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Abstract-We state the usual postulatory approach used by economists and then contrast
it with our empirically based discovery of the dynamics of financial markets, where all
predictions are calculated from ‘the market Green function’. In particular, we predict
option prices in agreement with traders’ valuations, but without using any
nonempirically determined parameters. Both global and local volatility are defined via
the noise traders’ diffusion coefficient, and a new dynamic definition of ‘value’ is
given. Self-fulfilling prophecies are discussed in the context of complexity.
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1. Introduction

Economists postulate a model, nearly always stationary (near statistical equilibrium),
and try to force fit it to empirical data by a best choice of arbitrary parameters (see, e.g.,
Chow & Kwan, 1998). They conclude that the data are too hard to fit over long time
intervals. One object of this lecture is to explain that economic data are too easy to fit.
In particular, finance data are very easy to fit over all observable time scales, and other
economic data are far more sparse than finance data.

Journal Information
© 2005 Springer. Printed in the Netherlands.



2 SHORT TITLE

Neo-classical economic theory (utility maximization) is a falsified model but is still
taught in all leading textbooks as if it would describe the ideal standard to be achieved
by real markets (the model is used by The World Bank, the IMF, the EU, the US
Treasury, and the US Federal Reserve (Stiglitz, 2002)). Another main aim of this work
is to make economists aware that they must discard all existing standard texts and start
over again, using empirically-based modelling (see also Soros (2000) for a related
viewpoint).

By market dynamics we mean excess demand dynamics: dp/dt=e(p,t) where &(p,t) =
excess demand = D(p.t)-S(p,t), and where D(p,t) is demand and S(p,t) is supply at price
p and time t. Financial markets suggest stochastic dynamics: price changes on the
smallest time scales (At=1 sec.) are not predictable, whereas in deterministic dynamics,
even in chaotic and complex systems, changes on the smallest time scales are easily
predictable due to local integrability.

In stochastic dynamics, excess demand is modelled as drift plus noise. Ignoring for the
time being the fact that price and time changes in markets are discrete, excess demand
dynamics in finance markets is pretty well described by the stochastic differential
equation (sde)

dp=prdt+ pzd(p, t)dB(t) (1

where r is an interest rate, p°d(p.t) is the price diffusion coefficient and dB(t) is the
Wiener process (dB/dt is white noise, but we use Ito calculus in order to preform
coordinate transformations on (1) easily and systematically). The function d(p,t)
characterizes the market and must be discovered from the data (McCauley, 2004). If
d(p,t) would be constant then the price distribution would be lognormal (and the returns
x=Inp would be Gaussian). But for real markets d(p,t)#constant and cannot be merely
postulated.

Laws of physics are based on the four standard space-time symmetry principles
(Wigner, 1967). Are there any corresponding symmetry principles for markets? Only
one is known: the 'no arbitrage’ condition applied to a single asset in spatially separated
markets is a geometric invariance principle analogous to rotational invariance. There
are no other known space-time invariance principles for markets.

1.1 Proving ‘equilibrium’ without dynamics



SHORT TITLE 3

Economists love to prove that equilibrium ’exists’ mathematically in a model, but
dynamics is generally ignored. We now illustrate why existence proofs without
dynamics are dangerous. The lognormal pricing model is defined by the sde (1) with
d(p,t) = o, = constant. The corresponding price density g(p,t) satisfies the Fokker-
Planck partial differential equation (pde)
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whose fundamental time-dependent solution (Green function) is the lognormal
distribution. The condition for statistical equilibrium is solved by the nonnormalizable
function g(p)=Cp>""? but statistical equilibrium is never reached by the (normalizable)
lognormal Green function, which instead vanishes as t goes to infinity. Unbounded
prices mean that equilibrum can't be attained (due to the continuous spectrum of the
Fokker-Planck operator). Price controls, bounds on p(t), produce statistical equilibrium
asymptotically via a discrete spectrum. The lognormal model is nonstationary,
describing a hypothetical unstable market where the Gibbs entropy increases without
bound. In spite of this fact finance theorists still talk about ‘equilibrium markets’.

2. The Myth of the Invisible Hand

How would a hypothetical equilibrium market behave empirically? Market equilibrium
would require that g(p,t) is asymptotically stationary (t-independent) over an observable
market time scale (a week, a month, a year), or equivalently, that all moments of the
distribution g(p) must become constants, independent of time t. Statistical equilibrium
demands a stationary process asymptotically. In particular, the average drift <pr(p,t)>
must vanish, guaranteeing that <e(p,t)>=0, and because all higher moments of the
distribution must be constant as well, the variance

o> =(ap?)=(p*)~(0)’ = [ (2 dp)ds )

t

must be asymptotically constant for a long enough time interval (t, t+At). This condition
on the variance is easily tested and is badly violated by real markets, as is the condition
for vanishing excess demand. In other words, real markets are far from statistical
equilibrium, equilibrium (stationary process) is a completely illegal zeroth order
approximation to market reality.

Why should anyone care about equilibrium? Because were equilibrium to hold, then we
could take the equilibrium price p* to be either the average or most probable price, and
this would yield a t-invariant definition of "value", in agreement with neo-classical
economic theory. In the absence of equilibrium there is no t-invariant definition of
,,value®: we will explain in part 6 that the ideas ,undervalued’ and ,overvalued’ when
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applied to future asset prices are effectively subjective. Next, we compare the
equilibrium predictions with the empirical facts about financial markets.

3. Real financial markets

It ‘s necessary empirically to study logarithmic returns
x(t) = In(p(t)/p,) “4)

rather than prices p(t), price increments Op, or small returns dp/p, where p, is a
reference price, because the variable x is both additive and units-free. A Markov
process (1) is a good zeroth order approximation because it agrees with the efficient
market hypothesis (EMH), which simply means that markets are very hard to beat.
Using Ito calculus, the sde for x is

dx = (r—D(x,t)/2)dt +4/D(x,t)dB(t) (5)
where D(x,t)=d(p,t). "Volatility" is defined by the variance of x
o’ =<Ax2>z cAt?t (6)

where H is the Hurst exponent and Ax=x(t+At)-x(t). For stationarity H=0 is required,
but real markets yield H=1/2 There is much extensive about stationarity in the finance
literature). Real markets are nonstationary/unstable, there is no Invisible Hand to
produce market stability. Traders, unable to know 'value' (as we explain in part 6), are
uncertain and trade often, contributing to nonstationarity and volatility. These are the
noise traders, the traders who provide liquidity in normal markets (Black, 1986).

Here’s how we constructed our finance market model. Start with an empirical time
series x(t) and construct the market density f(x,t), f(x,t)dx=g(p,t)dp, as unmassaged
histograms. The empirical distribution is approximately exponential, is far from
Gaussian for small to moderate intraday returns x. Discovering the dynamics means
discovering the t-dependence of three parameters (y,v,0) defined in McCauley (2004) in
the distribution. We used the global volatility 6*=At to discover that y,y=At "7, yielding

flx= e )

Then, we plugged f(x,t) into the Fokker-Planck equation
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where R is defined below and solved the 'inverse problem' to find D(x,t). The

exponential distribution with x-dependence appearing in the form x/VAt is generated by
the diffusion coefficient

D(x,t) = 1+]x —8|/4/At 9)
and where
8 =(Ax) ~ RAt (10)

locates the peak of the distribution, the most probable return. In other words, and this is
the main point, we discovered the form of the noise the market. We emphasize that the
‘local volatility’ D(x,t) haracterizes the so-called ‘noise traders’.
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Figure 1. The empirical distribution of financial returns is exponential for small to moderate
intraday returns.
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4. Volatility and option prices

Quite generally, the average/global volatility is
t+At t+At o
02=<AX2>= JAds<D(x,s)>= " d4s Tax' Gx.t:x'.9)D(x' ) (11)
t t —o0

where G(x,t;x’,t") is the market Green function satisfying the Fokker-Planck pde (8)
and D(x,t) is the ‘local volatility’, * ~D(x,t)At for At<<1. The empirical distribution (7)
is the market Green function for x’=0, G(x,t;0,0)=f(x,t). Our option pricing prediction,
based on the exact formula

Cp.K,T-t)e""™" =((pr —K)O(py —K))e"" ™" = T(pe™ ~K)G (x1.T;x,)dx ¢
InK/p
(12)

agrees with traders’ prices without using any adjustable parameters (falsifiable model).
In (12) C is the call price, T is the expiration time, t is the present time, p is the known
price at time t, and K is the strike price at expiration. The reason that we can calculate
option prices from the Market Green function is that, with the choice of R(x,t) )=r-
D(x,t)/2 satisfying the risk neutral hedge condition, the correct ‘Black-Scholes’ pde is,
to within a time transformation, just the backward time Kolmogorov pde corresponding
to the market Fokker-Planck pde (8) (McCauley, 2004).

There is nonuniqueness in deducing the t-dependence of the empirical density f(x,t)
from the data, but we have the luck that for option pricing the nonuniqueness doesn't
matter on a time scale small compared with 100 years. Due to uniqueness in modelling
empirical data via infinite precision dynamics, this leads to the viewpoint that the data
are too easy to fit over long times To be honest, we already know this important lesson
from nonlinear dynamics (Chhabra et al, 1989).

4.1 Liquidity, noise traders, and crashes

The essential unstated assumption so far is that we have an adequate ‘liquidity bath’.
By a normal market we mean the following: A liquidity bath is assumed, meaning that
approximately reversible trades are possible via your discount broker in real time over
the shortest time intervals (At is on the order of a few seconds) on your Imac or PC.
This assumption is represented by the noise term \VD(x,t)dB(t), which describes the
uncoordinated actions of the "noise traders". Noise traders provide the liquidity/entropy
in the market. Mathematically seen, noise traders are the market (‘with measure one”).
Noise traders, uncertain about 'value', buy and sell often: a financial market is largely
noise because most traders don't have either inside or other knowledge to trade on.
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Actually, it was von Neumann who suggested to Shannon to look for market entropy in
liquidity. The liquidity/money bath is analogous to a thermal heat bath, but the liquidity
bath cannot be described by equilibrium ideas like temperature.

Fat tails do not describe market crashes, fat tails describe large returns that occur during
perfectly normal markets. In contrast, a market crash is a liquidity drought (the noise
traders can’t sell because there are no buyers) and is described qualitatively by R<<0
and D(x,t)~0.

5. Three Easy Pieces

We study the pde

of of 10
—=-R—+——(D 13

%t x 2o (Df) (13)

with R=constant (Alejandro-Quinones et al, 2004). To satisfy the replicating self-
financing hedge condition in option pricing (risk neutral hedge) we need R=r-
D(x,t)/2#constant, but we can take R = constant on any time scale small relative to 100
yrs: this is part of the nonuniqueness. Therefore, we can study

of 1 &
2 2o ) o

and then replace x by x-RAt. This partial differential equation has nice scaling
properties. In order to find out, set u=x/\Dt, f(x,t)=F(u)/NDt, and D(x,t)=D(u). The
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Figure 2 The market distribution is exponential for moderate returns but has fat tails for
large returns. The tail exponents are nonuniversal and range from 2 to 7 (see also
Dacorogna et al, 2001)

result: given the returns density f(x,t) we can calculate the local volatility D(x,t), and
vice/versa, and we can do that analytically for at least three essential cases.
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If
D(uw) =1+¢ul (15)
then
-1
F(u) = Cef‘u‘((a‘uhl)a )/e (16)

where o= & . As & increases then the tails of the distribution decay more slowly. The
limit e=0 yields the Gaussian, and =1 yields the exponential (7).

Next, if

D(u) =1+eu’ (17)

then the result is surprising: we can generate (nonstationary!) fat tails
f(x,t) = [x[ ", [x|>> 1 (18)

for all tail exponents 2<p<co: the exact solution is

C Y
F(u):m~u S,|l.l| >>1 (19)

where p=2+1/e. Note that were even one extra higher order term required in
(17) to generate fat tails, then the empirically observed tail exponent pu would not
determine all the free parameters in D(x,t).

We can generate the observed financial distribution (Fig. 2) via a ‘noise trader function’
D(u) = 1 +[u]+eu’ (20)

where the tail exponent n=2+1/g uniquely determines €. A decisive test of our model
would be to measure D(x,t) empirically, which is very hard: Peinke (2001) tried, but his
results fail for large returns x because he inadvertently made a small returns
approximation. Finally, One sees immediately from (12) that option prices diverge if fat
tails are included: option traders do not and cannot insure against fat tails.

6. Our new dynamic definition of “value”

Both f(x,t) and D(x,t) have extrema at x=Inp./p,=0 where pC:poe5 is the most probable
price, and p, is the initial most probable price. The price p. defines the ‘consensus price’
and so represents the most widely agreed upon “value” of the asset at time t. This is our
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non-neo classical definition of value. However, the peak 6=RAt of f(x,t) does not stand
still, it can shift suddenly in a market crash and even in normal intraday trading (the
expected return R can change suddenly, discontinuously, with sudden changes in noise
traders’ sentiments). In other words, “value” is very far from a time-invariant idea and
depends on what the noise traders believe about an asset at any given time. In particular,
‘value’ is impossible to know in advance (complexity), we can at best know what value
was at different times in the past. This means that notions like ‘overvelued’ and
‘undervalued’ are knowable only at the present time or historically, but cannot be
predicted any degree of confidence for the future. This viewpoint is completely non-neo
classical. Pricing options by using the empirical density (7) rather than the market
Green function (still analytically unknown, hard to calculate) means approximating the
present observed asset price p(t) by the consensus price.

Fischer Black (1986) was wrong: there is no tendency for price to ‘return to value’
because market dynamics are unstable, prices always diffuse away from ‘value’, there
being no ‘springs’ in the market to pull prices back to value. But Soros (1998) was
right, financial markets are dynamically unstable.

7. Market Complexity

So far, we’ve discussed nothing but simple stochastic dynamics that generates the
historic statistics, so where’s the complexity? Predictions based on past statistics hold
so long as there are no basic market shifts, or ‘surprises’. Surprises generated by UTM
(universal Turing machine) dynamics and undecidability were discussed by Moore
(1990, 1991) and at the 2001 Geilo School (Skjeltorp and Viscek, 2002). Insurance
companies assume that tomorrow will be statistically like yesterday. This assumes that
the noise traders never change their diffusion coefficient D(x,t), never change their
noisy behavior/psychology. This assumption will fail in an unknown way at some
unknown time in the future.

There are also self-fulfilling expectations that are not merely a repetition of past
statistics, but represent the creation of something new. Examples of self-fulfilling
expectations are communism via dictatorship (regulatory extremism) and globalization
via deregulation (free market extremism). Feyman contrasted nonthinking nature with
socio-economic phenomena and pointed out that the latter are very different from
physics because wishful thinking can be made into reality by acting on it. But just as
Turing said of numbers and arithmetic, we can assert about physics that mathematical
laws of nature are beyond human invention, convention, and intervention, whereas all
market phenomena are human-made, are invented by human will and actions. Here, we
connect with Wigner (1967): a single space-time invariance principle (the assumption
that arbitrage is to zeroth order impossible between spatially separated markets) is
inadequate to pin down time-invariant mathematical laws of motion. Our market
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distribution is only a model, not a fixed market law, and will fail when the noise traders
eventually change their habits enough that (21) no longer describes the market.

Neo-classical economics, the theoretical basis for globalization via deregulation that
assumes that perfect knowledge of the future on the part of all traders, is a falsified
model (McCauley, 2004) is mathematized ideology. There is neither simple uncertainty
nor complexity in that ideology. Nor can the model be relaxed to make it perturbatively
realistic in any sense: instead of approximately perfect knowledge (vanishing entropy),
real markets reflect large and ever increasing entropy

S(t) = — | £, ) In f(x, H)dx (22)

due to liquidity. Far from randomness and other simplicity, a very few traders do not
generate noise but also do not behave predictably. E.g., George Soros (1998) defeats
self-fulfilling expectations of opponents (e.g., the Bank of England) by generating
surprises (or psychological tricks). Soros (1998, 2000) tries to describe how traders
behave and discusses self-reference and the Cretan Liar with in light of Gddel’s
incompletelness theorem. However, it’s not clear to this writer that Soros does anything
more complicated that to play winning poker with an adequate bankroll (he avoids the
gamblers’ ruin).

JMC is extremely grateful to Harry Thomas for a very careful reading of the
preliminary manuscript and for suggesting improvements in the presentation (part 1.1
remains in spite of his objection), and likewise to Cornelia Kiiffner who also read the

earlier ms and suggested clarifications of several key phrases. GHG and KEB (DMR #
0406323) thank the NSF for financial support.
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