


Coordination, Local Interactions and Endogenous

Neighborhood Formation

Giorgio Fagiolo¤

fagiolo@sssup.it
September 2002

Abstract

The paper studies the evolution of coordination in a local interaction model where

agents can simultaneously choose the strategy to play in the game and the size of

their neighborhood. We focus on pure-coordination games played by agents located

on one-dimensional lattices when network externalities become eventually negative

as neighborhood sizes increase. We show that the society almost always converge

to steady-states characterized by high levels of coordination and small neighbor-

hood sizes. Furthermore, we …nd that neighborhood adjustment allows for higher

coordination than if interaction structures were static and that large populations at-

tain higher coordination provided that average initial neighborhood sizes are not too

small. Finally, we explore how long-run patterns of coordination change when: (i)

agents possibly enjoy positive network externalities as neighborhood sizes increase;

(ii) individuals are placed in higher-dimensional lattices; (iii) agents play coordina-

tion games where a trade-o¤ arises between Pareto-e¢cient and risk-dominant Nash

equilibria.
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1 Introduction

The outcome of a coordination game repeatedly played in large societies might be crucially

a¤ected by the coevolution between interaction structures and individual choices.

In the last years, this issue has been investigated in an evolutionary game setting by

assuming exogenously …xed networks. In these models, agents are supposed to repeatedly

play a 2 £ 2 coordination game either against any other player in the population (cf.
Kandori, Mailath & Rob (1993) and Young (1996)) or against a …xed, typically small, set of

‘relevant others’ (see Blume (1993), Ellison (1993) and Young (1998)). The basic rationale

is that, in many situations, the time-scale at which agents choose their opponents in the

game is very long as compared to that at which they update their stage-game strategies.

Consequently, it may be plausible to study the long-run properties of population learning

as if interaction structures were static (cf. Skyrms & Pemantle (2000)).

However, the evolution of individual choices through time might also a¤ect agents’

expectations about future payo¤s from interactions. A player might then change her idea

on who is in fact ‘relevant’ and avoid further interactions (or, respectively, start interacting)

with groups of other agents if she expects that this would lead to a decrease (or, respectively,

an increase) in net payo¤s. In such circumstances, the speed at which agents revise the

set of their partners is (at least) comparable to the frequency at which they update their

strategy. Therefore, the details of the process governing the coevolution between strategies

and interaction structures may have non-trivial consequences on long-run coordination

patterns (see Kirman (1997) for a discussion).

To address this issue, we present here a dynamic model of coordination in which agents

can simultaneously choose the strategy to play in the game and select the agents with

whom to play the game. We consider a population of myopic individuals located on a

circle who repeatedly play a pure coordination game with their ‘nearest neighbors’. We

assume that holding neighbors is costly and that, from time to time, agents are allowed

to slightly shrink or enlarge the ‘radius’ of their current neighborhood by maximizing

expected net payo¤s. Local neighborhood adjustment re‡ects here the well documented

inertia of many social relationships (see e.g. Miller (1963) and Akerlof (1997)). We focus

on settings characterized by network externalities which may be positive when agents hold

small neighborhoods sizes, but become eventually negative when neighborhood sizes are

very large (e.g. due to network congestion e¤ects).

After having characterized the set of steady states and conditions for convergence, we

show that both full coordination and coexistence of conventions may be possible in the

long-run. However, as computer simulations show, the system is able to robustly reach

very high coordination levels together with small neighborhood sizes despite the presence

of negative local network externalities. Moreover, we …nd that average coordination in
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presence of a non-zero (although small) frequency of neighborhood adjustment is higher

than if interaction structures were static. Furthermore, we show that large societies better

coordinate provided that initial average neighborhood sizes are su¢ciently high. Finally,

we test the robustness of the model to departures from the basic setup. In particular, we

study what happens to long-run patterns of coordination when agents: (i) might enjoy pos-

itive network externalities for all neighborhood sizes; (ii) are located in higher-dimensional

lattices; (iii) play coordination stage-games where a trade-o¤ arises between Pareto-e¢cient

and risk-dominant Nash equilibria.

The rest of the paper is organized as follows. In Section 2, we review related works and

we discuss the extent to which our model departs from existing literature. In Section 3 we

formally describe the model. Section 4 deals with the characterization of absorbing states

in the basic setup, while computer simulation results on the average long-run behavior of

the system are reported in Section 5. In Section 6 we discuss extensions of the basic setup.

Finally, Section 7 concludes.

2 Coordination and Endogenous Neighborhood For-
mation

The issue of coordination in presence of endogenous partner selection has been recently

addressed by Goyal & Vega-Redondo (2001), Jackson & Watts (2000) and Droste, Gilles

& Johnson (2000) in the framework of network formation1. These models share four basic

assumptions. First, agents are able to simultaneously update stage-game strategies and

directly choose whom to interact with.

Second, no underlying socio-economic geography prevents (or restricts) interactions

between ‘distant’ agents. Players in Goyal & Vega-Redondo (2001) and Jackson & Watts

(2000) can indeed form or delete single costly links with any other agent in the population

on the basis of myopic expectations about the future net bene…t from coordination in

alternative network structures. On the contrary, Droste et al. (2000) assume players located

on a circle and suppose that the probability of a link between any two agents decreases

with their distance. Nevertheless, players can potentially observe the current strategy of

any other agent in the population before choosing whether to establish a link with her or

not, irrespective of the distance between them.

Third, the speed at which agents can change their partners is the same as the pace at

which they update their strategy. In fact, everytime a player is called to revise her current

1See also Goyal & Janssen (1997), Skyrms & Pemantle (2000) and Mailath, Samuelson & Shaked
(2000). Dynamic models of non-cooperative network formation only (i.e. without simultaneous choice of
a strategic variable) are studied in Bala & Goyal (2000), Watts (2001) and Jackson & Watts (1999).
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state, she can simultaneously change both her pure stage-game strategy and the set of

partners (possibly in di¤erent stages of a same time period).

Finally, existing models study coordination and network formation in a positive network

externalities setup. More speci…cally, they typically assume that the gross (i.e. before link

costs) payo¤ to an agent playing a given strategy s is not a¤ected by the size of the network,

provided that the number of connected players choosing s does not change. If the cost of

forming a link is su¢ciently small, net payo¤s always increase as the size of the network

(i.e. connected players choosing the same strategy) increases. On the contrary, if unit link

costs are very large negative network externalities arise for all network sizes2. Therefore,

there are no network size e¤ects on gross (and net) payo¤s and the regime of network

externalities depends on the level of unit link costs.

In this paper, we present a dynamic, non-cooperative, model of coordination and neigh-

borhood formation in which strategies and interaction structures are both subject to en-

dogenous evolution. As happens in Droste et al. (2000), we suppose that agents are spatially

located on the nodes of a circle and play 2 £ 2 pure coordination games with their near-
est neighbors. However, in contrast with existing models, we assume that in each time

period players are allowed either to update their current pure strategy (given the current

interaction structure) or, with some exogenously …xed probability, to simultaneously ad-

just strategies and neighbors. This allows us to study situations in which neighborhood

adjustment is endogenous but relatively not frequent.

We suppose that players act myopically and update pure strategies and/or neighbors

by best-responding to their current environment in a completely deterministic way (i.e.

without mistakes)3. Unlike Droste et al. (2000), we do not allow for ‘jumps’ in neigh-

borhood adjustment. Indeed, we posit that agents update their neighbors’ set by adding

to (or discard from) it only those players who are located close to the boundaries of the

neighborhood. More precisely, if an agent interacts at time t¡1 with all individuals placed
no farther than r > 1 nodes from her, she will only consider to locally adapt the radius of

her neighborhood, i.e. shrink it to r ¡ 1, enlarge it to r + 1 or keep it unchanged, while
simultaneously choosing whether to stick to her current strategy or not. As holding neigh-

bors is assumed to be costly (total cost is proportional to neighborhood size), a player will

simply adjust her current set of partners by comparing net payo¤s from coordination.

In our model, the underlying geography strongly constrains the set of options available

to any agent. In fact, the assumption that individuals cannot observe current choices

2This case is not however adressed in the literature. In fact, if agents have the option not to play the
game, empty networks will always arise because agents will always prefer to hold empty neighborhoods.

3This contrasts with adaptive play with mistakes studied in Goyal & Vega-Redondo (2001) and Jackson
& Watts (2000), while is in line with fair parts of Droste et al. (2000) and previous work by Blume (1993)
in the context of static interaction structures.
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of agents placed far from them implies that the choice set is quite small4. Furthermore,

in contrast with existing literature assuming agents who directly select their partners in a

sequence of one-to-one link additions/deletions, we suppose that players can only indirectly

choose whom to interact with by adjusting their ‘interaction window’.

Finally, we study a setup where network externalities become eventually negative as

neighborhood sizes increase. In particular, we assume that there exist (negative) neigh-

borhood size e¤ects on gross payo¤s from interaction: an agent currently playing strategy

s who faces two neighborhoods characterized by the same number of partners choosing s

will earn a higher gross payo¤ if she chooses the smaller one. Therefore, given unit link

costs, agents could be willing to enlarge their neighborhood size if the latter is relatively

small, while they will eventually prefer to shrink it (no matter the local strategy con…gu-

ration they face) if the number of neighbors goes beyond some endogenously determined

threshold.

This property, together with the assumption that agents cannot refuse to play the game,

allows us to address the issue of coordination in presence ‘locally’ positive but ‘globally’

negative network externalities. Indeed, in many circumstances well documented e.g. in

the ‘economics of the Internet’ literature5, individual net payo¤s might eventually fall as

the network size increases irrespective of pure strategies played by the agents either: (i)

because of congestion problems entailed by the physics of the network; or (ii) because the

net added value of any new player is negligible to each individual belonging to the network.

In particular, players may prefer to avoid unwanted interactions as unknown agents may

entail risks (e.g. a higher likelihood of computer viruses). Moreover, whenever agents are

status seeking and aspire to be similar to their peers, individuals might dislike coordination

if the group to which they belong becomes too crowded (see e.g. Cowan, Cowan & Swann

(1998)).

We start by studying a basic setup where agents play a purely symmetric coordination

game, i.e. a coordination game where both strategies are equivalent with respect to Pareto

e¢ciency and risk-dominance. The goal is to study whether endogenous neighborhood

formation alone has a signi…cant impact on long-run coordination, in presence of spatially-

located agents who locally adapt their neighborhoods and strategies6. In particular, we

4In Goyal & Vega-Redondo (2001) agents can observe the entire strategy con…guration and choose
among all conceivable networks at any time. This presumes agents with huge computational skills and
seems to contrast with myopic learning. Conversely, in Jackson & Watts (2000) and Droste et al. (2000),
agents can form at most one link per period, but they can potentially add to their set of partners any
other agent in the population.

5See e.g. Mitchell (2000) and Gupta, Stahl & Whinston (1995). For a more general perspective, cf.
Economides (1996) and Arnott & Small (1994).

6Droste et al. (2000) …nd coexistence of conventions to be possible in adaptive play without mistakes.
However, their model does not deliver any prediction about the level of aggregate coordination in such
equilibria (e.g. the average number of coordinated players) and about how likely coexistence of convention
is (e.g. as the parameters of the model change).
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will analyze the extent to which allowing for simultaneous adjustment of players’ strategies

and neighbors results in higher long-run average coordination, as compared to cases in

which neighborhood structures are static. Furthermore, we explore how coordination and

interaction structures are a¤ected by: (i) the speed of neighborhood adjustment; (ii) unit

neighborhood costs; (iii) the strength of negative network externalities. Some interesting

departures from the basic setup are instead discussed in Section 6.

3 The Model

Consider a …nite set of agents I = f1; 2; :::; Ng, N ¸ 5. Agents are spatially distributed on
the nodes of a 1-dimensional lattice with periodic boundaries (i.e. a circle). We assume a

one-to-one relation between the nodes of the lattice and the set of agents. Hence, individual

labels i = 1; 2; :::;N coincide with locations on the circle. Time is discrete. At each

t = 1; 2; ::: any agent plays a pure 2 £ 2 coordination game against her current partners.
More precisely, if agent i plays si 2 f¡1; 1g when agent j0s strategy is sj 2 f¡1; 1g; her
stage-game payo¤ is given by:

G(si; sj) =

(
1

0

if

if

si = sj

si 6= sj
: (1)

Any agent i is completely characterized by her set of partners Vit ½ I and her current

strategy sit 2 S = f¡1;+1g. Following Ellison (1993), we assume that agent i’s partners
set consists of all players located within a neighborhood of radius rit: More formally:

Vit = V (rit) =: fj 2 I : 0 < minfjj ¡ ij; N ¡ jj ¡ ijg · ritg; (2)

where rit 2 R(N) = f1; 2; :::; erg and er = bN=2c: As Vit only depend on rit, we de…ne the
state of any agent i at time t as:

(sit; rit) 2 S £R(N):

The economy will be in turn characterized at any t by its global con…guration:

t = (sit; rit) i2I ;

where t 2 ¡(N) = (S £R(N))N :
In each time period, an agent whose state is (sit; rit) will earn a (net) overall payo¤
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de…ned as:

¼it(sit; ritjt) =
24 1

jV (rit)j®
X

j2V (rit)
G(sit; sjt)

35¡ ¯jV (rit)j; (3)

where G(sit; sjt) is de…ned in (1), jV (rit)j is the size of V (rit) and ¯ > 0 is the unit cost
per neighbor (i.e. the cost of keeping active at t the link to any agent j 6= i).
Notice that the parameter ® 2 [0; 1] governs the nature of local network externalities

in the model. To see why, let us consider two extreme cases. On the one hand, if ® = 0;

there are no neighborhood size e¤ects on gross payo¤s (i.e. the term in square brackets):

if the number of agents playing sit in V (r0) and V (r00) is the same, then gross payo¤s do
not change. Therefore, if ¯ > 1 the system is characterized by ‘always negative’ network

externalities because net payo¤s are strictly decreasing with rit (and thus with the number

of agents playing sit in V ) irrespective of strategy con…guration. Conversely, if ¯ < 1

(and su¢ciently small) network externalities are ‘always positive’: net payo¤s are strictly

increasing in the size of the network (i.e. in the number of players choosing sit in V (rit))7.

On the other hand, if ® = 1; gross payo¤s from playing (sit; rit) are negatively a¤ected by

the size of the neighborhood. For a given strategy con…guration, net payo¤s might increase

if neighborhood sizes are not too large, because gross gains from local coordination can

o¤set costs. However, they will eventually fall, irrespective of currently played strategies,

as neighborhood size grows. In this case the system is potentially characterized by ‘locally’

positive and ‘globally’ negative network externalities.

In this paper, we will primarily focus on the latter case (® = 1). The behavior of the

system when ® 2 [0; 1) is explored in Section 6.1. When ® = 1; as jV (rit)j = 2rit and

G(sit; sjt) = 1 if and only if sit = sjt, payo¤s in (3) read:

¼it(sit; ritjt) =
(

xi(rit)¡ °r
1¡ xi(rit)¡ °r

if

if

sit = +1

sit = ¡1
; (4)

where ° = 2¯ (‘unit cost’, in the following) and xi(rit) 2 [0; 1] is the share of agents in
V (rit) currently playing +1 (‘local frequency’ in the following).

Let us turn now to describe the dynamics of the model. At the beginning of period

t + 1 an agent (say i) is drawn at random from I. With probability 1 ¡ µ 2 (0; 1] she is
allowed to update her current strategy sit only (given rit), while with probability µ 2 (0; 1]
she can simultaneously update both sit and rit8.

7Strictly speaking, the regime of network externalities (positive vs. negative) is not equivalent to strict
monotonocity (increasing or decreasing) of net payo¤s with respect to neighborhood size. Since agents do
not directly select their partners, a higher r might indeed entail a non-increasing number of coordinated
agents.

8All results presented in the next Sections are not qualitatively altered if one instead assumes that,
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Consider …rst strategy updating only. We assume that agent i best-responds (without

mistakes) to the current local con…guration. Thus:

si;t+1 2 argmax
s2f¡1;+1g

¼it(s; ritjt): (5)

We also suppose that agents are change-averse, i.e. they stick to their current choice when

ties occur.

On the contrary, an agent drawn to update both sit and rit will only be able to locally

adjust her neighborhood radius and her current strategy. More formally, we suppose that

given (rit; sit), agent i will only have (for both s = sit and s = ¡sit) the following three
options: (i) shrinking to rit¡1; (ii) keeping rit; or (iii) enlarging to rit+1: Agents myopically
choose the best-response among their available options, i.e.:

(si;t+1; ri;t+1) 2 argmax¼it(s; rjt); (6)

s:t:
s 2 f¡1; 1g
r 2 R(N) : jr ¡ ritj · 1

:

As happens in action updating, we suppose that players are change-averse. Furthermore,

we assume for the sake of simplicity that, whenever (s; ri;t + 1) and (s; ri;t ¡ 1) are the
unique solutions of (6) for s 2 f¡1; 1g, agents always choose (s; ri;t ¡ 1)9:
Given any initial conditions 0 2 ¡(N); eqs. (2), (4), (5) and (6) de…ne a Markov chain

ft; t ¸ 1g with …nite state-space ¡(N).
In the following section, we will characterize the set of steady states of the dynamic

process (i.e. absorbing states of the Markov chain). We will show that this set is non empty

and that the system almost always converges to a steady state in …nite time. Moreover, we

will characterize steady-states in terms of aggregate coordination and neighborhood struc-

tures. We will show that both full coordination and coexistence of conventions can arise

in a SS. Furthermore, we will provide examples of SS in which coexistence of conventions

arises together with heterogenous neighborhood structures.

in each period t; an agent currently playing (si;t; ri;t) is allowed with probability µ 2 (0; 1) to revise only
her current neighborhood size given the current strategy con…guration (i.e. she is not allowed to change
strategy and radius at the same time).

9This assumption does not crucially a¤ect the dynamic properties of the system. In fact, one might
equally employ the alternative assumption (i.e. always choose (s; ri;t + 1)) without loss of generality.
Moreover, as shown in Appendix A, this tie-break case can only arise if unit cost ° lies in a non-dense
subset of R+ (i.e. for residual choices of °). In what follows, we will not employ randomization (i.e. choose
with equal probability between (s; ri;t ¡ 1) and (s; ri;t + 1)) to simplify the analysis of convergence (cf.
Prop. 2 below).
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4 Steady States, Convergence and Coordination

A steady-state (SS) of the system (i.e. an absorbing state for ft; t ¸ 1g) is de…ned as a
global con…guration ¤ = f(s¤i ; r¤i ); i 2 Ig such that any player i 2 I has no incentive to
unilaterally move away from (s¤i ; r

¤
i ). A SS is formally characterized as follows:

Lemma 1 (Characterization of Steady States) Denote by x¤i;r¤i = xi(r
¤
i ) the frequency

of players choosing +1 in the neighborhood of agent i when the global con…guration is ¤:
Then ¤ is a SS for ft; t ¸ 1g if and only if:

1. For any i 2 I s.t. s¤i = +1 :

r¤i = 1 :
1 < r¤i < er :
r¤i = er :

x¤i;r¤i ¸ maxf¡° + x¤i;2;
1
2
;¡° + 1¡ x¤i;2g

x¤i;r¤i ¸ maxf° + x¤i;r¤i¡1; ° + 1¡ x¤i;r¤i¡1;
1
2
;¡° + x¤i;r¤i+1;¡° + 1¡ x¤i;r¤i+1g

x¤i;r¤i ¸ maxf° + x¤i;er¡1; 12 ; ° + 1¡ x¤i;er¡1g

2. For any i 2 I s.t. s¤i = ¡1; the lhs in the above inequalities are satis…ed if x¤i;r¤i is
replaced by (1¡ x¤i;r¤i ):

Proof. Since µ > 0, if (s¤i ; r
¤
i ) is stable with respect to neighborhood updating, it will be

also stable for strategy updating. Hence, it su¢ces to impose the condition (si;t+1; ri;t+1) =

(s¤i ; r
¤
i ) in Eq. (6) and solve for xi(r

¤
i ).

Consider now the set ¡¤(°;N) of all ¤ 2 ¡(N) satisfying SS conditions. Notice that
¡¤(°;N) does not depend on µ; as the speed of strategy/action updating does not in‡uence
updating rules. Furthermore, for any (°;N), ¡¤(°;N) is non-empty as it always contains
(at least) both con…gurations 1 = (1; 1)i2I and ¡1 = (¡1; 1)i2I : Indeed, if all agents
choose the same strategy then xi(1) 2 f0; 1g for all i. Hence, as it can be easily seen by
replacing xi;r¤i with either 0 or 1 in SS conditions, no agent has an incentive to enlarge her

current radius.

In Proposition 2, we show that in the long run the process ft; t ¸ 1g will almost always
converge in …nite time to a point of ¡¤(°;N) for all (µ; °;N). To see why, notice that in each
time period one and only one agent can update her current state by best-replying to local

strategies pro…les. Moreover, tie-breaking rules de…ned in Section 3 imply that individual

best-replies are unique given the current con…guration. Hence, the resulting best-reply

strategy revision process governing the evolution of con…gurations  is characterized by

the so-called ‘unique best-reply property’ (see Blume (1995)). For such class of Markov

processes, we know that there is a one-to-one correspondence between absorbing states
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and ergodic sets (i.e. all con…gurations which are not SS are transient). Hence, …nite-time

convergence to an absorbing state is a probability one event in our system.

Proposition 2 (Convergence to SS) For any given N ¸ 5; µ 2 (0; 1]; ° > 0 and 0 2
¡(N), the process ft; t ¸ 1g de…ned by eqs. (2), (4), (5) and (6) will almost always
converge in …nite time to an absorbing state ¤ 2 ¡¤(°;N):

Proof. See Appendix A.

As typically happens in best-response strategy revision games without trembles, the set

¡¤(°;N) is likely to contain many other absorbing states apart from the ones characterized
by full coordination con…gurations with minimal neighborhood size. In Proposition 3, we

start characterizing the set of SS. In particular we ask whether (and in which parameters

region) the system is able to sustain SS involving high vs. low levels of coordination,

together with homogeneous vs. heterogeneous neighborhood structures.

Proposition 3 Consider a SS ¤ 2 ¡¤(°;N) and de…ne bs = N¡1PN
i=1 s

¤
i : Then:

1. For any (°;N); there exist SS in which bs 2 f¡1; 1g, i.e. full coordination arises.
Such SS necessarily imply r¤i = 1; 8 i 2 I (neighborhood homogeneity with smallest
neighborhood sizes).

2. For any (°;N); there exist SS in which bs 2 (¡1; 1), i.e. coexistence of conventions
arises.

3. For any (°;N); coexistence of conventions and homogeneity of neighborhood sizes

simultaneously arise in a SS only if r¤i = 1 8 i 2 I:

4. There exist parameter values (°;N) such that in a SS coexistence of conventions and

heterogeneous neighborhood sizes is possible. More precisely, heterogeneous strategy

con…gurations can sustain heterogeneous neighborhood sizes (for a given population

size) only if ° · 1
N¡3 :

Proof. See Appendix A.

The main …nding is that both full and partial coordination can in principle arise as a SS.

However, unlike what happens in Goyal & Vega-Redondo (2001), Jackson & Watts (2000)

and Droste et al. (2000), negative network externalities prevents any network di¤erent from

the minimally connected one (and thus also the complete one) to sustain full coordination

in a SS, no matter how small unit costs are. This is because full coordination implies that
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every agent gets the highest possible gross payo¤ irrespective of her neighborhood size, so

that enlarging the neighborhood necessarily leads to smaller payo¤s.

Conversely, strategy con…gurations characterized by low coordination can arise together

with both homogeneous (with radius 1) and heterogeneous interaction structures. As

illustrated in the following example, the same heterogeneous strategy con…guration can in

principle sustain (for su¢ciently small °) many alternative interaction structures entailing

di¤erent aggregate interaction costs for the society.

Example 4 Suppose that N = 11 (i.e. er = 5) and that the following strategy con…guration
is given:

s¤i =

(
+1

¡1
i = 1; :::; 8

i = 9; 10; 11
: (*)

Consider now the two following interaction structures: (A) : r¤i = 1; i = 1; :::; 11; and

(B) : r¤i = 1; i 6= 7; 8; r¤i = 5; i = 7; 8: If ° · 3=40, then both (A) and (B); together with
(¤), are SS, while if ° > 3=40 only (B); together with (¤); can be a SS.

Proof. It su¢ces to check that the state (s¤i ; r¤i ) of any agent i is locally stable. See
Lemma 5 in Appendix A.

Notice that in the example the …rst con…guration is homogenous and allows the system

to reach the lowest aggregate neighborhood cost (N°), while the second one is heteroge-

neous and ine¢cient, because aggregate neighborhood cost is strictly larger than N°.

Yet, a heterogeneous strategy con…guration can sustain a homogeneous neighborhood

structure only if neighborhood size is the minimal one. This is because the larger neighbor-

hood sizes held by two adjacent agents who play opposite strategies, the larger the number

of common neighbors playing +1 who are needed in order for that con…guration to be

locally stable with respect to strategy updating (see App. C). This prevents sustainability

of interaction structures with higher neighborhood sizes (e.g. with r > 1 all i).

Furthermore, heterogeneous strategy con…gurations cannot sustain heterogeneous radii

for all parameter values (°;N): As local network externalities become eventually negative

when neighborhood sizes increase for a given N , any agent holding a r¡neighborhood
faces stronger negative network externalities e¤ects as ° increases given r; or, equivalently,

as r increases given °. In the extreme case, it is possible to show (see App. B) that if

°(r ¡ 1) > 1
2
and r ¸ 2; the agent will always shrink to r ¡ 1 (and simultaneously switch

strategy) irrespective of the local strategy pro…le.
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Therefore, heterogeneous strategy con…gurations can sustain heterogeneous radii only

if ° is su¢ciently small for a given population size. In such situations agents trade-o¤

between positive and negative network externalities. On the one hand, players try to adjust

strategy and neighborhood so as to increase gross payo¤s given their local environment.

If network externalities are perceived to be positive even at large distances (e.g. strategy

con…guration is su¢ciently heterogeneous), some agents have the incentive to enlarge their

information ‘window’ up to values close to er. On the other hand, as ° increases for givenN ,
negative network externalities tend to dominate even for small neighborhood sizes. In such

a situation, agents always shrink their radius while simultaneously switching strategies up

to the point at which all agents will hold r = 1.

So far, we attempted to provide a characterization of the SS of the system as far as

heterogeneity vs. homogeneity of strategies and neighborhood structures are concerned. In

the next Section, we will turn to Montecarlo (MC) computer-simulations exercises to shed

light on the long-run behavior of the system. In particular, we will explore how system

parameters a¤ect long-run coordination and interaction structures.

5 The Long-Run Behavior of the System: Simulation
Results

Let M be the number of realizations of the stochastic process ft; t ¸ 1g generated from
a sample of random, independently drawn, initial conditions f0;m 2 ¡; m = 1; :::;Mg.
Since for any choice of (°; µ;N) convergence to a SS ¤m = (s

¤
i;m; r

¤
i;m)

N
i=1 is a probability-one

event in each run m, we can study the long-run behavior of the system by analyzing MC

distributions of some interesting statistics computed on ¤m.
More speci…cally, let us de…ne average SS coordination by cm = jsmj = jN¡1PN

i=1 s
¤
i;mj

and, accordingly, SS average neighborhood size (i.e. average radius) by rm = N¡1PN
i=1 r

¤
i;m 2

[1; er]. In the following, we will explore how long-run coordination and neighborhood pat-
terns depend on system parameters by focusing on how (bc; br) = ³M¡1PM

i=1 cm; M
¡1PM

i=1 rm

´
change with (N; °; µ)10.

5.1 Coordination and Neighborhood Formation

A …rst clear-cut result that MC simulations point out is that, for any (N; °; µ); the like-

lihood of absorption in SS characterized by high average coordination and small average

10The MC sample size M is usually chosen between 1000 and 10000. In general, this range is su¢cient
both to attain a good precision of the estimates (e.g. extremely low MC variances ¾2(cm) and ¾2(rm))
and, at the same time, to keep the probability of duplications in drawing initial con…gurations below 0.5%,
even for small N . Since MC variances do not change very much across the parameter space, we can neglect
the study of coe¢cients cm=¾2(cm) and rm=¾2(rm) and focus on MC means only.
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neighborhood sizes is very large. More precisely:

Observation 1: In 84.6% of runs, the society is absorbed in SS characterized by average

coordination levels cm ¸ 0:9. Moreover, in 89.6% of cases the system is absorbed either

by 1 = (1; 1)i2I or 1 = (¡1; 1)i2I, while in 99.1% of runs the scaled average radius

Rm = er¡1rm 2 (0; 1] is smaller than 0.50.
Despite the presence of negative local network externalities, the society seems therefore

able to exploit neighborhood adjustment to reach con…gurations that are globally charac-

terized by high levels of coordination. Nevertheless, as one starts exploring the long-run

behavior of the system as (°; µ) vary in the relevant parameter space for a given population

size N , it appears that the system may be trapped, with a small but signi…cant likelihood,

in long-run con…gurations with low average coordination. In Figs. 1a and 1b, we depict an

example of how bc and br change with (°; µ) for N = 21. Aggregate coordination, as mea-

sured by bc; attains values close to 70% when both ° and µ are large. In the same region

of the parameter space, the frequency of MC simulations in which the system is absorbed

either by ¤+1 or by 
¤
¡1 is around 50%. Conversely, average neighborhood sizes, while

staying very close to 1 for almost all sampled °’s and µ’s, seem to decrease with unit costs

and, at least when the latter are small, to weakly increase with the frequency of neigh-

borhood adjustment. In general, the evidence about how ° and µ a¤ect coordination and

interaction structures for any given N can be summarized in the following observations.

Observation 2: For all N > 4, average coordination bc is always non-increasing in ° and
µ. In particular, the frequency of all runs in which cm > 0:95 is 0.48 when ° ¸ 0:5 and

0.74 when ° < 0:5. Moreover, the frequency of all runs in which cm > 0:95 is 0.54 when

µ ¸ 0:1 and 0.77 when µ < 0:1.

Observation 3: For all N > 4, average neighborhood sizes br is always non-increasing in
° and non-decreasing in µ. In particular, the frequency of all runs in which rm > 1 is 0.077

when ° ¸ 0:5 and 0.066 when ° < 0:5. Moreover, the frequency of all runs in which rm > 1
is 0.088 when µ ¸ 0:1 and 0.065 when µ < 0:1:

Therefore, smaller unit costs imply higher average neighborhood sizes together with

higher aggregate coordination, while a lower speed of neighborhood adjustment induces

higher aggregate coordination. Figs. (2a-2d) plot the typical time evolution of cm and Rm
in four setups characterized by small (resp. large) unit costs and small (resp. large) speed

of neighborhood adjustment. Recall that given N , a larger ° implies stronger negative

externalities network e¤ects (even locally), and possibly agents willing to shrink their

neighborhoods no matter strategy con…gurations. Conversely, a small ° induces larger

‡exibility in local payo¤ improvements through the exploitation of positive local network
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externalities. Moreover, a small speed of neighborhood updating allows players to better

coordinate with their neighbors given the current interaction structure, especially when

the latter is characterized by large neighborhoods (as typically happens at the beginning

of the realizations).

Hence, when ° is very small, agents are expected to employ neighborhood updating

to locally coordinate with each other. This would in turn lead to an initial increase of

cm in response of ‡uctuations in rm. However, whether full aggregate coordination will

be attained or not depends on the magnitude of µ: If µ is small (cf. Fig. 2a), agents

are able to fully exploit their currently large neighborhoods to better coordinate. Thus

cm quickly converges to 1 and, from then on, rm slowly decreases toward 1 (i.e. Rm

tends to er¡1). Conversely, when µ is large, the society can sometimes be trapped in a
low coordination con…guration that sustains higher average neighborhood sizes (see Fig.

2b). On the contrary, if ° is very large, negative network externalities induce agents

to minimize costs by shrinking neighborhood sizes irrespective of gross payo¤s. Hence,

rm steadily decreases from the beginning of the process. This introduces turbulence in

strategy con…gurations and makes harder to reach full coordination, because agents always

switch their strategies while shrinking (see App. B). Once again, whether full or partial

coordination will be achieved strongly depends on the speed of neighborhood adjustment.

In general, the smaller µ, the quicker the system will converge to cm = 1 (see Figs. 2c and

2d). Here, however, SS con…gurations with rm > 1 will be hardly reached, because ° is too

large to sustain neighborhood radii larger than 1.

Let us now turn to explore the e¤ects of increasing the population size N for given

(°; µ). The following observations summarize the results stemming from MC experiments.

Observation 4: If the initial neighborhood structure is drawn at random from R(N) =

f1; 2; :::; erg, then for all N > 4:

1. Average coordination bc is non-decreasing in N and converges to 1 as N !1 for all

(°; µ): More precisely, if N ¸ 100 then bc > 0:99 in 92% of simulations.

2. The re-scaledMC average radius neighborhood size bR =M¡1P
mRm is non-increasing

in N and converges to 0 as N ! 1; for all (°; µ). More precisely, if N ¸ 100 thenbR < 0:05 in 99% of simulations.

Observation 5: If R(N) = R = f1; 2; :::; eRg; where eR is a constant, then average co-

ordination bc tend to fall with population size for any (°; µ) and eR. If eR · 3; average

coordination bc is grater than 0:75 in 88% of simulations when N · 11, while, for all

N > 11, bc is grater than 0:75 in only 5% of runs.
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The foregoing results are not surprising if we recall that a larger population size implies

a larger average for the distribution of initial neighborhood sizes, as er = bN=2c. This has
two e¤ects. First, for any given ° (and if we consider wlog N odd), there exists a threshold

r¤(°) = (1+2°)=2°, independent ofN , such that any agent holding neighborhoods with r >
r¤(°) will always shrink to r¡1 irrespective of local frequencies. Therefore, as N grows, the

range of attainable radii increases and thus negative network externalities are more likely.

Second, as discussed in App. C, heterogeneous SS strategy con…gurations tend to be less

and less sustainable as the average neighborhood size increases (no matter if µ > 0 or not).

Consequently, full coordination will be almost always the case for very large population

sizes when er = bN=2c, as individuals can take advantage of larger overlaps in initial
neighborhood structure. In such situation, the network of links channelling information

among players is initially more connected. This speeds up individual learning and favors

more coordinated con…gurations (cf. Fig. 3a).

On the contrary, when the ratio between the upper bound of the support of the initial

radius distribution and the population size (e.g. eR=N) decreases with N , players are not
able to fully exploit neighborhood learning to better coordinate. Therefore, heterogeneous

strategy con…gurations are more easily attainable (cf. Fig. 3b).

Finally, notice that if R(N) = f1; 2; :::; erg; the relationship between population size
and average neighborhood sizes br depends on the trade-o¤ between the expected increase
in br (due to a larger er) and the strength of negative local network externalities. Hence,
the smaller °, the easier an increase of br for small population sizes. However, when N
becomes su¢ciently large, negative network externalities tend to o¤set any increase in

average neighborhood size: Thus, br will eventually fall and its maximum (as well as is

maximand) will typically decrease with ° (see Fig. 3c). As a result, the re-scaled average

radius bR will always be non-increasing in population size.
5.2 Static vs. Evolving Interaction Structures

In the foregoing analysis, we have analyzed the average long-run behavior of the model

when players can learn how to select their partners in order to locally coordinate with

them. Despite the presence of negative network externalities, the system seems able to

reach very high (although not necessarily full) coordination even in small societies. This is

in particular true whenever: (i) the frequency at which players can simultaneously adjust

strategy and neighbors is positive and small; (ii) neighborhood costs are small.

In this section we will address the issue of how average coordination levels attained by

a system with positive probability of neighborhood updating (denoted by bcµ>0) compares
with those reached by a system in which interaction structures are static (i.e. bcµ=0).
As a benchmark case, let us start by assuming that initial interaction structures are
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homogenous among agents. Notice that when µ = 0; the neighborhood structure is exactly

the same studied in the existing literature on local coordination games (cf. e.g. Ellison

(1993)). On the contrary, when µ > 0 we will allow agents to adjust strategies and radii

starting from an initial interaction structure where all agents hold the same neighborhood

size. In this case, the main results are the following.

Observation 6: Suppose that, for µ ¸ 0; the initial radius con…guration is homogeneous,
i.e. ri0 = r all i 2 I; r = 1; 2; :::; er. Then:
1. Average coordination with static neighborhoods is increasing in r = 1; 2; :::; er for any
N and converges to 1 as r ! er. Speci…cally, if (er¡1r) < 0:9; bcµ=0 is lower than 0:5
in 99% of runs: On the contrary, when (er¡1r) < 0:9, bcµ>0 (i.e. average coordination
with evolving networks) is greater than 0.73 in 99% of runs.

2. For any choice of r = 1; 2; :::; er such that the scaled radius er¡1r goes to zero as
N ! 1, bcµ=0 is decreasing in N and converges to 0 as N ! 1. For the same
parametrizations, a system with µ > 0 attains a SS average coordination level bcµ>0
which is greater than bcµ=0 in 95% of runs.

Therefore, a positive probability of neighborhood adjustment favors higher coordination

levels, as compared to those attained with static homogeneous structures. In fact, as r tends

to er for a given N and agents cannot adjust neighborhoods, the communication network

tends to the complete one and thus bcµ=0 increases. As Fig. 4a shows for the case N = 11;bcµ=0 is very small when r ' 1 and monotonically converges to 1. Nevertheless, coordination
levels attained in a system with the same homogeneous initial radius con…guration and a

positive rate of neighborhood adjustment are higher than those attained for µ = 0; for a

wide range of system parameters.

Moreover, bcµ=0 typically falls as N increases when neighborhood radius is su¢ciently

small with respect to N , as the constraints induced on local frequencies by heterogeneous

strategy con…gurations are increasingly less sustainable at a global level (see Fig. 4b for

an illustration). If we allow for neighborhood adjustment (µ > 0) and we force initial

neighborhood radii to be homogeneous, average coordination always ends up to be larger

than bcµ=0. Once again, the combined e¤ects of endogenous neighborhood formation and
negative local network externalities sustain better long-run coordination patterns through

the exploitation of favorable local improvements.

Finally, notice that similar results can be obtained when we assume heterogeneous initial

interaction structures fri0; i 2 Ig (i.e. where 9 i 2 I and j 2 I, j 6= i such that ri0 6= rj0)
for µ ¸ 0. Hence, if players can respond to their local environment by simultaneously

adjusting both strategies and partners, the society seems able to attain better long-run

average coordination patterns than in the case where interaction structures are static.
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6 Beyond the Basic Setup: Some Preliminary Exer-
cises

In the foregoing Sections we have analyzed the dynamic properties of a quite simple coordi-

nation game played by a population of spatially-located, myopic, agents who can repeatedly

update both the action to play in the game and the size of their interaction neighborhood.

We have deliberately restricted our attention to a simple dynamic population game where:

(i) agents are located on a one-dimensional lattice with periodic boundaries; (ii) the under-

lying stage-game is a pure-coordination one; (iii) network externalities are locally positive

but globally negative (i.e. ® = 1 in Eq. (3)). In this Section, we will try to provide

some intuitions about the behavior of the system when one gradually departs from these

assumptions.

6.1 Positive vs. Negative Network Externalities

To begin with, suppose that in Eq. (3) ® = 0: In this case, an agent i holding a radius rit
earns a net payo¤:

¼it(sit; ritjt) =
(

2rit[xi(rit)¡ ¯]
2rit[1¡ xi(rit)¡ ¯]

if

if

sit = +1

sit = ¡1
:

Notice …rst that if ¯ ¸ 1 net payo¤s are always less (or equal) than zero for all xi(rit).

Network externalities are always negative and agents will prefer to hold the smallest radius

as possible (r = 1). Suppose instead that ¯ < 1. It is easy to see11 that if ¯ < 1
4
an agent

will amost always enlarge her radius. For unit costs in this range, net payo¤s are strictly

increasing in the size of the network (i.e. the number of agents in the neighborhood

playing +1) for almost all local con…gurations. Finally, if 1
4
· ¯ < 1; the regime of

network externalities is mixed because neighborhood updating strongly depends on local

frequencies.

By developing an argument similar to that in Proposition 3 (cf. Appendix A), one can

easily characterize the SS of the process. On the one hand, it is possible to show that in

a SS full coordination (i.e. s¤i = +1 all i or s¤i = +1 all i) can sustain, for any (N; µ);

only one of two alternative neighborhood structures: (i) the minimally connected one, i.e.

fr¤i = 1; i 2 Ig, when ¯ > 1; or (ii) the complete network one, i.e. fr¤i = er; i 2 Ig, when
¯ < 1: Therefore, coexistence of conventions cannot emerge neither with heterogeneous

neighborhood structures, nor with homogeneous ones where r¤i = r, all i; but r 6= 1; er.
On the other hand, heterogeneous strategy con…gurations can sustain both homogeneous

11It su¢ces to repeat calculations performed in Appendix B to …nd necessary and su¢cient conditions
on ¯ such that an agent will always enlarge her radius irrespective of local frequencies.
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and heterogeneous networks. More importantly, the condition ¯ < 1 is necessary but not

su¢cient for the emergence of complete networks: when 1
4
· ¯ < 1 there might exist many

SS where coexistence of conventions and heterogeneous neighborhood structures coexist. In

addition, as happens when ® = 1; the complete network (as well as any other homogeneous

network with r > 1) cannot be sustained in a SS by a strategy con…guration characterized

by coexistence of conventions (i.e. c < 1)12.

Figs. 5a and 5b plot, for the case N = 21; average coordination and neighborhood

radius as (¯; µ) change. As expected, the long run behavior of the system is strongly

a¤ected by the level of unit cost. When ¯ < 1
4
, full coordination together with complete

networks always arise. However, when 1
4
· ¯ < 1, the mixed network externalities regime

allows agents to trade-o¤ between larger neighborhoods and higher coordination. Despite

complete networks and full coordination are still very likely to emerge, the system may be

dynamically trapped in partial coordination con…gurations where some agents hold small

neighborhoods. This results contrasts with …ndings in Goyal & Vega-Redondo (2001)

and is due both to the assumption of indirect partner selection and to the constraints

imposed by the underlying geography. Finally, if network externalities are ‘always negative’

(¯ > 1), average neighborhood sizes shrink very fast toward 1. As ¯ grows, the only

stable neighborhood structure becomes indeed the minimal one (i.e. rm = 1) for which we

know there are many stable, heterogeneous, strategy con…gurations. Nevertheless, average

coordination does not decrease dramatically: for all N ¸ 11; ° = 2¯ · 1:5 and µ 2 (0; 1],
cm > 0:90 in 93.75% of all runs, as compared to 84.60% when ® = 0, cf. Obs. 1.

The parameter ® may be then interpreted as governing the network externality regime

in the economy: for a given parameter setup (N;¯; µ), the higher ® the more network

externalities induce agents to penalize larger neighborhood sizes. When one studies how

average coordination and average neighborhood sizes vary when ® smoothly changes in

[0; 1], it is worth noting that, when ¯ is small, a system with ® = 1 is able to reach

coordination levels which are as high as the ones attained by any system with ® < 1.

However, as soon as ® becomes less than 1; almost full coordination is reached because the

complete network becomes stable and viable. On the contrary, systems with ® = 1 attain

high coordination together with very small neighborhood sizes and thus higher average net

payo¤s13.

12The proof of this statement is analogous to that developed in Appendix A for the case ® = 1. Notice
also that when ¯ = 1 and full coordination applies, any neighborhood structure is stable because all payo¤s
are equal to zero.

13For instance, when N = 11; ¯ = °
2 = 10¡6 and µ = 1; any system with ® < 1 is able to reach full

coordination in a complete network in almost 100% of runs. On the contrary, when ® = 1 the analysis in
the foregoing Sections shows that bc ' 0:945 and bR = 0:205:
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6.2 Higher-Dimensional Lattices, Neighborhood Speci…cation and
Coordination

In the basic setup agents were placed in a 1-dimensional lattice with periodic boundaries

(i.e. a circle). In this subsection we test whether (and in which ways) the behavior

of the system is a¤ected by this particular choice for the topology of interactions. In

particular, we explore what happens to average coordination when: (a) agents are located

in À-dimensional lattices, À ¸ 2; and (b) we allow for notions of ‘distance’ between agents
di¤erent from the Manhattan metrics (d1).

Let us start by assuming that each agent is associated to a node of a À-dimensional

lattice with periodic boundaries. In this case, agent i 2 I has coordinates (xi1; :::; xiÀ). If
the relevant metrics is still d1, then the neighborhood of agent i is de…ned as:

V À(rit) =: fj 2 I : 0 <
ÀX
h=1

jxih ¡ xjhj · ritg;

where rit 2 f1; 2; :::; erg and er = bN 1
À c. It is easy to show that the size of a generic

r¡neighborhood in À dimensions reads:

jV À(r)j =
minfr;ÀgX
m=0

(À + r ¡m)!
m!(r ¡m)!(À ¡m)! :

Hence, for a given À; jV À(r)j grows as rÀ (and symmetrically, for a given r, as Àr).
Suppose that payo¤s are still de…ned as in Eq. (3) and that ® = 1 (i.e. we are in

the standard case where the regime of network externalities allows for ‘locally’ positive

but eventually ‘negative’ spillovers). Table 1 reports the results of some MC exercises for

2 and 3-dimensional lattices, when (µ; ¯) belong to benchmark parametrizations. Since er
depends on both N and À, we study how average coordination and average neighborhood

radius change when À = 1; 2; 3 and either er or N are kept …xed.

As Table 1 shows, in both setups with À = 2 and À = 3, average coordination is increas-

ing with ¯ and µ, while average radius is decreasing in ¯: Thus, the relationship between

unit cost and frequency of neighborhood updating, on the one hand, and coordination and

neighborhood size, on the other, is robust to changes in À. However, higher-dimensional

lattices generally imply lower coordination. Furthermore, average neighborhood radius

does not seem to be very much a¤ected by À. The same pattern arises no matter one keeps

constant the maximum attainable radius er (so that N increases with À) or the population

size N (so that er decreases with À). Finally, as exempli…ed by the 2-dimensional case, a
larger population size implies lower coordination as soon as À > 1:

This evidence is not surprising if one notices that, as the dimension of the lattice

19



increases: (i) negative network externalities are more likely for a given ¯ (because gross

payo¤s are still bounded from above by 1, while neighborhood costs grow as rÀ); (ii) the

number of strategy con…gurations which are locally sustainable when all agents hold a

radius r = 1 increases (cf. Blume (1993)). Therefore, agents prefer to hold a radius r = 1

even when À > 1 because of stronger NNE. At that point, the system is more likely to be

trapped in a stable strategy con…guration characterized by lower coordination.

Furthermore, the number of neighbors that two adjacent agents have in common de-

creases with À (if the size of the neighborhood remains constant). Hence, as the population

size increases, the degree of anonymity in the lattice increases (cf. Berninghaus & Schwalbe

(1996)). In turn, this implies that the constraints imposed by the geography of interactions

on stable strategy con…guration are no longer stringent as in the 1-dimensional case (cf.

App. C). Thus, low coordination con…gurations are still reachable even when N grows.

Finally, when À ¸ 2 the metrics with which we endow the space where agents are lo-
cated does a¤ect long-run patterns of coordination. Suppose for example that the distance

between two agents i and j is de…ned as:

dij = max
h=1;:::;À

fjxih ¡ xjhjg:

A neighborhood with radius r will then have a hypercubic shape (i.e. a Moore’s neigh-

borhood) instead of a hyperspheric shape (i.e. a Von Neumann’s neighborhood)14. This

new geography of interactions usually entails higher coordination levels, as compared to

the standard case where neighborhoods are de…ned employing the Manhattan metrics. In-

deed, when N is kept …xed as À = 2; 3, the society achieves almost full coordination in all

parametrizations (i.e. cm > 0:99 in 95% of all runs).

6.3 Pareto-E¢cient vs. Risk-Dominant Nash Equilibria

The simple model presented in Section 3 may be easily employed to address the issue of

convergence to Pareto-e¢cient (PE) vs. risk-dominant (RD) equilibria. Suppose indeed

that agents play generic coordination games (instead of pure coordination ones). In this

case, if agent i plays si 2 f¡1; 1g when agent j0s strategy is sj 2 f¡1; 1g; her stage-game

14The size of a r-radius Moore’s neighborhood in À dimensions is thus (2r + 1)À ¡ 1; which of course
is larger than the size of a Von Neumann’s neighborhood. Moreover, two adjacent agents holding r-
Moore’s neighborhoods have more neighbors in common than two adjacent agents with r-Von Neumann’s
neighborhoods.
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payo¤ is given by:

G(si; sj) sj = +1 sj = ¡1
si = +1 a b

si = ¡1 c d

; (7)

where a > c; b < d and a > d (i.e. the Nash equilibrium (+1;+1) is Pareto e¢cient).

Recent studies have pointed out that Pareto e¢ciency might not generally be the relevant

selection principle whenever the other Nash equilibrium (i.e. (¡1;¡1)) is risk-dominant,
i.e. if c+ d > a+ b. More speci…cally, Kandori et al. (1993), Ellison (1993), Young (1996)

and Blume (1993) have shown that, whenever agents repeatedly interact (either locally

or globally) with the same set of partners and employ best-reply rules with trembles, the

unique long-run outcome is the establishment of the risk-dominant convention (all play

¡1). Convergence to the PE convention (all play +1) is however restored when players are
spatially located but they can indirectly select their partners by moving across locations

(cf. Ely (1996), Oechssler (1997) and Dieckemann (1999)). In general, Pareto e¢ciency

is typically the case whenever agents have some ‡exibility in selecting their partners and

they are able to ‘isolate’ themselves within islands of coordination (see e.g. Goyal &

Vega-Redondo (2001, p. 8)). However, when interaction structures are made endogenous,

e¢ciency results strongly depend on the details of network evolution. For instance, when

unit link costs are small enough, Goyal & Vega-Redondo (2001) …nd that the system almost

surely converges to the RD outcome, while in Jackson & Watts (2000) the con…guration

where all agents play ¡1 is not the unique (evolutionary) stable state.
To explore e¢ciency issues in the present model, we considered the basic setup where

À = 1 and ® = 1 and we let for the sake of simplicity a = 2, b = 0, d = 1 and c 2 [0; 2):
Notice that if c 2 [0; 1) the PE Nash equilibrium is also RD, while if c 2 (1; 2) the NE
(¡1;¡1) is RD. Finally, if c = 1 the two pure-strategy equilibria are risk-equivalent. Table
2 shows for N = 51 and some benchmark parametrization for (¯; µ) MC means of the

average strategy (sm) and average radius (rm), as c = 0:00; 1:00; 1:99.

Across all parametrizations, the system displays a clear tendency toward the risk-

dominant equilibrium. In contrast with existing results, the regime of network externalities

studied here restores convergence to the RD outcome even when unit costs are large enough.

In fact, when the RD equilibrium is unique (i.e. c = 0 and c = 1:99), the system con-

verges to homogeneous con…gurations when all agents play the RD strategy (and also PE

only when c = 0). Notice however that when both equilibria are risk-equivalent, 50% of

agents play the PE equilibrium and this frequency increases when unit costs are small

and the frequency of neighborhood updating is large. In these cases, players enjoy larger

neighborhoods and are able to better coordinate on the PE equilibrium.

21



7 Conclusions

The details of the process governing the coevolution of expectations formation, individual

choices and interaction structure might strongly a¤ect the long-run outcome of a coordi-

nation game repeatedly played in large populations.

To investigate this issue, we have presented a model in which myopic, spatially located

individuals play a pure coordination game with their nearest neighbors. Key features of

the models are, …rst, that agents are allowed, in each period, to adjust both current stage-

game strategies and neighborhood size with an exogenously given probability. Since this

probability can be treated as a system parameter, one can address the question whether

a higher frequency of endogenous neighborhood formation entails higher aggregate coordi-

nation. Second, neighborhood formation is itself a local interaction process, because any

agent can only enlarge or shrink by one unit her interaction radius. Finally, we analyze

a system characterized by local network externalities which might be positive when the

neighborhood size is relatively small, but they eventually become negative when the latter

becomes too large.

We show that the system almost always converges to a set of absorbing states in which

full coordination, as well as coexistence of conventions, are both possible. However, if full

coordination arises, all players must hold the smallest as possible neighborhood. On the

contrary, long-run coexistence of conventions can arise together with many, possibly het-

erogeneous, neighborhood structures. Nevertheless, computer simulations show that the

system is able to reach very large average coordination levels, together with small average

neighborhood sizes, for almost all parametrizations. We also …nd that the rate of neigh-

borhood updating negatively a¤ects average coordination levels. This raises the question

of how coordination levels with endogenous neighborhoods compare to the case in which

interaction structures are static. Simulations indicate that, for a large class of exogenously

given interaction structures and system parameters, a population with a small but positive

rate of endogenous neighborhood formation always reaches higher coordination. In addi-

tion, we …nd that large societies perform better than small ones provided that individuals

initially hold, on average, large neighborhoods.

Finally, we explore the behavior of the model when one gradually departs from the basic

setup by assuming that: (i) network externalities might be positive for all neighborhood

sizes; (ii) agents are located in lattices with dimension higher than one; and (iii) agents

play generic coordination stage-games where a trade-o¤ arises between Pareto-e¢cient and

risk-dominant Nash equilibria.

More generally, the robustness of the foregoing results should be checked with respect to

a number of key assumptions. First, one might study the e¤ects of introducing individual

decision rules di¤erent from deterministic best-reply (e.g. best-reply with mistakes, log-
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linear decision rules, etc.). Along the same lines, the consequences of assuming alternative

tie-breaking rules and updating schemes should be thoroughly analyzed. For example,

one could experiment with agents who always randomize when ties occur. In addition,

one might explore the dynamic properties of the system in presence of a synchronous - or

an incentive-based - updating scheme governing how many agents (and who) are allowed

to update their state in each period (cf. Page (1997)). Second, introducing non-linear

neighborhood cost functions, as well as gross payo¤s from coordination which themselves

depend on the distance between agents, might allow a deeper understanding of the trade-o¤

between negative and positive network externalities.
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Appendices

A Proofs

Proof of Prop. 2
Consider (wlog) individual updating rules when µ = 1: Given the current strategy pro…le,
the agent drawn to update her current state (s; r) faces the following relevant payo¤ matrix:

r ¡ 1 r r + 1
s = +1 xi;r¡1 ¡ °(r ¡ 1) xi;r ¡ °r xi;r+1 ¡ °(r + 1)
s = ¡1 1¡ xi;r¡1 ¡ °(r ¡ 1) 1¡ xi;r ¡ °r 1¡ xi;r+1 ¡ °(r + 1)

:

If given local frequency pro…le (xi;r¡1; xi;r; xi;r+1) no ties occur, then best-replies are unique.
If, on the contrary, some ties occur, rede…ne the payo¤ matrix by adding some " > 0 to
the entry associated to the choice preferred under the relevant tie-breaking rule (see Sec-
tion (3)). Once again, the resulting embedded game is such that, for any given strategy
con…guration, there is a unique best-response (s¤; r¤) for any individual facing updating.
Therefore, for any given N ¸ 5; µ 2 (0; 1]; ° > 0 and 0 2 ¡(N), the Markov chain govern-
ing the evolution of the process ft; t ¸ 1g has the so-called ‘unique best-reply property’
(see Blume (1995)). For such Markov processes, we know that there is a one-to-one cor-
respondence between absorbing states and ergodic sets. Hence, …nite-time convergence to
an absorbing state is a probability one event in our system. Finally, notice that the tie-
breaking assumption concerning the case when (s; ri;t + 1) and (s; ri;t ¡ 1) are the unique
solutions of (6) for s 2 f¡1; 1g (i.e. always choose (s; ri;t ¡ 1)), is not very restrictive.
Indeed, let h = 0; 1; :::; 2(r ¡ 1) the number of agents playing +1 in Vr¡1 and kr = 0; 1; 2
the number of agents playing +1 in the set Vi;rnVi;r¡1: It is easy to show that a tie occurs
(when s = +1), i.e.:

xr¡1 ¡ °(r ¡ 1) = xr+1 ¡ °(r + 1) > xr ¡ °r

i¤ h ¸ r ¡ kr and:

° =
(r ¡ 1)(kr + kr+1)¡ 2h

4(r + 1)(r ¡ 1) >
(r ¡ 1)kr ¡ h
2r(r ¡ 1) :

Numerical experiments show that the set of all ° satisfying these conditions has cardinality
that grows as N2: Hence, if ° lies in a dense subset of R+, the considered tie-breaking rule
is not relevant and the embedded game has the unique best-reply property anyway.¥

Proof of Prop. 3

Proof of Point 1. We need to show that: (i) the con…guration f(si; ri) = (+1; 1); all
i 2 Ig is a SS; and that (ii) given that all agents play si = +1 only ri = 1 all i can be a
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SS. Notice that payo¤ symmetry with respect to strategies allows us to avoid treating the
case si = ¡1, all i: Moreover, as SS conditions for strategy updating are contained in SS
conditions for neighborhood updating, it su¢ces to check the latter. When all si = +1;
then xi(r) = 1 8r = 1; :::; er: Hence, for r = 2; :::; er ¡ 1; generic payo¤ matrices read:

r ¡ 1 r r + 1
s = +1 1¡ °(r ¡ 1) 1¡ °r 1¡ °(r + 1)
s = ¡1 ¡°(r ¡ 1) ¡°r ¡°(r + 1)

:

As 1 ¡ °r ¸ ¡°r for any r the strategy con…guration si = +1; all i, is stable for any r.
However, as payo¤s are decreasing in r, any agent will shrink until ri = 1; all i. ¥

Proof of Point 2. Consider wlog N > 3 odd. Let us start by observing that there are no
SS action con…gurations where exactly 1 or N¡1 agents choose +1 (or symmetrically ¡1).
Indeed, suppose s1 = ¡1, si = +1 for i = 2; :::; N: Then x1(r) = 1 for any r. Hence, even
if all remaining strategies and radii are stable (e.g. because all ri = 1; i ¸ 2), agent 1 will
always switch. As a result, if strategy heterogeneity is the case, then bs 6= f¡N¡1

N
;+N¡1

N
g:

To show point 2., we need to prove that, for some neighborhood con…gurations, there exist
a SS strategy con…guration s.t. bs 2 f¡N¡2

N
;+N¡2

N
g for any N and °. Consider for instance

r¤i = 1, all i: Then any SS strategy con…guration such that bs 2 f¡N¡2
N
;+N¡2

N
g is a SS. To

see why, consider agents playing +1 (a symmetric argument holds for agents playing ¡1).
SS conditions can be rewritten as follows: ° ¸ maxf1¡ x1 ¡ x2; x2 ¡ x1g. As far as local
frequencies x1 and x2 are concerned, there can be at most three types of agents, namely:
(i) (x1; x2) = (1; 1); (ii) (x1; x2) = (1; 3

4
);(iii) (x1; x2) = (1

2
; 1
2
): In all such cases, the SS

condition above reads ° ¸ 0, which is always true.

Proof of Point 3. We need to show that for any fsi; i 2 Ig s.t. jbsj 6= 1;homogenous
radius con…gurations are only possible if all agents choose ri = r = 1: First, notice that
ri = er, all i cannot be a SS. If it were, then it must be that for all i, xi(er) ¸ 1

2
if s¤i = +1,

while xi(er) · 1
2
if s¤i = ¡1. Letting x¤ be the global frequency of agents playing +1, then

xi(er) = Nx¤¡1
N¡1 if s¤i = +1 and xi(er) = Nx¤

N¡1 if s
¤
i = ¡1. Hence, in a SS: x¤ ¸ N+1

2N
if s¤i = +1

while x¤ · N¡1
2N

if s¤i = ¡1. By heterogeneity, the two inequalities should be satis…ed
simultaneously, which gives a contradiction.
Second, any con…guration in which ri = 2; :::; er ¡ 1; all i; cannot be a SS either. If it

were, SS conditions would jointly imply (cf. Lemma 1) that x¤i (r) >
1
2
if s¤i = +1 and

x¤i (r) <
1
2
if s¤i = ¡1. However, if a heterogeneous con…guration is to be stable, any two

adjacent agents, say i and i+1; such that s¤i = +1 and s
¤
i+1 = ¡1 must be locally stable. As

both holds a r¡radius neighborhood, then Vi;r = fi¡r; i¡r+1; :::; i¡1; i+1; i+2; :::; i+rg
and Vi+1;r = fi¡r+1; :::; i¡1; i; i+2; :::; i+r; i+r+1g: Hence Vi;r\Vi+1;r = fi¡r+1; :::;
i¡1; i+2; :::; i+rg. Let us call xc the frequency of agents playing +1 in Vi;r\Vi+1;r whose
size is 2(r ¡ 1). Then, since s¤i = +1 and s¤i+1 = ¡1:

xi =
2(r ¡ 1)xc + 1(si¡r=+1)

2r
and xi+1 =

2(r ¡ 1)xc + 1 + 1(si+r+1=+1)
2r

;
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where 1(sj=+1) = 1 if sj = +1 and 0 otherwise. By the inequality above, we must have
that: ½

2(r ¡ 1)xc + 1(si¡r=+1) > r
2(r ¡ 1)xc + 1 + 1(si+r+1=+1) < r

or r¡1(si¡r=+1) < 2(r¡1)xc < r¡1¡1(si+r+1=+1); which is impossible as maxf1(si¡r=+1)¡
1(si+r+1=+1)g = 1: ¥

Proof of Point 4. To show point 4, we will provide examples supporting the statement
that, depending on (°;N); there exist SS sustaining heterogeneous neighborhood sizes with
some agents choosing r¤i = 1 and some other agents choosing r

¤
i 2 f2; :::; er¡ 1; erg: To show

that a given strategy-radius con…guration is a SS, one should check if, for any agent, SS
inequalities are satis…ed. In the following Lemma, we will present an easier way to check
for local SS conditions. Indeed, for an individual state (si; ri) to be stable, only the number
of agents playing +1 in Vi(r ¡ 1); as well as the 4 agents playing +1 in Vi(r) \ Vi(r ¡ 1)
and in Vi(r + 1) \ Vi(r); matter.

Lemma 5 (Characterization of Local SS Conditions) Assume (wlog) that si = +1
(symmetric results hold for s = ¡1). Let Vr=Vr¡1 = fj 2 I : j 2 Vr; j =2 Vr¡1g: Then:
1. Suppose that ri = 1: Let h = 0; 1; 2 the number of agents i playing +1 in V2 and
k = 0; 1; 2 the number of agents i playing +1 in V2=V1: Then r = 1 is locally stable
for agent i if and only if h = 1; 2 (i.e. h 6= 1), k 2 f0; 1; 2g and ° satisfy the following
conditions:

k = 0 k = 1 k = 2

h = 1
° ¸ 1

4¡ ¡ (+) + ¡
8°

¡ ¡ (+) + +
° ¸ 1

4

+ ¡ (+) + +

h = 2
8°

¡ + (+) + ¡
8°

¡ + (+) + +
8°

+ + (+) + +

Illustrations of local strategy con…gurations consistent with correspondent values of
(h; k) are also shown. Notice that also con…gurations obtained from the ones reported
by simply switching neighbors symmetrically are SS.

2. Suppose that ri = er: Let h = 0; 1; :::; 2(er¡1) the number of agents i playing +1 in Ver¡1
and k = 0; 1; 2 the number of agents i playing +1 in Ver=Ver¡1: Then r = er is locally
stable for agent i if and only if (supposing wlog N odd): k = 2; N¡3

2
= r ¡ 1 · h ·

2er ¡ 3 = N ¡ 4 and
° · 2(er ¡ 1)¡ h

2er(er ¡ 1) =
2(N ¡ 3¡ h)
(N ¡ 1)(N ¡ 3)

3. Suppose that ri = 2; :::; er ¡ 1: Let h the number of agents playing +1 in Vr¡1 and
kr = 0; 1; 2 be the number of agents playing +1 in the set Vi;rnVi;r¡1: Then r = ri is
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locally stable for agent i if and only if kr 6= f0; 1g and:

kr+1 = 0; 1 kr+1 = 2

kr = 2
h = r ¡ 1; r ¡ 2; :::; 2r ¡ 3

° · 2(r¡1)¡h
2r(r¡1)

h = r ¡ 1; r ¡ 2; :::; 2r ¡ 3
2(r¡1)¡h
2r(r+1)

· ° · 2(r¡1)¡h
2r(r¡1)

Proof. We prove here only the case ri = 1 (proofs of cases 2 and 3 are similar but require
heavier computations). Consider …rst SS inequalities that (h; k) must satisfy in order for
(+1; 1) to be stable for given the strategy choice si = +1: Since x1 ¸ maxf12 ; x2¡ °g; then
h
2
¸ maxf1

2
; h+k

4
¡ °g: This implies h > 1 and k¡ h · 4°; which is always satis…ed for any

° > 0 unless when h = 1 and k = 2; where we need ° ¸ 1
2
: If we now add constraints implied

by the inequalities concerning a strategy switch, then the only additional restrictions come
from the fact that x2 ¸ 1 ¡ x1 ¡ °, which implies 4 ¡ 3h ¡ k · 4°: As h = 1; 2 and
k = 0; 1; 2; the (lhs) of the last inequality is always · 0 unless (h; k) = (1; 0), where we
need ° ¸ 1

4
:

Given Lemma 5, it is now easy to see that the following con…gurations are SS in which
strategy heterogeneity sustains neighborhood homogeneity.

Example 6 Consider the following example (N = 21). Then, the following con…guration:
{-1,-1,-1,+1,+1,+1,+1,+4,+4,-10,+2,+1,+1,-4,-1,-1,-1,-1,-1,-1,-1}, where (sign)x means
s = (sign)1 and r = x; is a SS for ° · 8=(7 ¤ 21):

To see that this is the case, it su¢ces to apply conditions given in Lemma 5 to any
agent i. ¥

B The E¤ect of Negative Local Network Externalities
In this Section we will better characterize the e¤ect of negative local externalities. We
will focus on the extreme case in which an agent currently playing (+1; r), no matter local
frequencies (xr¡1; xr; xr+1), would have an incentive to either always shrink her radius to
r¡1, keep r, or enlarge to r¡1:We will show that negative network externalities engenders
an asymmetric e¤ect on players incentives because there exist regions of the parameter
space in which agents are always willing to shrink no matter local frequencies, but the
same is not true as far as incentives to keep or enlarge are concerned. More formally:

Proposition 7 Consider an agent playing (wlog) +1 and holding a r¡radius neighborhood,
r ¸ 2. Then:

1. If ° > °¤(r) = 1
2(r¡1) the agent will switch to (r ¡ 1;¡1) no matter local frequencies.

2. There are no ° s.t. given N an agent will switch to r + 1 or keep r no matter local
frequencies.
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Proof. Consider Point 1. The agent will shrink i¤ xr¡xr¡1 < ° and xr+1¡xr¡1 < 2°.
If we let xr¡1 = h=2(r¡ 1); xr = (h+ kr)=2r and xr+1 = (h+ kr + kr+1)=2(r+1); then the
latter inequalities are satis…ed i¤:

rkr ¡ h¡ kr
2r(r ¡ 1) < ° and

rkr + (r ¡ 1)kr+1 ¡ h¡ (h+ kr)
4(r + 1)(r ¡ 1) < °:

The extreme case for an agent willing to shrink is kr+1 = 2; kr = 2 and h + kr = r (i.e.
h = r¡2). In this circumstance (and consequently in any other one), the agent will shrink
i¤ ° > °¤ = [2(r ¡ 1)]¡1:When allowed to update her strategy (e.t. else being equal), her
local frequency will be x = xr¡1 = (r¡ 2)[2(r¡ 1)]¡1 < 1

2
, so that the agent will switch to

¡1.
Consider now point 2. For an agent to keep r, it must be that:

(r ¡ 1)kr ¡ h
2r(r ¡ 1) ¸ ° and rkr+1 ¡ (h+ kr)

2r(r + 1)
· °:

Here the extreme case is: kr+1 = 2; kr = 0 and h + kr = h = 2(r ¡ 1); so that xr =
(r ¡ 1)=r ¸ 1=2. The …rst inequality reads ¡(1=r) ¸ ° which is not possible. Therefore,
the agent will never keep r irrespective of frequencies. Finally, suppose that an agent would
always be willing to enlarge. Then it must be that:

(r ¡ 1)kr + (r ¡ 1)kr+1 ¡ 2h
4(r + 1)(r ¡ 1) > ° and

rkr+1 ¡ (h+ kr)
2r(r + 1)

> °:

In the extreme case (i.e. kr+1 = 0; kr = 2 and h+ kr = 2r) the inequalities above cannot
be simultaneously satis…ed.
Finally notice that, for any given °, there exists a threshold r¤(°) = (1 + 2°)=2° s.t. if

an agent holds a radius r > r¤(°) then it will always shrink and switch action. However,
such r0s are possible only if N ¸ N(°) = b2r¤(°) + 1c = b1+3°

°
c+ 1.

C Coexistence of Conventions and Population Size
We provide here the intuition behind the increase in average coordination due to a growing
population size (when the interaction radii are drawn at random from f1; 2; :::; bN=2cg).
Suppose that µ = 0 (the conclusion will hold a fortiori when µ > 0). Then:

Proposition 8 For any given N , let a heterogeneous strategy con…guration be given. For
any pair of adjacent agents (i; i+ 1) playing opposite strategies, say (+1;¡1) and holding
radii (ri; ri+1) = (r + p; r); where r ¸ 1 and p ¸ 0, then the number of common neighbors
playing +1 who are necessary for the above con…guration to be locally stable increases as r
increases.

Proof. Suppose …rst that p > 0: If (ri; ri+1) = (r + p; r) then Vi = fi ¡ r ¡ p; :::;
i¡r; i¡r+1; :::; i¡1; i+1 ; i+2; :::; i+r+1 ; i+r+2; :::; i+r+pg and Vi+1 = fi+1¡r; :::; i
; i+ 2; :::; i+ r + 1g: Hence Vi \ Vi+1 = fi¡ r + 1; :::; i¡ 1; i+ 2; :::; i+ r + 1g: There are
2r ¡ 1 common neighbors and 2p agents belonging to VinVi+1: Let h and hp the number
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of agents playing +1 respectively in Vi \ Vi+1 and VinVi+1: Hence local frequencies must
satisfy:

xi(r + p) =
hp + h

2(r + p)
¸ 1

2
; xi+1(r) =

h+ 1

2r
· 1

2
;

which is possible i¤ hp ¸ p + 1 and r + p ¡ hp · h · r ¡ 1: As r grows, h must grow. If
conversely p = 0, it is easy to show along the same lines that we need h = r ¡ 1:
Therefore, if N grows and ri 2 f1; 2; :::; bN=2cg; agents will hold on average larger

neighborhoods. Consequently, the number of common neighbors choosing +1 must grow for
any pair of adjacent agents playing opposite strategies. This will of course systematically
destroy heterogeneous strategy con…gurations as N becomes larger.
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Figure 1(a). Means of MC average coordination distributions fcm;m = 1; :::;Mg as a function
of the unit neighborhood cost ° and the frequency of neighborhood updating µ: Population Size

N = 21. MC Sample Size M = 1000:
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Figure 1(b). Means of MC average radius distributions frm;m = 1; :::;Mg as a function of the
unit neighborhood cost ° and the frequency of neighborhood updating µ: Population Size

N = 21. MC Sample Size M = 1000:
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Fig. 2: Time-Evolution in a Typical Run of average coordination c and scaled average radius r:
Panels: (a) Small °, small µ; (b) Small °, large µ; (c) Large °, small µ; (d) Large °, large µ.
System Parameters: ° 2{10¡6;1.5}, µ 2 f0:1; 1:0g; N = 11: Average Radius is scaled by

(N ¡ 1)=2 so as to match unit interval. Average Radius is scaled by (N ¡ 1)=2 so as to match
unit interval.
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Figure 3(a): Means of MC distributions of average coordination cm vs. population size N: The
Case of Unrestricted Initial Radius Con…guration: ri;0 2 f1; 2; :::; bN=2cg: Parameter Setup:

° 2 f10E ¡ 07; 1:5g; µ 2 f0:1; 0:9g; M = 1000:
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Figure 3(b): Means of MC distributions of average coordination cm vs. population size N: The
Case of Restricted Initial Radius Con…guration: ri;0 2 f1; 2; :::; 5g: Parameter Setup:
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Figure 3(c): Means of MC average radius rm vs. population size N for three di¤erent values of
°. Parameter Setup: µ = 0:9; M = 1000.
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Figure 4(a): Static vs. Endogenous neighborhood structures. The case of homogeneous initial
neighborhood radius r. An example of the behavior of the means of MC Distributions of

Average Coordination cm in the case µ = 0 vs. µ > 0. Solid and dashed lines represent average
coordination bc as the homogeneous neighborhood radius r increases (Parameter setup: N = 11;
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Figure 4(b): Static vs. Endogenous neighborhood structures. The case of homogeneous initial
neighborhood radius r. An example of the behavior of the means of MC Distributions of
Average Coordination cm when µ = 0 vs. µ > 0 as N changes (given r). Parameter setup:
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Figure 5(a). The Case of Positive Network Externalities (® = 0). Means of MC average
coordination distributions fcm;m = 1; :::;Mg as a function of the unit neighborhood cost ¯
and the frequency of neighborhood updating µ: Population Size N = 21. MC Sample Size

M = 1000:
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Figure 5(b). The Case of Positive Network Externalities (® = 0). Means of MC average radius
distributions frm;m = 1; :::;Mg as a function of the unit neighborhood cost ¯ and the

frequency of neighborhood updating µ: Population Size N = 21. MC Sample Size M = 1000:
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Average Coordination Average Radiuser = 5 (Fixed) À = 1
N=11

À = 2
N=25

À = 3
N=125

À = 1
N=11

À = 2
N=25

À = 3
N=125

µ = 1:0 0.94 0.90 0.71 1.03 1.02 1.00
¯ = 10¡6

µ = 0:1 0.95 0.95 0.62 1.02 1.00 1.00
µ = 1:0 0.72 0.54 0.26 1.00 1.00 1.00

¯ = 1:5
µ = 0:1 0.89 0.82 0.58 1.00 1.00 1.00

Average Coordination Average Radius
N Fixed À = 1

N=121
À = 2
N=121

À = 3
N=125

À = 1
N=121

À = 2
N=121

À = 3
N=125

µ = 1:0 0.99 0.79 0.71 1.01 1.07 1.00
¯ = 10¡6

µ = 0:1 1.00 0.85 0.62 1.00 1.02 1.00
µ = 1:0 0.97 0.41 0.26 1.00 1.00 1.00

¯ = 1:5
µ = 0:1 0.99 0.83 0.58 1.00 1.00 1.00

Table 1: MC Means of Average Coordination and Average Radius when agents are located in a
À-dimensional lattice with periodic boundaries and Von-Neumann Neighborhoods. Top:er = N1=À …xed (=5). Bottom: N …xed (' 125). MC Sample Size M = 1000:

Average Strategy Average Radius
N = 51 c = 0:00 c = 1:00 c = 1:99 c = 0:00 c = 1:00 c = 1:99

µ = 1:0 1.00 0.18 -1.00 1.00 1.13 1.00
¯ = 10¡6

µ = 0:1 0.84 -0.03 -1.00 1.00 1.01 1.00
µ = 1:0 1.00 0.01 -1.00 1.00 1.00 1.00

¯ = 1:5
µ = 0:1 1.00 -0.05 -1.00 1.00 1.00 1.00

Table 2: MC Means of Average Strategy (sm) and Average Radius when the underlying
stage-game is a generic coordination game. The parameter c measures the risk-e¢ciency of
(-1,-1). Parameter Setup: c = 0: (+1,+1) PE and RD; c = 1: (+1,+1) and (-1,-1) risk

equivalent; c = 1:99: (-1,-1) is RD. MC Sample Size M = 1000:
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