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1. INTRODUCTION 

Meta-regression models that aim to control for various biases are increasingly implemented in 

observational research in empirical economics (e.g., Doucouliagos et al., 2012; Rusnak et al., 2013; 

Bruns et al., 2014). Observational research in economics, much like in many other scientific 

disciplines, utilizes mainly the regression framework to estimate the effect of interest while 

controlling for a potentially large set of possibly confounding variables. The flexibility of this research 

design and the corresponding wide range of obtainable estimates has been discussed in the seminal 

works of Hendry (1980), Leamer (1983), and Sims (1988). This flexibility may lead to a large number 

of false-positive findings, when control variables are selected in such a way as to obtain nominally 

significant results for the regression coefficient of the variable of interest.  The problem of false-

positives due to such analytical flexibility can pervade very diverse scientific fields (Ioannidis, 2005), 

but may be a major problem for empirical economics in particular (Ioannidis and Doucouliagos, 

2013), due to the ubiquitous use of complex regression models with multiple adjusting variables to 

choose from. The increasing application of experimental designs in economics may help improve the 

credibility of research findings in the field (Angrist and Pischke, 2010; Banerjee and Duflo, 2009) but 

there are limitations (Leamer, 2010; Keane, 2010). Many economic research questions may remain 

difficult or impossible to address with experimental designs, especially in macroeconomics (Stock, 

2010). Hence, observational research is likely to remain important at least in macroeconomic 

research.  

Accordingly, we probe here meta-regression analysis as an instrument to account for biases and 

improve the reliability of inferences from such observational research. Meta-regression analysis in 

economics was originally proposed to identify the sources of heterogeneity in observational research 

(Stanley and Jarrell, 1989). The regression coefficients of primary studies are regressed on primary 

study characteristics, such as variable definitions, estimation techniques, data sets, and functional 

forms. Subsequently, meta-regression analysis was further developed to identify genuine empirical 

effects while controlling for potential publication bias (Card and Krueger, 1995; Stanley, 2001; 2008). 

A genuine effect is characterized by a non-zero underlying coefficient that is consistently estimated 

by the primary regression. Accordingly, the t-value of an estimated regression coefficient should be 

associated with the precision of the estimate or the degrees of freedom if a genuine effect is present. 

This association can be utilized to test for genuine effects. Simulations have shown that meta-

regression models can identify genuine effects in literatures which are distorted by publication bias 

(Stanley, 2008; Moreno et al., 2009). However, other types of bias in primary regressions can also 

cause non-zero underlying coefficients that are consistently estimated by the primary regressions. Of 

particular concern is data-mining bias, which is produced when specific control (adjusting) variables 
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are dropped from the multivariable analysis so as to generate omitted-variable biases in order to 

obtain significant results for the estimated regression coefficient of interest.  

In this paper, we suggest addressing data-mining bias by controlling for primary regression 

specifications in the meta-regression in order to assess which primary regression specifications 

provide support for non-zero underlying coefficients. We discuss and evaluate the performance of 

meta-regression models in identifying non-zero underlying coefficients in the presence of publication 

and data-mining bias for a variety of research scenarios prevalent in empirical economics and the 

social sciences in general. Our results reveal that meta-regression models can single out whether a 

given primary regression specification provides evidence for a non-zero underlying coefficient for the 

variable of interest. Hence, transparency of model selection decisions on the corresponding 

estimates may be increased and genuine effects may be identified by theoretical considerations that 

discuss whether a given theory is supported by a non-zero underlying coefficient in an adequately 

specified primary regression. Our results also imply that the current practice of meta-regression 

analysis in economics may be misleading as the issue of data-mining bias is not adequately 

addressed. 

Section 2 discusses the flexibility of observational research designs and the corresponding 

uncertainty about the reliability of inferences, particularly in the presence of incentives to search for 

specific results, e.g. theory-confirming results. Section 3 presents the meta-regression models and 

the approach how we suggest addressing data-mining bias. Section 4 and 5 present the designs and 

results of a controlled and worst-case simulation, respectively. Section 6 discusses the implications of 

our findings and section 7 concludes.  

 

2. FLEXIBILITY IN OBSERVATIONAL RESEARCH DESIGNS 

Empirical research is embedded in an incentive system that is likely to cause severe biases in 

published empirical findings. The publishing process is characterized by selection for statistically 

significant results and often spectacular and extreme results are rewarded with publication in the top 

journals (Young et al., 2008). Moreover, strong theoretical presumptions about the relation between 

two variables can foster a search for theory-confirming results (Card and Krueger, 1995). Once 

findings become rooted in the literature, authors may then try to adjust their empirical findings to 

conform with the anticipated expectations of reviewers (Frey, 2003). These biases may exaggerate 

the economic significance of an effect or, in the worst case, provide systematic support to false 

theories. The low acceptance rate of leading economic journals contributes further pressure toward 

providing significant and theory-conforming results to start or advance a career in academia (Card 
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and DellaVigna, 2013). The search for specific results need not necessarily result from a conscious 

manipulation of the estimate of interest, but might be rather the outcome of an unconscious 'playing 

with the data'. The large degree of flexibility of observational research designs lends itself to 

obtaining basically almost any estimate desired (Leamer, 1983; Leamer and Leonhard, 1983).  

Consider a theory that states � causes � and the corresponding data generating process (DGP) is:  

� = �� + ��� + 		, (1) 

where � is the effect of interest, � is a 1x� vector of control variables, � is a 1x� vector of 

coefficients, and  ��		|	�, �] = 0. Suppose � is actually zero, but authors try to obtain a positive and 

statistically significant estimate of �.
2
 Toward fulfilling this aim, many adjustments can be made in 

the estimation procedure, including the variable definitions, the functional forms, and the estimation 

techniques. The set of control variables is of particular interest in this decision process as 

modifications are simple to implement and explanations for opting for a specific set of control 

variables are generally easy to find. Suppose an empirical literature with � = 1,… , � independent 

studies that estimate � by using � = 1,… , � different primary regression specifications where each 

primary regression specification is estimated multiple times by different primary studies (� ≪ �). The 

estimated primary regressions become: �� =	������ + �� �!� � + 	�̂�	, (2) 

where ���� is the OLS estimate of �, ��  is a 1x$� vector with a subset of control variables of � with $� 

as the amount of control variables of primary regression specification � and �!�  is a 1x$� vector of 

estimated coefficients corresponding to �� . A given study can thus ‘play with the data’ by including 

and excluding control variables from the primary regression to obtain omitted-variable biases. We 

denote the exploitation of omitted-variable biases to achieve positive and significant ���� as data-

mining bias, irrespective of whether it is conscious or unconscious. This bias is of great concern in 

empirical economics. The extreme bounds analysis of Leamer and Leonard (1983) specifically 

addresses this issue by advocating reporting the fragility of ���� with respect to changes in the set of 

control variables. Asymptotically, experimental designs do not suffer from this data-mining bias due 

to the randomization of � with respect to � (Leamer, 1983). A second source of bias in ���� is the 

selection of positive and significant results from those results provided by sampling variability. In an 

extreme case, only those 5% of ���� are published that are significant by chance, whereas the 

remaining 95% remain in the file-drawer (Rosenthal, 1979). We denote this bias as publication bias 

                                                           
2
 Without loss of generality we assume throughout the paper that the desired estimate is positive rather than 

negative. 
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and it is considered to diminish with sample size. The precision of ���� increases with sample size and 

the probability of a large estimate by chance decreases.  

In observational research, data-mining bias and publication bias are the two main instruments that 

can be utilized to select positive and significant ���� for publication. We summarize the properties of a 

primary literature under publication selection in the following proposition. 

Proposition 1. Let an empirical literature estimate � in (1) by the use of regressions as expressed in 

(2), then:  

���� = � + ���%&' + ����(& , 
where OVB denotes omitted-variables bias and SV sampling variability. Further, define  � + ��%&' as 

the underlying coefficient of primary regression specification �. Each study � consistently estimates 

the underlying coefficient of the respective primary regression specification: 

plim-.→0���� = � + ��%&', 
where 1� is the sample size of study �. Let publication selection for positive and statistically significant ���� (PS) by means of data-mining bias and publication bias as discussed above affect the empirical 

literature. It follows:   

� 2 �����34�� 5678 = � 9 ��34�� :67; + � 2���%&'�34�� 5678 + � 2����(&�34�� 5678 > =>.@AB,-.CDECF	, 
where se! IJ is the estimated standard error of ����, � 9K.ELMN�O4.E :67; denotes data-mining bias, and 

� 9KP.EQM�O4.E :67; denotes publication bias.  

Proof 1. See Appendix A1. 

As a result, the findings comprising the published literature are distorted if authors utilize data-

mining and publication bias to obtain a positive and significant ����. In this case, we can expect 

� RKP.E�O4.E S67T > =>.@AB,-.CDECF	, even if � = 0. Meta-regression analysis aims to integrate the published 

���� in order to identify genuine effects while explicitly addressing publication bias and data-mining 

bias.  

 

 



6 

 

3. META-REGRESSION MODELS 

3.1 Fixed-Effects Model 

The benchmark of our analysis is the weighted average of ���� which is known as the fixed-effects 

model in meta-analysis: 

���� = U + V� (3) 

which is estimated by weighted least squares (WLS) with weights equal to the inverse of the variance 

of ����. This gives more weight to estimates which are based on larger sample sizes and are more 

precise. In the absence of biases, UW is a consistent estimate of the genuine effect � (Sutton et al., 

2000). However, UW becomes biased in the presence of publication selection for positive and 

significant ����. In contrast to randomized experiments, each ���� consistently estimates the underlying 

coefficient of the respective primary regression specification (� + ��%&') rather than � and, 

consequently, meta-regression analysis in observational research cannot directly infer whether � = 0 or  � ≠ 0. But, meta-regressions can address data-mining bias by including dummy variables 

for each primary regression specification in the meta-regression allowing the meta-analyst to 

transparently discuss by the use of theory whether a non-zero underlying coefficient is caused by a 

genuine effect (� ≠ 0) or by an omitted-variable bias alone (��%&' ≠ 0 while actually � = 0). The 

weighted average of ���� can be augmented to: 

���� = YU�Z� + V�[
�\F 	 , (4) 

where Z� = 1 if study � uses primary regression specification s, namely ��  as control variables, and 

zero otherwise. Accordingly, ^>: 	U� = 0 tests for a non-zero underlying coefficient for each primary 

regression specification s. Whether a non-zero underlying coefficient is caused by a genuine effect or 

omitted-variable bias has to be discussed on a case-by-case basis, and decisions may have to be 

made based on theoretical or other prior considerations which may or may not be valid. Though 

adding dummy variables for each primary regression specification helps addressing data-mining bias, 

publication bias can still bias UW� as an estimate of the underlying coefficient. 

Proposition 2. Let an empirical literature be distorted by publication selection for positive and 

significant ���� as discussed in Proposition 1, then the weighted mean of ���� (3) provides a biased 

estimate of the genuine effect (�): 
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��UW|67] = � + � _̀̀
à∑ ���%&'�34��cd�\F
∑ 1�34��c 	d�\F 	 |	67eff

fg + � _̀̀
à∑ ����(&�34��cd�\F
∑ 1�34��c 	d�\F 	 |	67eff

fg. 
The augmented weighted mean of ���� (4) provides the meta-analyst an unbiased estimate of the 

underlying coefficient of each primary regression specification in the absence of publication bias, but 

it is still biased in the presence of publication bias: 

��UW�|67] = � + ��%&' + � _̀̀
à∑ Z� 	����(&�34��cd�\F
∑ Z� 	 1�34��c 	d�\F 	 |	67eff

fg. 
Proof 2. See Appendix A1. 

 

3.2 Precision-Effect Test 

Based on Egger et al. (1997), Stanley (2001; 2008) suggests the Precision-Effect Test (PET) to 

synthesize empirical findings in economics: 

=�� = 		h + U 1�34�� +	V�	, (5) 

where =�� is the =-value of ����. This model is considered to be largely robust with respect to data-

mining and publication bias (Stanley, 2008). Accordingly, ^>: U = 0 is interpreted as a direct test for a 

genuine effect. We, again, suggest augmenting the PET model to estimate the underlying coefficient 

of each primary regression specification: 

=�� =		Y(h�Z� +[
�\F U�Z� 1�34��) +	V�	.		(6) 

If a non-zero underlying coefficient is present, the t-value follows a non-central t-distribution with a 

centrality parameter that is an increasing function of precision. In the absence of a non-zero 

underlying coefficient, the t-distribution is randomly distributed around zero without relation to 

precision. As pure publication bias does not cause the underlying effect to be non-zero, PET is robust 

with respect to this bias. Specifically, if positive and significant ���� are systematically selected from 

those results offered by sampling variability, we expect the t-value to be constant rather than 

increasing with precision. Hence, ^>: 	U� = 0 tests whether the use of primary regression 

specification � supports a non-zero underlying coefficient corrected for publication bias.  
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Proposition 3. Let an empirical literature be distorted by publication selection for positive and 

significant ���� as discussed in Proposition 1 and let the primary sample sizes be sufficiently large to 

ensure that the =�� are approximately normally distributed. Then, the PET model (5) provides a biased 

estimate of the genuine effect (�): 

��UW|67] = � + �
_̀̀
àkl�	 m���%&' + ����(&�34�� , 1�34��nopq r 1�34��s |67

eff
fg. 

 

For the augmented PET model (6), three cases can be distinguished: 

i. If � + ��%&' = 0, publication selection for positive and significant ���� can be only achieved by 

publication bias. Then: ��UW�|67] = � + ��%&'. 
ii. If � + ��%&' > 0  and additional publication bias is not required to achieve positive and 

significant ����, then: 

��UW�|67] = � + ��%&'. 
iii. If � + ��%&' > 0 and additional publication bias is required to achieve positive and significant ����, then: 

��UW�|67] = � + ��%&' + �
_̀̀
àkl�	 mZ� ����(&�34�� , Z� 1�34��nopq rZ� 1�34��s |67

eff
fg. 

Proof 3. See Appendix A1. 

In the presence of publications selection for positive and significant ����, case i and ii are mainly 

prevalent in the empirical literature. Case iii is a special case of ii where a primary regression 

specification is characterized by a small � + ��%&' in combination with studies with a low degree of 

precision. In this case, publication bias has to be used to achieve positive and significant ���� for low 

degrees of precision, whereas publication bias is not necessary for larger degrees of precision. 

The use of �34�  as independent variable is known to introduce bias as �34� is only an estimate of �3� 
(Macaskill et al., 2001). This is in particular a problem if the primary studies are based on small 
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samples and �34� is not precisely estimated. Furthermore, PET can be only applied if the same 

measurement units for � and � are used across primary studies (Becker and Wu, 2007). 

 

3.3 p-Value Tests  

The prior models use the t-value as the dependent variable, either implicitly in the fixed effects 

model by weighting ���� with the inverse of its variances or explicitly in PET. However, the t-value 

provides a non-constant relation to the p-value, as the variance of the t-distribution decreases with 

degrees of freedom (df). We do not expect necessarily an increasing t-value if df increase and a 

genuine effect is present. In an extreme case, we may observe a set of ���� that provide decreasing p-

values with increasing df, but constant t-values across the observed range of df. Bruns (2013) 

proposes the use of probit-transformed p-values as dependent variable to overcome this issue: 

t�� = u ΦCF wx�2y ,																�z	���� < 0,
ΦCF w1 − x�2y , �z	���� ≥ 0	, 

where x�  is the p-value of a two-sided t-test of ���� and ΦCF is the probit transformation. As a result, t�� provides values of the standard normal distribution with exactly the same p-value as the 

corresponding original t-value. Hence, t�� ensures a constant relation to the level of significance. The 

p-Value Test with Precision (pVT-se) is given by: 

t�� = Y(h�Z� +[
�\F U�Z� 		 1�34��) +	V�, (7) 

where ^>: U� = 0 tests whether the use of primary regression specification � supports a non-zero 

underlying coefficient corrected for publication bias. This model requires also the same units of 

measurement for � and � across studies (Becker and Wu, 2007) and it is also biased (Macaskill et al., 

2001). Bruns (2013) further extends this meta-regression model to the p-Value Test with Degrees of 

Freedom (pVT-df) to overcome these issues:  

t�� = Y(h�Z� +[
�\F U�Z�		��z��) +	V�	, (8) 

where ^>: U� = 0 tests whether the use of primary regression specification � supports a non-zero 

underlying coefficient corrected for publication bias. The use of �z avoids the error-in-measurement 

bias and is also independent of the used units of measurement. Model (7) and (8) relax the 
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assumption of Proposition 3 that the primary sample sizes have to be sufficiently large to ensure that 

the =�� are normally distributed. The reminder of the proposition holds for both models. 

 

4. CONTROLLED SIMULATION 

4.1 Design 

We analyze to what extent meta-regression models can single out which primary regression 

specification supports a non-zero underlying coefficient while adjusting for publication bias. For this 

purpose, we employ a controlled simulation that allows us to vary a single parameter at a time in 

order to identify the determinants of the performance of the presented meta-regression models.  

Each meta-regression model integrates � primary studies. We consider � = 20, 40, 60, 80, 160, 320 

to cover meta-regression analyses of small to very large literatures that can be typically observed in 

economics (Doucouliagos and Stanley, 2011). We draw the sample size of each primary study 

� = 1,… , � from a gamma distribution with scale parameter 
��(�CF>) and shape parameter 

(�CF>)��� , 

rounded the obtained value to the next integer, and added 10. Hence, 10 is the smallest primary 

study sample size and we can vary mean and variance of the gamma distribution independently. We 

consider � = 30, 60, 120, 240, 480 as well as �c = 15c, 30c	, 60c, 120c, 240c to cover a large 

variety of potential primary sample size distributions. We analyze those combinations of � and � for 

which � ≥ 2 ∗ � holds to ensure that the truncation at 10 does not prevent � from adequately 

presenting the true mean. The sample size distribution of the primary studies is right skewed for 

small sample sizes and more symmetric for larger sample sizes, just as we can observe in empirical 

economics. The DGP of each study � is:  

�� = �	�� + �	�� +	�� 	(9) 

with ��~	�(0,1) and ��	~	�(0,1). The dependence between the independent variables is modeled 

as  �� = �� + ��  with ��~	�(0,1). � is the effect of interest and we consider � = 0, 0.2, 0.4, 0.8 to 

evaluate size and power for very small to large genuine effects. Each primary study estimates the 

following regression: 

�� = ������ + 	�̂�	.			(10) 
We model data-mining bias by introducing a fixed omitted-variable bias of � = 0.2 for 

�c studies in 

(9), whereas the data for the remaining 
�c studies are generated with � = 0. As a result, those 

�c 
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studies for which � = 0 holds provide unbiased ����, whereas those 
�c studies for which � = 0.2 holds 

provide biased ����.  

Publication selection for positive and significant ���� is implemented by resampling (9) until the first 

h% of ���� are positive and significant, whereas the remaining (100-h)% are estimated without 

resampling. We consider ℎ = 0, 25, 50, 75, 100. Publication selection is applied symmetrically to 

both cases, namely that with fixed omitted-variable bias and without fixed omitted-variable bias. For 

those 
�c studies for which � = 0, publication selection is purely driven by publication bias, achieved 

by resampling (9) until the first h% of studies provide positive and significant ���� solely by chance. For 

those 
�c studies for which � = 0.2, publication selection need not rely on publication bias alone, but 

can also utilize the fixed omitted-variable bias to obtain positive and significant ����. Thus, the 

outcome is a primary literature with the same amount of correctly estimated and misspecified 

studies and both groups of studies are affected by the same degree of publication selection. The 

dummy variables for the correct and misspecified primary regression specifications are modeled as Z�\����O�� = 1 if � = 0 and zero otherwise and Z�\�� = 1 if � = 0.2 and zero otherwise.  

We not only evaluate the performance of meta-regression models that control for primary regression 

specifications, but also the performance of meta-regression models that pool primary regression 

specifications irrespective of whether they are either correctly specified or misspecified. This 

scenario mirrors the current practice of meta-regression analysis in economics where non-zero 

underlying coefficients are largely interpreted as direct evidence for genuine effects (Stanley, 2008) 

and, consequently, primary control variables are only accounted for in a non-systematic way. Hence, 

the rejection of H>: α������ = 0 is understood as a direct test of a genuine effect although this 

rejection may be also caused by omitted-variable bias.  

Meta-regression models can include further variables to take other sources of heterogeneity into 

account (Stanley and Doucouliagos, 2012). Given that it is unlikely to cover all sources of 

heterogeneity, we base the inference in our simulations on heteroskedasticity-consistent standard 

errors that are designed for small samples (Long and Ervin, 2000) as meta-analysis may often face 

small sample sizes. 

 

4.2 Results 

Apart from the fixed-effects model, all meta-regression models that control for primary regression 

specifications provide a reasonable performance in identifying non-zero underlying coefficients. The 
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likelihood ratio positive (LR+) of H>: α������  = 0 for a small genuine effect of 0.2 is presented in 

Figure 1 measuring the ratio of the probabilities of a true-positive finding and of a false-positive 

finding. Given rejection of H>: α������  = 0, larger values of LR+ indicate a larger probability that a 

non-zero underlying coefficient indeed exists. Even for a very small genuine effect of 0.2, LR+ is 

typically >3 and exceeds 10 in most cases for a genuine effect of 0.4 (Fig. A2.1). LR+ values are higher 

with larger primary sample size variance, meta-analytic sample size, and size of the genuine effect, 

and with smaller mean of the primary sample size distribution.  

 

Figure 1:  Likelihood ratio positive (¡¢£ = ¤�¥O���¦O ) for H>: α������  = 0  with � = 0.2. LR+ is shown for small 

(� = 60 and �c = 30c), medium (� = 120 and �c = 60c), and large (� = 480 and �c = 240c) primary sample 

size distributions and very small (�/2 = 10) and small (�/2 = 20) meta-analytic sample sizes.   

The likelihood ratio negative (LR-) of H>: α������  = 0 for a small genuine effect of 0.2 is presented in 

Figure 2 measuring the ratio of the probabilities of a false-negative finding and of a true-negative 

finding. Given acceptance of H>: α������  = 0, smaller values of LR- indicate a larger probability that 

the underlying coefficient is indeed zero. For a small genuine effect of 0.2 the LR- can be large 

indicating that the meta-regression models may have difficulties with detecting small non-zero 

underlying coefficients reflecting case three in Proposition 3.  However, this problem is resolved for 

large primary sample sizes and for a genuine effect of 0.4 (Fig. A2.2).  
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Figure 2:  Likelihood ratio negative (¡¢C =	 FC¤�¥O�FC��¦O ) for H>: α������  = 0  with � = 0.2. LR- is shown for small 

(� = 60 and �c = 30c), medium (� = 120 and �c = 60c), and large (� = 480 and �c = 240c) primary sample 

size distributions and very small (�/2 = 10) and small (�/2 = 20) meta-analytic sample sizes.   

For  H>: α¨© = 0, LR+ and LR- are essentially the same as for H>: α������  = 0 (Fig. A3.1 and Fig. 

A3.2). The reason is that in both cases a non-zero underlying coefficient exists either caused by a 

genuine effect or by an omitted-variable bias.  

The rejection rates of H>: α������ = 0 for the absence of a genuine effect and the presence of a small 

omitted-variable bias are shown in Figure 3. If  H>: α������ = 0 is interpreted as a direct test for a 

genuine effect, the rejection rates in the absence of a genuine effect are the type I errors. 

Accordingly, meta-regression models that pool primary regression specifications and interpret a non-

zero underlying coefficient as direct support of a genuine effect provide highly inflated type I errors 

in the presence of data-mining bias.   
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Figure 3:  Rejection rates of H>: α������ = 0  with � = 0 and � = 0.2. Rejection rates are shown for small 

(� = 60 and �c = 30c), medium (� = 120 and �c = 60c), and large (� = 480 and �c = 240c) primary sample 

size distributions and large (� = 80) and very large (� = 160) meta-analytic sample sizes.   

 

5. WORST-CASE SIMULATION: THEORY-CONFIRMATION BIAS 

5.1 Design 

The results of the controlled simulation show that those meta-regression models that include 

dummy variables to control for different primary regression specifications provide good performance 

in identifying which particular primary regression specification indeed supports a non-zero 

underlying coefficient. We also evaluate the performance of these models for a worst-case scenario 

to assess the limitations of these models. For this purpose, we consider an empirical literature that 

suffers from theory-confirmation bias. Strong theoretical presumptions may force authors to provide 

theory-confirming results (Card and Krueger, 1995). If these results become established, reviewers 

and editors may tend to reject results that deviate, causing authors to search for, and give greater 

weight to, theory-conforming results (Frey, 2003). Suppose a theory states that � causes � and the 

corresponding DGP is:   

� = �� + 0.2	�F + 0.4	�c + 0.2	oª + 0.2	o« + 			, (11) 
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where � = 0.5	k + 0.5	�¬ with �¬	~	�(0,1), �- = 0.5	k + 0.5	�- for 1 = 1,2, o- = 0.2	k +0.8	�- for 1 = 3,4 with  �-	~	�(0,1), k	~	�(0,1), and 		~	�(0,1). Each independent variable is a 

weighted sum of a common component (C) and an iid component to model the dependence 

between these variables. The coefficient of interest is � and the desired result is a positive and 

significant ���� in order to confirm the theory that states � causes �. oª and o« are variables which are 

understood to be unquestionably relevant for �, whereas the relevance of  �F and �c is a matter of 

debate. We model small to large omitted variable biases by either omitting �F and �c individually or 

both simultaneously. 

Authors start with estimating the true regression including �, �F, �c, oª and o«. If ���� is positive and 

significant by chance, study � is published with 100%. The probability of a non-significant ���� or a 

negative and significant ���� being published is specified to be 1% as these results contradict the 

existing theory. If the result is not published, authors drop �Ffrom the regression to create the 

smallest omitted-variable bias available. If ���� becomes positive and significant, the result is 

published with a probability of 80%, as some reviewers may ask whether the estimated regression 

includes all relevant variables. If ���� is not yet positive and significant, the probability of it being 

published will again only be 1%. If the result is not published, researchers add �F again and drop �c 

to exploit the next larger omitted-variable bias of the questionable variables. If ���� becomes positive 

and significant, the result is published with a probability of 60% and with a probability of 1% 

otherwise. Finally, �F and �c are dropped simultaneously to obtain the largest omitted-variable bias 

possible. If ���� becomes positive and significant, the result is published with 40% and otherwise with 

1%. If positive and significant results still elude the authors, the results remain completely 

unpublished. This search for significant results is not necessarily a conscious process, but it can be 

also thought of as ‘playing with the data’. The outcome is either way a biased literature that makes 

use of data-mining bias and publication bias to achieve a biased estimate that confirms the theory 

that states � causes Y.  

We consider two underlying genuine effects for this theory-confirmation search process. First, we set � = 0 indicating that the theory is completely false, although empirical evidence suggesting that this 

theory is true will be overwhelming. For this scenario, we consider the nominal significance level to 

be 0.05. Second, we consider � = 0.2 to investigate how the tendency towards theory confirmation 

impacts the performance of meta-regression models when there is a very small effect of � on � that 

may, in fact, be economically irrelevant. In this case, the search for theory-confirming results 

exaggerates the size and significance of this effect to highlight its economic importance. Therefore, 

we set the nominal significance level to 0.001 for this scenario.  
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We evaluate PET, pVT-df and pVT-se due to their reasonable performance in the controlled 

simulation. We consider very small (� = 30 and �c = 15c), medium (� = 120 and �c = 60c), and 

moderate (� = 240 and �c = 120c) primary sample size distributions. We meta-analyze those 

empirical literatures that have at least 20 observations per primary regression specification to 

achieve a suitable degree of reliability. Accordingly, each meta-regression analysis faces always a 

literature with four different primary regression specifications, each of them used by at least 20 

primary studies. Therefore, we choose the meta-analysis sample size to be = 160, 320, 640.  

We compare meta-regression models that control for each primary regression specification by 

dummy variables with meta-regressions that do not account for different primary regression 

specifications and simply pool all estimates. Those meta-regressions that pool the estimates are 

again supposed to reflect the current practice of meta-regression analysis in economics where meta-

regressions control for primary control variables in a non-systematic way. Our focus is on the 

comparison of the test for a non-zero underlying coefficient in the correctly specified primary 

regression (^>: U����O�� = 0) with ^>: U¤��­O® = 0.  

 

5.2 Results 

If no genuine effect is present and H>: α������ = 0 is understood as a direct test of a genuine effect, 

then the rejection rate of H>: α������ = 0 measures the type I errors. Figure 4 presents the rejection 

rates of H>: α������ = 0 in the absence of a genuine effect as well as the rejection rates of H>: α������  = 0. The pooled meta-regression models provide highly inflated type I errors, whereas 

those meta-regression that control for primary regression specifications by the use of dummy 

variables provide adequate type I errors for medium and moderate primary sample size distributions. 

For small primary sample size distributions, only pVT-df can provide adequate type I errors due to the 

error-in-measurement bias in the other meta-regression models as they use the estimated standard 

error of the regression coefficient as independent variable.   

Figure 5 illustrates that as soon as a genuine effect is present (� = 0.2) those models that account 

for primary regression specifications provide a reasonable power (H>: α������  = 0). Those models 

that pool all primary regression specifications (H>: α������ = 0) provide again high rejection rates. 

Therefore, these models are unable to distinguish between the presence of a genuine effect and the 

solely presence of omitted-variable biases as both cause a non-zero underlying coefficient.  
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Figure 4: Rejection rates of H>: α������  = 0 (triangles) and H>: α������ = 0 (circles) in the absence of a genuine 

effect � = 0. Rejection rates are shown for different meta-analytic sample sizes (k) and for very small (� = 30 

and �c = 15c), medium (� = 120 and �c = 60c), and moderate (� = 240 and �c = 120c) primary sample 

size distributions.  

 

Figure 5: Rejection rates of H>: α������  = 0 (triangles) and H>: α������ = 0 (circles) in the presence of a small 

genuine effect � = 0.2. Rejection rates are shown for different meta-analytic sample sizes (k) and for very 

small (� = 30 and �c = 15c), medium (� = 120 and �c = 60c), and moderate (� = 240 and �c = 120c) 

primary sample size distributions.  

The results of the worst-case simulation of theory-confirmation bias support the findings of our 

controlled simulation. Even if a primary literature provides almost only positive and significant 

results, but without a genuine underlying effect, meta-regressions that control for primary regression 

specifications can identify the presence and absence of non-zero underlying coefficients, whereas 

meta-regressions that do not control for primary regressions specifications almost always suggest the 

presence of a non-zero underlying coefficient given data-mining bias. 
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6 DISCUSSION 

The simulation results support that meta-regression models can address publication bias defined as 

the selection of positive and significant results from those results offered by sampling variability. This 

finding is consistent with prior simulation results (Stanley, 2008; Moreno et al., 2009). However, pure 

publication bias is likely to be dominated by data-mining bias in empirical economic research as the 

variation of control variables, or model assumptions in general, can be much easier implemented 

than the estimation of the same model for new, different samples. The simulation results further 

support that meta-regression models that control for each primary regression specification by the 

use of dummy variables can identify which primary regression specifications provide support for non-

zero underlying coefficients. This finding helps to address data-mining bias in observational research 

as the transparency of the relation between model selection decisions and the corresponding 

presence of non-zero underlying coefficients can be greatly increased. However, data-mining bias 

cannot be resolved by meta-regression models as a non-zero underlying coefficient can be caused by 

either a genuine effect or omitted-variable bias. Distinguishing between these two sources of a non-

zero underlying coefficient requires theoretical speculations and may be valid or invalid.  

Currently, a non-zero underlying coefficient, measured by the association between the t-statistic and 

precision, is largely understood as direct support for a genuine empirical effect (Stanley, 2008). 

Therefore, current meta-regression analyses account for primary control variables in a non-

systematic way, rather than accounting for the conditional nature of the estimated regression 

coefficient by controlling for entire primary regression specifications in the meta-regression. Our 

analysis shows how misleading the outcome of these meta-regression models can be in the presence 

of data-mining bias. As the estimated regression coefficients of correctly specified and misspecified 

primary regressions are pooled, these meta-regression models almost always point to the presence 

of a non-zero underlying coefficient without providing the ability to understand which primary 

regression specification is actually the source of this non-zero underlying coefficient. As the 

conditions under which a non-zero underlying coefficient occurs cannot be unambiguously identified, 

the meta-analyst is unable to discuss the presence of genuine effects even if strong theoretical 

considerations could be utilized. 

We suggest that meta-regression models should provide a comprehensive overview of which primary 

regression specifications support non-zero underlying coefficients enhancing the transparency of 

model selection decisions on the corresponding estimates of interest. Wider appreciation and 

adoption of such methods may also increase pressure on authors of primary studies to increase 

transparency of their model selection. Meta-regression analysis may discuss whether a given theory 

is supported in adequately specified primary regressions or whether support can be only found in 
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primary regressions that may suffer from omitted-variable bias. Such an analysis may greatly increase 

our understanding of a given empirical field by identifying which conditions lead to non-zero 

underlying coefficients and whether these conditions reasonably mirror a given theory. However, we 

should acknowledge that the convincing identification of genuine effects in the presence of data-

mining and publication bias heavily relies on the strengths of the discussed theories. Theoretical 

considerations may be valid or invalid and particularly in fields in which we conduct meta-analysis 

theory may be often weak.    

Most importantly, meta-regressions need to be applied carefully and with transparency. Otherwise, 

they may suffer from similar data-mining biases as the primary studies which they synthesize. Poorly 

conducted meta-regression analysis can be dangerous as the authority of meta-analytic results claim 

to be superior to the results of primary studies and increased precision may be spurious (Egger et al., 

1998). Our suggestion to control for entire primary regression specifications in the meta-regression 

allows us to address data-mining bias in a transparent way, but it is limited to empirical literatures 

that provide plenty of the same primary regression specifications. The common habit of providing a 

set of (selective) regression models to proof the robustness of the estimate of interest eases this 

data requirement. 

 

7 CONCLUDING REMARKS 

Observational research designs, particularly utilized by empirical economics and the social sciences in 

general, suffer from a large degree of analytical flexibility and the corresponding wide range of 

obtainable estimates. Accordingly, scientists may face substantial uncertainty about the reliability of 

inferences, particularly in the presence of incentives towards selecting specific results for publication, 

e.g. theory-confirming results. Meta-regressions may be helpful to address the issue of data-mining 

and publication bias in observational research designs. We suggest controlling for each primary 

regression specification in the meta-regression allowing the meta-analyst to infer which primary 

regression specifications provide evidence for non-zero underlying coefficients. The results of both 

the controlled and worst-case simulation support that meta-regression models are capable to 

distinguish between primary regressions specifications with a non-zero underlying coefficient and 

those without a non-zero underlying coefficient in the presence of publication bias. Hence, meta-

regression models may help to address the issue of data-mining bias by increasing the transparency 

of model selection decisions on the corresponding presence of non-zero underlying coefficients. 

However, whether such a non-zero underlying coefficient is caused by a genuine effect or omitted-

variable bias can only be determined by theoretical speculations.  
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Appendix 

A1: Proofs 

Proof of Proposition 1:  

Based on the DGP given in (1) and the corresponding primary regressions given in (2), it follows: 

���|�, �� ] = �� +	�� 	�� � + �¯��°	��°� ±�, �� ² 	+ ��	|�, �� ], (61) 

where ��° is the complementary subset to ��  such that ��° is a 1xx�vector of those control 

variables which are not included in ��  with x( = � − $�. If study � estimates regression (2) with 

control variables ��  and omission of the relevant variables ��° , the omitted-variable biases become �¯��°	��°� ±�, �� ²	. For each variable in ��°, we can write �¯��³	��³±�, �� ² with ´ = 1,… , x� and it 

follows:  

	� R��³ 	w��³ + µ¶���³·CF¶�	y S�, �� T 
with ¶ = {�, �}. This leads to: 

�¯��³��³±�, �� ² = w��³�[º� + �� �� »¼½¾¿ + À¯V�³|�, �� ²y��³				(62) 
with �¯V�³|�, �� ² = ��³�[F� + �� �� » ½Á¿ and to: 

� R��³µ¶���³·CF¶�	|�, �� T = ��³�[c� + �� �� » ½Â¿ .			(63) 
The omitted-variable biases are based on ��³�[º measuring the conditional association between � and ��³ and ��³ measuring the relevance of ��³ for �. Sampling variability of ��³�[º is represented by ��³�[F 

and sampling variability of ��³ by ��³�[c. We can further write: 

��	|�, �� ] = ����[ª� + �� ��  ½Ã¿ , (64) 
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where ���[ª represents the sampling variability of estimating �. Inserting P2, P3, and P4 in P1 leads 

to: 

���|�, �� ] = Ä� + ����[ª +	Y��³�[º��³ + ��³�[F��³ + ��³�[c¤E
³\F 	Å�

+ �� Ä	�� � + ��  ½Ã¿ +	Y �� »¼½¾¿��³ + �� » ½Á¿��³ + �� » ½Â¿¤E
³\F 	Å. 

We can define ���%&' = ∑ ��³�[º��³¤E³\F  and ���(& = ����[ª +	∑ ��³�[F��³ + ��³�[c¤E³\F  , then: 

���� = � + ���%&' + ����(& . 
If the sample size of a given primary study, 1�, increases, the probability to obtain large ����(& 

vanishes: 

plim-.→0���� = plim-.→0µ� + ���%&' + ����(&· 

= � + ��%&' + plim-.→0µ����(&· 

= � + ��%&'. 
If publication selection for positive and significant ���� distorts the literature, then: 

2 �����34�� 5678 	> =>.@AB,-.CDECF	 
and from this follows: 

� 9 ��34�� :67; + � 2���%&'�34�� 5678 + � 2����(&�34�� 5678 > =>.@AB,-.CDECF	∎ 

 

Proof of Proposition 2: 

The weighted average of ���� (3) under publication selection is: 

��UW|67] = � _̀̀
à∑ ����	�34��cd�\F
∑ 1�34��c 	d�\F 	 |	67eff

fg
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= � _̀̀
à∑ � + ���%&' + ����(& 	�34��cd�\F

∑ 1�34��c 	d�\F 	 |	67eff
fg
 

= � + � _̀̀
à∑ ���%&' + ����(& 	�34��cd�\F

∑ 1�34��c 	d�\F 	 |	67eff
fg
 

= � + � _̀̀
à∑ ���%&'�34��cd�\F
∑ 1�34��c 	d�\F 	 |	67eff

fg + � _̀̀
à∑ ����(&�34��cd�\F
∑ 1�34��c 	d�\F 	 |	67eff

fg. 
The augmented weighted average of ���� (4) under publication selection is: 

��UW�|67] = � _̀̀
à∑ Z� ����	�34��cd�\F
∑ Z� 1�34��c 	d�\F 	|	67eff

fg
 

= � + � _̀̀
à∑ Z� ���%&'�34��cd�\F
∑ Z� 1�34��c 	d�\F 	 |	67eff

fg + � _̀̀
à∑ Z� ����(&�34��cd�\F
∑ Z� 1�34��c 	d�\F 	 |	67eff

fg
 

= � + ��%&' + � _̀̀
à∑ Z� 	����(&�34��cd�\F
∑ Z� 1�34��c 	d�\F 	 |	67eff

fg . ∎ 

 

Proof of Proposition 3:  

The estimate of UW in the PET model (5) under publication selection is: 

��UW|67] = �
_̀̀
àkl�	 m �����34�� , 1�34��nopq r 1�34��s |67

eff
fg
 

= �
_̀̀
àkl�	 m� + ���%&' + ����(&�34�� , 1�34��nopq r 1�34��s |67

eff
fg
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= � + �
_̀̀
àkl�	 m���%&' + ����(&�34�� , 1�34��nopq r 1�34��s |67

eff
fg. 

The estimate of UW� in the augmented PET model (6) under publication selection is: 

��UW�|67] = �
_̀̀
àkl�	 mZ� �����34�� , Z� 1�34��nopq rZ� 1�34��s |67

eff
fg
 

= � + �
_̀̀
àkl�	 mZ� ���%&'�34�� , Z� 1�34��nopq rZ� 1�34��s |67

eff
fg + �

_̀̀
àkl�	 mZ� ����(&�34�� , Z� 1�34��nopq rZ� 1�34��s |67

eff
fg
 

= � + ��%&' + �
_̀̀
àkl�	 mZ� ����(&�34�� , Z� 1�34��nopq rZ� 1�34��s |67

eff
fg. 

In the first case with � + ��%&' = 0, publication selection for positive and significant ���� can be only 

achieved by publication bias. For a given primary regression specification, �34�� decreases with the 

primary sample size and, thus, the probability to achieve large ����(& decreases as well. Specifically, in 

the presence of pure publication bias we expect: 

� 2Z� ����(&�34�� |678 > =>.@AB,-.CDECF ≈ 2. 
It follows: 

kl�	 mZ� ����(&�34�� , Z� 1�34��n ≈ 0 

and  

��UW|67] = � + ��%&'. 
In the second case with � + ��%&' > 0,  additional publication bias is not necessary to achieve 

positive and significant ���� apart from the special case that is discussed in the third case. It follows: 

kl�	 mZ� ����(&�34�� , Z� 1�34��n ≈ 0 

and  
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��UW|67] = � + ��%&'. 
The third case is a special case of the second case where � + ��%&' > 0, but � + ��%&' is very small 

and primary studies with low precision are present for this primary regression specification. In this 

special case, publication bias is required to achieve positive and significant ���� for small degrees of 

precision but not for larger degrees of precision. It follows: 

kl�	 mZ� ����(&�34�� , Z� 1�34��n < 0 

and 

��UW�|67] = � + ��%&' + �
_̀̀
àkl�	 mZ� ����(&�34�� , Z� 1�34��nopq rZ� 1�34��s |67

eff
fg . ∎ 
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A2: LR+ and LR- for a Genuine Effect of È = É.Ê 

Figure A2.1:  Likelihood ratio positive (¡¢£ = ¤�¥O���¦O ) for H>: α������  = 0  with � = 0.4. LR+ is shown 

for small (� = 60 and �c = 30c), medium (� = 120 and �c = 60c), and large (� = 480 and �c = 240c) primary sample size distributions and very small (�/2 = 10) and small (�/2 = 20) meta-

analytic sample sizes.   
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Figure A2.2:  Likelihood ratio negative (¡¢C =	 FC¤�¥O�FC��¦O ) for H>: α������  = 0  with � = 0.4. LR- is 

shown for small (� = 60 and �c = 30c), medium (� = 120 and �c = 60c), and large (� = 480 and �c = 240c) primary sample size distributions and very small (�/2 = 10) and small (�/2 = 20) meta-

analytic sample sizes.   
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A3: LR+ and LR- for a Fixed Omitted-Variable Bias of � = É. Â 

Figure A3.1:  Likelihood ratio positive (¡¢£ = ¤�¥O���¦O ) for H>: α¨© = 0  with � = 0.2. LR+ is shown for 

small (� = 60 and �c = 30c), medium (� = 120 and �c = 60c), and large (� = 480 and �c = 240c) 

primary sample size distributions and very small (�/2 = 10) and small (�/2 = 20) meta-analytic 

sample sizes.   
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Figure A3.2:  Likelihood ratio negative (¡¢C =	 FC¤�¥O�FC��¦O ) for H>: α¨© = 0  with � = 0.2. LR- is shown 

for small (� = 60 and �c = 30c), medium (� = 120 and �c = 60c), and large (� = 480 and �c = 240c) primary sample size distributions and very small (�/2 = 10) and small (�/2 = 20) meta-

analytic sample sizes.   

 

 

 

 

 

 


