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Abstract

This article presents a sequential decision approach to study investments in en-
vironmentally dirty and clean technologies. We develop two models and compare
the results to check for robustness. After showing how the system can converge to
lock-in into an undesirable dirty technology, we examine the effects of recombinant
innovation of the existing technologies. A mechanism of endogenous competition is
described involving a positive externality of increasing returns to investment. In-
creasing returns are counterbalanced by recombinant innovation, which is a force
characterized by a negative or positive externality depending on the dynamics of the
system. We find conditions in which lock-in can be avoided or escaped. Finally we
study the symmetry breaking of an environmental policy that charges charges a price
for polluting. We evaluate if and how an economy locked into a dirty technology can
be unlocked and move towards the clean technology. In addition, we compare the
cumulative pollution output of different scenarios, so that we can evaluate the most
attractive policy from an environmental angle irrespective of whether escape from
dirty technology occurs at all, or occurs early or late.

JEL classification: O33, Q55.
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1 Introduction

Various studies have modeled competition between two or more different technologies for
adoption or investment in R&D (Dosi, 1982; Arthur, 1989; David and Foray, 1994). Here we
want to extend this literature by relieving assumptions and complicating the conceptual
framework. In many cases a new technology is the result of recombining two or more
existing technologies in a modular way. The expectation of fruitful recombinant innovations
may therefore drive decisions about R&D investment in the existing technologies (van den
Bergh, 2008). We propose recombinant innovation as a force that counterbalances the
positive externality of the competition mechanism.

Modularity of technologies and their complementarity are likely to be crucial ingredients
of successful recombination. This may involve the application of a new technology to a
core technology, or be the result of spillovers between different industries. Complementary
technologies are usually recombining in a modular way, as is the case in microelectronics,
where different units are combined to form a new electronic instrument. Many examples of
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recombinant innovation are found in the area of environmental technologies. The hybrid car
combines a conventional internal combustion engine with an electric propulsion system. In
a Combined Cycle Power Plant a gas turbine generates electricity while waste heat is used
to make steam to generate additional electricity via a steam turbine. Even more striking
is the integrated photovoltaic and gas-turbine system, where wasted heat is collected by
photovoltaic devices (Jaber et al., 2003). A further example are power plants and vehicles
based on fuel cells: different types exist, which are based on alternative electrolytes (alkaline
solutions, polymer membranes, etc.); these allow for spillovers and recombination. Another
case is photovoltaic films, which combine solar cells and thin layers technologies. In general
recombinant innovation creates links between industries that were previously far from each
other. One example are the construction and solar technology industries, with the so-called
Building-Integrated Photovoltaics: photovoltaic materials are used to replace conventional
building materials in parts of the building envelope such as the roof, skylights or facades.

We may conceptually widen the pool of competing recombinant options considering
that two technologies must not necessarily be substitutes to compete. Even if two tech-
nologies show some degree of complementarity, capital and labour constraints mean a
choice is needed between developing the one or the other. Consequently the two technolo-
gies becomes substitutes in the investment decision of this firm. This is the case of large
corporations that are active in more than an industry. For example, Sanyo and Sharp,
which are traditionally active in consumer electronics, are now also developing and selling
renewable energy technologies, especially photovoltaic devices.

We propose a theoretical model of competing recombinant technologies that can explain
the different historical paths of technological advance and possibly indicate if and how to
intervene to guide the development of environmentally clean technologies. We consider
competition between a “dirty” and “clean” technology. Recombination of these technolo-
gies is possible, which gives rise to a technology with favorable environmental (clean) and
economic (viable) characteristics. This model allows to address the issue of unlocking the
economy from the undesired dirty technology. More generally, the need for more efficient
systems of energy production and consumption often calls for combining technologies that
before were competing or unrelated. This is where our model finds its main motivation.

The optimal diversification of research portfolios has been studied by Dasgupta and
Maskin (1987): in an uncertain environment parallelism of investments should not be
considered as waste, unless increasing returns outweigh the benefits from diversification.
Zeppini-Rossi and van den Bergh (2008) analyse the optimal investment in two technologies
when recombinant innovation is taken into account, assuming the probability of recombi-
nant innovation to be larger the more diversified is the system of parent technologies.
Recombinant innovation is the emergence of a new technology or product resulting from
the combination of two or more “parent” technologies that already exist. An investment in
recombinant innovation represents an activity characterized by exploratory research, which
typically involves uncertainty about whether a successful recombination will appear or not.
Investment in an established technology, instead, represents a more certain strategy.

The model here sets the recombinant innovation problem in a sequential decision frame-
work similar to the ones of Banerjee (1992), Bikhchandani et al. (1992) and Kirman (1993).
The sequential decision framework of the investment decision allows to address path de-
pendence and lock-in. The basic idea of our model is that at each time t one firm sets
its share of capital invested in the two competing technologies. This firm thus decides
whether to specialize or to diversify its technological portfolio, taking into account increas-
ing returns on investment and the probability of recombinant innovation. Both depends on
history, i.e. on previous decisions by other firms. The event of lock-in is caused by the self-
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reinforcing mechanism of increasing returns. This mechanism counterbalances recombinant
innovation, which can possibly trigger unlocking.

Our model can be seen to uniquely combine elements of Arthur (1989) and Zeppini-
Rossi and van den Bergh (2008). We develop a sequential decision model of recombinant
innovation in which we introduce the self-reinforcing effect of increasing returns on invest-
ment. We offer a second model which extends the urn schemes of Arthur et al. (1987) and
Dosi et al. (1994) with recombinant innovation. This allows us to compare the results and
check the robustness of our findings. We distinguish between different situations in which
lock-in can be avoided or not. By introducing a critical mass effect into the probability
of recombinant innovation we also show situations in which a convergence path leading to
the dominance of one technology may be reverted, so that lock-in may be escaped. Finally,
we extend the model with an environmental policy that charges a price for pollution. Dif-
ferent emission intensities of the clean and dirty technologies break the symmetry of the
system. Recombinant innovation limits the pollution abatement if the environmental pol-
icy is strong. But if policy stringency can not be high, recombinant innovation represents
a good compromise.

The paper is organized as follows. In Section 2 we develop the model of sequential
investment decisions with recombinant innovation and with the positive externality of
increasing returns to investments. In Section 3 we take a classical urn model of increasing
returns and extend it with a mechanism of recombinant innovation. Section 4 studies the
symmetry breaking of environmental policy and the effects of recombinant innovation on
the abatement of pollution. Section 5 concludes.

2 Investments with recombinant innovation

2.1 A sequential decision model

Arthur (1989) proposed a famous model of competing technologies to explain technological
path-dependence and lock-in. Our model is different from his in two important respects.
Firstly, our model entails an investment decision problem, and not the adoption of a tech-
nology. Secondly, there is no innovation in Arthur’s model, while we allow for recombinant
innovation of the two competing parent technologies. The recombinant innovation never
reaches the state where it enters the competition between technologies, but the expectation
of its occurrence affects agents’ decisions.

The model is constructed as follows. There is a pool of infinitely many firms that are
called, each one at a different time, to make a decision on the allocation of capital on
two technological projects. All firms are equal, in that they do not have heterogeneous
intrinsic preferences for one or the other technology. Time is discrete, and in every period
t a firm makes an investment decision for the two available technologies. Such a decision
is expressed by a share αt which is the proportion devoted to technology a. The rest goes
to technology b. Extreme cases are specialization (either αt = 0 or αt = 1) or symmetric
diversification (αt = 1/2). Technology a is dirty, meaning that it is more polluting, while
technology b is clean. These two technologies are competing with each other, but at
the same time may also recombine to deliver an innovative technology. Recombinant
innovation emerges with some positive probability pt, which is larger the more diversified is
the investment. The probability pt depends on the proportion of the cumulative investment
in parent technologies.

Firms are boundedly rational and set αt taking into account the value of the probability
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of recombinant innovation in the previous period pt−1 and the actual proportions of parent
technologies. Let na,t and nb,t be the values at time t of cumulative capital invested in
technology a and in technology b, respectively. Investment by each firm is normalized to
1, so that, if at time t a firm chooses to focus on technology a, for instance, na,t increases
by a unit, while nb,t stays unchanged. This is formalized in the following equations:

na,t = na,t−1 + αt (1)

nb,t = nb,t−1 + 1 − αt

If w = na,0 + nb,0 is the initial condition, the total number of investments is given by
na,t + nb,t = w + t. The dynamics of αt is driven by the sequential decisions of firms. The
decision problem is twofold: a firm must decide whether to specialize or to diversify; and,
in case specialization is preferred, which technology to choose (a or b). When facing the
investment decision the firm has to balance two forces, namely the probability pt and the
returns to adoption for each technology. The first means a force towards maximal diversity
or α = 1/2, while the second produce a force towards specialization.

The probability of recombinant innovation pt is formalized as the balance of the cumu-
lative investment in the two technologies (Zeppini-Rossi and van den Bergh, 2008):

pt = 4e
na,tnb,t

(na,t + nb,t)2
e ∈ [0, 1] (2)

where e ∈ [0, 1] is a measure of the effectiveness of the recombination process. It captures
how easily the two technologies recombine.1 Note that p can be expressed as the product
of the proportions of technology investments: if we define the proportion of technology b
as xt = nb,t/(na,t + nb,t), we have pt = 4ext(1 − xt).

In order to close the model we need an equation that sets the value of the firms’
investment share αt. Firms decide based on the following rule of thumb: if the probability
of recombinant innovation is large, it is better to diversify the investment. If it is low, it
is better to go for specialization. The part of the investment that is not equally allocated
goes to technology a with probability q. All this is expressed by the following rule:

αt =
1

2
pt−1 + βt(1 − pt−1) βt ∼ binomial(0, 1; q) (3)

There are five variables and two parameters in this model: one variable (yt) is random,
while the others (na,t, nb,t, αt and P e

t ) are deterministic and depend on each other in a
“circular” way: nt → P e

t → αt+1 → nt+1 . . . . If we “freeze” the random variable, we have
a deterministic two-dymensional system: knowledge of the vector (na,t, nb,t) is enough to
compute all variables at time t + 1. We develop the model starting from a simple scenario
in which the specialization decision between the two technologies is completely random
and does not depend on actual proportions (we call this “binomial specialization”). Later
on we introduce a positive externality from actual proportions due to increasing returns in
the specialization decision.

2.2 Constant probability of choice

We start assuming that q is constant, which makes β a simple random variable with
Bernoully distribution. In this setting the only feedback from previous decisions occurs

1The factor 4 normalizes the maximum value of this balance function to 1, which is attained when the
two technologies are equally represented (na,t = nb,t).
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through the probability of recombinant innovation pt. Two equally good technologies are
described by q = 1/2. The firm’s decision αt is a stochastic process that depends on the
random draws of βt. So are also pt and (na,t, nb,t), through equations (2) and (1). In table 1
we list the values of αt corresponding to some values of p, for the two possible realizations
of βt. Once the statistical distribution of βt is specified by the definition of q in (3), it is

p = 0 p = 1/2 p = 1
βt = 0 0 1/4 1/2
βt = 1 1 3/4 1/2

Table 1: Values of αt under different conditions

possible to compute the conditional expected value of next period investment share. If q
is constant we have:

Et[αt+1] =
1

2
pt + Et[βt+1] − ptEt[βt+1] =

(

1

2
− q

)

pt + q (4)

In the particular case q = 1/2 we have Et[αt+1] = 1/2. Allowing q to be different from 1/2
we have a superior technology. In the context of an environmental innovation, the dirty
technology a is assumed to perform economically better, in the sense of larger returns to
investment stemming from lower costs and higher efficiency. This requires to set a value
q < 1/2. The recombination effectiveness e sets the strength of recombinant innovation and
supposedly determines whether the system locks-in into one technology or converges to a
diversified scenario. Figure 1 presents a simulation2 for the case q = 0.2. The dirty technol-
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Figure 1: Constant probability of choice. One simulation run for e = 0.2 and q = 0.2.

Notes: up-left is the cumulative value of the investments. Up-right is the proportion of investment in technology b.

Down-left is the probability of emergence pt. Down-right is the investment share α.
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ogy (a) grows much faster than the clean one. The probability of recombinant innovation
pt oscillates well below the effectiveness e, due to unbalanced cumulative investments na,t

and nb,t. Many more firms decide to focus on the dirty technology.

2.3 Choice as a Polya process

Now we introduce a self-reinforcing mechanism of increasing returns to investment in parent
technologies. Assume the probability q of the binomial variable βt (equation 3) is a function
of the proportion of technological investments. The resulting process for αt is formally
identical to the one expressed by equation (3). The substantial difference is that q now
depends on past realization of xt and then also on past realizations of αt. Let us substitute
equations (2) and (3) in (1):

na,t+1 = na,t + 2e
na,tnb,t

(na,t + nb,t)2
+ βt+1

[

1 − 4e
na,tnb,t

(na,t + nb,t)2

]

(5)

This equation can be written in terms of the proportion of investments xt = nb,t/(na,t+nb,t):

xt+1 = xt

w + t

w + t + 1
+

1

w + t + 1

[

2ext(1 − xt)(1 − 2βt+1) + βt+1

]

(6)

≃ xt +
1

w + t

[

2ext(1 − xt)(1 − 2βt+1) + βt+1

]

where the approximation holds for a time t >> 1. The process xt resembles the generalized
Polya processes of Arthur et al. (1987). We will refer to this model as AEK henceforth.
Such processes fall into the class of non-homogeneous Markov chains.3

The binomial variable βt now depends on previous values of xt. The positive feedback
of increasing returns to investments is expressed by setting the probability q equal to an
increasing function f of xt called allocation function. A straightforward specification is the
identity function f(x) = x: in this case the probability of the event βt = 1 (the firm at
time t invests more in technology b) is

qt ≡ xt =
nb,t

na,t + nb,t

(7)

When nb,t > na,t we have qt > 1/2, while qt < 1/2 as soon as nb,t < na,t. Increasing returns
enter the investment share process αt, together with the bet on recombinant innovation.
These two forces are opposing each other: the first one pulls αt either to 0 or 1; the
second one is directed towards α = 1/2. Here we report some simulations of this model.
The graphs of figure 2 are to be compared with the ones of figure 1: with a very low
effectiveness of recombinant innovation (e = 0.2), the positive feedback q = xt produces
an effect similar to a constant q = q∗ 6= 1/2 in the previous model. The proportion xt

drifts away from an equal share and the cumulative investments na,t and nb,t grow very
differently. The investment share α attains more often values close to 0 than to 1 and it is
characterized by a large volatility. The main difference with respect to the previous model
is that here no one knows which technology will ultimately dominate the other. Only
initial realizations matter. Recombinant innovation has a weak impact. A quite different
picture arises when the effectiveness is large (figure 3, e = 0.8): now the investment share
oscillates very close to 0.5, so that the two technologies keep an almost equal proportion.

2This and the following models have been implemented with Matlab.
3The non-homogeneity is due to the presence of t in the equation of motion (na,t + nb,t = w + t).
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Figure 2: Choice as a Polya process. One simulation run for e = 0.2.

Notes: up-left is the cumulative value of the investments. Up-right is the proportion of investment in technology b.

Down-left is the probability of emergence pt. Down-right is the investment share α.
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Figure 3: Choice as a Polya process. One simulation run for e = 0.8.

Notes: up-left is the cumulative value of the investments. Up-right is the proportion of investment in technology b.

Down-left is the probability of emergence pt. Down-right is the investment share α.
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In order to get an intuition about the behaviour of the model in the long run we perform
several simulations for a few different conditions. Figures 4 and 5 report seven simulation
runs of the proportion xt. Different realizations of xt seem to converge always, although
not to a predefined limit. As Arthur et al. (1987) show, this is a peculiar attribute of a
standard Polya process, due to the infinite number of fixed points of the allocation function
f(x) = x (equation 7). Recombinant innovation does not alter this feature, although it
reduces the ranges of possible values for the long run limit of the process: as e becomes
larger, the proportion process xt converges to values close to 1/2.

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

x

Figure 4: Choice as a Polya process. Seven simulation paths of xt for e = 0.1.
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Figure 5: Choice as a Polya process. Seven simulation paths of xt for e = 0.7.
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2.4 Choice as a generalized Polya process

When the probability of choosing one technology is equal to the actual value of that tech-
nology’s proportion, the process always converge to a limit value (which is not known
initially, though). In order to better describe technological investment decisions, the allo-
cation function qt = f(xt) must have the following characteristics:

• It must be an endomorphism f : [0, 1] → [0, 1].

• It must be increasing: f ′(x) > 0 ∀x ∈ [0, 1]

• It must have three fixed points x1, x2, x3 with x1 < x2 < x3 such that x2 is unstable
while x1 and x3 are stable.

A function of this type has an S shape. For two equally good technologies without external
intervention (environmental policy) the unstable fixed point is x2 = 1/2 and the following
symmetry holds true: f(1 − x) = 1 − f(x). There are a few specifications that satisfy
these properties. The specific choice is not critical for the simulation results. We choose a
sinusoidal function:

qt = f(xt) ≡
1

2

{

1 + sin
[

π
(

x −
1

2

)]

}

(8)

Figures 6 to 8 report seven simulation runs for xt with different values of the effectiveness
of recombinant innovation (namely e = 0., e = 0.4 and e = 0.5). When the effectiveness
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Figure 6: Choice as a generalized Polya process. Seven simulation paths of xt for e = 0.1.

is very low, the process xt happens to converge either to x = 0 (lock-in into technology a)
or to x = 1 (lock-in into technology b). Convergence may be fast or slow, depending on
the initial events.4 This is a typical character of path-dependent processes. By increasing
the effectiveness e, limit values other than x = 0 and x = 1 appear, as is the case for
e = 0.4 (figure 7). If we increase e even further (figure 8), the proportion of investments
converges to x = 1/2. Lock-in to a single technology is avoided and the two technologies

4The functional specification does not alter the qualitative behaviour of the model, but only the speed
of convergence to a fixed point. If one chooses an allocation function which is much steeper in x = 1/2,
convergence to x = 0 or to x = 1 is much faster.
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Figure 7: Choice as a generalized Polya process. Seven simulation paths of xt for e = 0.4.

coexist in the long run. We can summarize these results as follows: when the effect of
recombinant innovation is weak, the usual character of self-reinforcing investment decisions
is preserved, with lock-in into one or the other technology depending on initial realizations.
If the probability of recombination of the two technologies is sufficiently large, instead,
the two technologies converge to equal proportions. In between there are values of the
effectiveness e for which none of these outcomes is realized: different runs of the model
lead to convergence to limit values that are not known a priori, as was the case with the
standard Polya allocation process. Of course the values of e for which lock-in is avoided
depend on the choice of the allocation function.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t

x

Figure 8: Choice as a generalized Polya process. Seven simulation paths of xt for e = 0.5.
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3 An urn scheme with recombinant innovation

3.1 The AEK model

An alternative way of combining increasing returns with recombinant innovation is by
building directly on the AEK model of Arthur et al. (1987), rather than first writing a
recombinant technologies model and than introducing the self-reinforcing effect. In the
AEK model the equation of motion for the proportion of one technology is the following:

xt+1 = xt +
1

w + t

[

β(xt) − xt

]

(9)

where w is the initial total number of choices and β is a random variable defined as:

β(x) =

{

1 with probability q(x)

0 with probability 1 − q(x)
(10)

This binomial random variable accounts for the increments of technologies’ choices based
on a probability given by the allocation function q(x). The latter controls the type of
feedback produced by the proportion x. As before, we are interested in positive feedback,
which means an increasing function q. We adopt a binomial logit specification, which is a
customary assumption of discrete choice models (Hommes, 2006):

q(x) ≡
exp(λx)

exp(λx) + exp(λ(1 − x))
=

1

1 + exp[λ(1 − 2x)]

The intensity of choice λ > 0 measures the rationality of firms in making a decision.
Extreme cases are λ = 0 (each technology is selected with equal probability, for any value
of x) and λ = ∞ (one technology is selected with probability one, as soon as x > 1/2).
The larger is λ, the more the allocation function resembles a step function, with stable
fixed points approximated by 0 and 1.5 Figure 9 reports seven simulations of the process
xt for λ = 8. Lock-in always occurs, with equal probability for each technology.

3.2 Adding recombinant innovation

Now we introduce the recombinant innovation force, which responds to the expectation
that available technologies recombine with a positive probability. Equation (9) becomes

xt+1 = xn +
1

w + t

[

α(xt) − xt

]

(11)

where the decision variable α is defined as

α(x; t) =















1 with probability [1 − p(x; t)]q(x)

1/2 with probability p(x; t)

0 with probability [1 − p(x; t)][1 − q(x)]

(12)

5We also used the sinusoidal allocation function q(x) = 1/2
{

1+sin
[

π(x−1/2)
]}

, but prefer the logistic
one as it is more flexible in describing different conditions in terms of convergence of the decision process
and possible asymmetries of available options.
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Figure 9: Urn model. Seven simulations of xt with λ = 8.

The probability of recombinant innovation is defined as:

p(x; t) = 4η(t)x(1 − x) (13)

This definition corresponds to the former equation (2). The effectiveness of recombinant
innovation is now dependent on time and represented by an increasing factor η(t) =
e[1 − exp(−vt)] which describes the advancement in the recombination technology. In
other words, we assume that given the parent technologies, the probability of recombinant
innovation grows exogenously as a result of technological advancement. Now recombinant
innovation is controlled by two parameters, namely e and v that together with c and d
(increasing returns), set the conditions for the historical technological paths. In particular
we want to find conditions where convergence to x = 0 or x = 1 (lock-in) is avoided. Figure
10 reports some simulation paths with e = 0.5 and v = 1. As we see, recombinant innova-
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Figure 10: Urn model plus recombinant innovation. Seven simulations of xt with λ = 8, e = 0.5 and v = 1.
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tion slows down convergence to one technology and in some case even avoids lock-in. The
difference with respect to the paths of figure 9 is remarkable. This effect is more evident
the larger the static effectiveness e.

3.3 A critical mass effect

The results of previous sections indicate that recombinant innovation may prevent lock-in
into one technology, as long as the effectiveness e is large enough and initial events do
not let one technology overcome the other too quickly. But by no means can recombinant
innovation as represented by the probability (13) unlock the system once the convergence
path has been initiated. What is missing is a regime shift, the occurrence of conditions
that could reverse the initial path. In this section we upgrade the model in this sense, by
introducing a critical mass effect in the probability of emergence. In order to do that we
re-define the dynamic effectiveness η as follows:

η(t) =
e

1 + exp(−v(t − t0))
(14)

The critical mass is represented by the flex point t0. The parameter v controls the speed
of technological advance, and together with t0 sets the initial value of the function. The
critical mass t0 separates two different regimes: below t0 marginal effects are increasing,
while above t0 they are diminishing. This is a typical feature of technological innovation,
where a new idea or technique needs to acquire a minimal amount of investment or recog-
nition before taking off. After this critical mass is reached, further improvements only add
diminishing benefits to the innovation.

By running several simulations we have seen how the critical mass effect becomes evident
if we set t0 sufficiently ahead in time, when the variance of the process is low enough and
one technology has clearly outperformed the other. In figures 11 and 12 we show some
simulated paths for t0 = 2000. The proportion of technology b changes its convergence
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Figure 11: Urn model plus recombinant innovation with a critical mass effect. Seven simulation of xt with e = 0.9,

v = 10 and t0 = 2000.
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Figure 12: Urn model plus recombinant innovation with a critical mass effect. Seven simulation of xt with e = 0.9,

v = 10 and t0 = 5000.

path in correspondence with the critical mass t0. After the reversal xt converges to 0.5.
Several conditions have been tried and the steepness v does not seem to play a role in this
model. Much more important is the static level of the effectiveness: e must be sufficiently
large in order to cause reversal. Based on simulation runs that we do not report here the
transition value for v = 10 and t0 = 2000 lies between 0.5 and 0.6. A relatively smaller
value of e can still lead to reversal when we use the sinusoidal allocation function. We
want to report some results for this function because it presents an interesting behaviour
for middle values of the effectiveness. Figure 13 shows how different runs may or may not
escape lock-in. The realizations of xt in the initial phase (before t0) play an important
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Figure 13: Urn model with sinusoidal allocation function plus recombinant innovation with a critical mass effect.

Seven simulations of xt with e = 0.4, v = 10 and t0 = 5000.
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role not just in selecting the leading technology, but also in the occurrence of a reversal:
if xt moves too far from 0.5 during this phase, the path of xt will converge to either 0
or 1, depending on which direction was taken initially. At t0 only a kink appears, with
considerable reduction of the speed of convergence, but no reversal is seen and lock–in is
not avoided. On the contrary, if the initial path of investments is such that xt remains
close enough to 0.5 before t0, a regime shift occurs. Lock-in is then escaped, and the two
technologies converge to an equal proportion.

Beside the analysis of simulations in the time domain, a more general understanding of
the model is obtained through a statistical analysis of many simulation runs. This allows
in particular to study the distributions of the outcomes of the model. First we want to
look at the time evolution of such distribution. Figure 14 presents three histograms of
the proportion xt at different time horizons, namely t = 100, t = 2000 and t = 10000.
After a short time horizon (t = 100) the proportion of investments in the two technologies
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Figure 14: Urn model plus recombinant innovation with a critical mass effect. Distribution of xt for t = 100

(left), t = 2000 (centre) and t = 10000 (right). 100 runs with e = 0.9, λ = 8, v = 10, t0 = 2000 and x0 = 0.5.

is equal on average. At t = 2000 the distribution is clearly bimodal: two clusters of
counts of xt below 0.1 and above x = 0.9 clearly indicate a lock-in scenario to one or the
other technology. With an even longer time horizon (t = 10000) the distribution is still
bimodal, but the two clusters of final values are closer to each other. This is an effect
of recombinant innovation, which takes off after a critical mass is reached. By fixing the
time horizon at t = 10000 we can study the distribution of xt in different conditions of
recombinant innovation. Figure 15 reports the results for three different values of the
effectiveness: e = 0.1, e = 0.4, e = 0.9. With weak recombinant innovation there is almost
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Figure 15: Urn model plus recombinant innovation with a critical mass effect. Distribution of xt for e = 0.1 (left),

e = 0.4 (centre) and e = 0.9 (right). 100 simulation runs with t = 10000, λ = 8, v = 10, t0 = 2000 and x0 = 0.5.

complete lock-in into one or the other technology. As recombinant innovation becomes more
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effective, the final outcome presents a more diversified scenario, with xt clustering far away
from 0 and 1. A further dimension of this analysis is obtained running 100 simulations
for three different values of the intensity of choice λ and looking at the distribution of
xt. Figure 16 consider the cases λ = 4, λ = 8 and λ = 12. For A given condition of
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Figure 16: Urn model plus recombinant innovation with a critical mass effect. Distribution of xt for λ = 4 (left),

λ = 8 (centre) and λ = 12 (right). 100 simulation runs with t = 10000, e = 0.4, v = 10, t0 = 2000 and x0 = 0.5.

recombinant innovation we see how a higher intensity of choice leads to a more structured
outcome. When λ is relatively low (myopic agents) many different values of final technology
proportions are attained. Moving towards more rational agents, a clearer outcome realizes,
with lock-in into one technology that outperforms the other.

4 Symmetry breaking from environmental policy

Up to here we have dealt with symmetric systems in that no technology has any intrinsic
superiority or advantage (apart from the initial case with constant probability of choice).
We have seen how a better environmental scenario can be achieved through recombinant
innovation, because this mechanism allows escaping lock-in into an undesirable technology.
Here we introduce the effect of an environmental policy that explicitly favours the clean
technology. One way of modelling such policy is by introducing a new feedback in the
allocation function q(x) of the increments (10). In the previous model agents were deciding
only under the influence of the positive externality of other agents’ decisions, represented
by the proportion xt. Now we make this utility more general by redefining it with u(xi,t) =
xi,t−seixi,t, where s is the pollution charge that represents the instrument of environmental
policy, and ei is the intensity of pollution emissions by technology i, with ea > eb. According
to this new definition the probability of choosing technology b becomes:

q(x) ≡
exp[λ(x − sebx)]

exp[λ(x − sebx)] + exp[λ(1 − x − sea(1 − x))]
=

1

1 + exp(a − bx)]

with a = λ(1−sea) and b = λ[2−s(ea+eb)]. If s = 0 (no policy) we are back in the previous
situation. It is interesting to consider the effects of recombinant innovation and policy on
the distribution of the increments β with respect to the proportion x. Figure 17 reports
the plots of the expected value E[β(x)] = [1 − p(x)]q(x) + 0.5p(x) for a few different cases
in the long run, where η(t) ≃ e. The environmental policy breaks the symmetry of the
system and can make the distribution bimodal when recombinant innovation is at work.

Together with the proportion of technological investments we are interested in the
pollution level zt = eana,t + ebnb,t. Because this variable grows in every period due to
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Figure 17: Plots of E[β(x)] for three different degrees of policy, with and without recombinant innovation.

Notes: left is without policy (s=0). Centre is with s=0.05. Right is with s = 0.1.

repeated investments in one or the other technology, it is more interesting to study the
average pollution intensity ẑt, defined as:

ẑt ≡
zt

na,t + nb,t

= (1 − xt)ea + xteb.

This variable expresses the effect of the relative dynamics of the two technologies on pol-
lution. We can compute the cumulative emissions as the integral value until time t:

Zt ≡

w+t
∑

j=w

ẑj · j. (15)

In the following we run some simulations for different cases of policy and recombination
effectiveness. In all of these we assume that technology a (dirty) pollutes ten times more
than technology b (clean), that is we set the intensities ea = 10 and eb = 1. Moreover
we assume that the economy at time t = 0 is characterized by a large prevalence of the
dirty technology, setting the initial value x0 = 0.1. Let us first consider the case without
recombinant innovation (e = 0). With a very low environmental policy stringency s the
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Figure 18: Urn model with environmental policy and without recombinant innovation.

Notes: left is the proportion xt of the clean technology. Right is the pollution level ẑt.

Here s = 0.06, e = 0, x0 = 0.1, ea = 10, eb = 1, λ = 8, w = 100.

economy remains locked into the dirty technology, due to the initial advantage of being
already more diffused than the clean technology. It is necessary to raise s above some
threshold value to realize in all simulation runs an escape from lock-in and a convergence
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to the clean technology. The level of policy stringency s = 0.05 represents an intermediate
situation where in some case escape from lock-in occurs, as we see in figure 18. In one
run the investments in the clean technology take off and escape lock-in, with substantial
abatement of pollution. But in most of the other six runs this does not happen.

If we introduce recombinant innovation with moderate effectiveness, the environmental
outcome improves, as we see in figure 19. In all simulation runs escape from lock-in of
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Figure 19: Urn model with environmental policy and recombinant innovation.

Notes: left is the proportion xt of the clean technology. Right is the pollution level ẑt.

Here s = 0.06, e = 0.2, x0 = 0.1, ea = 10, eb = 1, λ = 8, w = 100.

the dirty technology occurs, although the impact on pollution can be very different: in the
best case the pollution level was abated by more than 50%, but in the worse case by less
than 1%! If the effectiveness of recombinant innovation of the two technologies is large, the
variability of the outcome is much reduced. Figure 20 reports seven simulations for e = 0.9.
The shortcoming of a strong recombinant innovation is that the abatement of pollution is
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Figure 20: Urn model with environmental policy and recombinant innovation.

Notes: left is the proportion xt of the clean technology. Right is the pollution level ẑt.

Here s = 0.06, e = 0.9, x0 = 0.1, ea = 10, eb = 1, λ = 8, w = 100.

limited since the two technologies converge to equal shares. It is interesting to see what we
obtain with a weaker environmental policy keeping recombinant innovation strong, as in
figure 21: The variability of the outcome is relatively low, with all runs showing a moderate
but clear escape from lock-in. Now a regime shift of technology investments occurs, with
pollution levels increasing until a critical mass effect occurs, and subsequently going down.
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Notes: left is the proportion xt of the clean technology. Right is the pollution level ẑt.

Here s = 0.05, e = 0.9, x0 = 0.1, ea = 10, eb = 1, λ = 8, w = 100.

As we have done before for the model without environmental policy, we study the
distribution of many different runs of the model. In this case we consider the specific
pollution level ẑt. First we look how the distribution evolves in a case without recombinant
innovation. Figure 22 reports the histograms for three different time horizons, namely
t = 1000, t = 5000 and t = 10000. As time goes by the mean pollution level goes down
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Figure 22: Urn model with environmental policy and recombinant innovation. Distribution of ẑt for t = 1000

(left), t = 5000 (centre) and t = 10000 (right). 500 simulation runs with e = 0, s = 0.06, x0 = 0.1, λ = 8, t0 = 2000.

slightly, while the dispersion of final values increases considerably. Figure 23 considers the
effect of a different stringency of environmental policy. The mean pollution level goes down
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when the policy becomes more stringent, as expected. Regarding the standard deviation of
final outcomes, the effect of stringency is not univocal. Nevertheless, also the cumulative
pollution emission over the period considered (t = 10000) is much reduced with a more
stringent policy. Finally we consider the role of recombinant innovation: figure 24 reports
the simulation results for e = 0, e = 0.2 and e = 0.9. With stringency s = 0.06 we obtain
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that more recombinant innovation leads to lower pollution final levels, as well as to lower
cumulative pollution through to period considered (t = 10000). Moreover, recombinant
innovation clearly reduces the variability of final outcomes.

Summarizing the results of this section, recombinant innovation helps to escape from
the lock-in of the dirty technology, notably if policy stringency is not too high. If recombi-
nant innovation is too strong, the outcome is a 50/50 scenario, with limited abatement of
pollution. Nevertheless recombinant innovation reduces the variability of the outcome. To
conclude, if the environmental policy is stringent, recombinant innovation is harmful. But
if the government can not realize a stringent policy, then recombinant innovation helps to
reduce pollution and also makes the possible final outcome less uncertain.

5 Conclusions

We have studied the decision problem of technological investments in a dynamic situation
where two available technologies, a dirty and a clean one, present increasing returns to
investments and can recombine to give birth to an innovative technology. Agents can choose
one or the other out of two available technologies, and also set a diversified portfolio. We
have followed two alternative ways to study the effect of recombinant innovation versus
increasing returns in technological investments. First we constructed a model centred
on the process of recombinant innovation and then introduced a self-reinforcing effect to
account for increasing returns of technological choices. If the effectiveness of recombinant
innovation is large enough, lock-in into one technology is prevented. If the effectiveness is
too low, one technology will end up dominating the system. There are middle values of
the effectiveness for which the proportion of the two technologies converges to values other
than 0 or 1, which means that the two technologies coexist indefinitely.

A second model is based on an urn scheme and extends Arthur et al. (1987) and Dosi
et al. (1994) with recombinant innovation. Also here recombinant innovation may prevent
lock-in into one technology, but only if initial events are such that the proportions of
technologies remain close enough to 0.5. Otherwise convergence to 0 or 1 always occurs.
There is no convergence to other limit values. With a critical mass effect in the recombinant
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innovation process the initial path towards lock-in can be reversed, as long as the static
effectiveness is large enough. The two technologies then converge to equal proportions
after the reversal. With this last feature the model shows how recombinant innovation
can provoke a regime shift in the technological path and unlock the economy from an
undesirable dominant dirty technology, to the advantage of a clean technology.

We finally introduced an environmental policy in the model operating through negative
feedback from pollution to investment choices. The system under study becomes asym-
metric given that different technologies have different emission intensities. We studied the
interaction of the three different forces active in the model, namely increasing returns,
recombinant innovation and environmental policy. In general we find that recombinant
innovation helps to escape from lock-in of the dirty technology, notably if the stringency
of the environmental policy is low. If environmental policy is stringent, recombinant inno-
vation limits the abatement of pollution, but it reduces the variability of the outcome.

To conclude, intense investment in recombinant innovation of dirty and clean technolo-
gies can be seen as a second best. But it represents a smoother way to make a transition
from a fossil fuel based economy to one relying on renewable resources. In addition, as it
allows for a less stringent policy, recombinant innovation comes out as a smart approach
to address the environmental problem in periods of economic downturn, notably if the
recovery of the economy is slow and limited as it is likely to be in the present time.
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