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1. Introduction

Scholars have long acknowledged the important role played by market demand in shaping technological
change and setting the pace of innovation (Schmookler, 1962; Kaldor, 1966). Though the difficulties in
clearly disentangling between supply-side and demand-side induced innovations (Mowery and Rosenberg,
1979; Dosi, 1982) slowed down the study of this relation, the demand-pull hypothesis was never abandoned
and is recently regaining momentum. In this context also the debate on the influence of public demand on
technological change has received growing attention. In particular, both economists and policy makers are
increasingly considering the innovative public procurement as an effective form of public support to private
innovation activities, grounding the need for demand oriented technology policy (Edquist and Hommen,
2000b; Edler and Georghiou, 2007).

While the acknowledgment of public procurement as a de facto technology policy by policy-makers is a
recent story, economic historians have long suggested an even more fundamental role for public procurement
in setting the pace of technological change. Several works that studied the technological evolution in the
United States in the 20th century, and mainly after World War II, stressed how the government demand
has been a crucial factor in developing the most influential technologies of the last sixty years (Mowery and
Rosenberg, 1982; Levin, 1982; Langlois and Steinmueller, 1999). In particular, Ruttan (2006) reports how
U.S. military and aerospace related procurement had a major impact for the emergence and diffusion of every
general purpose technologies (GPT) developed in the U.S. during the last century, such as semiconductors,
computing and the internet. Even though it is common opinion that the end of the cold war reduced the
chance for public demand to foster major technological breakthrough, recently numerous works (Antonelli,
2010; Mowery et al., 2010; Mazzucato, 2013) put forward that state intervention, and public procurement
in particular, may have a very important role in spurring the green technology revolution and addressing
grand social challenges.

Also the theoretical literature dedicated to GPTs, and in particular the seminal work of Bresnahan
and Trajtenberg (1995) (BT), suggest that public procurement may have an important role in affecting
the arrival of a new GPT. According to BT, while GPTs could be thought as engines of economic growth,
this potential growth is achieved only if the virtuous cycle of innovation complementarities is triggered
between the sector that unveils the new technology (upstream sector) and the sectors applying the new
technology (downstream). Technological levels of the upstream and downstream sectors are hence strategic
complements and widespread diffusion stems from the coordination of beliefs between the GPT producer and
the application sectors. Coordination failures and larger uncertainty tied to drastic innovations may therefore
provide little market incentives for adoption in the downstream sectors, potentially leaving an economy
locked-in on inferior technological trajectories. BT hence already suggested that public procurement may
play a very important role to overcome market failures, injecting the virtuous cycle through the stimulus of
additional innovation complementarities.
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Despite the economic historians’ contributions and Bresnahan and Trajtenberg (1995)’s suggestion, no
empirical work has so far tried to find econometric evidence of the link between public procurement and
technological generality. This paper tries to fill this gap.
Following the intuition provided by BT and conceiving the arrival of a GPT ”as a process unfolding in time
rather than a single homogeneous shock” (Cantner and Vannuccini, 2012), I surmise that procurement might
represent one of the most important element in creating the right soil to ”cultivate” a technology that may
(or may not) have the potential to reach high levels of pervasiveness.
To formalize this hypothesis, I make use of patent data and in particular of patent citations. Citations
allow me to identify the connection between innovations related to public procurement and their patented
antecedents, and to measure the degree of pervasiveness of a patent looking at the extent to which the
follow-up technical advances are spread across different technological fields, through a Generality Index
(Trajtenberg et al., 1997). On the basis of these considerations I will therefore hypothesize that receiving
a citation from a patent related to public procurement raises the generality level of the cited patent with
respect to the counterfactual situation in which that specific citation does not arrive.

In order to corroborate my hypothesis I hence design a quasi experiment in which we compare the change
in the generality level (measured through the Generality Index) at two different points in time, 1999 and
2006, between treated and a control patents, whose application date falls in the period 1993-1997. Public
procurement is the treatment variable and, in particular, a patent is put into the treatment group if it
receives a citation from a patent related to public procurement in 1999-2000. To build the relevant variables
for the quasi-experiment I create an original dataset exploiting data from four different sources: i) NBER
patent data project that collects data for patents granted by the USPTO in the period 1976-2006, together
with citations data; ii) Federal Procurement Data System (FPDS), that includes several information for
each Federal contract awarded from 2000 onwards; iii) USPTO patent full-text and image database, which
offers the full searchable text of every patent granted from 1976 onwards; iv) the Compustat North America
Database that gathers financial and market information on public companies in the United States .

Since I clearly do not observe treated patents in the counterfactual situation in which they do not receive
the procurement related citation, I have to use non-treated patents to proxy for it. If I was to use the
whole non-treated paper as counterfactual patents, taking simple difference in averages of the change in
the Generality Index between the treated and the non-treated patents would lead to biased results due to
multiple endogeneity issues and mainly due to selection bias. To mitigate this problem I hence use as control
patents only patents that are similar to the ones in the treated group along several dimensions1. I therefore
adopt the conditional difference-in-differences (CDiD) approach developed by Heckman et al. (1998).

The estimate of the average treatment effect retrieved through the CDiD approach suggests a positive
and significant impact of innovative public procurement upon the generality of a patent. In particular, on
average receiving a citation by a patent related to public procurement raises the Generality Index of a 3.6%,
confirming the initial hypothesis.

In the next section I briefly describe the different strands of literature that provide the motivation and
the rational for this work. In section 3 I present the formal hypothesis tested in this paper, while in section
4 I illustrate the data and methodology I use in the empirical analysis. Section 5 presents results and several
robustness checks. Conclusions follow.

2. Theoretical framework

2.1. Innovative public procurement as a technology policy

The idea that demand might be a major source of technological change dates back to the seminal contri-
bution of Schmookler (1962) and Kaldor (1966). Despite the slowdown in the study of this relation occurred
in the 80’s due to the disruptive critics by Mowery and Rosenberg (1979) and Dosi (1982), the demand side
approach has slowly but constantly regained attention (among others: (Von Hippel, 1988; Malerba et al.,

1 As it was recently done in Czarnitzki et al. (2011), Feldman and Yoon (2012), and Fier and Pyka (2012)
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2007; Rogers, 1995; Fontana and Guerzoni, 2008)). With the resurrection of the demand side also the debate
on the role of public demand in fostering innovation has been revitalized.

Even if the impact of governments demand on firms’ behaviour may appear evident just considering its
size2, particular attention has been recently given to its technological and innovative composition and to
what is usually classified as ’innovative public procurement’ 3.

Innovative public procurement is generally considered to occur when ‘a public agency places an order
for a product or a system which does not exist at the time, but which could probably be developed within
a reasonable period’. This form of purchasing is usually opposed to ’regular public procurement’ which
occurs when a public agency buys ready made simple products such as pen and papers, where no R&D
is involved (Edquist and Hommen, 2000b). However, recent works (Uyarra and Flanagan, 2010; Rolfstam,
2012) highlighted the potential limitations of this simple definition and stressed the fact that constraining
the scope of innovative procurement to what happen after the placement of a formal order from a public
agency is missing potential indirect effects of procurement on firms’ behavior. In this paper, as in Guerzoni
and Raiteri (2013), I hence follow a somewhat broader definition that deem as innovative public procurement
all the ‘purchasing activities carried out by public agencies that lead to innovation” (Rolfstam, 2012).

Leaving aside the debate on a narrower or broader definition, which is not the main concern of this
work, over the last years innovative public procurement has been increasingly considered as a form of public
support to private innovation activities, and hence as a ’de facto’ technology policy (Cozzi and Impullitti,
2010)4. Several theoretical works (Geroski, 1990; Dalpé, 1994; Edquist and Hommen, 2000a; Edler and
Georghiou, 2007) emphasized the potential positive effects of innovative procurement upon firms’ innovative
behavior through multiple and interacting channels. In the first place, public procurement is in fact thought
to provide a minimal market size that allows firms to compensate costs and reduce the risks involved with
R&D investments on products or services for which private demand is highly unpredictable. As we will discuss
in section 2.2, this effect may be mostly important in the case of radical innovations whose development is
usually characterized by larger uncertainties and arduous risk evaluations (Helpman and Trajtenberg, 1994).
Secondly, public agencies may act as lead users providing producers with precious information about market
needs and requirements, and also enabling firms to uncover already existent demand unmet by current
products or services. Moreover, public procurement can represent a very useful tool in standard setting and
diffusion of specific technologies.On this ground numerous scholar called for the need of ’de jure’ procurement
oriented innovation policy. A call that is recently receiving more and more positive answers at the political
level as it is well testified by several documents issued by European Commission (EU, 2010) and the OECD
(OECD, 2013), in which innovative public procurement is acknowledged among other more consolidated
technology policies, such as R&D subsidies and tax credits.

Along with theoretical and political attention, a growing body of literature providing quantitative em-
pirical evidence about the positive impact of public procurement on firms’ innovative behaviour is joining
the abundant qualitative evidence reported in case studies(Edquist and Hommen, 2000a; Rolfstam, 2009;
Uyarra and Flanagan, 2010; Flanagan et al., 2011; Brammer and Walker, 2011). An early work in this area
by Lichtenberg (1988) tested the effect of federal procurement upon contractors’ private R&D expenditures.
His result suggests that public procurement not only has a positive effect on a firm’s propensity to engage
in R&D, but also that the demand pull effect is larger for public procurement than private contracts. A
more recent paper by Aschhoff and Sofka (2009) test the role of various technology policies (R&D subsidies,
innovative public procurement, regulation, university research) on a cross-section of 1149 German firms5.
They compare the impact of each policy on firms’ innovative output, proxied by the share of turnover with
market novelties. They find robust evidence for a positive impact of public procurement, in particular for
small size firms. Guerzoni and Raiteri (2013), using data on 5238 European firms from the ’Innobarometer on

2According to OECD (2013) member countries spend on average 13% of their GDP on public procurement
3Expressions like ’public technology procurement’ and ’public procurement of innovation’ are used to refer to very similar

phenomena. For further discussion see Rolfstam (2012)
4For a review of the state of the art of this debate on innovative public procurement, including definitions and taxonomies,

see Uyarra (2013)
5Firms that responded to the survey ’Mannheim Innovation Panel’ in 2003
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Strategic Trends in Innovation 2006-2008’ survey, provide new evidence about the impact of three different
technology policies, innovative public procurement, R&D subsidies, and tax credits upon firms’ innovative
behavior measured in terms of innovative input (R&D expenditures). Their results suggest that innovative
public procurement is a very effective tool in raising private expense in R&D, especially when administered
together with other complementary technology policies.

2.2. Public procurement in the economic-historical analysis of technological change

As pointed out in the previous section, public procurement is nowadays increasingly considered as an
effective policy tool for fostering innovation by policy-makers and innovation scholars. However, most of
the recent works on innovative public procurement say little about the kind of innovations that public
procurement is able to induce and about their technological impact. This gap is most striking if we consider
the consistent amount of historical and economic analysis devoted to investigate the role played by defense
related procurement in shaping the patterns of technological change during the 20th century, especially
in the United States. Some of the most interesting works in this field are already collected in a volume
edited by Richard Nelson in 1982 (Nelson, 1982), in which different scholars analyze how public policies
affected technical progress in seven key American industries6. The contributions of Levin (1982), Mowery
and Rosenberg (1982), and Katz and Phillips (1982) stress in fact how the sheer size of procurement for
components and systems for purposes of national defense and spatial exploration drew forth fundamental
technological advances in the semiconductor, the computer, and the aviation industry.

Levin (1982) highlights that the presence of government demand abundantly reduced the risk of invest-
ment in semiconductors technologies such as the silicon transistors and the integrated circuit in the early
years of their development. Several further works (Mowery and Rosenberg, 1989; Langlois and Steinmueller,
1999; Mowery, 2011, 2012) confirmed that vast procurement contracts drove R&D private effort in the semi-
conductor sector and also that some of the most important breakthroughs in the industry, though achieved
by privates, were undertaken with the needs of the military foremost in the minds of the successful inventors.
According to Levin (1982) in 1959-60 federal procurement absorbed between 45 and 50 per cent of the total
semiconductors industry output and more than 50 per cent of the productions of integrated circuits from
1962 to 1966. Indeed, the prospect of large procurement contracts appears to have operated as a prize
leading potential contractors to invest their private funds to develop new products that met government
demand requirements (Mowery, 2011).

In the same way, also in the computer industry, the federal procurement accounted for more than 50
percent of total shipments between 1945 and 1955 (Flamm, 1987), and, even though the federal share
declined substantially in the late 1950’s for the emergence of private demand, governmental demand still
represented more than 40 percent of total sales of supercomputers at the beginning of the 1970’s. As in the
case of semiconductors, contracts between government and private firms therefore had a profound influence
in shaping the structure of the nascent computer industry between 1945 and 1960 (Katz and Phillips, 1982)
and the sheer size of defense related procurement seems to have acted as a powerful attractor for new firms
to enter the industry and develop new products and applications Mowery (2011). (Mowery and Rosenberg,
1982) see a similar pattern in the rise of the U.S. aircraft industry, for which the existence of government
demand was crucial in bringing about rapid diffusion of new technological knowledge.

While the afore mentioned studies consider, in most of the cases, public demand as one of the multiple
factors that facilitated diffusion and improvements in specific key technologies, Ruttan (2006) pushes the
argument even further. He claims in fact that defense related procurement has been the most important
factor for the development of every general-purpose technology in which the United States was internationally
competitive throughout the 20th century, from the deployment of interchangeable parts and mass production
system, passing through commercial aircraft, nuclear energy, semiconductors and computers, to arrive to
the building of the internet, space communication and earth observing technologies. In particular Ruttan
speculates about the potential counterfactual situation in which the military demand was not there to actively
create markets for those technologies, and he advocates that, in each of these cases, commercial development
would have been at least substantially delayed without the governmental stimulus.

6Semiconductors, Commercial aircraft, Computers, Agriculture, Pharmaceuticals, Motor Vehicles, Residential Construction
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From the beginning of the’90s several studies argued that changes in the global political situation due to
the end of the ”cold war”, together with the changes in the structure of the U.S. economy, precluded defense
and space related procurement from continuing to play an important role in developing radical technologies
that might have ”dual use”, both military and commercial. Even though this might be true for matured
technologies such as the semiconductors or the computer, Cowan and Foray (1995) stress how this view
suffered from over-generalization since it did not consider the lifecycle of a technology. According to Cowan
and Foray (1995), defense-related R&D can be able to play an important role for the development of emerging
technologies also in the post-cold war era. They indeed put forward that, when a new technology arrives,
the scope of its technological impact is hard to predict, and that both military and civilian sectors exhibit
a similar degree of ignorance about its future trajectory. Civilian R&D, focusing on profitable applications
only, will explore a different portion of the technological spectrum with respect to military R&D, which will
be instead more interested in technical dimensions and performance rather than costs. Defense-related R&D
therefore increases the diversity of applications of a new technology and, even more important, increases the
diversity of information available about the emerging technology (Cowan and Foray, 1995). More information
about a new technology reduces both the costs and the ambiguity attached to further innovations, fostering
development and diffusion also in the civil market .

Very recently some policy oriented works started again to consider the public agencies’ purchasing activ-
ities as an important source of major technological breakthrough. Antonelli (2010) advocates that raising
consistently the technological composition of public demand not only for defense-related scope but also for
education, health, energy may trigger those beneficial interactions that lead to bandwagon of radical innova-
tions and to the deployment of new technological systems. Mazzucato (2013) underlines that the state, being
less risk-averse than private sector, has always played and still play a fundamental role in fostering radical
growth-enhancing innovations. Mazzucato also suggests that public intervention might be particularly effec-
tive and desirable in the present-day in order to achieve the green-technology revolution, a process requiring
huge investments that we can not expect from the private sector alone. On the same ground Mowery et al.
(2010) and Foray et al. (2012) put forward that public procurement might be effectively used to encourage
the development of climate-friendly technologies.

2.3. General purpose technologies and innovative public procurement

The historical evidence depicted in this section seems then to support the existence of a strong relationship
between public procurement and the impact, in terms of adoption and pervasiveness, of fundamental tech-
nologies. More recent literature also suggest that public demand may still play a key role a key role in reaching
new technological revolutions and the deployment of new technological systems. To better understand the
nature of the link between procurement and the emergence of radical innovations and to comprehend its
economic rationals, it is now useful to consider carefully the branch of literature that theorized the concept
of general purpose technology, explicitly mentioned by Ruttan (2006) in its analysis.

The notion of general purpose technology was first introduced by David (1989) and thoroughly developed
by Bresnahan and Trajtenberg (1995)(BT). Since then it has been used to refer to specific key technologies
that shaped the process of technical change and productivity growth in different eras, such as the steam
engine, the factory system, the electricity, and semiconductors7. Bresnahan and Trajtenberg (1995) and
Rosenberg and Trajtenberg (2004) formally define a GPT as a technology having the following characteristics:
i) General applicability, or General purposeness, which means the technology should perform some generic
function that is vital to the functioning of many products or production systems in downstream sectors;
ii)Potential for continuous technical advance in the efficiency of the generic function after its introduction;
iii) GPT exhibits ”innovational complementarities” with the application sectors, which means that advances
in the technology foster innovation in the downstream sectors, magnifying the technological impact of an
innovation in the upstream sector.

7In this respect the concept of general purpose technology is not to distant from other ideas that tried to take into account
the uneven nature of technological change such as radical innovations (Schumpeter, 1934), technological paradigms (Dosi, 1982),
macro-innovations (Mokyr, 1990). For a more in depth analysis of the relation among these different notion see Cantner and
Vannuccini (2012).
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GPTs can therefore be thought ’engines’ of economic growth, able to transform the inner structure of
an economy, achieving raise in productivity and output in the long run. Even though the literature that
followed BT focused on this latter feature of the GPT and used the concept mainly to construct endogenous-
growth models (Cantner and Vannuccini, 2012), BT underline that this growth enhancing transformation
is achievable if and only if a dual inducement mechanism between the GPT sector(upstream) and the
application sectors(AS) (downstream) is set in motion. This process is mostly related to the third of the
GPT’s features listed above, and is in fact named ’innovation complementarities virtuous cycle’. It entails
that improvements in the quality of the GPT foster R&D investments and innovations in the application
sectors, which, by rising the technological level in the application sector bring on further investments and
technical improvements in the GPT sector, from which, in turn, stems further adoption in the AS, and so
on and so forth. The quality of the GPT and the technological level in the AS can hence be seen as strategic
complements in the process of generating innovation complementarities and in determining the size of R&D
investments in the upstream and downstream sector. The sketch in figure 1 tries to summarize this intuition
of BT.

[Figure 1 about here.]

The arrival of a GPT and its widespread adoption in different sectors derives from the coordination of beliefs
about the potential development of the technological trajectory between the GPT sector and the application
sectors. BT show in a game-theoretic model that the successful coordination among sectors is not granted
in a decentralized market system due to the existence of two different kind of externalities. The first one
is a vertical externality that link the payoff of the firms in the application sectors and in the GPT sector.
Since both side would like to appropriate the social returns coming from the deployment of the GPT, neither
the upstream nor the downstream sector will have the incentive to innovate. The second externality is
horizontal and takes place across application sectors. Since the more AS adopt the GPT the higher will
be its quality and, therefore, also the larger incentive to adopt it in the AS. The technological level in the
GPT sector, being a function of the adoption in the AS, acts as a ’public good’ but no firm in the AS will
have the incentive to contribute to its production, since only the other firms would reap the benefit of that
effort. Moreover, the uncertainty attached to technological change, and in particular to radical innovations
(Rosenberg, 1998), exacerbates the coordination problem that the externalities bring about. BT model
puts forward that uncertainties about technological trajectories and imperfect appropriabilities may lead to
coordination failures in determining the optimal level of R&D investment both in upstream and downstream
sectors, hindering or delaying consistently the realization of the innovation complementarities virtuous cycle
that enable the potential arrival of a GPT. BT also suggest that this sort of coordination failure call for
policy consideration and for government intervention to fix the market failures. In particular, drawing from
historical evidence and looking at the role played by the U.S. Department of Defense and NASA during the
fifties and the sixties, they explicitly suggest that public procurement may set in motion and sustain the
innovation complementarities virtuous cycle. Public procurement may in fact create and enlarge markets
and therefore stimulate private investment in R&D, innovation and adoption in the application sectors on a
scale that would not have otherwise followed.

[Figure 2 about here.]

As the sketch in figure 2 once again tries to summarize, the procurement induced innovation complemen-
tarities may in turn stimulate investments in R&D in the upstream sector, triggering the virtuous cycle that
will potentially lead to the unfolding of a new GPT.

3. Research hypothesis and identification strategy

While the historical literature provided some qualitative evidence of the existence of a direct relations
between innovative public procurement and the degree of pervasiveness of specific technologies, the work
of BT on GPT offered instead some theoretical ground for understanding it. As discussed in the previous
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section, even though the GPT literature then followed another path, BT did not see the deployment of
a GPT in terms of technology arrival but rather as a process unfolding in time. Recently Cantner and
Vannuccini (2012), reconsidering closely the most important works on GPTs, put forward that the degree
of generality of a technology should not be considered as an ex-ante characteristic, steady over time, but as
dynamic attribute that may evolve. In particular they suggest that GPTs can be, at least to some extent,
”cultivated or developed [..] till they assume the role of core technologies”. Not only A time to sow and a
time to reap then, as described by Helpman and Trajtenberg (1994), but also a time to nourish technologies
in the early phase of their development. On the ground of these contributions, the main idea of this paper
is that, in this ’technology cultivation process’, innovative public procurement can be a key sustenance to
increase its pervasiveness and, therefore, its level of generality.

There are several reason that suggest the relevance of public procurement in this respect. As already
mentioned, for a technology to become very general it takes that different application sectors adopt it
and develop new products embodying it, inducing further improvements in the upstream sector that in
turn will spawn further adoption. Studies on adoption and diffusion of new technologies (Geroski, 2000;
Nelson et al., 2004; Hall, 2006) suggest that four main factors mostly affect users’ adoption decision: (i)
performance of the new technology; (ii) costs of adopting the new technology; (iii) network effects; (iv)
uncertainty. According to Carlaw and Lipsey (2011) the latter element could be particularly important for
the diffusion of radical technologies such as GPTs, since both the application and the GPT sector would act
in condition of knightian uncertainty (or ambiguity) rather than risk. An evaluation of the current and future
performance of the new technology and of its adoption costs will heavily depend on learning processes and on
the amount of knowledge available about the new technology, which in turn will depend on the coordination
of beliefs between potential adopters and the upstream sectors. In the early phase of development of a new
technology, application sectors will not be able to compute probabilities for the potential outcomes since the
latter will rest on the results of highly uncertain process such as R&D investment and knowledge production,
learning, and coordination. In the absence of spontaneous coordination, private firms may therefore explore
only a limited portion of the variety distribution of a technology (Foray, 1997), or even completely avoid
to invest in the new technology and keep doing R&D for improving on existing technologies for which is
possible to compute expected returns on the investment. In such a context, public procurement is hence
a powerful tool to foster adoption and innovation since, in the first place, it is able to absorb most of the
uncertainty related to profitability and costs that the private sector is not willing to face (Mazzucato, 2013).
The primary interest of the state in its procurer activity is not profit but the satisfaction of specific needs
that could transcend the short term economic feasibility of a project. One obvious example is national
security in the U.S. during World War II, or in the cold war era. The state, through public procurement,
can hence create a market large and profitable enough to stimulate abundant investment in R&D and to
develop innovation complementarities based on technologies whose success is too unpredictable for the private
sector alone, or that explore a different portion of the technology spectrum distribution (Cowan and Foray,
1995; Fabrizio and Mowery, 2007; Mazzucato, 2013). Moreover, the state, through procurement contracts,
can directly take charge of the cost-related uncertainties. For instance, in the United States the Federal
Acquisition Rules suggest that, when ”uncertainties involved in contract performance do not permit costs
to be estimated with sufficient accuracy”, cost-plus or cost-reimbursement contracts should be considered as
suitable contracts. With such kind of contracts, a public agency in order to have a specific product or service
delivered, reimburses the contractor the realized (or a share of the) cost and pays an additional fee8. Given
the inherent uncertainty that characterize the research activities, cost-plus contracts are used for most of the
federal procurement contracts that involve the performance of R&D (from basic research to development).
Public procurement is therefore able to foster innovations that would be otherwise inhibited by the high
degree of ambiguity that permeates the evolution of new technologies in the early phase.

These procurement-related innovations contributes to set the complementarities virtuous cycle in motion
in two ways. On the one side, innovations that apply a new technology generate new knowledge and new
information about the new technology itself. In an environment characterized by knightian uncertainty,

8The additional fee might be fixed ex-ante or based on performance
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enlarging the amount and the diversity of available knowledge reduces the uncertainty associated with
further innovation, focusing subjective probabilities on those inventions that are more likely to succeed
(Bewley, 2001). The reduction of uncertainty then act as positive feedback, stimulating other innovations as
new information becomes available. Innovative public procurement hence may convert knightian uncertainty
into risk, allowing more ambiguity-averse firms to reasses their expected returns on innovation and on the
adoption of the new technology (Geroski, 2000). On the other side, procurement-induced innovations act as
a coordination device between the upstream and the downstream sectors. By creating or enlarging markets
in the application sector it will in fact also stimulates further investment in R&D in the upstream sectors
that will improve the performance-price ratio in the upstream technology, favoring further diffusion and
innovation in the downstream sectors and setting in motion the virtuous cycle that can lead to the arrival
of very pervasive technology.

Clearly I will not argue here that public procurement support to a specific technology can always lead
to very general technologies. Finding evidence of the arrival of new GPTs is therefore beyond the scope
of this paper 9. I will instead put forward that public procurement, by stimulating additional innovation
complementarities in the application sectors, will increase the probability of diffusion of upstream technologies
among different sectors, making them more pervasive, or general, compared to the counter factual situation
in which no stimulus from public procurement was in place.

I will neither hypothesize that public procurement might be able to directly produce major innovations,
as it has been suggested in some cases (Ruttan, 2006), but that it can support promising new technologies
early in their life-cycle (Levin, 1982) through the stimulus of innovative activity in the AS, that would not
have occurred in the absence of public demand.

Despite the numerous contributions by economic historians and the theoretical work in the GPT litera-
ture, no econometric work tried to investigate the effect of innovative public procurement on the technological
impact in term of pervasiveness of given technologies. This paper tries to fill this gap through a patent data
analysis and exploiting public data on Federal Procurement made available by the U.S. Government. In
order to formalize my research hypothesis, in the next section I will explain why and how patent data can
be use for identification.

3.1. Patent data and patent citations

Patents are transitory monopolies granted to inventors/assignees for the commercial use of a new product
or process in exchange of full disclosure; they are hence usually considered as direct output of the inventive
process and, more specifically, they represent outcomes that are expected to have an economic and commercial
impact. Moreover, being legal documents, they have to include several detailed information on the innovation,
the inventors, the assignees and prior art. For these reasons, patent data have long been acknowledged as a
very important source of information for researcher studying technological change (Griliches, 1991).

The digitalization of patent documents in the 1980’s and the continuous improvements in computational
power throughout the 1990’s helped scholars to extract more information from patent data, and to make
it even more valuable for empirical research. In this context, several works highlighted the fundamental
importance of the information embodied in patent citations for determining the economic value and the
technological impact of a patent (Trajtenberg, 1990; Jaffe et al., 1993; Trajtenberg et al., 1997; Jaffe et al.,
2000; Hall et al., 2006).

The most important feature of patent citations is the fact that they have a fundamental legal value. An
innovation to be patentable has to be novel, non-obvious and useful. The degree of novelty and the scope
of the property right awarded through a patent are hence delineated by the citations to the technological
antecedents of the invention because, if a patent cites another one, it means that the latter constitutes a
piece of previously existing knowledge upon which the former builds and over which it cannot have any claim

9Several papers tried to detect the establishment or the emergence of new GPTs. See for example Hall and Trajtenberg
(2004), Youtie et al. (2008), Feldman and Yoon (2012).
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(Hall et al., 2006). Citations are hence mandatory and identify the relevant prior art10.
Given their legal function, citations actually represent the stream of the past relevant knowledge that feeds the
production of the new pieces of knowledge. It is hence possible to consider citations as a ”paper trail” (Hall
and Trajtenberg, 2004) of the linkages between an innovation and its technological antecedents (citations
made/backward citations) and descendants (citations received/forward citations). Because of these features
scholars consider citations as carrier of different kind of informations about a patent, such as its economic
value and quality (Trajtenberg, 1990; Hall et al., 2006), the knowledge spillovers (Jaffe et al., 1993) it involved
and its technological impact(Trajtenberg et al., 1997; Henderson et al., 1998).

In the context of this paper we are primarily interested in the latter aspect. Trajtenberg et al. (1997)
created different measures based on patent citations that tried to capture both the basicness and the tech-
nological importance of an innovation covered by a patent. The main idea is to exploit the fact that patent
offices, in order to facilitate the quest for prior art, assigns patents to specific technology class and sub-
class (about 400 (3-digit) classes and 120,000 subclasses). Citations between different inventions could be
hence considered also as linkages between different patent classes and hence technological fields. Trajtenberg
et al. (1997) suggested that a patent that receives forward citations from patents belonging to wide range
of different classes could then be thought as a patent having a wide variety of application, and therefore
as a very generic patent. To operationalize this intuition they developed the, so called, Generality mea-
sure, an index that get closer to 1 as a patent’s forward citations are spread across many different patent
classes, and approaches 0 as forward citations are concentrated in a few technological classes. Though this
index will be presented in more details in the next section, it is important to note here that it allows us to
measure effectively the degree of pervasiveness of given innovations covered by patents and to compare it
across patents and time. While Trajtenberg et al. (1997) used this measure to evaluate its impact on the
degree of appropriability of an invention, several works (Hall and Trajtenberg, 2004; Moser and Nicholas,
2004; Youtie et al., 2008) used it effectively to uncover the existence of general purpose technologies or to
spot the deployment of specific technological trajectories, confirming that patent and patent citations can
be particularly fit to assess the degree of generality of a technology.
Moreover, a more generic feature of citations is pivotal for my empirical analysis. As mentioned above, cita-
tions provide the link between present inventions and previous inventions (Hall and Trajtenberg, 2004).Ex-
ploiting this feature I can therefore use patent citations to spot the bond between innovations stimulated by
(related to) public procurement and their patented technological antecedents. I then interpret the latter as
upstream technologies and the former as innovation in the application sectors. Therefore, patent and patent
citations, through the detection of the link between innovations together with the generality measure, allow
me to put the broad idea portrayed in the previous section in a more formal way. I will in fact hypothesize
that:

Hyp: Receiving a citation from a patent related to innovative public procurement (i.e. an additional
innovation complementarity covered by a patent) will rise the degree of generality of the cited patent
(upstream technology) compared to the counterfactual situation in which that specific citation does not
arrive

Patents will hence be the unit of analysis throughout the paper, and the focus variable will be (the change
in) their generality level measured through patent citations. In order to test my hypothesis, I will frame the
problem as a quasi-experiment in which the generality of a selected group of patents will be measured at
two points in time. I will then compare the change in the generality level across time between a group of
treated and group of control patent. A patent will be assigned to the treated group if it receives a forward
citations from a patent related to public procurement right after the first measurement of its generality
level. The control group will be instead carefully constructed to approximate the counter factual situation
in which the treated patents do not receive the treatment, as it was done in several recent works (Lanjouw

10For applications at the U.S. the applicant has in fact the duty to disclose any knowledge of the prior art of which he is
aware, and then the patent examiner, an expert in the area, certifies that all the relevant prior art have been included and
eventually adds missing citations. The same rational holds at the European Patent Office (EPO) but all citations are added
by the patent examiners who add the minimum number of citations to cover prior art (therefore patents granted in the U.S.
usually report more citations than the EPO ones due to the different institutional procedure).
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and Schankerman, 2004; Czarnitzki et al., 2011; Feldman and Yoon, 2012; Fier and Pyka, 2012). Figure 5
depicts the basic idea of the natural experiment proposed here.

[Figure 3 about here.]

4. Data and Method

4.1. Data:

To build up the database that I use in my analysis I put together information coming from four different
sources. The NBER patent database 2006 is the main source of information. Providing data on patents and
citations, it allows me to identify a large sample and to construct the outcome variable, i.e. generality index.
In the second place I exploit the public data from the U.S. Federal Procurement Data System together with
USPTO database, to single out patents related to public procurement, and hence to construct my treatment
variable. Finally I also employ the Compustat North America database in order to gain more information
on the patent assignees and to better select patents to be included in the control group. In this section I
briefly describe the broad information available in those databases, while in section 4.2 will explain how I
used them to build up the variables and the framework of my natural experiment.

4.1.1. NBER Patent Database - 2006

The NBER patent database11 contains information on 3,209,376 unique patent granted by the USPTO
from 1976 to 200612. Hall et al. (2001), who developed the dataset, carefully describe the information
included in its first version, which has been continuously updated since. Several informations are available
for each patent: the patent number, the year in which the inventor applied for the patent (Application year),
the year the USPTO granted the patent (Grant year), the country (and the state if U.S.) of the inventor, the
assignee identifier and the type of assignee (individuals, U.S. corporation, foreign corporation, governments,
university), the main U.S. 3-digit patent class (400), the subclass (120,000) and the number of claims made
by each patent. Moreover additional informations are made available in different complementary files that
reports data on the inventors, the full name of the assignee, an identifier that allows the matching with
the Compustat North America Database and the citation data. The latter file include 23,650,891 references
between cited and citing patents (listed through their unique patent number), and the total number of
citations received by the cited patent at the end of the screened period, in 2006.

4.1.2. USASPENDING.GOV and Federal Procurement Data System

In 2006 the U.S. congress approved the Federal Funding Accountability and Transparency Act (FFATA),
sponsored by Senators Coburn, Obama, Carper, and McCain. The Act required the Office of Management
and Budget (OMB) to establish a single searchable website, accessible to the public at no cost, which includes
for each Federal award: the name of the entity receiving the award; the amount of the award; information
on the award including transaction type, funding agency, etc; the location of the entity receiving the award;
and a unique identifier of the entity receiving the award. In order to fulfill these requirements, in December
2007 the U.S. government launched USAspending.gov 13, a website that collects prime award data for federal
contracts, grants, direct payments and loans. The most interesting feature of this dataset, at least from the
point of view of this paper, is that it includes full Federal Procurement Data System (FPDS) from Fiscal
Year 2000 (October 1999) onwards. The FPDS tracks every public procurement contract over 3000 dollars
between federal agencies and contractors. Several pieces of information are available for each contract and
in particular: the obligated amount of the contract, the purchasing agency, the contractor, a code describing
the product or service being purchased, the kind of contract (cost-plus or fixed cost), the extent to which

11Data and data description are available at www.sites.google.com/site/patentdataproject.
12The NBER patent dabase is the result of the effort of different researchers, Hall et al. (2001) beside the authors, credits

Rebecca Henderson and Michael Fogarty, together with several programmers and research assistants.
13More information and data are available at www.usaspending.gov.
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the contract was competed. To have a clearer idea of the size and characteristics of federal procurement in
the U.S. we can have a quick look at some aggregate data for Fiscal Year 2000, the period that I will refer
to in this analysis. In FY 2000, government agencies awarded 594,541 contracts for more than 205 billion
dollars. Almost 65 per cent of the total amount allocated was awarded by the Department of Defense(DoD),
10 per cent by the Department of Agency(DoE), 5 per cent by General Service Administration (GSA), 2.5
by the National Aeronautics and Space Admnistrations (NASA), and then less than 2 per cent each by 54
other governmental agencies. About 6 per cent of the total contracts were awarded for the performance of
some kind of R&D (from basic research to development). 78 per cent of the contracts was assigned through
competition, while 22 per cent did not involve any competitive bidding activity. These numbers are in line
with the ones for the whole period 2004-2010 described in Liebman and Mahoney (2013). FPDS data report
that the total number of federal contractors who won at least one procurement contract in fiscal year 2000
is 47,084, nevertheless the allocation of resources between them is highly skewed. The top 10 contractors14

account for slightly more than 30 per cent of the total amount awarded through procurement contracts, the
50 largest contractors account for 48 per cent, and top 1 per cent (i.e. top 470 contractors) accounts for 70
per cent of the total procurement expense.

4.1.3. USPTO Full-text and Image Database

The USPTO Full-text and Image Database includes information about US patents from 1790 to the
present day. The feature making this database extremely helpful lays in the fact it offers the full searchable
text of every patent applied granted from 1976 onwards. In particular it possible to search for specific pieces
of text within many distinct field of the patent document, such as the patent’s title, the assignee’s name,
the abstract, the claims, the description of the invention, ecc.15. As we will see in the next section, the most
relevant field for the purposes of this paper is the Government Interest field, which contains data describing
the US Government’s Interest and rights in the patent, if any.

4.1.4. Compustat North America Database

Compustat North America provides annual and quarterly financial and market information for more than
90,000 (both active and inactive) publicly traded firms in the United States and Canada from 1962 to present
day16. It includes abundant information about income statement, balance sheet, statement of cash flows,
and supplemental data items. In this work I will use only a limited number of variables from Compustat
Database, and in particular those concerning the number of employees, the size of sales and net income, and
the amount of investment in R&D of the firm.

4.2. Quasi experiment

I use the huge amount of information contained in the 4 dataset described in the previous section to
design a quasi-experiment to validate my hypothesis. In the first place I hence identify the sample of patents
that will be used in the analysis, and I will then carefully describe the building of the treatment and of the
outcome variable.

4.2.1. Sample selection

From the NBER patent database I extract all patents whose application date belong to the five year
window from 1993 to 1997. For each of these patents I aggregate the information about the backward
citations they made, and the forward citations they received up to 2006, the last year for which data
are available in the dataset. Exploiting the assignee and the compustat identifier provided by the NBER
database (Hall et al., 2001) I match each patent with the Compustat North America Database in order

14Lockheed Martin Corporation, Boeing Company, Northropp Grumman Corporation, General Dynamics, Raytheon Co,
State of California, Bechtel Group Corporation, BAE Systems, McDonnel Douglas, SAIC Company.

15A comprehensive list of fields is available at www.patft.uspto.gov.
16Specifically firms traded on the New York Stock Exchange (NYSE), American Stock Exchange (ASE), National Association

of Securities Dealers Automated Quotations (NASDAQ), Over-the-Counter (OTC), Toronto Stock Exchange, Quebec Stock
Exchange, and Montreal Stock Exchange. Though the project started in 1962, annual data are available back to 1950.
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to gain additional information about the patents’ assignees. This means that, as a first step, the scope of
the analysis is limited to patents owned by public companies. In section 5.2 I will evaluate if the results
are consistent when the breadth of the analysis is not constrained to patents owned by publicly traded
companies. Moreover I only consider patent who received at least 10 patent citations at the end of the
period, i.e. 2006. The rational behind this exclusion is twofold. In the first place since our outcome variable
is constructed on the basis of the concentration of forward citations, looking at patents receiving only few
references would be less interesting and could also introduce some bias: the fewer the citations, the larger
would be the bias. As we will see, Hall (2005) showed how to correct for this bias and also that it quickly
disappear as the number of citations increases. In the second place, as Scherer (1965) already hypothesized,
the distribution of patents’ economic value is highly skewed toward the low value side, with a very long tail
into the high value side. The number of forward citations, which follows a Pareto-like distribution, proved
to be a good predictor of a patent’s economic and technological significance (Trajtenberg et al., 1997; Hall
et al., 2006). In particular Hall et al. (2006) showed that patents receiving more than 7, and especially those
receiving more than 10, forward citations are the ones carrying actual economic relevance for publicly traded
companies. Therefore, focusing on patents with more than 10 forward references ensures that the results of
the analysis will not be driven by patents with little economic and technological impact. We end up with a
sample of 71,438 patents, for which we have detailed information about: patent number; year of application;
grant year; the technology class (main U.S. 3-digit); number of claims; number of citations made; number
of citations received; technology class of each citation made and received (3-digit); assignee typology (being
public firms, basically if it is a U.S. or a non-U.S. corporation); sale, net income, industrial sector (SIC
and NAICS code), and R&D expenses of the assignee. I also compute the originality level of each patent.
Originality is a measure very similar to the generality index that will be carefully described in section 4.2.3.
First proposed by Trajtenberg et al. (1997), it is meant to measure the level of originality of a patent on
the basis of the backward citations he makes. In particular a patent wil be more original ( Originality closer
to 1), as it cites prior arts coming from many different patent classes (i.e. if it synthesizes divergent ideas
(Trajtenberg et al., 1997)), while it will be less original if its backward citation are concentrated in a small
number of classes.

To have a first look at the data, table 1 shows the distribution of patents in our sample across technological
classes. As it is possible to see from the table, most of the patents belong to the ICT sector (40.7 per cent)
and electronics (24.7 per cent), followed by mechanicals,chemicals and drugs.

[Table 1 about here.]

Table 2 reports instead descriptive statistics about each patent characteristics together with assignee
specific characteristics.

[Table 2 about here.]

The patents in our sample spread over five years. The average patent in our sample makes 11.9 backward
citations and receives 24.5 forward citations. The average lag between the application and the granting of
the patent by the USPTO is about two years. As mentioned, forward citations are censored from below (10
cites), and, as figure 4 depicts, they are distributed in a very skewed way, with 56 per cent of the patents in
the dataset (47,510) obtaining between 10 and 20 references, 22.7 per cent of them receiving more than 30
cites, 8.3 per cent more than 50, and only 1.3 per cent of the patents collecting more than 100. Moreover 3
out of four patents in our sample belong to U.S. corporation rather than foreign ones.

[Figure 4 about here.]

On average assignees are very large companies with more than 10,000 employees and whose sales reach 25
billion dollars. They also invest on average more than 4 per cent of their total revenues in R&D.
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4.2.2. Treatment variable

In section 3 I hypothesized that public procurement, enlarging the diversity of application and available
knowledge about a given technology through additional innovation complentarities, can increase its perva-
siveness and its technological impact. In section 3.1 I propose to test this hypothesis through patent data,
and, in particular, I surmise that a patent receiving a citation from a subsequent patent related to a public
procurement contract will have a higher generality index compared to the counter factual situation in which
no public procurement related reference arrives. Since the counterfactual situation is obviously not observ-
able, I divide the sample in treated and control patents and I will use the latter to estimate a proxy for the
counterfactual situation. As mentioned, a patent is put in the treatment group if it receives a citation form
a patent related to public procurement, otherwise it ends up in the control group. Therefore, I now have
to first define how I identify a patent related to public procurement, and, secondly, to build the treatment
variable for my quasi-experiment exploiting this identification.

In order to identify the patent related to public procurement I follow a strategy in two step. In the first
place I use the FDPS data for Fiscal Year 2000, a period that spans from October 1st 1999 to September
30th 2000. The reason to select only data for this specific year lies in the nature of available data for patent
citations. Since the last year for which I have patent data available is 2006, and because I am mainly
interested in the arrival of new citations after the implementation the treatment, I only use the first year
for which I have procurement data accessible (FY 2000) to identify the treatment in order to maximize
the period in which post-treatment citations may take place. As explained in section 4.1, FDPS data are
recorded at the contract level and entails information about more than 590,000 contracts between federal
agencies and private contractors. I aggregate the information coming from those contracts at the firm level
and I then match manually through the entities name of each contractor to patent data in the NBER Patent
Data Project. I hence select all the patent that have a priority date in year 1999 or year 2000 and belong to
firms that won at least one public procurement contract in FY 2000. The rational to use priority date instead
of application date in this context is that the former ensures to be closer to the actual date of invention
and hence it allows to spot innovation closer in time to the award of the procurement contracts in FY 2000.
Though the fact that a patent belongs to an entity that won at least one public procurement contract in FY
2000 and that it has been first filed to the USPTO at the same time is clearly not a sufficient condition to
claim that a patent is linked to public procurement, it can be interpreted as a necessary condition. In this
way I identify more than 32,323 patents potentially related to public procurement.

As a second step, to spot the patents that are actually linked to procurement among those in the group
described above, I exploit the U.S. Federal Acquisition Regulation (FAR). The FAR is a set of rules that
governs the purchasing of good and services carried out by U.S. federal agencies. Though FAR was first
approved in 1974, it has been adapted to follow the Bayh-Dole Act of 1980 17, for what concerns intellectual
property right management in federal procurement contracts (Sharp, 2003; Bloch and Gray, 2012). One of
the rational behind the act was to tackle the increasing reluctance of contractors to collaborate with the
federal government due to ”title taking policy” of many agencies (Sharp, 2003). In many cases, before the
Act, the acquisition rules of federal agencies assigned the right to patent an invention realized by a firm in the
performance of work under a government contract to the government itself, while the contractor could only
obtain limited rights and licenses. The Bayh-Dole Act leveled the rules for the different agencies, granting
more rights in invention to contractors. The FAR, following the act and the presidential Memorandum, now
entails that each contractor may, after required disclosure to the Government, elect to retain title to any
subject invention (FAR 27.301)18. Subject invention is defined as any invention made, or first reduced to
practice, in the performance of work under a Government contract19. To retain the title the contractor must

17Even if the act was first thought to be addressed only to small business and non-profit firms, the president Memorandum
issued by Reagan in 1983 extended its scope to large and for-profit enterprises and, therefore, also the FAR prescriptions on
intellectual property right to every entity involved in a contract.

18There are some exception to this rule. The Department of Energy and the NASA may retain title to inventions made by
the contractor for specific technologies.

19Reduction to practice is in turn defined as workable version of the invention created during the performance period. It
often occurs after conception. Hence the Government may obtain some rights in already existing conceptions (sometimes even
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notify the government the discovery of a patentable invention, and then timely file a patent application.
If the contractor retains ownership of the invention the FAR requires that the Government shall have a
non-exclusive, irrevocable, paid-up (i.e. no royalties) license to use the invention or to have someone else
use the invention on its behalf (FAR 27.302). The rational here is clearly to avoid the government paying
twice for the same invention. The most important requirement in the context of this work is that, in order
to legally ensure the paid-up license to the government, the FAR obligates the contractor to include into the
patent document a government interest statement, reporting that the invention was made with Government
support,and that the government has certain rights in the invention (FAR 52.227-11). This rule applies to
all procurement contracts that involve the performance of experimental, developmental, or research work,
therefore to all procurement contracts thought to produce new knowledge and innovation.

Using the USPTO Full-text and Image Database described in the previous section, it is possible to identify
those patents that includes the government interest statement, and also to disentangle between patents that
include the statement but originated from a grant by the federal government, and those patents derived
from a contract with the government. Among the 32,323 patents that I earlier defined as potentially related
to public procurement I hence select those that include the government interest statement and refer to a
contract and not to a grant. In this way I identify 1,029 patents, that I deem as ’patent related to public
procurement’ since they i)belong to a firm that won at least one procurement contract in FY 2000 (97
different assignees); have the priority date in 1999 or 2000; iii) include the government interest statement20.
Table 3 reports the distribution of these patents across macro-technological field, showing how most of these
patents come from electronics and ICT, but also that chemicals and mechanicals account for a considerable
share.

[Table 3 about here.]

[Table 4 about here.]

Table 4 report instead some descriptives for patents’ and assignees’ characteristics for procurement related
patents. On average patents in this group make 10.5 backward citations (10,620 cites in total), makes 21.8
claims, and in almost every case are assigned to U.S. contractors. Contractors have on average received
466 million dollars through public procurement contracts. Though the distribution of this measure is highly
skewed, with a single contractor obtaining more than 16 billion dollars (Lockheed Martin Corporation),
more than half of the firm obtained more than 4,5 million dollars in public procurement contracts. It should
also be noted that I do not claim that the 1,029 patents identified with the described strategy represent the
whole universe of innovations related to federal public procurement contracts in Fiscal Year 2000. There
are in fact few cases in which this strategy would not work: a firm can opt for keeping an invention secret,
rather than filing a patent application for it; as we mentioned, some federal agency may retain title on specific
technologies and, moreover, when the disclosure of an invention might be detrimental for the national security,
the Government may withhold patent application, imposing a secrecy order; a firm could intentionally fail
to report innovation obtained in the performance of work under a government contract and hence avoid to
include the government interest statement in the patent document21. Nonetheless, this strategy ensures that
the identified patents are undoubtedly related to innovative public procurement contracts and it therefore
allows me to build my treatment variable.

In order to define the treatment variable I check if any of the 10,620 citations done by the 1,029 patent
related to public procurement (FY 2000) is going to focal patents in the sample described in section 4.2.1. I

patent pending inventions) due to its involvement in the development of the first working prototype (?).
20Sampat and Lichtenberg (2011), Rai and Sampat (2012), and Azoulay et al. (2013) recently implemented a similar strategy

to spot patent resulting from grants of the National Institute of Health (NIH).
21A report on this topic by the Government Accountability Office conducted in 1999 (GAO, 1999) highlighted some discrep-

ancies between the number of patents that include the government interest statement and the ones the government actually
is aware of having rights on. Moreover it also suggested that, in a non-negligible number of cases (from 10 to 20 per cent of
the patents in their sample), grantees and contractors failed to add the government interest statement in the patent document,
even if it had to be included.
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hence define the variable Treatment Procurement to take the value 1 if a patent in the sample (application
year 93-97, more than 10 cites received, belonging to a public company) receives a forward citation by one
of the 1,029 patents related to public procurement, and the value 0 if such a citation does not arrive. In this
way I am able to identify the 903 patents that constitute my treatment group, while the other 70,539 are
considered as not treated and will be potential candidates for the control group.

In section 4.4 I will present accurate descriptive statistics for the two groups to carefully analyze similar-
ities and difference between them. Moreover, to avoid potential confounding effects, we also eliminate both
from the treated and not treaded groups those patents that receive a citation from subsequents patent that
included the government interest statement and whose priority date is before year 1999. In this way I am
sure that the treatment related citation is the first citation from a patent related to public procurement for
the focal patents.

4.2.3. The outcome variable: the generality index

Since I am interested in evaluating the impact of the treatment on the change in the degree of generality of
a patent across time between the treated and the control group of patents, I follow Trajtenberg et al. (1997)
to build the outcome variable of my quasi-experiment. As briefly described in section 3.1, Trajtenberg et al.
(1997) suggested to look at how forward citations are spread across different technological fields (proxied by
patent class), to compute a measure of technological pervasiveness. In particular they develop a Generality
index, measured at the single patent level, that is defined as:

Gi = (1−
J∑

j=1

N2
ij/Ni) (1)

where Nij is the number of forward citations received by patent i from patents in technological class j,
while Ni is instead the total number of forward citations received from a patent. The summation term is
therefore the Herfindahl concentration index and reports the degree of concentration of forward citations
across patent classes. Being one minus the Herfindahl index, the Generality index is also bounded between
0 and 1. In particular, it will get closer to 1 as a patent receives citations from patents belonging to many
different patent classes, while it approximate 0 as its forward citation are concentrated in a few classes. Hall
(2005) noted that the Generality index proposed by Trajtenberg et al. (1997) suffered of a bias due to the
count nature of citation data, a bias that could be particularly important in the case of a low number of
forward citations received (Ni). Hall therefore proposed a corrected version of the Generality index, which
defines as:

Γi = (Ni/Ni − 1)(Gi) (2)

where Ni is still the total number of forward citations received by a patent and Gi is the Generality
index as defined above. Since my aim is to identify the effect of receiving a citation from a patent related to
public procurement on the change over time of a patent’s generality level, I measure the adjusted generality
index Γit for all the patents in my sample at two different points in time: the first time as of the beginning
of 1999 and the second in the last available year, 2006. We hence compute the number of citations obtained
by each patent until the start of year 1999 , their concentration level across USPTO patent class, measured
at the 3-digit level (i.e. 400 different technological fields), and then derive the generality index Γi99 for each
patent i as of January 1st 1999. I then compute the Generality index Γi06, for each patent, at the end of the
period for which we have patent and citation data available, December 31st 2006.

4.3. Empirical approach: CDiD

The main hypothesis of this work is that a patent receiving a citation from a subsequent patent related to
a public procurement contract will have a higher generality index with respect to the counter factual situation
in which such reference does not arrive. Since the counter factual situation is clearly not observable, I design
the quasi-experiment portrayed in figure 5, to recover the average treatment effect exploiting the information
coming from not treated patents to estimate it.
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[Figure 5 about here.]

I hence select a sample of patents whose application dates lies in the 5-year temporal window from 1993 to
1997. I measure their Generality index as of as of January 1st 1999, Γi99, on the basis of the citations they
obtained up to that moment. In year 1999 or 2000 the treatment arrives: 903 patents receive a forward
citation from a patent related to public procurement and I therefore consider them as treated. 70,539 patent
do not receive such a citation and are hence considered as not treated. The generality index, Γi06, is measured
for every patent once again at the end of the period for which we have data available, December 31st 2006.
Since I hypothesize that generality is a dynamic characteristic that can be, at least to some extent, cultivated
over time, in order to corroborate my hypothesis on the role of public procurement in this nurturing process,
I will look at the average difference in the outcome variable Γi between year 2006 and 1999, and compare the
change in generality for treated patents with respect to the control ones. However If I used all the patents in
the not treated group to estimate the average treatment effect, results might be biased due to multiple source
of potential endogeneity, mainly due to selection bias. In that case I would in fact recover the difference-in
differences estimator (DiD), which is formally defined as:

DiD = [E(Y T
t1 |T = 1)− E(Y T

t0 |T = 0)]− [E(Y C
t1 |T = 0)− E(Y C

t0 |T = 0)] (3)

where Yt1|T and Yt0|T is the outcome variable (Γi, in our context) measure at time 1 (2006) and time 0
(1999) for the treated group, while Yt1|C and Yt1|C is the outcome variable at time 1 and time 0 for the
not treated group. The main idea is to correct the simple difference before and after the treatment for
the treated group, subtracting the simple difference for the not treated group. The estimate of the average
treatment effect provided by the DiD estimator is unbiased if and only if the ”parallel trend assumption”
holds. This assumption involves that, in the absence of the treatment, the average change in Yt1 - Yt0 for
the treated and the control group should have been equal, and hence that, without the treatment, the DiD
estimator in equation 3 should be clearly equal to 0. The parallel trend assumption is most likely implausible
if pre-treatment characteristics are unbalanced between the treated and the untreated group and they may
interact with the dynamics of the outcome variable (Abadie, 2005). In that case the treated and the control
group would behave in a different way even in the absence of the treatment and we would hence incur into
selection bias, i.e.:

[E(Y T
t1 |T = 0)− E(Y T

t0 |T = 0)]− [E(Y C
t1 |T = 0)− E(Y C

t0 |T = 0)] 6= 0 (4)

In this context selection bias may arise from the fact that the patents that receive a citation from public
procurement related patents might be intrinsically different from the one who do not receive such a citation.
In particular, this sort of bias may have a dual origin. On the one side, public procurement related patents,
being patents that arises in a particular situation, may present some singularities that lead them to cite
patents with the same (or other) specific attributes, making our treated patents different from the non-
treated ones. For instance treated patents may belong to a specific subset of patent classes, or they might be
more original than non-treated ones. On the other side, specific patents may posses some peculiar feature that
rises their probability of receiving the treatment, i.e. a citation from a patent related to public procurement.
For example some patents may be more general, more important, or have higher quality, regardless of the
treatment, and these features could increase their probability of receiving any kind of citation, included the
ones from patents related to public procurement.

In estimating the average treatment effect we have therefore to consider that the whole group of non-
treated patents cannot be directly used as proxy for the counterfactual situation in which treated patents do
not receive a citation from a patent related to public procurement. To mitigate the potential selection bias
I here follow the idea implemented in Lanjouw and Schankerman (2004), Feldman and Yoon (2012), Fier
and Pyka (2012), and Czarnitzki et al. (2011), to construct a control group of patents similar to the treated
ones along several dimensions. Exploiting the abundant information about patents and patents’ assignee in
our dataset and the fact that our dependent variable is measured at two points in time, I implement the
conditional difference in differences (CDiD) approach, first introduced by Heckman et al. (1998). CDiD,
combining the advantages of non-parametric matching method to the ones of the common DiD strategy,

16



allows to tackle the selection on observables and the selection on unobservable issue at the same time. As
a first step, it involves in fact the matching of each treated units with a suitable control on the basis of
their predicted probability of being treated , i.e. propensity score matching. In a second step, to remove
the problem of selection on unobservables, it encompasses the classical before and after comparison (DiD)
between the treated and the control group, but only for the matched samples.

4.3.1. Propensity score matching

The main idea of non-paramentric matching method is to find a group of non-treated individuals that
are similar to the treated ones in all the relevant pre-treatment characteristics, and to use this group as a
close substitute for the unobservable counterfactual situation in which the treated group is not receiving
the treatment (Caliendo and Kopeinig, 2008). For a consistent estimation of the treatment effect through
matching two conditions have to hold. The first one is the conditional independence assumption (CIA). It
requires the assignment to treatment to be independent from the outcome, conditional on a set of observable
covariates (X). Rosenbaum and Rubin (1983) show that it is possible to summarize the vector of relevant
covariates into a single scalar index, the propensity score, which is defined as the probability of being treated
conditional to observable and relevant pre-treatment characteristics. The CIA then formally states :

(Y C ;Y T ) ⊥ D|P (X) (5)

where D is the assignment to treatment, and P(X) is the probability of receiving the treatment given the
relevant covariates.

The second condition that has to hold is the common support condition, formally:

0 < P (T |X) < 1 (6)

It requires that the relevant observable characteristics are not able to perfectly predict whether a unit is
assigned to the treated or to the control group and, therefore, that units sharing the same pre-treatment
attributes can be found both in the treated or in the control group with positive probabilities. If both
conditions hold, the treated and the control group, once matched on the basis of the propensity score, should
be on average observationally identical.

4.3.2. Conditional difference in differences

Though the propensity score matching rules out the selection on observables problem, unobservable
characteristics of different units may still affect their probability to receive the treatment, biasing the results.
In the context of my analysis permanent unobserved heterogeneity may stem from patents’ unobserved
attributes such as the inventors’ characteristics. In order to allow for time-invariant unobserved heterogeneity,
I then implement the before-after comparison of the outcome variable on the matched sample, recovering
the average treatment effect thorough the conditional difference in difference estimator (CDiD), as proposed
by Heckman et al. (1998):

CDiD = E(Y T
t1 − Y T

t0 , D = 1)− E(Y C
t1 − Y C

t0 |P (X), D = 0) (7)

4.4. Descriptives

Table 5 and 6 report descriptive statistics for the treated and the whole group of non-treated patent both
for patents’ and assignees’ characteristics.

[Table 5 about here.]

[Table 6 about here.]

17



As hypothesized in section 4.3, selection bias proves to be a very relevant issue in the context of this
evaluation. In the first place, table 6 shows that the distribution across technological fields (even when
measured via the 6 macro HJT category) presents some dissimilarities between treated and non-treated
patents. The latter shows a higher concentration in the Computer and Communications and Drugs and
Medicals fields with respect to the former, while the opposite is true for the Chemicals, Electrical and
Electronics, and Mechanicals.

Table 6 also reports that patents receiving a forward citation from procurement related patents, i.e.
treated patents, are on average substantially more original, receive more citations and tend to have an
higher generality index Γ, both before and after the treatment. Moreover, treated patents seems to belong
to firms with distinct characteristics. 85 per cent of the treated patents belongs to U.S. corporation while
among the non-treated only 75 per cent of the assignees is a U.S. firm. Firms owning treated patents are on
average larger both in terms of employees and sales, and to invest more in R&D in absolute terms.
In order to account for these dissimilarities, in evaluating the average treatment effect I have to construct an
adequate control group for the treated units and I hence implement the CDiD strategy described in section
4.3. In the next section I will illustrate the first step of this procedure, the propensity score matching, while
in the following one I will eventually present the results retrieved by the CDiD estimator.

4.5. Propensity score matching

4.5.1. Propensity score specification and estimation

As mentioned in section 4.3, the propensity score is a measure of the probability for an unit to be treated,
conditional to a set of relevant characteristics. The first step to recover the propensity score is hence the
detection of the relevant variables affecting the probability of receiving the treatment. Caliendo and Kopeinig
(2008) recommend to include only variables that influence simultaneously the treatment participation and
the outcome variable, but that are not themselves affected by the treatment, better if time-invariant or
measured before the treatment. The decision of which variables to include should hence be taken on the
ground of economic theory and previous research (Caliendo and Kopeinig, 2008).

In the first place, I therefore make reference to previous works that used treatment models in the context of
a patent analysis and in particular to Lanjouw and Schankerman (2004), Feldman and Yoon (2012), Fier and
Pyka (2012), and Czarnitzki et al. (2011). Secondly I consider the peculiar nature of my treatment variable,
receiving a citation from a public procurement related patent in year 1999-2000, and evaluate which variables
will affect the probability of the arrival of this particular citation and of new citations in general. In all of the
afore mentioned works several key characteristics of a patent are taken into account such as its timing, the
technological field, the origin of the applicant. Moreover, they include different variables to account for the
scope, the originality, and the importance of the patent. These latter attributes are particularly relevant in
our case since the economic literature on patents suggests that several patent characteristics give information
about its quality and are hence correlated with the number of forward citations that it may receive. For
these reasons, among the variables I will use to estimate the propensity score, I primarily include binary
variables related to the time of filing of the patent, the Application Year, and the Application-Grant Lag,
which measure the number of years that passed between the filing date and the granting of the patent. It
is in fact possible that patents issued earlier (or later) have a different odd of being cited by a procurement
related patent in year 1999-2000. In the same way patents granted later may have been around for less
time with respect to patents filed in the same year but granted earlier and might be hence less visible and
less cited. Given that our dependent variable is based on patent citations, matching on the application
year and the application-grant lag also ensures to remove problems related to the truncation bias of patent
citations (Fier and Pyka, 2012). As also the descriptive showed, patents in given technological fields may
have higher chances of receiving the treatment related citation, hence I include one dummy variable for each
main USPTO Patent class (3-digit).

Since the scope of the patent is thought to be correlated with the number of citations that a patent receives
(Lanjouw and Schankerman, 1999) and also with its economic value (Lerner, 1994), I add the variable Number
of claims to proxy for the width of the monopoly power granted to a patent (as suggested by Hall et al.
(2001)). Some scholars suggest that also the number of backward citations made by a patent can be used
to proxy the patent scope (Harhoff et al., 2003), others put forward that instead the number of backward
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references may measure the crowdedness of a given technological area (Lanjouw and Schankerman, 2001), all
in all empirical evidence tends to support the idea that backward citations have a positive correlation with
the number of forward citations received by a patent. I hence include the variable Citations made among the
relevant covariates used to estimate the propensity score. Since not only the number of backward citations,
but also their distribution among different technological fields, being a proxy for the basicness of a patent
(Trajtenberg et al., 1997), correlates both with the arrival of forward citations and with its technological
impact, I also add the variable Originality, described in section 4.2.3, to account for the degree of novelty of
the patent. I also include the variable Number of citation 1999 and Γ1999, to consider the technological and
economic impact of the patent right before the arrival of the treatment.

I cannot include the variable Number of Citations 2006 in the vector of relevant covariates, since it is
clearly affected by the receipt of the treatment and it is measured at the end of the period we are taking into
account. Nevertheless to account for potential systematic difference across treated and non-treated patents
along this dimension, I will add the difference in the number of citations received by a specific patent between
1999 and 2006 as a control variable in the in CDiD regression.
In addition to variables collecting information about patent’s attributes I also include variables that grasp
information about the firm who first applied for the patent, recorded in the year of the filing. The rational
for this choice is twofold. On the one side, patents belonging to larger and well performing firms might be
more visible and therefore cited more often. On the other, firms investing higher share of their revenues
in R&D might also engage more resources in basic research, and they could hence have higher chances to
introduce major technological breakthrough. I then include the variables U.S.Corporation, Size, Sales, Net
Income, and R&D investment to account for assignees’ heterogeneity.

Once that I identified the relevant variables affecting the probability of receiving the treatment, I proceed
to the estimation of the propensity score. In order to recover it I run a probit regression of the treatment
variable, Treatment Procurement, on the set of relevant covariates listed in the previous section and then
predict the propensity propensity score. Table 7 reports the results of the regression.

[Table 7 about here.]

As expected several patent and firm characteristics affects the probability of receiving the treatment. For
what concerns patents’ attributes in particular the technological field, the originality of the patent, the
number of citation received until 1999, and the number of claims appear to affect positively the probability
of patent to be treated. Unexpectedly the number of citations made by a patent has a negative effect
on the likelihood of receiving the treatment, somehow in accordance with the hypothesis by Lanjouw and
Schankerman (2001) that a large number of backward citations may characterize more incremental inventions.
While the application year dummies do not seem to have any effect on the probability of receiving a citation
related to public procurement, the lag between the filing and the granting of the patent have a positive
effect, though the p-value is slightly above .1. For what concern the assignees’ attributes, being a U.S. based
corporation, having large revenues and net income is increasing the treatment likelihood, while, somewhat
surprisingly, R&D investment is reducing it.

4.5.2. Matching quality

Once that I have estimated the propensity score, I use it to implement the non-parametric matching22.
Among the different algorithm available to perform the matching, I implement the nearest-neighbor algo-
rithm, using the information from up to five neighbor and setting a ’caliper’ threshold. As Caliendo and
Kopeinig (2008) illustrate, the choice of the algorithm to use is a matter of trade-off between bias and ef-
ficiency. Using up to 5 control units to proxy for the counterfactual situation allows me to gain efficiency
in the estimation, while the caliper threshold, which imposes a tolerance level on the maximum propensity
score distance, ensures to reduce potential bias avoiding bad matches23.

22In order to perform the matching I use the stata module psmatch2, developed by Leuven and Sianesi (2003)
23As suggested by the rule of thumb first introduced by Rosenbaum and Rubin (1985) I set the caliper option to .02, a

value that corresponds approximately to .25 times the standard deviation of the propensity scores recovered with the probit
regression.
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Before implementing the CDiD estimate on the paired sample, I have to check whether the propensity
score matching procedure allows me to consistently estimate the average treatment effect by taking differences
in averages between the treated and the matched counterfactuals.
In the first place I have to check whether the common support condition holds. As mentioned in section 4.3,
this condition ensures that we estimate only effects in regions where two observations, the former belonging
to the treated and the latter to the control group, can have a similar participation probability. Lechner
and Gallen (2001) puts forward that it is possible to assess the overlapping between subsamples through a
graphic analysis of the propensity score density distribution, for the treated and the control group, before
the matching. Figure 6 displays the kernel density distribution for the treated and the control group, before
the matching. As the figure shows, though the shape of distributions differs, there is a large overlap between
the distribution of the propensity score of the treated and the not treated group, certifying the common
support condition to hold.

[Figure 6 about here.]

Secondly I have to find out if the matching on the propensity score actually manages to to balance
the distribution of the relevant variables in the control and the treatment group. The literature suggests
different methods to evaluate the matching quality. A common methodology, first introduced by Rosenbaum
and Rubin (1985), is the two-sample t-test to check for significant differences in covariate means, for both
groups, before and after the matching. Table 8 reports the t-test for all the covariates we included in the
probit regression to estimate the propensity score for the unmatched and the matched sample.

[Table 8 about here.]

As expected, before the matching, there is significant difference in the mean between the treated and the
control group for several variables such as the originality of the patent, the number of Citations, the generality
level before the treatment, technological fields and firms’ characteristics. As the right side of the table shows,
after the matching implementation, all these differences are no longer statistically significant, suggesting a
good performance of the matching procedure in balancing the covariates. Rosenbaum and Rubin (1985)
also propose to compute the standardized bias and to compare its size before and after the matching, in
order to asses the size of the bias reduction obtained through the propensity score matching method. Table
9 reports the mean and the median standardized bias, before and after the matching. Though there is no
clear threshold under which it is possible to tell the success of the matching procedure with certainty, a bias
reduction below 3 or 5 per cent is generally considered as sufficient (Caliendo and Kopeinig, 2008).

[Table 9 about here.]

As the table shows, after the matching both the the mean and the median standardized bias fall below
the two per cent level, confirming the high quality of the matching on the propensity score.
Finally, since intuitively matching procedure is implemented to “correct” for the difference in terms of
probability to receive the treatment between the treated and the control group, we can again look at the
visual representation of the propensity score distributions, and make a comparison before and after the
matching. As figure 7 displays, the difference in the kernel density distribution of the estimated propensity
scores abundantly reduces with respect to the pre-matching situation (figure 6), and the two distributions
almost perfectly overlap, once again suggesting that the propensity score matching procedure is succesfully
correcting for the selection on observable issue.

[Figure 7 about here.]

5. Results

5.1. Results of the CDiD estimator

Since the assessment of the matching quality ensures that I paired the group of treatment patents with
a suitable group of control patents, the problem of the selection on observables should be solved, and the
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treated and the control group should be on average observationally identical. Nevertheless, selection on
unobservables still represent a major concern and might bias the estimate. As described in section 4.3, I
therefore take advantage of the longitudinal nature of the dataset and recover the Conditional Difference-in
Differences estimator (CDiD), taking the differences in the mean generality level of the generality index Γ,
between the treated and control group, over time (i.e. 1999-2000 ). In particular I use fixed effect regression
to recover the CDiD estimator. This allows to control for patent and time fixed effect, eliminating the
selection due to time-invariant individual heterogeneity. As briefly discussed in section 4.5, I also control for
the difference in the number of citations obtained by a patent in year 1999 and in 2006, that I could not
take into account in the propensity score estimation, including the variable Number of citations.
Since both the selection on observables and unobservables problem are taken into account, the CDiD esti-
mator consistently identifies the average treatment effect on the treated. In our case it hence identifies the
average effect of receiving a citation from a patent related to public procurement (Treatment Procurement)
on the change in the generality level Γ for patents that actually receive such a citation.

[Table 10 about here.]

Table 10 presents the results retrieved through the CDiD estimator. As the table shows receiving a citation
from a patent related to innovative public procurement has a positive and significant impact on the generality
level as measured by the index Γ, confirming the main hypothesis stated in section 3. In particular, receiving
the a citation from an innovation complementarity stimulated by public procurement and covered by a patent,
on average raises the generality level of the focal patent (the upstream technology) of 3.6 %, compared to
the counterfactual situation in which that specific citation did not arrive. As the table 10 shows, the change
in the number of citations over time appears to have very small, but still significant, negative effect on the
average change in the generality level of the focal patents. This suggests that a new citation is more likely
to arrive from a patent class that is already citing the focal patent.

5.2. Robustness checks

5.2.1. The net generality index

The latter consideration may lead to think that the positive and significant impact of the treatment
presented in the previous section might be driven only by a direct effect of the citation coming from the
procurement related patent. The procurement related citation is in fact included among the citations used
to compute the generality index Γ. It might hence be that this specific citation, being the only one arriving
from a particular patent class, is directly lowering the concentration index without inducing any change in
the knowledge diffusion process with respect to the control patents. In order to rule out this hypothesis, I
also compute a second generality index, that I label Net Γ, which is computed exactly in the same way as the
previous one (Γ,see section 4.2.3), but removing the specific citation coming from the public procurement
related patent. I then compute the CDiD estimator on the matched sample I used in the previous section,
adopting Net Γ as the outcome variable. Table 11 reports the results of this robustness check.

[Table 11 about here.]

Results show that the effect of receiving a citation from a patent related to public procurement is still positive
and significant even when the procurement related reference is not taken into account for computing the
generality index. Even though the magnitude of this results can not be trusted since it is obtained removing
systematically one cites from the treated group only, it is worth to note that the size of the impact of the
treatment on the average generality change is even larger in this case (close to 5.8 per cent compared with
3.6 per cent in the previous estimation). This means that the afore mentioned hypothesis about a direct
effect of the procurement related citations on the average change in the generality index have to be rejected.
Removing that specific citation is in fact raising the effect of the treatment and hence decreasing the level of
concentration of citations across different patent classes for treated patents. This means, in turns, that on
average focal patents receive other citations from patents belonging to the same technological class of the
procurement related patents. The direction and the significance of the average treatment effect presented in
the previous section appear hence to be robust.
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5.2.2. Different measure of generality

A well known drawback of the generality measure developed by Trajtenberg et al. (1997) is that it
assumes that all the categories taken into account, i.e. US patent classes, are equidistant from each other in
the technology space, while this is clearly not the case in the real world. In order to partially correct for this
problem Hall and Trajtenberg (2004) computed different version of the generality index described in equation
??, using different classification system24 Following their example I also calculate two additional generality
indexes, Generality IPC and Generality HJT, based on two alternative classifications: the main international
patent class (IPC, approximately 1200 cells), and the Hall-Jaffe-Trajtenberg technology subcategories (HJT,
36 cells). As stressed by Hall and Trajtenberg (2004), each of these categorization may help to mitigate the
technological distance-issue given that on the one side the IPC classification, having more classes (1200), is
much more detailed than the USPTO one, and, on the other, the HJT categorization (first developed by
(Hall et al., 2001) is based on more equal groups of technologies. Table 12 presents the results for the CDiD
estimator computed using the Generality IPC and Generality HJT as outcome variables. As the table shows
in both cases the average effect of receiving a citation from a patent related to public procurement is positive,
significant and even larger in terms of magnitude with respect to the estimation retrieved using the USPTO
classification. This confirms that the result presented in section 5.1 is not driven by the specific classification
used to compute the generality index Γ, but is robust to more detailed and balanced categorizations.

[Table 12 about here.]

5.2.3. A placebo test

One common strategy used to validate estimates obtained through the difference in differences approach
is to implement a placebo test. This test consists in building a ’fake’ treatment group and re-estimate the
coefficient for the DiD estimator using the same control group. Obviously since the false treatment group is
not receiving the treatment, a positive (negative) significant coefficient for the DiD estimator in the placebo
test would suggest that the result of the focal DiD is biased. The control group and the treated group would
in fact follow different trends even in the absence of the treatment.
In order to rule out this possibility, I run a placebo test identifying a false treatment group of patents that
did not receive a citation from patents related to public procurement but that are similar to the one in the
original treated group along the same characteristics I used to build the control group. In particular I use
the same strategy that I adopted to find a suitable control group to spot credible ’fake-treated’ patents.
Clearly, patents in the control group are not available to be selected as patent in the fake treatment group. I
hence rerun the propensity score matching method as done (through probit regression and nearest neighbor
algorithm) in section 4.5. In this way I identify 886 fake-treated patents and I then recover the DiD estimator
comparing them with same control group used in the original estimation.

[Table 13 about here.]

Table 13 reports the results of the placebo CDiD. As it is possible to see, the effect of the fake-treatment is
close to zero and is not statistically significant. The placebo CDiD result therefore confirms that the finding
of the original CDiD are not driven by some underlying difference in trends between the treated and the
control, but only by the actual treatment.

5.2.4. Matching only on patent characteristics

Finally, I run an additional robustness check in which I use only patent-specific characteristics (i.e. not
assignees’ attributes) to find suitable control patents for the treated units. The rational for performing this
test is twofold. In the first place, I would like to rule out the concern that the results showed in the previous

24In particular they use: US patent class (approximately 400 cells), Hall-Jaffe-Trajtenberg technology subcategories (36 cells),
Main International Patent Class (approximately 1200 cells), Industry classification based on Silvermanâs IPC-SIC concordance
(Silverman 2002) for industry of manufacture, aggregated to the Hall-Vopel (1997) level (37 cells), and Industry classification
based on Silverman’s IPC-SIC concordance for industry of use, aggregated to Hall-Vopel level (37 cells).
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sections are driven by the fact that I considered only patents owned by public companies. Secondly, by
including patents owned by any kind of assignee, I will be able to enlarge the treated group and therefore
also to reduce potential drawbacks due to the limited size of the treated group

In order to perform this robustness check I hence apply the same empirical method described in section
4.3, but without limiting its scope to patents belonging to public companies. The sample then includes
patents owned by private and public companies, research institutes, universities, or individuals (coming
from U.S. and other countries) and reaches 170,226 units. The whole sample is then split in treated and not
treated group exploiting the same strategy used in the previous case. In this way I end up with a treated
group composed by 1,524 units, that I match with up to 5 suitable control patents in order to recover the
average treatment effect on the treated, again using the same CDiD technique portrayed in sections 4.3 and
4.525.

[Table 14 about here.]

only Table 14 reports the result of CDiD estimators for the group matched only on patent characteristics.
As the table shows receiving a citation from a patent related to public procurement still has a positive and
significant effect on the degree of generality of the cited patent. Moreover, the magnitude of the impact
seems to be larger with respect to the case in which only public companies were considered. Even though
the size of the effect cannot be entirely trusted since, as showed in section4.5, assignee specific attributes
play an important role in determining treatment participation, this result confirm that our the estimates
retrieved in the focal CDiD were not driven by the fact that only public companies’ patents were taken into
account.

6. Conclusions

Even though the contributions of economic historians and the theoretical work in the GPT literature
have long suggested a tight relation between public demand and the emergence of radical innovation, no
econometric work tried to investigate the role of innovative public procurement in raising the technological
generality of given technologies. In this paper I aimed at filling this gap through a patent data analysis.

Even if the literature in some case suggested that government demand has been able to directly produce
major technological breakthrough, here I hypothesized that public procurement, by stimulating additional
innovation complementarities in the application sectors, can increase the likelihood of diffusion of upstream
technologies among different sectors, making them more pervasive with respect to the counterfactual situation
in which no stimulus from public demand occurred. To empirically test this hypothesis I exploited patent data
and in particular patent citations. Citations in fact allowed me to identify the linkages between innovations
induced by public procurement and their technological antecedents, and also to measure the degree of
pervasiveness of patents through the Generality Index, first introduced by Trajtenberg et al. (1997). On this
ground I formally hypothesized that receiving a citation from a patent related to public procurement raises
the generality level of the cited patent.

I hence designed a quasi-experiment exploiting the information of the original dataset I created using data
from four different sources: i) NBER patent data project; ii) Federal Procurement Data System (FPDS); iii)
USPTO full text and images database; iv) the Compustat North America Database. I compared the change
in the generality level Γ at two different points in time, 1999 and 2006, between treated and a control patents,
whose application date falls in the period 1993-1997 and who received at least 10 forward citations in 2006. A
patent was put into the treatment group if it received a citation from a patent related to public procurement
in year 1999 or 2000. In order to mitigate the potential bias due to selection on observed and unobserved
variables, I implemented a conditional difference-in-differences approach, matching treated patents with a
group of suitable control patents and looking at the change in generality over time. The results of the paper
suggest a positive and significant impact of innovative public procurement upon the generality of upstream

25The only difference is clearly that I do not include variables that grasp assignees’ specific characteristics in the probit
regression used to estimate the propensity score, but only patent attributes
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technologies. In particular, on average receiving a citation by a patent related to public procurement raises
the Generality Index of the cited patent of 3.6%, confirming the initial hypothesis.

As stressed throughout the paper I did not put forward that the mere presence of public procurement in
the application sectors can always lead to the arrival of very pervasive or radical technologies but only that
it may create the right soil to ’cultivate’ technologies that may, or may not, have the potential to become
very general. On this ground, the results of this paper appear to provide empirical support to the idea
that public demand could play a crucial role in setting in motion the virtuous cycle that may lead to, or
simply accelerate, the deployment of a new general purpose technology. ’Schumpeterian demand policies’
that pay attention to the technological composition of public procurement might then represent an effective
policy tool to spur innovation bandwagons and radical technological change (Antonelli, 2010). Moreover, this
technology intensive public demand might be mostly useful in those fields,, like green technologies, where
the private sector is not willing to invest enough due to the high degree of uncertainty (Mazzucato, 2013).
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Figure 1: BT diagram
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Figure 2: BT diagram with Procurement
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Figure 3: Quasi-experiment
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Figure 4: Distribution of Patents according to the number of forward citations received in 2006
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Figure 5: Quasi-experiment
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Figure 6: Distributions of the propensity score for treated and not treated group before the matching
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Figure 7: Distributions of the propensity score for treated and not treated group before the matching
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Table 1: Patents distribution across technology class

Category Technology class(CCL HJT) N Share
Chemicals 7280 10.2

Agriculture, Food, Textiles 89 0.1
Coating 901 1.3
Gas 248 0.3
Organic Compounds 554 0.8
Resins 1418 2.0
Miscellaneous 4070 5.7

Computer and Communications 29074 40.7
Communications 9353 13.1
Hardware and software 8410 11.8
Peripherals 3788 5.3
Information storage 6061 8.5
Miscellaneous 1462 2.0

Drugs and Medical 6083 8.5
Drugs 2253 3.2
Surgery and medical instruments 3455 4.8
Biotechnology 47 0.1
Miscellaneous 328 0.5

Electric and Electronics 17636 24.7
Electrical devices 2252 3.2
Electrica Lightning 977 1.4
Measuring and Testing 1529 2.1
Nuclear & X-rays 834 1.2
Power System 3253 4.6
Semiconductors Devices 6448 9.0
Miscellaneous 2343 3.3

Mechanical 6722 9.4
Material processing & Handling 1130 1.6
Metal working 927 1.3
Motors, Engine, Parts 1223 1.7
Optics 1239 1.7
Transportation 995 1.4
Miscellaneous 1208 1.7

Others 4643 6.5
Agricolture, Husbandry, Food 197 0.3
Amusement Devices 158 0.2
Apparel & Textiles 149 0.2
Earth Working & Wells 646 0.9
Furniture 369 0.5
Heating 166 0.2
Pipes &Joints 135 0.2
Receptacles 319 0.4
Miscellaneous 2504 3.5

Total 71438 100
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Table 2: Descriptives

Patent characteristics mean sd
Application-grant lag 1.94 0.83
Cites received 2006 25.36 21.76
Cites made 11.27 13.61
Number of Claims 18.02 13.73
Originality 0.43 0.27
Application Year 1993 0.20 0.40
Application Year 1994 0.22 0.41
Application Year 1995 0.24 0.43
Application Year 1996 0.21 0.41
Application Year 1997 0.14 0.34
Assignee Characteristics mean sd
U.S. Corporation 0.75 0.43
Sales 25976 29884
R&D investment 1556 1661
Net income 682 2211
Number of employees 107.8 120.6
N 71438
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Table 3: Distribution across technology class of the patents related to public procurement

Category N Share
Chemicals 195 19.0
Computer and Communications 236 22.9
Drugs and Medical 34 3.3
Electric and Electronics 310 30.1
Mechanicals 155 15.1
Others 99 9.6

Total 1029 100
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Table 4: Descriptives for patents related to public procurement

mean sd
Patent characteristics
number of claims 21.82 16.17
Cites made 10.51 9.54
Application-grant lag 2.49 1.08
Applcation year 1999 0.40 0.49
Applcation year 2000 0.50 0.50
Applcation year 2001 0.08 0.26
Assignee Characteristics
U.S. entities .99 0.05
Total procurement dollars (million) 466 1910
Share of R&D procurement 0.46 0.46
Share of DOD procurement 0.56 0.43
Share of competed procurement 0.73 0.33
N 1029
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Table 5: Share of patents across HJT tech category (1-6) by treatment status

HJT tech category Share
Non-treated Treated

Chemicals 10.2 12.2
Computer and Communications 40.8 35.8
Drugs and Medical 8.6 3.1
Electric and Electronics 24.6 30.0
Mechanicals 9.4 12.6
Others 6.5 6.3
N 70539 903
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Table 6: Descriptives by treatment status

Non-treated Treated
mean sd mean sd

Patent characteristics
Application-grant lag 1.94 0.83 1.92 0.79
Cites received 2006 25.26 21.51 33.90 35.57
Cites received 1999 9.11 10.14 9.99 14.85
Cites made 11.27 13.65 10.92 10.69
Number of Claims 18.02 13.75 18.69 12.93
Originality 0.43 0.27 0.47 0.27
Γ 2006 0.57 0.23 0.64 0.21
Γ 1999 0.50 0.34 0.53 0.34
Application year 1993 0.20 0.40 0.20 0.40
Application year 1994 0.22 0.41 0.22 0.41
Application year 1995 0.24 0.43 0.23 0.42
Application year 1996 0.21 0.41 0.20 0.40
Application year 1997 0.13 0.34 0.15 0.36

Assignee Characteristics
U.S. Corporation 0.75 0.44 0.85 0.36
Sales 25858 29806 35125 34240
Net income 673 2199 1404 2915
R&D investment 1555 1660 1705 1764
Number of employees 107.36 120.42 143.25 135.76
N 70539 903
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Table 7: Probit results

Treated
b se t p

Treated
Number of claims .0018099∗ .0009558 1.893526 .058288
Citations made -.0023675∗ .0012581 -1.881906 .0598487
Originality .2254436∗∗∗ .0560177 4.024505 .0000571
Application Year 1994 .0199969 .0414727 .4821694 .6296856
Application Year 1995 -.0220617 .0430022 -.5130373 .6079252
Application Year 1996 -.0115794 .0450699 -.2569209 .7972398
Application Year 1997 .0769461 .0506414 1.51943 .1286543
Application-Grant Lag .0283305 .0174962 1.619236 .1053965
Number of citation 1999 .0045111∗∗∗ .0011864 3.802394 .0001433
Γ1999 .0469813 .0425341 1.104557 .2693515
Net Income .000019∗∗∗ 7.04e-06 2.697946 .0069769
R&D investment -.0001167∗∗∗ .0000172 -6.800907 1.04e-11
Sales 7.88e-06∗∗∗ 9.43e-07 8.356067 0
U.S. Corporation .2325874∗∗∗ .0372055 6.251425 4.07e-10
HJT subcat2 .2069472∗ .1143223 1.810208 .0702635
HJT subcat3 .2234078 .1873057 1.192744 .2329695
HJT subcat4 -.7251165∗∗ .3206278 -2.261553 .0237251
HJT subcat5 -.7389765∗∗∗ .1822697 -4.054302 .0000503
HJT subcat6 .0943127 .0814678 1.157668 .2469995
HJT subcat7 .0526638 .0763208 .6900324 .4901738
HJT subcat8 -.037311 .0775451 -.4811517 .6304087
HJT subcat9 -.3126514∗∗∗ .1038059 -3.011883 .0025963
HJT subcat10 -.1396962 .0864068 -1.616727 .1059372
HJT subcat11 -.0853306 .1147693 -.7434969 .4571809
HJT subcat12 -.5456036∗∗∗ .1499826 -3.637779 .000275
HJT subcat13 -.2502491∗∗ .1021471 -2.44989 .01429
HJT subcat16 -.1988865∗ .1135878 -1.750949 .0799546
HJT subcat17 .1310653 .1208216 1.084784 .2780175
HJT subcat18 .3865168∗∗∗ .0906971 4.261622 .0000203
HJT subcat19 .3919717∗∗∗ .1076293 3.641866 .0002707
HJT subcat20 .1410234∗ .084777 1.663463 .0962197
HJT subcat21 .0424543 .0802936 .5287377 .5969874
HJT subcat22 -.2549342∗∗ .1193446 -2.136119 .0326697
HJT subcat23 -.1624451 .1352674 -1.200918 .2297832
HJT subcat24 .1430589 .1163794 1.229246 .2189795
HJT subcat25 .2193313∗∗ .1024472 2.14092 .0322805
HJT subcat26 .4544197∗∗∗ .0979239 4.640538 3.48e-06
HJT subcat27 -.5022864∗∗∗ .1847292 -2.719042 .0065471
HJT subcat28 -.2654577∗ .1443956 -1.838406 .0660026
HJT subcat32 -.2152654 .169561 -1.269546 .2042466
HJT subcat34 .601023∗∗∗ .1732169 3.469771 .0005209
HJT subcat35 .3871127∗ .212692 1.820062 .0687495
cons -2.705938∗∗∗ .0931309 -29.0552 0
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Table 8: Descriptives statistics for the Unmatched and the Matched Sample

Not Matched Matched

Treated Control T-test m.d. Treated Control T-test m.d.
Number of Claims 18.714 18.018 1.5 18.714 18.687 0.04
Citations Made 10.927 11.183 -0.56 10.927 11.053 -0.24
Originality .47423 .42818 5.07∗∗∗ .47423 .48413 -0.80
Application Year 1993 .20222 .19746 0.36 .20222 .20467 -0.13
Application Year 1994 .21778 .21817 -0.03 .21778 .22133 -0.18
Application Year 1995 .22556 .23942 -0.97 .22556 .21881 0.34
Application Year 1996 .20444 .21008 -0.41 .20444 .20889 -0.23
Application Year 1997 .15 .13487 1.32 .15 .1463 0.22
Application-Grant Lag 1.9222 1.9413 0.492 1.9222 1.9381 -0.42
Number of citations 1999 10.023 9.1576 2.52∗∗ 10.023 10.344 -0.48
Γ1999 .53217 .49939 9.7 ∗∗∗ .53217 .53531 -0.20
Net Income 1404.2 676.5 9.74∗∗∗ 1404.2 1314.5 0.68
R&D investment 1702.7 1577.5 2.24∗∗ 1702.7 1768.3 -0.75
Sales 35140 26181 8.92∗∗∗ 35140 35669 -0.30
U.S. Corporation .85111 .74143 7.48∗∗∗ .85111 .852 -0.05
HJT subcatt2 .02333 .01278 2.79∗∗∗ .02333 .01978 0.52
HJT subcatt3 .00667 .00351 1.58 0.114 .00711 -0.11
HJT subcatt4 .00111 .00803 -2.32 ∗∗ .00111 .00178 -0.37
HJT subcatt5 .00444 .02053 -3.40∗∗∗ .00444 .004 0.15
HJT subcatt6 .08556 .05796 3.51∗∗∗ .08556 .07985 0.44
HJT subcatt7 .14111 .13395 0.63 .14111 .14467 -0.22
HJT subcatt8 .12 .12053 -0.05 .12 .12222 -0.14
HJT subcatt9 .02222 .0547 -4.27∗∗∗ .02222 .02244 -0.03
HJT subcatt10 .05556 .08727 -3.36∗∗∗ .05556 .05578 -0.02
HJT subcatt11 .02 .02096 -0.20 .02 .02311 -0.45
HJT subcatt12 .00667 .03262 -4.38∗∗∗ .00667 .00578 0.24
HJT subcatt13 .02444 .04984 -3.49∗∗∗ .02444 .02822 -0.50
HJT subcatt16 .01778 .03246 -2.48∗∗∗ .01778 .01511 0.44
HJT subcatt17 .01778 .01395 0.97 .01778 .01578 0.33
HJT subcatt18 .05778 .02143 7.41∗∗∗ .05778 .06281 -0.45
HJT subcatt19 .03222 .01169 5.63∗∗∗ .03222 .03444 -0.26
HJT subcatt20 .07111 .0463 3.51∗∗∗ .07111 .06711 0.33
HJT subcatt21 .08889 .09245 -0.37 .08889 .07911 0.75
HJT subcatt22 .01444 .03383 -3.21∗∗∗ .01444 .01578 -0.23
HJT subcatt23 .01111 .01626 -1.22 .01111 .00933 0.37
HJT subcatt24 .02111 .01317 2.07∗∗ .02111 .02222 -0.16
HJT subcatt25 .03667 .01728 4.40∗∗∗ .03667 .042 -0.58
HJT subcatt26 .04333 .01742 5.85∗∗∗ .04333 .04644 -0.32
HJT subcatt27 .00444 .01439 -2.50∗∗ .00444 .006 -0.46
HJT subcatt28 .00889 .01742 -1.95∗ .00889 .00867 0.05
HJT subcatt32 .00667 .00929 -0.82 .00667 .00778 -0.28
HJT subcatt34 .01 .00228 4.72∗∗∗ .01 .00956 0.10
HJT subcatt35 .00556 .00189 2.49∗∗ .00556 .00467 0.26
HJT subcatt37 .04111 .03582 0.85 .04111 .03844 0.29

N 70539 903 4232 900
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Table 9: Balance

Sample MeanBias MedBias
Unmatched 9.6 7.9
Matched 1.9 1.5

46



Table 10: Results of the CDiD estimator

GENERALITY
Coeff. se t p

Treatment-Procurement .0359102∗∗∗ .0110172 3.259462 .0011235
Time .0775832∗∗∗ .0049311 15.7335 1.65e-54
Number of cites -.0003439∗∗ .0001357 -2.534912 .011277
cons .5383647∗∗∗ .002176 247.4087 0
N 5135
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Table 11: Robustness check: Results of the CDiD estimator for the Net Generality outcome

Net GENERALITY
Coeff. se t p

Treatment-Procurement .0585177∗∗∗ .0113278 5.165857 2.48e-07
Time .0790914∗∗∗ .0049485 15.98283 3.74e-56
Number of cites -.0004303∗∗∗ .0001377 -3.125729 .0017836
cons .5392586∗∗∗ .0021894 246.3093 0
N 5135

48



Table 12: Results of the CDiD estimator for different measures of generality

GENERALITY IPC
Coeff. se t p

Treatment-Procurement .0574149∗∗∗ .0112526 5.102369 3.48e-07
Time .0889822∗∗∗ .0052292 17.01654 3.29e-63
Number of cites -.0006919∗∗∗ .0001604 -4.313417 .0000164
cons .4890606∗∗∗ .002381 205.4015 0

GENERALITY HJT
b se t p

Treatment-Procurement .0498474∗∗∗ .0105924 4.705959 2.59e-06
Time .0482736∗∗∗ .0046793 10.3165 1.04e-24
Number of cites -.0003184∗∗ .0001384 -2.300911 .0214369
cons .4418676∗∗∗ .0021578 204.7775 0

N 5135
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Table 13: Robustness check: Results of the CDiD estimator for the fake-treatment group

GENERALITY
Coeff. se t p

Fake-Treatment .005146 .0102683 .5011556 .6162832
Time .0766444∗∗∗ .0050333 15.22744 3.04e-51
Number of cites -.0002901∗∗ .0001443 -2.009723 .0445129
cons .5367823∗∗∗ .0022836 235.0647 0
N 5118

50



Table 14: Robustness check: Results of the CDiD estimator for patents owned by different kinds of assignees

GENERALITY
Coeff. se t p

Treatment-Procurement .0527449∗∗∗ .0083128 6.344996 2.34e-10
Time .0900577∗∗∗ .0045028 20.00055 4.78e-87
Number of cites -.0005597∗∗∗ .0001672 -3.348333 .0008164
cons .5277459∗∗∗ .0026812 196.8294 0
N 8722
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