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1 Introduction

This work concerns some generic properties of the international diffusion of
technologies and products in markets which are interdependent but display,
to varying degrees, location specific forms of dynamic increasing returns and
externalities.
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Building on a related paper [Bassanini and Dosi (1998)], in the following
we study the ways the spatial dimension of positive feedback in adoption
affects the long-run properties of the diffusion processes, especially with re-
gards to the possible emergence of either region-specific or global monopolies
(dominant designs) of particular technologies'. Two stylized facts are at the
origin of this work?:

a) A stable pattern of market sharing between competing technologies
with no overwhelming dominant position has been rarely observed in markets
with increasing returns (or positive feedbacks) of some kind [see Tushman
and Murmann (1998)]. For example, even in the case of operating systems,
which is often quoted as a case of market sharing, Apple Maclntosh has
never held a market share larger than 20% (a partial exception being the
submarket of personal computer for educational institutions). This fact has
also triggered suspicion of market inefficiencies: Single dominant designs or
technological paradigms may prevail even when the survival of more than one
technology may be socially optimal [Dosi (1982), Katz and Shapiro (1986),
David (1992)]. Think for example to the competition between Java-based
architectures and ActiveX architectures for web-based applets: Given that
with any of the two paradigms the standard tasks that can be performed are
different, the general impression of experts is that society would benefit from
the survival of both.

b) International diffusion may sometimes lead to different standards in
different countries or conversely to the diffusion of the same standard in every
country. For example, while in all the English-speaking world the QWERTY
keyboard represents the standard, in the French-speaking world a slightly
different version (the AZERTY keyboard) is by far the more adopted one.
On the contrary in the VCR market VHS is the worldwide technological
leader while the original competitor, Beta, has disappeared.

To explain these two stylized facts we analyze properties of a fairly gen-
eral and nowadays rather standard class of models of competing technologies,
originally suggested by Arthur (1983) and Arthur et al. (1983) and subse-
quently made popular by Arthur (1989) [and further explored by Cowan

IHere the terms monopolies and market sharing are referred to competing technologies
without any reference to who is producing what. For instance, a technological monopoly
occurs when all users adopt the same technology, even when it is produced by many
different suppliers.

2For more thorough discussions of the evidence on patterns of innovation and diffusion,
see, among others, Dosi (1988, 1992) and Freeman (1992, 1994).
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(1991), Dosi et al. (1994), Dosi and Kaniovski (1994) and Kaniovski and
Young (1995) among others|. This class of models will be presented in de-
tails in section 2.

Despite mixed results of some pioneering work on the dynamics of markets
with network effects [e.g. Katz and Shapiro (1986)], unbounded increasing
returns are commonly called for as an explanation of the emergence of tech-
nological monopolies. In a related paper [Bassanini and Dosi (1998)] we show
that the emergence of technological monopolies depends on the nature of in-
creasing returns with respect to the degree of heterogeneity of the population:
Given a sufficiently high heterogeneity amongst economic agents, limit mar-
ket sharing may occur even in the presence of unbounded increasing returns.
Furthermore we suggest that the observation of the widespread emergence of
monopolies is intimately related to properties of different rates of convergence
(to monopoly and to market sharing respectively) more than to properties of
limit states as such. It is shown that a market can approach a monopoly with
a higher speed than it approaches any feasible limit market shares where both
technologies coexist. When convergence is too slow the external environment
is likely to change before any sufficiently small neighborhood of the limit can
be attained. The empirical implication is that among markets with high
turnover of basic technologies and increasing returns to adoption, a preva-
lence of stable monopolies over stable market-sharing should be observed.

Clearly this result also challenges the ideas that internationally unbounded
increasing returns are necessary and sufficient to yield global dominance of
particular technologies, and by the same token, the emergence of overwhelm-
ingly dominant locational clusters in production.

In order to analyze the international diffusion dynamics and account for
the foregoing stylized facts it is useful to start with distinguishing three
interrelated processes.

At a first level, diffusion is driven by microdecisions concerning the adop-
tion or not of a new technology. This is what Katz and Shapiro (1994) in
their review of the literature on systems competition and dynamics of adop-
tion under increasing returns call technology adoption decision. It basically
to the decision of a potential user to place a demand in a particular market
(or, relatedly, of a producer to start investing in a new technology). Indeed a
good deal of literature on determinants of diffusion patterns, and, relatedly,
the observed "retardation factors”, pertain to this domain of analysis [see
Dosi (1992)]. Moreover, relevant questions in this case are the conditions for
an actual market of positive size and the conditions allowing penetration of
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a new (more advanced) technology into the market of an already established
one [Rohlfs (1974), Oren and Smith (1981), Farrell and Saloner (1985,1986),
Silverberg et al. (1988), Katz and Shapiro (1992)]. For example purchasing
or not a fax or substituting a compact disc player for an analogical record
player are technology adoption decisions.

Second, following again the terminology of Katz and Shapiro (1994), call
product selection the choice between different technological solutions which
perform (approximately) the same function and are therefore close substi-
tutes. Relevant questions here are whether the market enhances variety or
standardization, whether the emerging market structure is normatively de-
sirable and what is the role of history in the selection of market structure
[Arthur (1983,1989), Katz and Shapiro (1985,1986), David (1985), Church
and Gandal (1993), Dosi et al. (1994), Brock and Durlauf (1995,1998), An
and Kiefer (1995), Bryniolfsson and Kemerer (1996), Durlauf (1997)]. Choos-
ing between VHS or Beta in the VCR market or between Word or Wordper-
fect in the wordprocessors market are typical examples of product selection
decisions. However it is easy to extend this domain to include the choice be-
tween alternative technological systems (e.g. in energy generation, solar vs.
nuclear energy and within the latter, PWR vs. gas-cooled reactors, etc...).

A third level concerns the spatial dimensions (either literally geograph-
ical or institution-related) which influence the above decision processes, or,
more than that, straightforwardly represent a distinct domain of decision for
micro agents. So, for example, an expanding literature on "national sys-
tems of innovation” [Lundvall (1992), Nelson (1993) and Freeman (1995),
among others] emphasizes the long-term impact of the diverse architectures
of national institutional systems as drivers of technological learning. Partly
overlapping analyses of incentives and constraints to the location of invest-
ments by capital-mobile firm across heterogeneous environments focus upon
the interaction between firm-specific capabilities and location-specific advan-
tages in MNCs investments [Cantwell (1989)]. Call the latter location selec-
tion decisions, which in the model presented below will refer to the choice
between different locations where to make an investment in a specific tech-
nology, or, more metaphorically, the choice of spatially-bound agents across
different technologies, production processes and outputs. This has been for a
long time a field rich of qualitative investigation by economic geography and
regional economics, recently discovered, at the cost of a lot of institutional
simplification by economic theory [e.g. Arthur (1990), Krugman (1991a,
1991b), Rauch (1993), Krugman and Venables (1996), Venables (1996)].
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In the following we bring together the three domains of analysis and
explore some formal properties of the dynamics of competition among al-
ternative products and technologies diffusing across heterogeneous environ-
ments. We consider conditions of convergence to different market structures
in a world where there are many regional markets and many different tech-
nologies. Agents choose both technology and location. Regional markets are
institutional entities which cannot disappear (although their relative size can
grow or shrink). Rather a diffusion pattern is realized for every region. This
leads to a natural question which underlies the second stylized fact recalled
above: What drives convergence to the same or different market structures
in different interrelated regional markets?

Intuitively convergence to the same standard is an outcome of the rela-
tive weight and strength of international spillovers as compared to nation-
wide (or regional) increasing returns. For example, in the case of typewriter
keyboards, geographical areas with the same language tend to be reflected
in spillover clusters due to free “migration” of typists, similar training in-
stitutions, etc.... On the other hand, historically, gaining leadership in the
FEuropean market, with the consequent bias in the related home video mar-
ket, was crucial to VHS to resolve in its favor the battle for leadership in
the Japanese market as well [Cusumano et al. (1992)]. However very little
modeling effort has been made so far to formally explore this intuitive expla-
nation. Below we will indeed consider a generalization of one-market models
of competing technologies in order to establish conditions of convergence to
the same or different technological monopolies in different but interrelated
markets.

If one does not disaggregate a system made of many regional markets, the
emergence of stable but different dominant designs would look like technolog-
ical market sharing. How does one reconcile ”"stylized facts” and theoretical
statements on the emergence of different technological monopolies in dif-
ferent interdependent regional markets with ”stylized facts” and theoretical
statements on overwhelming emergence of dominant designs?

Of course it is trivially true that, with mutually independent markets,
different trajectories could emerge in different markets as if they were differ-
ent realizations of the same experiment. In this paper we show that results
on speed of convergence stated in Bassanini and Dosi (1998) can be extended
also to the case when markets are interdependent: Even though at high level
of aggregation a system of different local monopolies looks like a stable mar-
ket sharing, we show that it has the same rate-of-convergence properties of
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a "univariate” system converging to a monopoly.

The remainder of the paper is divided as follows. Section 2 provides one
motivating example, formally defines the standard class of models of compet-
ing technologies we refer to and summarizes results on rate of convergence
to a stable market structure in univariate models. Section 3 establishes our
main results on convergence to a stable market structure in multi-markets
models. Section 4 briefly summarizes the results.

2 Unbounded Returns and Dominant Designs: A Sam-
ple Selection Bias

The class of competing technology dynamics models that we consider takes
as the only basic assumption the fact that adopters enter the market in a
sequence which is assumed to be exogenous. More than one agent can enter
the market in each period [see e.g. Katz and Shapiro (1986) and Dosi and
Kaniovski (1994)], but in order to simplify the treatment we abstract from
this complication. The simple theoretical tale that underlies these models
can be summarized as follows:

Every period a new agent enters the market and chooses the technology
which is best suited to its requirements, given its preferences, information
structure and the available technologies. Preferences can be heterogeneous
and a distribution of preferences in the population is given. Information and
preferences determine a vector of payoff functions (whose dimension is equal
to the number of available technologies) for every type of agent. Because
of positive (negative) feedbacks, these functions depend on the number of
previous adoptions. When an agent enters the market it compares the val-
ues of these functions (given its preferences, the available information, and
previous adoptions) and chooses the technology which yields the maximum
perceived payoff. Which "type” of agent enters the market at any given time
is a stochastic event whose probability depends on the distribution of types
(i.e. of preferences) in the population. Because of positive (negative) feed-
backs, the probability of adoption of a particular technology is an increasing
(decreasing) function of the number of previous adoptions of that technology.

More formally we can write a general reduced form of payoff functions of
the following type:

IT;(7i(t)) = hi(aj, 7i(1)),

VR
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where j € D, D is the set of possible technologies, i € S, S is the set of
possible types, 7(t) is vector denoting number of adoptions for each technol-
ogy at time ¢ (n’(t) is the number of adoptions of technology J at time t), @
represents the network-independent components of agent i’s preferences (a
identifies a baseline payoff for agents of type i from technology j), and h,(.)
is an increasing function (that can differ across agents) capturing increasing
returns to adoption. If, at time ¢, an agent of type ¢ comes to the market, it
compares the payoff functions choosing A if and only if*:

z
J
a;

IT) (") = arg max {IT;(7) } . (1)

Strategic behaviors (including sponsoring activities from the suppliers
of technologies) and expectations can be considered as already implicitly
included in the foregoing formalization.

In the remainder of this paper we assume that the order of agents enter-
ing the market is random, hence i(t) can be considered as an iid sequence
of random variables whose distribution depends on the distribution of the
population of potential adopters. With this assumption, the dynamics of the
foregoing model can be seen in terms of generalized urn schemes:

Consider the simplest case where two technologies, say A and B, com-
pete for a market. Let us denote A’s market share with X(¢). Given the
relationships between (a) total number of adoptions of both technologies
n(t) =t — 1+ n?(0) + n?(0), (b) the current market share X (t) of A, and
(¢) number of adoptions of one specific technology, n'(t), i = A, B, that is,
n?(t) = n(t)X(t), the dynamics of X (¢) is given by the recursive identity

X(t+1)=X({0) + t—i-(nA((()); + nB((()))

Here ¢'(z),t > 1 are random variables independent in ¢ such that

£(z) = 1 with probability f(¢, x)
)7\ 0 with probability 1— f(t,z)

and £'(+) is a function of market shares dependent on the feedbacks in adop-
tion. f(t,x) equals the probability that (1) is true when X (¢) = x and is

3We assume that, if there is a tie, agents choose technology A. Qualitatively, breaking
the tie in a different way would not make any difference.
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sometimes called urn function. Designating &' (x) — E(&'(x)) = &'(x) — f(t, x)
by ¢*(x) we have

(X (1) — X(0] + (X (1) o)
t +nA(0) + nB(0) '
Provided that there exist a limit urn function f(-) (defined as that func-
tion f(.) such that f(t,.) tends to it as ¢ tends to co) and the following
condition is satisfied

Do sup [ f(ta) — flz)[< oo (3)

i1 2€[0,1]NR(0,1)

X(t+1)=X(t) +

asymptotic patterns of this process can be studied by analyzing the properties
of the function

@) = Jim (t,) ~a.

Particularly, treating g(z) in the same way of the right hand side of an
ordinary differential equation, it is possible to show that the process (2) con-
verges with positive probability to every stable zero*. The foregoing formal
representation is employed for every result of the present paper.

In some cases, eq. (1) can be expressed directly in terms of shares rather
than total numbers®; in this case f(.,.) is independent of ¢ and (3) is trivially
verified. In this respect note that, from an interpretative point of view,
total numbers and shares are likely to capture quite distinct economic and
technological phenomena. For example, network externalities are often well-
captured by the shares dynamics, while more idiosyncratic, cumulative and
type-specific processes of learning are more naturally represented as functions
of varying numbers of adopters.

As we noticed in the introduction, there seems to be a general consensus
that the widespread emergence of dominant designs should be explained on
the basis of the presence of unbounded increasing returns to adoption®. Un-
bounded increasing returns to adoption are neither necessary nor sufficient
to lead to the emergence of technological monopolies. Let us start with an
example drawn from Bassanini and Dosi (1998).

4A convenient review of analytical results on generalized urn schemes can be found in
Dosi et al. (1994). The reader is referred to that for the results that are not proved in
this paper.

5This is particularly relevant in the frequent case when product selection sequentially
follows technology adoption [see Bassanini and Dosi (1998)].

6See Bassanini and Dosi (1998) for references on this debate.
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Example 1 Consider payoff functions of this type:
Hj(nj) = Clj + Tjnj,

wherer;, a;, j = A, B, are bounded random variables which admit density.
Such a function allows agents to be heterogeneous also in terms of the degree
of increasing returns which they experience. By applying (1), dividing payoff
functions by total number of adoptions, and rearranging we have that A is
chosen if and only if:

B ap —axp
X(t) 2 TA+TE + (t +nA(0) +nB(0))(ra+75) (4)
Denoting the random variables on the right hand side with <(t), from (4)
we have that the adoption process can be seen as a generalized urn scheme with
urn function f(t,x) = Fy(x), where Fyy)(-) is the distribution function of
¢(t). Now suppose that ro and rg are highly correlated and both have bimodal
distributions very concentrated around the two modes, in such a way that the
distribution of ra/rp is also bimodal and very concentrated around the two
modes too. Furthermore suppose that the two modes are far away from each
other. To fix the ideas say that for a percentage o of the population ra/rg is
uniformly distributed on the interval [ﬁ, Tla] , while for a percentage 1 — «
of the population ra/rp is uniformly distributed on the interval [rld, ﬁ} ,
with obviously 0 < a < b < ¢ < d. First, let us consider the case of a; = 0,
j= A, B. F_ is by construction independent of t, implying the following urn
function:

0 if y<a
aﬁ(y—a) if a<y<b

F@) = Fyy(a) =4 o i b<y<c
at(l-a)[=wy—0o] if c<y<d
1 if y>d

If b < a < c,then there are three stable fixed point of f(x) and, as said above,
it can be shown that there is a set of initial conditions (that imply giving
both technologies a chance to be chosen “at the beginning of history”) for
which market sharing is asymptotically attainable with positive probability.
If a; # 0 but have bounded support and admit density, then condition (3)
applies and the same argument holds: In fact, relying on the fact that r;, a;
are bounded it is easy to show that sup,co1nro1) | f(t,2) — f(2) [< K/t,
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where K > 0 is a constant. The essential ingredient of this example is that
the distribution of ra/rp is bimodal and very concentrated around the two
modes. The argument has nothing to do with the particular (and extreme)
distributional form assumed here: Following the same constructive procedure
adopted here it is easy to build examples with any other distributional form.
The only requirement is that the two modes are sufficiently distant. In other
words the only requirement is a sufficient degree of heterogeneity in the popu-
lation to counterbalance the pro-standardization effects of increasing returns
to adoption.

The argument so far suggests that, the distribution of the fine character-
istics and preferences of the population of agents might determine the very
nature of the attainable asymptotic states themselves. Short of empirically
convincing restrictions on the distribution of agents’ (usually unobservable)
characteristics, Bassanini and Dosi (1998) propose instead an interpretation
of the general occurrence of technological monopolies (cum increasing returns
of some kind) grounded on the relative speed of convergence to the underlying
(but unobservable) limit states. When convergence is too slow the external
environment is likely to change before any sufficiently small neighborhood
of the limit can be attained. Theorems 1 and 2 recalled below show that
convergence to technological monopolies tends to be (in probabilistic terms)
much faster than to a limit where both technologies coexist. The empirical
implication is that in markets with high turnover of basic technologies, when
market structure dynamics shows a relatively stable pattern, a prevalence of
technological monopolies over stable market sharing is likely to be observed.
Therefore the emergence of dominant designs, at a careful look, appears to
come out of a sample selection bias: Including cases where market share
turbulence never seem to settle down would provide a more mixed picture.

Theorem 1 (Bassanini and Dosi (1998, theorem 2)) Lete > 0 andc <
1 be such that

f(t,z) <cx for x € (0,e) (f(t,x)>1—c(l—x) for z€(1—¢1)).
Then for any 6 € (0,1 —¢) and 7 > 0

lim; o P{tI°X(t) < 7|X(t) — 0} =1
(limyoo P{t°[1 — X (¢)] < 7|X(t) — 1} =1) ,

where X () stands for the random process given by (2).
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Theorem 2 (Bassanini and Dosi (1998), theorem 5) Let 6 € (0,1) be
a stable root and f(-) be differentiable at 0 with - f(0) < 1/2. Then for every
0,7 >0

tli)rilop{tl/QM\X(t) -0 <7|X(t) — 0} =0.

Theorems 1 and 2 show that convergence to 0 and 1 can be much faster
(almost of order 1/t as t — o0) than to an interior limit (which can be almost
of order 1/+/t only)”. Furthermore, if we use L? convergence, instead of weak
convergence, we can dispose of the assumption of differentiability of the urn
function and obtain similar results®.

Let us now extend the analysis to the international area where, as men-
tioned earlier, we do observe emergence of different standards and dominant
designs in different countries. Moreover, note that at high level of aggrega-
tion a system of different local monopolies looks like a stable market sharing.
However in the next section we shall show that the foregoing results can
be extended also to the case of many interdependent markets. We prove
that a system of locally dominant designs has the same rate-of-convergence
properties of a ”univariate” system converging to a single dominant designs.
Furthermore we provide a characterization of different convergence patterns.
Not contrary to the intuition, it is the balance between local and global feed-
backs which determines whether the system can converge to the same or
different monopolies in every market.

3 International Diffusion and the Emergence of Tech-
nological Monopolies

Suppose that two technologies, say A and B, compete for a complex market
which consists of m interacting parts (which can be thought of as economic
regions or even countries) of infinite capacity. At any time ¢t = 1,2,... a new
agent enters one of the markets and has to adopt one unit of one technology.
The type of agent and the region are randomly determined on the basis of
the distribution of agents in the population. There can be positive (negative)

"Note that, provided that the number of asymptotic steady states is finite, theorem 2
and 5 do not provide only a statement on conditional convergence but also on absolute
convergence.

Ssee Bassanini and Dosi (1998), lemma 1.
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feedbacks not only inside every single region but also across them. Thus the
probability of adoption is a function of the vector of previous adoptions in all
regions. For the i-th region we consider the following indicators: z;(1 — x;)
— the current market share of A(B); v, — the frequency of additions to the
region (i.e. this is the ratio of the current number of units of the technologies
in the region to the total current number of units of the technologies in
the market). We assume also that initially, at ¢ = 0, there are n(n?)
units of the technology A(B) in the i-th region and n,n? > 1. Finally n
stands for the initial number of units of the technologies on the market, i.e.
n=n+nf+nd+nf+...+nd+nk.

Similarly to the setup above we can say, with no loss of generality, that
at time instants ¢t = 1,2.... a unit of technology (either A or B) will be
adopted with probability fi(t, X (£),7(t)) in the i-th region. Also it will be
A with probability fA(¢, X (t), 7(t)) and B with probability f2(t, X (t),7(t)).
Here f(.,.,.) is a vector function which maps N x R(0,T) x R(S,) in Sy,
and f(, ) = fA(., He) F fB(., .). By R(G, T) we designate the Cartesian
product of m copies of R(0,1), S,, is defined by the following relation

Sm:{fERm:xiZO,Zmizl}. (5)
i1

Here R(0,1) and R(S,,) stand for the sets of rational numbers from [0, 1]
and, correspondingly, vectors with rational coordinates from S,,. By X (1)
we designate the m-dimensional vector whose i-th coordinate X;(¢) represents
the share of technology A in the i-th region at time ¢. Also 4(¢) stands for
the m-dimensional vector whose i-th coordinate -,(t) is the frequency of total
adoptions to the i-th urn by the time ¢. The dynamics of X(-) and 7(-) can
be described as a generalized scheme of multiple urns with balls of two colors,
in analogy with to the one-dimensional case’.

Consider the process of adoptions of technology A at time t in market 4,
which is obviously a stochastic variable. We can define the following ” condi-

tional adoption” stochastic variable:

&(@,9) = Bl& 4(@,7)I€ 4%, 7) + & (,7) = 1]. (6)

9See also Dosi and Kaniovski (1994).
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3 ;(@,7), 3 = A, B, stands for adoption of technology j at time ¢ in market
. Then

£(7,7) = 1 with probability g¢;(t, Z,7) (7)
’ 0 with probability 1 — g;(t,7,7)

where gi(t, 7, 9) = f1(Z,7)[f:(Z, )]

Hereafter we assume that the functions g;(¢,.,.) = gi(.,.), that is the
conditional probability of adoption, is independent of ¢. Let us ignore the time
instants ¢ when X;(-) does not undergo any changes. Then we obtain a new
process Y;(-) which has the same convergence properties as X;(-) providing
that technologies are adopted in the i-th region infinitely many times with
probability one. We will implicitly assume the latter condition throughout
this section'!. For particular cases Y;(-) turns out to be a conventional urn
process, or anyhow can be studied by means of some associated univariate
generalized urn process.

To implement this idea, introduce 7;(k) — the moment of the k-th addition
of a technology to the i-th region, i.e.

mi(1) = min {t : €, (X(6), 7)) + €2(X (), 7() = 1}

_ min B t:t>7i(k:1),
rilk) = { €L (R0.7(0) + £, (1), 7(1)) = 1 } A

Designate X;(7i(k)) by Yi(k) and &' (X (7i(k)), 7(r:(k))) by C}(Vi(k))
Then for Y;(-) we have the following recursion

1
k+ G;

Yi(k+1) =Yi(k) + G (Yi(k)) = Yi(k)], k=1, Yi(1) = =-.(9)

Note the Y;(-) indeed carries all information about changes of X;(-). By
definition Y;(k) = X;(7;(k)), but between 7;(k) and 7;(k+1) the process X;(+)
preserves its value. Consequently, should we know that Y;(k) converges with
probability one (or converges with positive probability to a certain value, or
converges to a certain value with zero probability, i.e. does not converge) as

\/

Y Throughout this section we assume that f;(¢, Z,7) > 0 for all possible # and 7.
' This assumption, which in the spirit of the population models does not appear to be
too strong, is needed in order to obtain asymptotic results.
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k — o0, the same would be true for X;(t) as t — oco. (We will systematically
use this observation below without further explicit mention).

The next theorem provides sufficient conditions for convergence of Y;(+)
(and consequently X;(-)) to 0 and 1 with positive (zero) probability.

Theorem 3 Let g;(.) : R(0,1) — [0,1] be a function such that for all possible
7€ R(0,1) and ¥ € R(Sy)

gi(Z,7) < gi(x:). (10)

Designate by Z;(-) a conventional urn process with g;(-) as the urn-function
andn*,nP as the initial numbers of balls. Then P{Y;(k) — 0} > 0 (P{Y;(k) —

1)

1} =0) if P{Zi(k) — 0} >0 (P{Zi(k) — 1} = 0). Also, when
9:(%,7) = gi(w:), (11)

the statement reads: if P{Z;(k) — 1} > 0 (P{Zi(k) — 0} = 0), then
P{Yi(k) — 1} > 0 (P{Y;(k) — 0} = 0).

The theorem is proved in the appendix.
The next statement gives slightly more sophisticated conditions of con-

vergence and nonconvergence to 0 and 1 of the process (9) and, consequently,

Theorem 4 Set U;(Z) = sups; {9:(7,7)}, Li(Z) = infy{g:(Z,7)}. If there
is € > 0 such that Ly(T) > z; (U;(T) < ;) forz; € (0,¢€) (z; € (1—¢,1)), then
P{X;(t) — 0} =0 (P{X,(t) — 1} = 0) for any initial combination of balls
in the urn. Let g;(Z,7) < 1 (g:(Z,7) > 0) for all Z € R(0,1) and ¥ € R(S,,).
Also let € > 0, ¢ < 1 and a function f;(-) be such that U;(Z) < fi(x;) < cx;
(Li(Z) > fi(z;)) > 1 —¢c(l —x;)) for z; € (0,€) (z; € (1 —¢,1)). Then
P{X;(t) — 0} > 0 (P{Xi(t) — 1} > 0) for any initial numbers of balls in
the i-th urn.

The theorem is proved in the appendix.

Theorem 4 gives sufficient conditions of convergence with positive prob-
ability to 0 and 1. The assumptions of theorem, however, are compatible
with the case of independent urns (independent markets) as a particular
case. More generally they represent conditions of weak feedbacks across
markets (across regions) as compared to the extent of intramarket (intrare-
gion) spillovers: Local feedbacks in that case are so important that a single
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market may converge to one technology, say A, even though all the related
markets converge to the other one. In a sense, for the function g;(Z,7), the
most important argument is x;.

Conversely let us now consider the case of strong positive cross-regional
feedbacks. Strong positive feedbacks can be characterized in terms of the urn
function as follows: We can say that spillovers are strong if 35 X, 5§>0 X < 1,
such that 6 < ¢g(Z,7) < X when z; = 0 and z;, = 1 for some k # ¢. In other
words strong positive spatial feedbacks are such that adoptions of one type
in other regions can be a partial substitute for adoptions of that type in the
same region: even if a region has always chosen technology A(B) in the past,
technology B(A) can still be chosen in the future, if it has been frequently
chosen in at least another region.

Let us define a set A C [0,1]™ as reachable if there exists ¢ such that

P{X(t) € A|X(0) given} > 0. We can derive the following result:

Theorem 5 If g(0,.) =0 and Vi = 1,...,m 3n; > 0 and ¢; € [0,1), such
that 0 < ¢;(Z,.) < ¢a;, Y& € [[7%,[0,m;] and T];",[0,m,] is reachable, then
P{X;(t) - 0} >0. Ifg(1,) =T and Vi = 1,...,m Inp; > 0 and ¢; €
(0,1), such that 1 > ¢;(Z,.) > 1 — ¢;(1 — x;), VZ € [[",[1 — n;,1] and
[1%, 1 — m;,1] is reachable, then P{X;(t) — 1} > 0. Also if g;(Z,.) > a >0
in a neighborhood of every y such that y; = 0,y = 1 for some k # i, then
P{Xk(t) — 1, X;(t) — 0} =0 and if g;(2Z,.) < B < 1 in a neighborhood of
every § such that y; = 1,y = 0 for some k # i, then P{X;(t) — 1, Xy(t) —
0}=0.

The theorem is proved in the appendix.

If 0 < g(Z,7) < 1 when Z € [R(0,1)]"™ then any neighborhood of Z = 0
and ¥ = 1 are reachable and therefore complete worldwide monopoly of
technology A or B may emerge with positive probability. Moreover theorem
5 tells us that, if feedbacks are strong, asymptotically either one technology
emerges everywhere, or the other does, or market sharing is the only other
possible outcome.

Subject to these conditions of weak or strong spillovers we can provide a
generalization of theorem 1 to study the rate of convergence to technological
monopolies.

Theorem 6 Lete,n, >0 andc,c; < 1 be such that either the assumptions of
theorem 4 or those of theorem 5 hold. (In the second case, denote max;{c;}
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with ¢). Then for any 6 € (0,1 —¢) and T >0

lim,, 0o P{n'=¢7?Yi(n) < 7|Yi(t) — 0} =1
(limp oo P{n} (1 = Yi(n)] < 7|Yi(t) — 1} =1) ,

where Y;(-) stands for the random process given by (9).

The theorem is proved in the appendix.

Again, as in section 2, an important observation, which theorems 6 pro-
vides, is that convergence to 0 and 1 can be much faster (almost of order 1/¢
ast — 00) than to an interior limit (which can be almost of order 1/+/% only).
An intuitive explanation, that holds rigorously only when g;(%,7) = g:(z;),
is that the variance of ¢¥(x), which characterizes the level of random distur-
bances in the process (9), is g;(x)[1 — g;(x)]. This value vanishes at 0 and 1
but it does not vanish at 6, being equal to §(1 — 6).

4 Conclusions

This paper has been motivated by two ’stylized facts’ concerning the dynam-
ics of diffusion of different technologies competing for the same market niche
and a stylized fact concerning the international location of production.

a) A stable pattern of market sharing with no overwhelming dominant
position is rarely observed in markets with network esternalities. Unbounded
increasing returns to adoption are often called for an explanation of this fact.
However the argument is generally based on an incorrect interpretation of the
popular Brian Arthur (1989) model. We recalled a simple counterexample,
drawn from Bassanini and Dosi (1998), to show that unbounded increasing
returns are neither necessary nor sufficient to lead to technological monopolies
even in a stable external environment.

b) International diffusion may lead sometimes to different standards in
different countries or to the diffusion of the same standard in every country,
even without intervention of any regulatory agency. Intuitively when con-
vergence to the same standard is not an accident of history, it is an outcome
of the relative weight of international spillovers as compared to nationwide
esternalities.

The crucial question we tried to address in this paper is: can a model
that account for the former fact accomodate also the latter? By establish-
ing some mathematical properties of generalized urn schemes, we build on a
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class of competing technology dynamics models to develop an explanation for
the former ”fact” and to provide sufficient conditions for convergence to the
same or to different technological monopolies in different countries. Our ex-
planation for the empirical tendency to converge to technological monopoly
relies on convergence rate differentials to limit market shares. In a related
paper [Bassanini and Dosi (1998)] we show that a market can approach a
monopoly with a higher speed than it approaches any feasible limit mar-
ket share where both technologies coexist: Convergence to market sharing
is in general so slow that the environment changes before the market share
trajectory becomes stable in a neighborhood of its limit. In this paper we
have shown that this result hold also in a multi-market model where conver-
gence to different local monopolies can occur, even though, at a high level
of aggregation, this system may seem to converge to market-sharing. The
empirical implication is again that among markets with high rate of tech-
nological change and increasing returns to adoption, a prevalence of stable
monopolies over stable market sharing should be expected.

5 Appendix

Proof of theorem 3. The theorem is a straightforward consequence of the
following lemma which generalizes lemma 2.2 from Hill et al. (1980):

Lemma 1 Assume that we have a scheme of multiple urns, given by a set of
the functions fA(-,-) and fB(-,-), i =1,2,...,m. Let for some i a function
gi(+) be such that (10) or (11) holds true. Then there is a probability space,
where the process (9) and a conventional urn process Z;(-) can be realized and
Yi(k) < Zi(k) or Y;(k) > Z;(k) with probability 1 for k > 1 depending upon
whether (10) or (11) holds. The process Z;(-) has g;(-) as wrn-functions and
B as initial numbers of balls.

i

A
n;,mn

Proof. Fix a probability space with r,t > 1, a sequence of independent
random variables having the uniform distribution on [0,1]. For given ¥ €
R(0,1) and 4 € R(S,,) introduce a partition of [0, 1] by the points

to = 07 ty = flA('f?,?); ty = fl(fai)a

t3 :fl(fai)_‘_fQA(f):);)? 2} :fl(f7:);)+.f2(fa:);)7 BRI
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tom—1 = f1(Z,7) + fo(Z,9) + ...+ 1 (Z,7) + FAZ, ), tom = 1.
Set,

SZA(f7 :);) = X{Tne(tQ(i_l),tgi,l)p SZB(f7 :);) = X{Tne(tgifl,tgi)}7

where y 4 stands for the indicator of the event A. If 7,(+) are defined as above,
set

~k
Ci (l’@) = X{’I"Ti(k)E(tg(i_l)7t2(i—1)+gi(xi)fi(f7’?))} (12)
and
Zilk+1) = Zik) + ——[C (Zk) — ZR)), k=1, Zi(1) =
i = i k + Gz 7 k2 k2 ) - ) k2 i GZ .

Hence Y;(+) and Z;(-) are given on the same probability space. If we denote

with F} the o-algebra generated by ry,: t < 7;(k), then E[Ef(Z@(k))\F};] =

9:(Zi(k)). Hence Z;(-) is a conventional urn process with g;() as urn-function.
Notice that

k _
Ci (i) = X{r,. 4y Eltageony ooy Ho @A EAN

which, from (12), implies that (!(z;) < 6:(551) or Ct(z;) > 6:(551) with proba-
bility 1 depending whether (10) or (11) holds. Now to accomplish the proof
it is enough to check that

(t+Gi — DYi(t) + G(Yi(t))

Nt +1) = t+ G !

(t+ G — D) Z(1) + E(Z (1)
t+ G; ’

Zi(t+1) =

The lemma is proved.

Proof of theorem 4. We need the following lemma:



HETEROGENEOUS AGENTS, COMPLEMENTARITIES, AND DIFFUSION 19

Lemma 2 Let X(-) be a conventional urn process with f(-) as wrn-function.
If there is € > 0 such that

flz) > x forx € (0,¢) (f(x) <z forze(l—g¢l)),

then P{X(t) — 0} =0 (P{X(t) — 1} = 0)for any initial numbers of balls.
Also, if f(x) <1 (f(z) >0) forxz € (0,1) and there is € > 0 such that

flz) <z forz e (0,e) (f(x)>axforxe(l—el)),
then P{X(t) — 0} >0 (P{X(t) — 1} > 0) for any initial numbers of balls.

Proof. Set that all conventional urn processes appearing here start from
the same numbers of balls in the urn. Let f(z) > x for x € (0,€). Set
g(x) = max(f(x),z). Define Y(-)(Z(:)) a conventional urn process cor-
responding to the urn-function z (g(x)). Since z < g(x), then due to
lemma 2.2 from Hill et al. (1980) one has Y (t) < Z(t), t > 1. Con-
sequently P{Z(t) — 0} < P{Y(t) — 0}. But Y(-) is a Polya process,
i.e. it converges a.s. to a random variable with a beta distribution. The
limit, having a density with respect to the Lebesgue measure, takes every
particular value from [0, 1] with probability 0. Hence P{Y(t) — 0} = 0
and, consequently, P{Z(t) — 0} = 0. But the urn-functions f(-) and g¢(-)
agree in (0, €), which due to lemma 4.1 from Hill et al. (1980) implies that
P{X(t) — 0} =0. Let f(x) <z forx € (0,¢) and f(z) < 1forall x € (0,1).
Set g(x) = max(f(x),z/2). Then f(z) < g(x) and due to arguments similar
to those given above P{X(t) — 0} > P{Z(t) — 0}, where Z(-) stands for
a conventional urn process corresponding to g(-). Finally let us prove that
P{Z(t) — 0} > 0. Put d(z) = min(g(x), g(¢/2)). The equation d(x) —x =0
has the only root 0. Hence there is a conventional urn process correspond-
ing to d(-) which converges to 0 with probability 1. Since g(x) € (0,1) and
d(z) € (0,1) for all z € (0,1), this implies that P{Z(t) — 0} > 0 for any
initial numbers of balls, because of lemma 4.1 of Hill et al. (1980).
Other cases can be handled by similar arguments. Bl

Due to the aforementioned relationship between convergence of X;(-) and
Yi(+), it is enough to establish the corresponding facts for Y;(-).
The first statement follows by considering a conventional urn process with
dity) = inf {L()} (di(y)= sup {Ui(7)})

T =y
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as the urn-function and applying lemma 2 and theorem 3.

Since convergence to 1 with positive probability can be studied by the
same means, let us prove convergence with positive probability to 0 only.
Let Z;(-) be a conventional urn process having

oy flae) if x<e/2

di(z) = { Fe)2) if x> €2

as urn-function and starting from the same numbers of balls. Then
P{Z;(t) — 0} = 1. (13)

Set I;(t) = n(n+nP+t—1)"1, t > 1. Since we assume that g;(Z,7) < 1
for all possible Z and ¥, the process Y;(-) can move with a positive probability
to the left from any point. Hence

P{Yi(t) =1;(t)} >0 for ¢t > 1. (14)
For any ¢ such that [;(¢) < €/2 introduce p,(t) as the first instant after ¢
such that Z;(-) exits from (0, ¢/2) providing that Z;(t) = [;(t). Due to (13):
P{u;(t) =0} — 1 as t — 0. (15)
But due to lemma 1 Yj(n) < Z;(n) for t < n < p,(t) providing that
Yi(t) = Zi(t) = l;(t). Thus, taking into account (13) and (15), we get:
P{Yi(n) = 0Y;(t) = l:i(t)} = P{Yi(n) = 0, p;(t) = oolYi(t) = Li(t)} =
P{Zi(n) — 0, u,(t) =00|Z;(t) =1;(t)} — 1 as t — oc.

Therefore to accomplish the proof it is enough to refer to (14).H

Proof of theorem 5. We need the following lemma:

Lemma 3 Consider two multiple urn processes X (.) and Y (.) which agree
in a neighborhood N of a point 6 € (R[0,1])™. Then there exists an urn pro-
cess Z(.) with the same urn function as Y (.) such that P{Z(t) — 6} > 0
if P{X(t) — 0} > 0. Also consider a neighborhood Ny (N1) of 0 (1); if it
is reachable by X;(.), given the initial number of balls, and if the wrn func-
tions never take the values 0 (1) in that neighborhood (0 (1) excluded), then
P{Z(t) — 0} > 0 from every initial number of balls only if P{X (t) — 0} > 0
(P{Z(t) — 1} > 0 only if P{X(t) — 1} > 0).
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Proof. >From almost sure convergence we have that 3¢t > 0 and two vectors
n,t € Z7 such that

X(s) = 0, Xi(t) = 22 i =1,...,m,
Pl & > > 0,
Z(tz—i‘Gz) :t+G,X(S) e N,s>t

i=1

which implies

X(s) = 0,X(s)e N,s >t
n - > 0. (16)
‘Xz(t) = tH—_ZGi’Z = 1, ..,

Take Z;(0) = 4. Since on N X(.) and Y () agree, from (16) we have

P{Z(t) —0,Z(t) € N,t > O} >0,

from which the first statement of the lemma follows.

Since N is reachable 3t > 0 and 3(7,7,) € Ny x Z*™ : i =y,

i=1,...,m, > (t; + G;) =t + G such that
i=1

P {X’(E) - g} > 0. (17)

Take n;, t;+G; as initial conditions of the process A (.). Again from almost

sure convergence we have that P{Z(t) — 0} > 0 from every initial number
of balls implies that, 32 € Ny and 37" > 0 such that

P {Z(s) 2 0,2(s) € Noys > T, Z(T) = 7 € NO} > 0.

Given that the urn functions never reach 0 or 1 in Ny, Z can be reached
from y without leaving Ny (through an appropriate sequence of 0 first and 1
afterwards), we have also

P {Z(s) L 0,2(s) € No, Z(0) = € NO} >0,
which implies

P {Z(s) . 0,72(s) € No|Z(0) =g € NO} > 0. (18)
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Given that on Ny X(.) and Y(.) agree, we can choose the process Z(t)
defined on the common probability space in such a way that X (s+1%) = Z(s)

for any s < t = min {t - Z(t) ¢ NO} . From (18) we have
P{Wﬂadf@éAﬂX@:ge%}>Q

which, taking into account (17), implies that 3¢ > 0 such that

—

P{X(s)%ﬁ,f(s) GNO,SZt} > 0.

Convergence to 1 can be studied with similar arguments.l

To prove the first statement of the theorem take a process Y (.) with urn
function:

iz, ) = { g(Z,.) if T € [T7,[0,m,

0 otherwise

)

the apply lemma 3 and lemma 1. The second statement can be proved with
similar arguments. For the third statement take a process Y(.) with urn
function:

a@):{Q@J if 17—yl <e

o otherwise ’

then apply lemma 3 and lemma 1. The last statement can be proved with
similar arguments.ll

Proof of theorem 6. Consider only the first case — convergence to 0.
Without loss of generality we can assume that P{Y;(¢t) — 0} > 0.

Let Z;(-) be a conventional urn process with cz as the urn-function and
the same initial numbers of balls. Then
1-c
t+G;

EZ(t+1)<[1- |EZi(t), t>1,
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and consequently
t—1

EZ;(t) < Z(1) [ ] -

i=1

5 = A L+ o),

where 0,(1) — 0 as t — oo. Hence from Markov’s inequality
P{tlZi(t) <7} — 1 as t — oo (19)

for every 6 € (0,1 —¢) and 7 > 0.
For arbitrary o € (0, ¢€) and v > 0 there is N depending on these variables
such that

P{{Yi(t) — 0}A{Yi(n) <o, n > N}} <w.

where AAB = (A\B) U (B\A). Also since Z;(t) — 0 with probability 1 as
t — 00, we can choose this N so large that

P{{Y:(t) — 0}A{Y;(n) <o, Zi(n) <o, n> N}} <w. (20)
To prove the theorem it is enough to show that
lim P{n' < °Y;(n) < T, Y;(t) — 0} = P{Y;(t) — 0},

n—oo

or, taking into account that v in (19) can be arbitrary small, that
lim P{n' < °Y;(n) <7, Yi(n) <o, Zi(n) <o, n> N} =

P{Yi(n) <o, Zi(n) <o, n> N}

Due to lemma 1 Z;(-) majorizes Y;(-) on the event Z;(t) < o, t > N, provid-
ing that these processes start from the same point. Hence,

P{Y}(t) <o, Zz-(t) <o,t> N} >
limsup P{n'~Y:(n) < 7, Yi(t) < 0, Zi(t) <o, t > N} >

n—o0

liminf P{n'~?Y;(n) < 7, Yi(t) < 0, Zi(t) <o, t > N} =

n—oo

liminf EP{n'~7%Y;(n) < 7, Yi(t) < 0, Zi(t) < o, t > N|Yi(N)} >

liminf EP{{n'~°Zi(n) < 7, Yi(t) <o, Zit) <o, t > N|
Zi(N) = Yi(N)}HYi(N)} =
EP{Yi(t) <o, Zi(t) <o, t > N|Yi(N)} =
PLYi(t) <o, Zi(t) <o, t > N},
i.e. (20) holds true.l
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