
 Markov Processes, Hurst Exponents, and Nonlinear 
Diffusion Equations  
with application to finance 

 
Kevin E. Bassler, Gemunu H. Gunaratne+, & Joseph L. McCauley++ 

 
Physics Department 

University of Houston 
Houston, Tx. 77204 
jmccauley@uh.edu 

 
+Institute of Fundamental Studies 

Kandy, Sri Lanka 
 

++Senior Fellow 
COBERA 

Department of Economics 
J.E.Cairnes Graduate School of Business and Public Policy 

NUI Galway, Ireland 
 

Key Words: Hurst exponent, Markov process, scaling, stochastic 
calculus, autocorrelations, fractional Brownian motion, Tsallis model, 

nonlinear diffusion 
 

Abstract 
 
We show by explicit closed form calculations that a Hurst exponent 
H≠1/2 does not necessarily imply long time correlations like those 
found in fractional Brownian motion. We construct a large set of 
scaling solutions of Fokker-Planck partial differential equations 
where H≠1/2. Thus Markov processes, which by construction have 
no long time correlations, can have H≠1/2. If a Markov process scales 
with Hurst exponent H≠1/2 then it simply means that the process 
has nonstationary increments. For the scaling solutions, we show 
how to reduce the calculation of the probability density to a single 
integration once the diffusion coefficient D(x,t) is specified. As an 
example, we generate a class of student-t-like densities from the class 
of quadratic diffusion coefficients. Notably, the Tsallis density is one 
member of that large class. The Tsallis density is usually thought to 
result from a nonlinear diffusion equation, but instead we explicitly 
show that it follows from a Markov process generated by a linear 



Fokker-Planck equation, and therefore from a corresponding 
Langevin equation. Having a Tsallis density with H≠1/2 therefore 
does not imply dynamics with correlated signals, e.g., like those of 
fractional Brownian motion. A short review of the requirements for 
fractional Brownian motion is given for clarity, and we explain why 
the usual simple argument that H≠1/2 implies correlations fails for 
Markov processes with scaling solutions. Finally, we discuss the 
question of scaling of the full Green function g(x,t;x’,t’) of the Fokker-
Planck pde. 
 
 
1. Introduction 
 
 
Hurst exponents are widely used to characterize stochastic processes, 
and are often associated with the existence of auto-correlations that 
describe long term memory in signals [1]. In finance they are used as 
a measure of the “efficiency” of markets where a value of the Hurst 
exponent H=1/2 is often said to be required by the efficient market 
hypothesis (EMH). In this paper we explicitly demonstrate that 
H≠1/2 is consistent with Markov processes, which by construction 
have no memory. Therefore, we show that the Hurst exponent alone 
cannot be used to determine either the existence of long term 
memory or the efficiency of markets. 
 
As originally defined by Mandelbrot [1], the Hurst exponent H 
describes (among other things) the scaling of the variance of a 
stochastic process x(t),  
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where c is a constant. Here, the initial point in the time series xo=0 is 
assumed known at t=0. Initially, we limit our analysis to a drift-free 
process, so that <x>=0.  
 
A Markov process [2,3] is a stochastic process without memory: the 
conditional probability density for x(tn+1) in a time series {x(t1), x(t2), 
… x(tn)} depends only on x(tn), and so is independent of all earlier 
trajectory history x1, …, xn-1. In financial applications our variable x 
should be understood to be the logarithmic return x(t)=lnp(t)/po 



where p(t) is the price of a financial instrument at time t. A stochastic 
differential equation 
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dx = D(x,t)dB(t)    (2) 
 
generates a Markov process x(t), where B(t) is the Wiener process [4] 
with <dB>=0, <dB2>=dB2=dt (dB/dt is white noise). That solutions of 
(2) are Markovian is proven very abstractly in the literature [4,5], so 
we provide the reader with a more straightforward argument in part 
3.    
 
Consider next what is required in order to obtain (1), namely, a 
probability density f(x,t) that scales with a Hurst exponent H, 0<H<1, 
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f(x, t) = t"HF(u);u = x/tH

.    (3) 
 
The scaling form (3) guarantees that the variance (1) scales. From the 
sde (2) we must also be able to calculate the variance as 
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(where we use Ito calculus [4,5]) so that diffusion coefficient  scaling  
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D(x,t) = t2H"1D(u),u = x/tH    (4) 
 
is a consequence of (3) as well. 
 
The conjecture that H≠1/2 implies correlations follows from the 
following simple argument [6,7]. Calculate the autocorrelation 
function in the following way: 
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where Δx(t+Δt)=x(t+Δt)-x(t) and Δx(t-Δt)=x(t)-x(t-Δt). If the stochastic 
process x(t) has stationary increments [2], requiring for one thing that 
the mean square fluctuation calculated from any starting point x(t) 
scales, 
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(x(t + "t)# x(t))2
= c"t2H
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because it depends only on Δt and not on t, then rescaling the 
autocorrelation function by the mean square fluctuation,                                                  
C(-Δt, Δt)=< Δx(t-Δt)Δx(t+Δt)>/< Δx2(Δt)>, we have 
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so that H≠1/2 implies autocorrelations. This is the likely origin of the 
common expectation that H≠1/2 violates the condition for both a 
Markov process and the EMH [6] (however, see ref. [6b] for a careful 
statement of the steps that lead from eqn. (5) to eqn. (7)). Here, we 
clearly assume finite second moments (except where otherwise 
started in part 4 below). For a discussion of the case where the second 
moment is infinite, see [6c,d]. 
 
However, if (7) would hold for Markov processes then scaling 
solutions of the form (3,4) could not exist for those processes (2). But 
we will show in part 4 by direct construction that such solutions do 
exist, and will show in part 5 that the step from (5) to (7) is doesn’t 
hold for a Markov process with H≠1/2, so that when (5) is calculated 
directly, then the right hand side vanishes. 
 
This means that an empirical measurement or theoretical prediction 
of a Hurst exponent, without showing in addition that the increments 
are stationary or else that the dynamics actually has memory, cannot 
be interpreted as evidence for autocorrelations (7) in data. 
 
We began this project initially with the aim of understanding where 
and how the statistics generated by the drift-free nonlinear diffusion 
equation  
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fit into the theory of stochastic processes. The reason for that 
motivation is that the assumption is made in many papers on Tsallis 
model dynamics [8,9,10,10b,10c,11] that the nonlinear diffusion eqn. 
(8) is a “nonlinear Fokker-Planck” partial differential equation (pde) 
with underlying stochastic differential equation (sde) 
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dx = D(x,t)dB(t).    (2) 
 
The standard assumption is that (2) should describe the same process 
as the solution fq(x,t) of (8) if we use the diffusion coefficient 
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Dq(x, t) = fq
1"q

(x, t)     (9) 
 
in the sde (2). But the question of consistency arises when one tries to 
construct a Langevin description (2) for a truly nonlinear diffusion 
pde (we state the inconsistency explicitly in part 3 below). The 
question left unanswered in all the papers on the Tsallis model is: 
what is the density of f(x,t) of x that is generated by (2) if we use (9), 
where fq solves the pde (8)? So far, no proof has been given that the 
two separate methods yield the same probability density in the many 
papers written while making that assumption. It has also been 
assumed [8] that the Hurst exponent H≠1/2 in fq signals fractional 
Brownian motion (fBm). We want to analyze these assumptions 
carefully.  Toward that end, we explain in part 3 why solutions x(t) of 
(2) are always Markovian. The Tsallis model solution fq of (8) is 
exhibited in part 6.  
 
Finally, by studying the one parameter class of quadratic diffusion 
coefficients, D(u)=(1+εu2) we generate the entire class of student-t-
like densities. Student-t distributions have been used frequently in 
biology and astronomy as well as in finance, so that the diffusion 
processes analyzed in part 4 will be of interest in those fields. Since 
the processes are Markovian there is no autocorrelation between 
different increments Δx for nonoverlapping time intervals, but it is 
well known that there is a form of ‘long range dependence’ that 
appears in products of absolute values or squares of random 
variables [12]. The discussions in [12] have been restricted to near 
equilibrium stochastic processes (asymptotically stationary 
processes) like the Ornstein-Uhlenbeck model, and so we plan to 
discuss the generalization to scaling solutions (3) in a future paper. 



 
Because the term ‘stationary’ is used differently and is not always 
clearly defined in some of the recent literature, we next define 
‘stationary’ and ‘nonstationary’ processes as used in this paper. 
 
 
2. Stationary & Nonstationary Processes, and Processes 
with Stationary Increments 
 
Here, we define exactly what we mean by a stationary process 
[2,3,13] and also define a process with stationary increments [2]. 
Consider a stochastic process x(t) with probability density f(x,t). By 
stationarity, many authors mean that x(t+Δt)-x(t) depends only on Δt 
and not on t, but this is the standard definition [2] of a nonstationary 
process with ‘stationary increments’. A stationary process is one 
where f(x,t)=f(x) is independent of t [2,3,13]. These processes describe 
statistical equilibrium and steady states because averages of 
dynamical variables are time-independent. In particular, the mean 
and variance of a stationary process are constants. An example of an 
asymptotically stationary process is the Ornstein-Uhlenbeck process 
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dv = "#v + $
1
dB(t) (10) 

 
describing the approach of the velocity distribution f(v,t) of a 
Brownian particle to statistical equilibrium (the Maxwell-Boltzmann 
velocity distribution) [3].  
 
An example of a nonstationary process that generates stationary 
increments is the Green function 
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for the simplest diffusion equation 
 

  

! 

"f

"t
=

D

2

"
2
f

"x
2  (12) 

 
where x is unbounded. Note that (12) also has a (nonnormalizable) 
stationary solution, f(x)=ax+b, but that that solution is not 



approached dynamically (is not reached by (11)) as t goes to infinity. 
If x is instead bounded on both sides (particle in a box), then we get 
an asymptotically stationary process: f(x,t) approaches a time-
independent density f(x) as t goes to infinity [2,3]. Stationary 
processes are discussed by Heyde and Leonenko [12], who label them 
“strictly stationary”. They also discuss processes with and without 
stationary increments. Some authors describe a process as ‘weakly 
stationary’ if only the mean and variance are constants. 
 
If any moment (mean, variance, etc.) of f(x,t) depends on either t or Δt 
then the process is by definition nonstationary [2,3,13]. An example is 
any scaling solution f(x,t)=t-HF(u), u=x/tH, of the Fokker-Planck 
equation 
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Here, the variance σ2=ct2H is always strongly time-dependent, a 
scaling solution f(x,t) describes a far from equilibrium process. The 
function F(u) is simply the scale invariant part of a nonstationary 
scaling solution f(x,t) of the sde (2).  
 
Nonstationary processes x(t) may have either stationary or 
nonstationary increments. A nonstationary process with stationary 
increments is defined by x(t+T)-x(t)=x(T), where by equality one may 
understand equality in distribution. An example of a nonstationary 
process with scaling plus stationary increments is Mandelbrot’s 
model of fractional Brownian motion [1], which we exhibit in part 5 
below. With stationary increments, not only the variance (1) scales 
but we obtain the nontrivial condition 
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(x(t + T)" x(t))2
= cT2H
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as well. Nonstationary increments are generated when                 
x(t+T)-x(t)≠x(T) in distribution, and we also provide an example of 
this in part 5.  
 
These definitions are precise and differ from the terminology used in 
some of the modern literature, but are consistent with the dynamical 
idea of stationary as ‘not changing with time’. ‘Stationary state’ 



means statistical equilibrium or a constantly driven steady state, so 
that averages of all dynamical variables are time-independent 
[2,3,13]. Fluctuations near thermodynamic equilibrium are 
asymptotically stationary, e.g. For stationary processes, e.g. (10) for 
larger t, the fluctuation-dissipation theorem [14] holds so that the 
friction constant β describing regression toward equilibrium in (10) is 
determined by equilibrium parameters (the temperature of the heat 
bath).  
 
 

3. Stochastic Differential Equations generate Green 
Functions for Linear Fokker-Planck PDEs 

 
The proof that the sde (2) generates Markovian behavior is not 
presented transparently in [4,5], so we present a simplified argument 
here for completeness. Our end result will be the (linear) Fokker-
Planck pde  
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where D(x,t) depends on (x,t) alone, and which generates a Markov 
process [2,3,4] reflected in the time development of it’s Green 
function, g(x,t;xo,to), where g(x,t;xo,t)=δ(x-xo). The Green function is 
the transition rate density (conditional probability density) for the 
Markov process. Following Schulten [15], we use Ito calculus to show 
that a stochastic differential equation, or sde 
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dx = D(x, t)dB   (2) 
 
necessarily generates a conditional probability density g(x,t;xo,to) 
which, by construction, is the Green function for the Fokker-Planck 
pde (15), 
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where the dot denotes the Ito product, the stochastic integral of 
√D(x,t) with respect to B [4]. In all that follows we use Ito calculus 
because Ito sdes are one to one with (linear) Fokker-Planck pdes, as 



we will show below. In (16), the average is over all Wiener processes 
B(t), so that the Green function can be written as a functional integral 
over locally Gaussian densities with ‘local volatility’ D(x,t) [16].  By 
f(x,t) in this paper, we mean the Green function f(x,t)=g(x,0;t,0) for 
the special case where xo=0 at to=0. Next, we show why the Fokker-
Planck pde (15) is required by the sde (2) (it is well known that the 
two equations transform one to one under coordinate 
transformations whenever Ito calculus is used), and why the Fokker-
Planck pde must be linear. The connection between Wiener integrals 
for stochastic processes and linear diffusive partial differential 
equations was first discussed by Kac (see ch. 4 in [17]), but see also 
Durrett [5] for interesting examples of ‘solving a (parabolic) pde by 
running a Brownian motion (sde)’ 
  
Beginning with the sde (2) but with drift included, 
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dx = R(x, t)dt + D(x,t)dB,  (17) 
 
consider the time evolution of any dynamical variable A(x) that does 
not depend explicitly on t (e.g., A(x)=x2). The sde for A is given by 
Ito’s lemma [4,5,15], 
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Forming the conditional average 
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by using the Green function g(x,t;xo,to) generated by (17) and 
integrating by parts while ignoring the boundary terms1, we obtain 
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1 If the density g has fat tails, then higher moments will diverge. There, one must 
be more careful with the boundary terms. 



so that for an arbitrary dynamical variable A(x) we get the Fokker- 
 
Planck pde 
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That is, an sde (2) with drift R(x,t) and diffusion D(x,t) generates a 
(generally nonGaussian) random time series {x(t)} whose histograms 
at different times t are distributed according to the Green function g 
of the Markovian linear pde (21), where g(x,t;xo,t)=δ(x-xo).  The point 
here is that Langevin equations generate exactly the same statistics as 
the corresponding linear Fokker-Planck pde.  
 
In what follows we will assume that R may depend on t but not on x, 
so that we can replace x by x- ∫Rdt in (21) to get the drift free pde (15). 
An x-dependent drift R(x,t) is inconsistent with the scaling form 
(3). 
 
At this point we can make a prediction: either the nonlinear pde (8) 
has no underlying Langevin equation (2), because a nonlinear pde 
has no Green function and the Green function (transition probability 
density) is the heart and soul of a Markov process. Or, the pde (8) is 
really a linear Fokker-Planck pde somehow disguised as a nonlinear 
diffusion equation.  
 
 
4. Markov Processes with Scaling Solutions 
 
Until the last section of this paper, we restrict to the case where 
g(x,0,;t,0)=f(x,t) because we will show explicitly below that only these 
solutions exhibit exact scaling properties (1), (3), (4), and also because 
the density f(x,t) is what one observes directly in histograms of 
finance market returns data. The full Green function g(x,x’;t,t’) is 
needed in principle for exact option pricing (see [16,21] for another 
requirement) but cannot be calculated in closed analytic form when 
D(x,t) depends on both x and t and scaling (3, 4) holds. If f and 
therefore D scale according to (3) and (4), then the variance scales 
exactly as (1) with Hurst exponent H. The empirical evidence for the 
data collapse predicted by (3) will be presented in a separate paper 



on financial markets [18]. The question of scaling of the full Green 
function is discussed at the end of this paper.  
 
Inserting the scaling forms (3) and (4) into the pde (15), we obtain2 
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2H(uF(u) " ) + (D(u)F(u) " " ) = 0   (22) 
 
whose solution is given by 
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F(u) =
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D(u)
e"2H udu/D(u)# .       (23) 

 
Note that (23) describes the scale invariant part of nonstationary 
solutions f(x,t) (3). This generalizes our earlier results [19,20,20b] to 
include H≠1/2.  
 
Next, we study the class of quadratic diffusion coefficients  
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D(u) = " d (#)(1+ #u
2),    (24) 

 
 
which yields the two parameter (ε,H) class of student-t- like densities 
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F(u) = " C (1+ #u
2)$1$H / # " d (#)    (25) 

 
 
with tail exponent µ=2+2H/εd’(ε), and where H and ε are 
independent parameters to be determined empirically. This shows 
where student-t-like distributions come from. With d’(ε)=1 we obtain 
the generalization of our earlier prediction [20] to arbitrary H, 0<H<1, 
with µ=2+2H/ε. Here, we generate all fat tail exponents 2<µ<∞, and 
obtain a finite variance (1) scaling as σ2=ct2H whenever µ>3  (for 
2≤µ≤3 the variance is infinite). For large u this model fits the fat tails 
in financial data for all times t [18]. For small to moderate returns 
finance market histograms are approximately exponentially 

                                         
2 We emphasize that the drift has been subtracted out of the pde (21) to yield (15). 
This requires that R(x,t) is independent of x. A x-independent drift R(t) is 
absolutely necessary for the scaling forms (3,4). 



distributed [16,21], and a complete empirical analysis of market data 
will be presented in a forthcoming separate paper [18]. 
 
 
5. What does H mean? 
 
The assumption that “H≠1/2 implies long time correlations” is often 
found in the literature (see, however, Mandelbrot [22]). An example 
where H≠1/2 but there are no autocorrelations is the Levy density 
[23]. In that case, H describes the scaling of the peak of the density 
and also the tail exponent. For the Levy densities the variance is 
infinite. 
 
Consider the Markov process (2) in its integrated form 
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"x(t, t + "t) = D(x(s),s)
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Even when scaling (3,4) holds with H≠1/2 , then on quite general 
grounds there can be no autocorrelation in the increments Δx(t,t-Δt), 
Δx(t,t+Δt) over two nonoverrlapping time intervals 
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[t, t + "t]#[t $"t, t] =% .       (27) 
 
This is easy to see: by definition of the Ito integral: 
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because <dB(w)dB(s)>=0 for nonoverlapping time intervals dw and 
ds [4,5,15]. The function D(x,t) is called ‘nonanticipating’ [4]. This just 
means that, by Ito’s definition of the stochastic integral (26), the 
function D(x,t) of random variable x and the random increment dB(t) 
from t to t+dt are statistically dependent because x(t) was determined 
in the sde (2) by the Wiener increment dB(t-dt) before dB(t) occurs. 
That is, D(x(t),t) cannot ‘anticipate’ the next random increment dB(t) 
in (26).  
 
The passage from (5) to (7) requires a usually unstated assumption of 
stationary increments. If the nonstationary stochastic process x(t) has 



nonstationary increments, requiring that the mean square fluctuation 
about x(t) depends both on Δt and t, then the passage from (5) to (7) is 
not possible.  The argument that H≠1/2 implies long time 
correlations fails for Markov processes precisely because the 
stochastic integral (26) with the scaling forms (3,4) describes a 
nonstationary process with nonstationary increments whenever H≠1/2. 
Only for H=1/2 do we retrieve a nonstationary process with 
stationary increments. When H≠1/2 then (26) combined with scaling 
(4) yields (with x(0)=0) 
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whereas we retrieve stationary increments x(t+T)-x(t)=x(T) for H=1/2 
with probability one, e.g., with H=1/2 we find that                                                   
<(x(t+T)-x(t))2>=<x2(T)>=cT because B(t) has stationary increments, 
dB(s+t)+DB(s). Furthermore, direct calculation of the autocorrelation 
formulated as (5) shows that the right hand side of (5) vanishes 
independently of the value of H, in agreement with (28) above.  
 
We’ve seen above that a Hurst exponent H≠1/2 is consistent with a 
Markov process. One only needs the scaling forms (3,4), and the 
Fokker-Planck pde (15) is then satisfied by f(x,t)=t-HF(u) with u=x/tH 
where F(u) is given by (23). This Hurst exponent does not imply long 
time correlations, so what does H≠1/2 mean? The appearance of 
H≠1/2 in a Markov process signals underlying dynamics with 
nonstationary increments, and this knowledge should be useful for 
data analysis.  
 
From a purely theoretical standpoint, a Hurst exponent H≠1/2 for a 
scale free Markov process can be eliminated by a change of time 
variable (a corollary is that any Markov process with H=1/2 can be 
converted superficially into one with H≠1/2 by a change of time 
scale). Note that for any diffusion coefficient of the form 
D(x,t)=h(t)d(x,t), the prefactor h(t) can always be absorbed into a 
redefinition of the time scale in the drift-free Fokker-Planck pde (15), 
dτ=h(t)dt. Likewise, with the choice of time variable τ=tH, the pde 



(15) with the scaling forms (2) and (1) always yields σ2=cτ. So a drift 
free Markov process with nonstationary increments can be 
transformed formally into one with stationary increments by the 
appropriate change of time scale, and vice-versa.  
 
There can be no correlations for nonoverlapping time intervals because (26) 
is Markovian, whether H=1/2 or H≠1/2 plays no role. This is why 
Markov dynamics reflect the EMH: a Markovian market is impossible 
to beat. Real markets are very hard to beat systematically over the 
long haul, so that a Markov model provides us with a very good 
zeroth order approximation to real financial markets. Another way to 
say it is, with drift subtracted out, a market is pure (nonGaussian) 
noise, in agreement with Black’s idea of the importance of ‘noise 
traders’ [24]. When H≠1/2 combined with stationary increments in 
x(t) then there is either persistence or antipersistence of 
autocorrelations for nonoverlapping time intervals, as in fractional 
Brownian motion [1]. Fractional Brownian motion (fBm) is inherently 
nonMarkovian. In principle, a market with H≠1/2 plus stationary 
increments has correlations that may be exploited for profit, so that 
such a market is not “efficient”.   
 
One can construct models of fractional Brownian motion as follows. 
With k(t,s)=tH-1/2K(u), u=t/s, a stochastic process of the form 
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generates long time autocorrelations for nonoverlapping time 
intervals but doesn’t scale. Scaling is obtained iff. to=0 or -∞. For the 
former case the increments of (29) are not stationary, but one may 
obtain stationary increments for to = -∞, depending on the form of the 
function k(t,s). In that case, we have the scaling law σ2=<x2>=ct2H. If 
the kernel k(t,s) is such that xH(t) has stationary increments [1], 
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x
H
(t + T)" x

H
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H
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then a simple prediction (a generalization of (7)) for the 
autocorrlelations of fBm over nonoverlapping time intervals follows: 
with the autocorrelation function defined more generally by  
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C(S1,S2) = (x
H
(t + "t1) # xH(t))(xH(#t) # xH(#t # "t2)) / $1

2

$2

2
  

(31) 
 
where S1=Δt1/t, S2=Δt2/t, we obtain [1] 
 

  

! 

C(S1,S2) = [(1+ S1 + S2)
2H

+1 " (1+ S1)
2H

" (1+ S2)
2H] /2(S1S2)

H   
(32) 
 
This prediction can easily be generalized to allow widely separated 
time intervals [t1-Δt1,t2+Δt2) where t1<t2. Mandelbrot [1] has provided 
us with an illuminating example of fBm with stationary increments 
(25), 
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x
H
(t) = [(t " s)H"1 /2

"#

0

$ " ("s)H"1 /2]dB(s) + [(t " s)H"1 /2

0

t

$ dB(s) 

(29b) 
 
 Clearly, such long time correlations are nonMarkovian and violate 
the EMH. Note that the correlations (32) vanish if H=1/2, whereas in 
a Markov process the correlations vanish for all values of H.  
 
Contrary to statements [6,7] in the literature, (29b) is not a Gaussian 
process. With D(u)=1 (23) becomes F(u)=exp(-u2) with u=x/tH, but 
this solution of (15) describes a Markov process with no 
autocorrelations at all. One can rightly state that (29b) arises from 
Gaussian increments dB(t), but then so does every other stochastic 
process described by an Ito integral, and those processes are typically 
far from Gaussian distributed, as is (29b). We do not yet know the 
functional form f(xH,t) of the density of (29b), other than that it must 
scale like (3) and cannot be Markovian.  
 
A Markov process provides a sufficient but not necessary condition 
for the EMH. Since finance market data can be described as 
approximately Markovian [16,19], to zeroth order, then searching for 
fBm or other memory in market data would be a search for a way to 
make small profit margins by placing big bets.  
 
6. The Tsallis Density 
 



It is easy to check by direct calculation that a normalized solution of 
(8) is given self-consistently by 
 
 

  

! 

fq (x, t) = (c(2 "q)(3 "q))"H t"H (1+ (q "1)x2 /C2 (q)t2H )1/(1"q)  (33) 
 
with H=1/(3-q), where  
 
  

! 

C(q) = c(q"1)/2(3"q)((2 "q)(3 "q))H      (34) 
 
and  
 

  

! 

c1/2
= du(1+ (q "1)u2 )1/(1"q)

"#

#

$    (35) 

 
is the normalization constant [11]. Normalization is not 
overdetermined because the pde (8) satisfies probability 
conservation. The fat tail exponent, f(x,t) ≈ x-µ for x>>1, is µ=2/(q-1).  
This model has the constraint that the tail exponent µ is fixed by the 
Hurst exponent H, or vice-versa. E.g., if H=1/2, then there are no fat 
tails, the density is Gaussian. 
 
Inserting (33) into (9) yields the diffusion coefficient 
 

  

! 

Dq (x, t) = (c(2 "q)(3 "q))2H"1t2H"1(1+ (q "1)x2 /C2 (q)t2H ) (36) 
 
which we conveniently rewrite as 
 

  

! 

Dq(x, t) = d(q)t2H"1(1+ ((q "1) / C2(q))u2) = t
2H"1

Dq(u)  (37) 
 
To compare (33) with (25), we need only write ε=(q-1)/C2(q) and 
d’(ε)=d(q). Our Fokker-Planck-generated density f(x,t) given by (25) 
reduces exactly to (33) when H=1/(3-q). This means that fq actually 
satisfies the linear Fokker-Planck pde 
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and so (8), for the Tsallis solution (33), is really a linear pde disguised 
as a nonlinear one.  
 
A nonlinear disguise is possible for our entire two-parameter 
student-t-like class solutions (25), because for quadratic diffusion 
(24), D(u)=d’(ε)(1+εu2), the solution of the Fokker-Planck pde (8) is a 
power of the diffusion coefficient, F(u)=CD(u)-1-H/εd’(ε).  
All of these solutions trivially satisfy a modified form of the 
nonlinear pde (8), but rewriting (8b) as a nonlinear pde in the case of 
quadratic diffusion superficially masks the Markovian nature of 
Tsallis dynamics.  
 
The claim is made in Borland [8] and elsewhere that Tsallis model (8) 
generates fractional Brownian motion, but this is not correct. The 
Tsallis density (33) is Markovian and so cannot describe long-time 
correlated signals like fBm. There, H=1/(3-q)≠1/2 merely signals that 
the increments x(t) are nonstationary.  
 
In a Langevin/Fokker-Planck approach with x-dependent drift, 
Kaniadakis and Lapenta [9] did not reproduce the time dependence 
of the Tsallis density (33) with H=1/(3-q). In their formulation using 
an x-dependent drift term in the Fokker-Planck pde, they find a time-
dependent solution that does not scale with a Hurst exponent H.  
That is, nonscaling solutions are certainly possible. And as we have 
pointed out, scaling of f(x,t) is impossible when the drift depends on 
x. 
 
But what about truly nonlinear diffusion? The linear pde (8b) solves a 
unique initial value problem, and unique boundary value problems 
as well. But we do not know if the nonlinear pde  
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with m≠1 has a unique solution for a specified initial condition f(x,0). 
There may be solutions other than the trivial self-consistent solution 
(33), and there we cannot rule out the possibility of long time 
memory in (8c).  
 



For a discussion of the general properties of nonMarkovian linear 
pdes with memory, see [25]. See also Hillerbrand and Friedrich [25b] 
for nonMarkov densities of the form f(x,t)=t-3/2F(x/t1/2) based on 
memory in the diffusion coefficient. 
 
 
7. Scaling and the Green function 
 
Finally, a few words about the full Green function of the Fokker-
Planck pde (15). So far, we’ve restricted to a special case where 
f(x,t)=g(x,t;0,0). In this case, as we’ve shown by direct construction, 
the scaling (1,3,4) is exact. For the general Green function g(x,t;x’,t’) 
with x’≠0 scaling is not exact and may not exist at all.  
 
If we assume that g(x,t;x’,t’)=g(x,x’;Δt), and if we in addition make 
the (unproven) scaling Ansatz 
 
  

! 

g(x, " x ;#t) = #t$HG(u,uo )   (39) 
 
where u=x/tH, uo=xo/tH, then we would have a mean square 
fluctuation 
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with Δs=s-t. This doesn’t yield a simple expression for nonstationary 
increments unless G(u,uo)=G(u-uo), because uo=xo/Δs. We can offer 
no theoretical prediction for the Green function when x’≠0.  
 
In a future paper we will analyze option pricing and the construction 
of option prices as Martingales, both from the standpoint of 
stochastic differential equations [26] and generalized Black-Scholes 
equations [16]. A key observation in that case is that, with fat tails, 
the option price diverges in the continuum market theory [20b,27]. 
This result differs markedly from the finite option prices predicted in 
[11,28].  
 
 
8. Summary and Conclusions 
 



Hurst exponents H≠1/2 are perfectly consistent with Markov 
processes and the EMH. A Hurst exponent, taken alone, tells us 
nothing about autocorrelations. Scaling solutions with arbitrary 
Hurst exponents H can be reduced for Markov processes to a single 
integration. A truly nonlinear diffusion equation has no underlying 
Langevin description. Any nonlinear diffusion equation with a 
Langevin description is a linear Fokker-Planck equation in disguised 
form.  The Tsallis model is Markovian, does not describe fractional 
Brownian motion. A Hurst exponent H≠1/2 in a Markov process x(t) 
describes nonstationary increments, not autocorrelations in x(t). 
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