =~ 1 — r is depicted in Fig. 7. For A > 1 —r
and moderate values of s, only the global attractor constituted by the stable fixed point exists
(region E in the plot). When s is relatively high two attractors coexist: the fixed point and an
orbit (region D). The fixed point, in the z — y plane, is external to the orbit ( characterized by
prices constantly lower than the equilibrium one). When s is low and A near to the threshold
value, a new orbit appears containing the fixed point in its interior, so that along this orbit
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Figure 7: A summary description of the system behavior. See the text for comment. The
various regions are indicated with capital letters and separated by continuous lines. The
dot represent the fixed point (full dot if stable, white dot if unstable). The location of orbits
(circles) with respect to the fixed point are obtained from a projection on the z —y plane. This
picture has been obtained with numerical simulations. In particular we have chosen r = .1
and we have studied the system near the bifurcation point A = .9 along the lines A = .8991
and A = .9001 (being nearer to the bifurcation generally implies waiting for longer transients).
With these choices the values for the boundaries of the various regions are a = 2.39, b = 1.88
for higher A\, b = 1.758 for lower A\ and ¢ = .33. The region B disappears for A ~ .89 while
region F' does it for A ~ .905.

the price oscillates around the equilibrium price (region F). For large enough values of A this
region disappears.

When A crosses the 1 —r boundary, the fixed point looses its stability and for large (region
A) or small (region C) values of s the orbits keep the same characteristics. Interestingly, for
moderate values of s and for A near the boundary (region B) two stable orbits coexist.

In order to understand the nature of the different phases it is interesting to look at the
average price generated by the dynamics. In Fig. 8 we report the average price computed after
a suitable transient as a function of A\ and s for » = .1 and for values of A respectively above
and below the fixed point stability threshold. In both these plots the prices are rescaled by
the equilibrium value. In the left plot both regions D and F of Fig. 7 clearly show up and
are associated respectively to lower and higher average (rescaled) prices. In the second case,
even if the price moves “around” the equilibrium price as mentioned above, its value is on
average much higher. Another interesting feature is the appearance, in the right plot, for quite
low values of A and moderate values of s, of a region in which the price dynamics becomes
“extreme”: the big mountains in the average prices signal the presence of very large cycles
in the x — y plane. The typical trajectory is analogous to the one in Fig. 1 but with prices
varying over several orders of magnitude.
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Figure 8: Rescaled average price z/Z as a function of A and s with 7 = .1 and initial condition
(Z,—.1,0). The interior (left) and exterior (right) of the fixed point stability region are shown.
Averages are computed for 1,000 steps after a transient of 50, 000.

For different values of 7 the boundary of the stability region (the vertical line) moves. As
a consequence all the regions in Fig. 7 undertake a shift, but their shapes remain qualitatively
unchanged.

Finally let us plot in Fig. 9 a “typical” strange attractor. It is from the C region of Fig. 7
and, if plotted on the x — y planes, the fixed point (.1,0,0) clearly appears in its “interior”,
while the average price is almost 10 times larger.

5 Conclusions and Outlook

The most interesting feature emerging from the foregoing analysis is constituted by the richness
of the dynamic scenarios one is able to generate starting from very simple assumptions about
the agents behaviors and the structure of the market. Concerning the latter, even if a two
assets economy with price fixed via Walrasian auction sounds admittedly rather simplistic, we
think that the intrinsic difficulties in the implementation of multi-asset trading protocols and
behaviors does not pay back in term of an increased richness in the model emerging features
and, more importantly, does not reduce the emergence of market instabilities (some recent
investigations seem indeed to strength this general belief, see e.g. Brock and Hommes (2001)).

The apparently “harmless” hypothesis of describing traders as utility-maximizing agents
updating their expectations on the past market history leads to huge movements in price and
to an high degree of “inefficiency”. We can draw two lessons from this discovery:

e first, that the notion of equilibrium expressed by the Efficient Market Hypothesis is in
fact extremely weak and can be easily made unstable with very mild assumption about
the agents behavior (in some sense, this conclusion is analogous to Akerlof and Yellen
(1985) where the more general idea of economic equilibrium is analyzed)

e second, that in order to destroy EMH stability is not necessary to suppose the existence
of a complex ecology of strategies together with an high-frequency switching dynamics
of agents behaviors.
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Figure 9: The shape of the strange attractor reconstructed with 20.000 points for A = .8,;r = .1
and s = .01. The associated Lyapunov exponents are 2.1e — 02 —6.3e — 02 —2.8e — 01.

The present paper represents, by itself, just a first step in the study of the market model
presented. An even more interesting part of this kind of studies resides in the analysis of
the effect of heterogeneity on the dynamics of the system®. Nevertheless the investigation of
the “large market” limit is almost mandatory if one wants to disentangle the contributions to
the market dynamics that are generated by the assumptions on agents trading strategies and
market structure and the ones that are instead introduced by the presence of heterogeneity in
the agents population.
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APPENDIX

A Random dividends

If one wants to repeat the previous analysis in presence of a non constant stream of dividends,
things become more complicated. In order to evaluate its portfolio, the agent must posses
forecasts not only for the future stock returns, but also for the stock dividend and for the
covariance between dividend and returns. To be clearer, consider expression (2) where the
dividend D is replaced by a random variable D(t). The expression for the portfolio value

9We will try to pursue this analysis in a following paper
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expectation and variance reported in (4) and (5) now become respectively
Ea[W(t+1)] =aW(t) (B [b(t)] — R+ E[D@)]/p(t) + W(t) 1+ R)  (18)
and
Vi [W(t +1)] = 2® W(t)* (Viea [A(1)] + Viea [D(@)] /(1) + 2C,a[h(2), D)) /p(t))  (19)

where C;_1[.,.] stands for the covariance of the two variables. The individual demand curve
then reads

1) + E,1[D(t)] + (Era[A(t)] — R)p(?)
Vi1 [D(t)] + 2p(t)Ci1[h(t), D(t)] + p(t)?Vi1[h(t)]

AA(t) = —A(t — (20)
Notice that now the agent demand for stock is bounded even when p(t) — 0. Moreover the
demand curve is not necessarily monotonic everywhere inside the agent budget constraints.
The aggregate price dynamics obtained from the previous equation is obtained from

p(t)? YWV [R(t)] + p(t) (YComa [M(1), D()] = Ea [R(1)] + R) + 4Vt [D(t)] = Bt [D(2)] =( 0)
21
which is written in implicit form since its explicit form depends on the sign of the various
coefficients. This expression can be strongly simplified if one assumes that D(¢) is a random
variable independently extracted from a constant distribution at each time step. In this case
Ci_1[h(t), D(t)] = 0, since D(t) is by definition independent from any previous realization,
while E;_1[D(t)] and V;_1[D(t)] are constant values. The agent forecasting is a noisy prediction
of these constants but now one is able to obtain an expression similar to (11) where D is
replaced by
Dy = Vs [D(t)] = Era[D()] (22)

This quantity must be positive in order to ensure the existence of a real price for any value of
R and of the forecasted return F; [h(t)]

As the previous equations show, the inclusion in our model of a dividend dynamics can pose
some problems, since now the ability of the market to express a price, and then the existence
of a transaction, depends on the agent forecasts. As a first approximation, we can assume
that agents are actually able to perfectly forecast dividends, i.e. they have perfect knowledge
about dividends distribution so that D; becomes a constant parameter in the model. If one
want to follow this approach, one can consider the D parameter in Sec. 3 to represent not a
constant dividend but an expression as in (22).

B About the constant volatility assumption

The framework described in Sec. 2 shares many aspects with a series of works (see e.g.
Brock and Hommes (1998); Gaunersdorfer (2000); Hommes (2001) and the home page of
the Center for Nonlinear Dynamics in Economic and Finance, University of Amsterdam,
http://www.fee.uva.nl/cendef/) where the market dynamics is generated from the aggregate
outcome of a population of heterogeneous agents dynamically changing their trading strate-
gies. In these works, one further approximation is however made with respect to the model
described in Section 3: the agents forecasted volatility is assumed constant and homogeneous.
In other words, in the cited models the dynamic of volatility is ignored by the agents when
they choose their trading behavior. Given the strong similarity between the present model
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and the ones referred above, it is interesting to check what happen to our model when the
same assumption is made.

Let v be the constant and common value of the forecasted stock return variance. This
value will replace V;_;[h(t)] in (6) for any agent. One can repeat the same analysis performed
in Sec. 3, and will obtain for the aggregate dynamics a two dimensional system

p(t+1) = fy(t),(t) = LTV

yt+1) = dy@t)+(1-N) (Wﬂ) : (23)

It is immediate to see that this system possesses a single fixed point

r* = Nritdsv—r
. - 0 2v (24)
y =

which is notably different from the equilibrium price (even if the latter is recovered in the
v — 0 limit). This can be easily understood, since the agents discount the asset price by an
amount proportional to their evaluation of risk, which is constant.

The deviation of (24) from the non-arbitrage price seems to suggest that some consistent
evaluation of the risk is required in order for a group of agents characterized by a speculative
behavior as modeled in Sec. 2 to stabilize the market around the equilibrium price. From a
modeling point of view, the assumption of a constant variance forecast generates an “exoge-
nous” differentiation between speculative and “fundamental” behavior, since the two groups
evaluation of price, even when the market is stable, fluctuate around two distinct points.

C About the stability of the fixed point

In what follows the proof of the Theorem in Section 4 is outlined. It is a straightforward
application of the stability theorem for dynamical system (see e.g. Hirsh and Smale (1974)).

Let us consider the general expression for the Jacobian matrix J(z,y, z) of the dynamical
system defined in (15). It reads:

0 fy I
[ —(1=Nf/z* A+ (1-=Nfy/z (L= N fo/z ] (25)
[ —2A(1 = MAf/a2 2A(1 — Nh(=1+ f,/z) A+ 2A(1— Nhf,/z J

where h(z,y,z) = —1 —y + f(y, z)/x. Computing it in the fixed point (Z,0,0) one obtains

0 £,(0,0) f2(0,0)
—(1=X)/z2 A+ (1-X)fy(0,0)/z (1—A)f,(0,0)/z (26)
0 0 A

From this expression it’s clear that the eigenvalues of J(Z,0,0) do not depend on f,(0,0).
Setting a = 0, In(f(0, 0)) the three eigenvalues read

po = A
py = A+ (1 =XNa+/A+1—=Na)?—4(1—N)a)/2 (27)
po = A+ (1 =XNa— A+ (1 —-Na)?2—4(1—Na)/2

The fixed point (Z,0,0) is stable when ||y;]| < 1 for i € {0,+, —}.
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After a little algebra!® one obtains the boundary of the “stable” domain in the parameters
space as an explicit equation of the form a = a()). Its simple expression reads

a()) = ﬁ (28)

Moreover, it is immediate to check that the stability of the fixed point is lost when two
complex eigenvalues cross the unit circle (see Fig. 3) so that the system displays an Hopf
bifurcation (Katok and Hasselblatt, 1995).
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