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Abstract

The issue of estimating the persistence of a dynamic process arises frequently in many
micro and macro applied exercises. In this note we study the statistical properties
of a simple index of persistence. We show that the index is normally-distributed and
we estimate its expected value and standard deviations under different benchmark
null hypotheses for the underlying data-generating mechanisms. Finally, we present a
macroeconomic application to exemplify how to statistically discriminate between high
and low levels of the index according to the maintained null hypothesis.
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1 Introduction

The issue of estimating the persistence of a dynamic process arises frequently in many micro
and macro applied exercises. A commonly-employed practice is to start from a database
recording the level of a (discrete or continuous) variable Y across C units and T time periods,
and to estimate the transition probability matrix (TPM) of a time-homogeneous Markov
chain defined on N classes (Anderson and Goodman, 1957). These may be absolute values
or the quantiles of the Y -distribution in each given time period. A good persistence indicator
is based on the idea that the larger the probability mass lying close to the main diagonal
of the TPM, the more persistent the process, because the larger will be in that case the
probability that a unit will be characterized tomorrow by a value of the variable Y closer to
that of today.

Since the seminal works of Prais (1955) and Matras (1961) on social mobility —the com-
plement of persistence— a lot of effort has been devoted to introduce persistence indicators
that were able to satisfy some baseline axioms (e.g., immobility and monotonicity, see for
example Bartholomew, 1973; Shorrocks, 1976; Geweke et al., 1986). In general, persistence
indicators may be classified in “synthetic” ones (i.e., those fully or partially employing the
information in the TPM to deliver a single number characterizing the persistence of the
underlying process) or “profile-based” ones (i.e., those that associate to the process a per-
sistence profile, cf. e.g. the persistence tents of Bartelsman and Dhrymes, 1994).

Despite many micro and macro applied works have been extensively employing persis-
tence indicators in the last years1, little is known about their statistical properties. In fact, to
correctly assess whether a process is highly persistent or not, it is seldom sufficient to know
the unconditional range of variation of the indicator that is being employed, as more on its
distributional properties and moments under some null hypothesis is typically required.

In this note we address this issue using a very simple “synthetic” index of persistence,
which makes use of the full information of the TPM. The index, which coincides with a par-
ticular case of (the complement to 1 of) the D index of mobility introduced by Bartholomew
(1973, p.19, eq. 2.8), is shown to have, under general assumptions, a normal distribu-
tion. By means of simulation exercises, we therefore characterize its statistical properties
under some simple null hypotheses about the underlying data-generation mechanisms, e.g.
full-mobility case, auto-regressive of order one processes, etc.. Finally, we present a macroe-
conomic application to exemplify the foregoing methods and explore, for a panel of 110
countries, the persistence level of four macro-variables (country per-capita GDP, GDP coun-
try growth rates, absolute and relative bilateral trade imbalances). Our results suggest that
the observed values of our simple persistence index can be easily compared to its distribu-
tion under some benchmark null hypotheses for the underlying process. This allows one to
provide statistically-sound implications about observed persistence and to infer interesting
insights about the relative persistence of different processes.

The note is organized as follows. Section 2 defines the persistence index and analyzes
some of its simplest features. The statistical properties of the index are discussed in Section
3, whereas Section 4 contains an empirical application. Finally, Section 5 concludes.

1See among others Quah (1993), Bartelsman and Dhrymes (1994), Konings and Roodhooft (1997), Jarvis
and Jenkins (1998), Cefis (2003), Jafry and Schuermann (2004), Ezcurra et al. (2006), Fiaschi and Lavezzi
(2007), David and Rullani (2008), Zhang et al. (2010).
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2 Theory

Let M = {mi,j} be a N ×N transition probability matrix of an ergodic, time-homogeneous
Markov chain, where mi,j ≥ 0 and

∑
j mi,j = 1 all i. Suppose wlog that N is even and

define d+j (h) = mj,h+j−1 and d−j (h) = mh+j−1,j, for 1 ≤ j ≤ N − h+ 1, h = 1, . . . , N . Define
also the vectors D+(h) = {d+1 (h), . . . , d+N−h+1(h)} and D−(h) = {d−1 (h), . . . , d−N−h+1(h)}. It
is easy to see that, when h = 1, D+(1) = D−(1) = D, where D is the main diagonal of M .
When h > 1, D+(h) and D−(h) represent a diagonal list of entries of the TPM lying h− 1
steps away from the main diagonal and, respectively, above and below it. In what follows,
we will call D+(h) a h-upper diagonal of M and D−(h) a h-lower diagonal of M .

Let S+
h =

∑N−h+1
j=1 d+j (h) and S−h =

∑N−h+1
j=1 d−j (h) the total probability mass accounted

for D+(h) and D−(h), respectively. A benchmark measure of persistence of the underlying
process can be built starting from S+

h and S−h and defining, for each k = 1, . . . , N , the average
mass of probability within a window of k steps above and below the main diagonal. More
formally, let:

Pk =
1

N

N∑
i=1

∑
j∈Ji,k

mi,j, (1)

where Ji,k = {j : i − k + 1 ≤ j ≤ i + k − 1, j ≥ 1, j ≤ N}. Notice that PN = 1. Moreover,
since S+

1 = S−1 = S1, then P1 = 1
N
S+
1 = 1

N
S−1 and:

Pk = P1 +
1

N

K∑
h=2

(S+
h + S−h )

def
= P1 +

1

N

K∑
h=2

Sh. (2)

Note also that since for k < N :

Pk+1 = Pk +
1

N

N−K∑
j=1

(mj,k+j +mk+j,j), (3)

then Pk is not decreasing in k.
For each given k, one can therefore assess the persistence of the process and plot per-

sistence tents as done e.g. in Bartelsman and Dhrymes (1994). Here, however, we want
to derive a “synthetic” index of persistence (in line with Prais, 1955; Bartholomew, 1973;
Geweke et al., 1986). The simplest choice is to compute the arithmetic mean of all Pk’s, that
is:

Π(M ;N) =
1

N

N∑
k=1

Pk. (4)

Straightforward computations show that Π can be also written as a weighted arithmetic
average of probability masses contained in h-upper and h-lower diagonals of M , that is:

Π(M ;N) =
N∑

h=1

N − h+ 1

N2
Sh. (5)
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Weights decrease as we move away from the main diagonal. This can be also seen by re-
arranging the terms in (5). One indeed gets:

Π(M ;N) =
1

N2

N∑
i=1

N∑
j=1

(N − |i− j|)mi,j, (6)

or, equivalently, exploiting the fact that
∑

j mi,j = 1, ∀i:

Π(M ;N) =
1

N2

N∑
i=1

N−1∑
j=1

(N − |i− j|)mi,j −
N(N + 1)

2N2
. (7)

From a graphical perspective, Π can be shown to be proportional to the area of the surface
lying below the curve Pk when plotted against k. Intuitively, the higher the persistence
displayed by the underlying process, the larger the probability mass accounted by the main
diagonal, the lower the mass lying in h-upper and h-lower diagonals for h ≥ 2, the flatter
the Pk curve, and the higher Π. More precisely, if the underlying process displays maximum
persistence (i.e. mi,i = 1 ∀i), then P1 = 1 and S+

h = S−h = 0 for all h ≥ 2. Hence P1 = 1,
the curve stays flat for k ≥ 2, and Πmax = Π = 1. Conversely, in the case of minimum
persistence, one has mi,i = 0, ∀i, mi,N = 1 for i ≤ k ≤ N/2 and mi,1 = 1 for N/2 < k ≤ N .
In that case, one gets:

Πmin(N) = Π(Mmin;N) =
N∑

h=N/2+1

2 · N − h+ 1

N2
=
N + 2

4N
. (8)

Therefore Π(M ;N) ∈ [Πmin(N), 1]. Note that Πmin(N) approaches 1
4

as the number of
classes of the Markov chain goes to infinity. Πmin(N) can then be employed to appropriately
re-normalize Π so as to have an index ranging in the unit interval. Another benchmark case
is the “perfect mobility” setup, where all transition probabilities are the same (Prais, 1955;
Bartholomew, 1973), i.e. M = MPM = N−1·IN . In that situation, simple computations show
that Π(MPM ;N) = 2N2+1

3N2 . Note that Π(MPM ;N) is not the midpoint between Πmin(N) and
1, and tends to 2/3 as N →∞.

From (6) and (7), it is easy to see that Π is equivalent to a particular case of (the
complement to 1 of) the D index of mobility introduced by Bartholomew (1973, p.19, eq.
2.8), see also Prais (1955) and Matras (1961). More precisely, Π can be obtained from D by
setting to N−1 all equilibrium (ergodic) probabilities, i.e. when the ergodic distribution is
replaced in D by the “perfect mobility” case. As a result, we can interpret Π as a particular
case of D when there is no bias in the way one weights the classes, or equivalently when the
computation of the ergodic limit can be avoided or just disregarded (possibly because of a
slow convergence rate).2

2Being a particular case of Bartholomew’s D index, Π(M ;N) satisfies some interesting properties
(Shorrocks, 1976), such as “immobility” (Π(M ;N) ≤ 1) and “strong immobility” (Π(M ;N) < 1 unless
M = IN ). Note that, differently from D, it also satisfies “monotonicity” (i.e., the index decreases if one of
the non-diagonal entries of M increases at the expense of diagonal terms) precisely because Π(M ;N) does
not depend on the ergodic distribution.
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3 Statistical Properties

In this Section we study some statistical properties of the Π(M ;N) persistence index, under
suitable assumptions on the underlying randomness of the process.

Let us start from the hypothesis that we are only given a TMP M and we want to assess
the extent to which the observed level of Π(M ;N) is far from the “perfect mobility” case.
An extreme benchmark statistical model in that situation is a purely-random one where
each mi,j is assumed to be drawn, independently for any i (i.e., row of the matrix), from a
N-dimensional uniform distribution defined on the N-simplex. This ensures that each mi,j,
for each given i, and independently across different i’s, is uniformly distributed in [0, 1] and
each row of M is a probability distribution. In that case, of course, E[mi,j|N ] = N−1.

By plugging that into (6), one gets E[Π;N ] = 2N2+1
3N2 , exactly as in the “perfect mobility”

benchmark. Computing the standard deviation of Π is not straightforward: despite the index
in this case is just a weighted sum of uniformly-distributed random variables, mi,j are not
independent across j for any i. We can therefore resort to simulations in order to estimate
σ[Π|N ]. Table 1 reports the expected value and the standard deviation of Π for different
Ns, computed over 100,000 independent Montecarlo samples. The values of N are chosen
so as to match quantile classes, which are typically employed to define TPMs. Notice that
E[Π|N ] decreases with N as N−2 and converges to 2/3 as N increases. Simple computations
show that also the standard deviation decreases with N , following σ[Π|N ] ∼= 1/(5 ∗N0.98).

The last column of Table 1 also reports the p-value for the Anderson-Darling test for
normality of Π (Anderson and Darling, 1954). The high p-values indicate that we cannot
reject the hypothesis that Π is normally distributed, under the hypothesis that each row
of the TPM is uniformly distributed over the N -simplex, independently of all other rows.
In this case, this result is relatively straightforward, as Π is just a linear combination of
independent random variables with bounded support. Indeed, the r.v.’s:

ni(N,M) =
N−1∑
j=1

(N − |i− j|)mi,j (9)

are independent across i and are built as a linear combination of correlated r.v.’s uniformly
distributed over the N -simplex. As a result, we should expect normality also for small
N ’s. As we will see below this is a more general result, holding also when mi,j is estimated
from the data. Normality of Π allows us to easily compute confidence bands to evaluate
whether the observed persistence value is statistically different from the expected one under
perfect mobility and uniformly-distributed TPM entries (see Fields, 2006, for an alternative
procedure).

In more general settings, we do not simply face a given TPM, but we need to estimate it
from the data. Suppose we are given the data set YH,T = {yh,t, h = 1, . . . , H, t = 1, . . . , T},
recording the level of the relevant variable yh,t for unit h and time t, and that we want to
estimate the persistence of the underlying generating process. No matter if the data are
discrete or continuous, assume that we can reasonably approximate the process generating
the data with a time-homogenous Markov chain defined over N classes (cf. Anderson and
Goodman, 1957; Bickenbach and Bode, 2001, for statistical procedures testing for time-
homogeneity in Markov processes). If the data are discrete, the classes are simply the values

5



attained by the yh,t’s. If the data are continuous, then one can use the quantiles of each
time-t distribution as reference classes to build a proper N × N TPM. In that case, mi,j

represents the probability that yh,t belongs to the j-th quantile of the distribution of y at
time t given that it belonged to the i-th quantile of the distribution of y at time t − 1. In
either case, one can compute maximum-likelihood (ML) estimates m̂i,j for mi,j following
Anderson and Goodman (1957). In their seminal paper, they also show that m̂i,j’s have a
limiting joint normal distribution with given covariance matrix. This means that also the
persistence indicator Π(M̂ ;N), i.e. when estimated using the ML estimators m̂i,j for mi,j,
is expected to be in the limit normally distributed, being a linear combination of limiting
jointly normally-distributed r.v.’s.

In the following Section, we shall explore the behavior of Π(M̂ ;N) for two relevant
macroeconomic datasets. In the rest of this Section, instead, we perform some Montecarlo
simulations to study the statistical properties of Π when the index is computed starting
from a continuous-valued process generated by an order-1 auto-regressive (AR) process of
the form:

yh,t = βyh,t−1 + εt (10)

where β ∈ [0, 1] and εt ∼ N(0, σ). This is an obvious benchmark, as it is customary in
econometrics to study the persistence of the process using the first-order autocorrelation
coefficient as proxied by an estimate of β (see also Tauchen, 1986, for a method to find
a discrete Markov chain that approximates AR continuous-valued processes). For a given
choice of the number of quantiles N and of the pair (β, σ), we can then generate a sufficiently
large sample of statistically-independent datasets YM,T and study the distribution of Π. In
what follows, we set M = 100 and T = 100, and generate 1,000 datasets (for homogeneous
initial conditions yh,0 = 0). Figure 1 shows estimates for the mean and standard deviation
of Π as (β, σ) and N change. First notice that, as expected, Π reaches values close to its
maximum when the underlying process is close to a random walk, and then quickly decreases
towards 2/3 as β goes down. Conversely, the effect of N and σ on the mean of Π is not
dramatic. A sharp threshold emerges instead in the standard deviation of Π for large values
of β: when the autoregressive parameter is close to one, then one expects the distribution
of Π to be very concentrated around its mean value. For larger values of β, the standard
deviation remains instead almost constant.

It must be noted that AD tests (not reported here) confirm normality of Π Montecarlo
distributions in all AR parameter setups and for all N . This implies that we can easily build
confidence bands for Π and use them to evaluate the extent to which the empirically-observed
values of Π are statistically-different from (or close to) a given AR benchmark (see Section
4). Of course, one can replicate the foregoing analysis for any class of underlying generating
process that can serve as a null hypothesis (e.g., ARIMA processes) and, consequently, derive
Montecarlo estimates for E(Π; ·) and σ(Π; ·).

4 Applications

We now exemplify the use of the index Π with some empirical applications. We employ two
macroeconomics datasets. The first one is Penn World Tables (PWT) 6.1, from which we
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extract data for (real) country GDP —both in absolute terms and per-capita— from 1960
to 2007 (48 years). The second one is the Expanded-Trade dataset maintained by Kristian
Gleditsch (2002), from which we get aggregate bilateral exports (in real terms) between
world countries from 1981 to 2000 (20 years). For both data sources, we build a panel of
C = 110 countries (see Table 2 for the complete list). We are interested in assessing the
persistence of four macro variables: (i) (real) country per-capita GDP (Y PC); (ii) (real)
country GDP growth rates (Y GR), defined as the difference between the logs of country
GDP in two consecutive years; (iii) absolute trade imbalance (ATI) between any pair of
countries (i, j) in the panel, defined as the absolute level of the difference between exports
from i to j and exports from j to i; (iv) relative trade imbalance (RTI) between any pair
of countries (i, j) in the panel, defined as the ratio between the correspondent ATI and the
sum of total trade between i and j (i.e. exports from i to j plus exports from j to i).3.
While the persistence of real GDP and their growth rates have been widely studied using
many alternative techniques (see, among many others, Quah, 1993; Fatas, 2000; Chan et al.,
2001), assessing the persistence of trade imbalances can shed some new light on the current
international-trade debate (Claessens et al., 2010).

We therefore start from four data matrices: (i) Y PCc,t, where c = {1, . . . , C} and t =
{1960, . . . , 2007}; (ii) Y GRc,t, where c = {1, . . . , C} and t = {1960, . . . , 2007}; (iii) ATIi,t,
where i = {1, . . . , C · (C − 1)/2} and t = {1980, . . . , 2000}; and (iv) RTIi,t, where i =
{1, . . . , C · (C − 1)/2} and t = {1980, . . . , 2000}. Note that i spans in {1, . . . , C · (C − 1)/2}
because one has to build all bilateral (symmetric) trade imbalances between C countries.
We now employ the index Π to assess the extent to which each of these four processes are
persistent, i.e. whether a unit (i.e. a country or a pair of countries) belonging to the k-th
quantile of year-t distribution is likely to belong to the k-th or a nearby quantile in year
t + 1. We consider two choices for the number of quantiles (N = 5, 10). In each case, we
compute the observed Π as in eq. (5), where mi,j are replaced by their ML estimate m̂i,j

(Anderson and Goodman, 1957).
Table 3 reports our main results. As expected, per-capita country GDP displays the high-

est persistence (observed values very close to 1, i.e. the maximum of Π). Trade imbalances
also display a rather high persistence, whereas GDP growth rates are the less persistent
variable. As a first comparison, for each dataset and N = 5, 10, we simulate a (time-
homogeneous) Markov chain with TPM exactly equal to the observed one (estimated via
ML). It can be seen that the expected persistence is almost equal to the observed one. What
is interesting to note are the extremely narrow 95% Montecarlo bands.4 This means that if
the underlying process can be discretize and approximated by a time-homogeneous Markov
chain, its expected persistence would fall 95% of the times very close to the empirically-
observed value. The third row of Table 3 reports instead “perfect mobility” figures. Notice
that all observed values, but those of GDP growth rates, fall definitely outside the corre-
spondent 95% bands, meaning that all processes are statistically more persistent than in
the “perfectly-mobile” case. This is not so for GDP growth rates, when approximated using
quintiles (N = 5), which cannot be discriminated from our benchmark. In the N = 10 case,

3We set RTI=0 when total trade between i and j is zero
4Montecarlo confidence bands at 95% are computed using normality as [Π− 2s(Π),Π + 2s(Π)], where Π

is the Montecarlo mean of Π and s(Π) is the Montecarlo standard deviation of Π.

7



however, the observed Π value falls outside the 95% “perfect mobility” confidence band,
albeit probably would have fallen inside the 90% one. To further check the extent to which
observed Π are statistically different from some alternative benchmark random model, we can
perform a “reshuffling” exercise. Given any database Yc,t, c = {1, . . . , C} and t = {1, . . . , T},
we reshuffle a sufficiently large number of times the columns of each row of the matrix (in-
dependently across rows) to get, in each simulated instance, a new bootstrapped matrix
where we destroy time dependence. Results are shown in the fourth row of the table. It
is easy to see that observed persistence is statistically higher than in the reshuffled case,
which exhibits quite narrow confidence bands. Finally, we employ simulated values for Π
under AR processes to infer what is the most likely common AR model, i.e. the one that
better matches observed values (see Figure 1). To find the most likely values for (β, σ) (for
any given N), we simply find those (β, σ) delivering 95% bands that include the observed
value. Of course, those values need not to be unique, and in those cases we simply report
the most likely range of parameters. The last row of Table 3 shows that YPC series are
consistent with a persistence level similar to that generated by a quasi random-walk model
(with relatively small variance). Absolute and relative trade imbalances exhibit a medium
persistence with β ∈ [0.5, 0.7], whereas GDP growth rates display the lowest persistence,
equivalent to a common AR process with β = 0.3.

5 Concluding Remarks

In this note, we have explored the statistical properties of a simple index of persistence. We
have shown that the index is normally distributed both when the entries of the TPM are
uniformly distributed and when they are estimated using some underlying sample of data.
We have applied the index to study the persistence of four macroeconomic datasets for a
panel of 110 countries and compared observed values to different statistical benchmarks.
This may prove to be helpful to statistically discriminate between high and low levels of the
index, according to the maintained null hypothesis.

Many extensions of the simple Π index studied here may be envisaged. Starting from
Eq. (5), one can generalize the index by letting:

ΠG(M ;N) =
N∑

h=1

fh(N)Sh (11)

where fh(N) ≥ 0 is a different weighting function satisfying f1(N) + 2
∑N

h=2 fh(N) = 1.
Some straightforward examples are fh(N) = c > 0 or fh(N) = (N − h + 1)−1. Similarly,
an extension of Π that can be computed on transition probability kernels in the continuum
might be considered (see Quah, 1993).

Finally, more extensive simulation exercises may be carried out to map the statistical
properties of Π under alternative data generating processes, such as for example ARMA or
ARIMA models.
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N Mean Std Dev AD Test (pval)
4 0.6877 0.0522 0.8752
5 0.6801 0.0420 0.7065
10 0.6699 0.0215 0.7172
20 0.6676 0.0109 0.1815
50 0.6668 0.0044 0.4151
100 0.6667 0.0022 0.2376

Table 1: Mean and standard deviation of Π under the null hypothesis that each row of the
TPM is uniformly distributed over the N -simplex, independently of all other rows. Notes:
Mean and standard deviation computed over 100,000 Montecarlo replications. AD Test:
Anderson-Darling test for normality (Anderson and Darling, 1954) of Montecarlo samples.

Algeria Dem. Rep. of Congo Haiti Mauritius Senegal
Argentina Republic of Congo Honduras Mexico Seychelles
Australia Costa Rica Hong Kong Morocco Singapore
Austria Cote d’Ivoire Iceland Mozambique South Africa
Bangladesh Cyprus India Namibia Spain
Barbados Denmark Indonesia Nepal Sri Lanka
Belgium Dominican Republic Iran Netherlands Sweden
Benin Ecuador Ireland New Zealand Switzerland
Bolivia Egypt Israel Nicaragua Syria
Botswana El Salvador Italy Niger Taiwan
Brazil Equatorial Guinea Jamaica Nigeria Tanzania
Burkina Faso Ethiopia Japan Norway Thailand
Burundi Fiji Jordan Pakistan Togo
Cameroon Finland Kenya Panama Trinidad &Tobago
Canada France Rep. of Korea Papua New Guinea Turkey
Cape Verde Gabon Lesotho Paraguay Uganda
Central African Rep. Gambia Luxembourg Peru United Kingdom
Chad Ghana Madagascar Philippines United States
Chile Greece Malawi Portugal Uruguay
China Guatemala Malaysia Puerto Rico Venezuela
Colombia Guinea Mali Romania Zambia
Comoros Guinea-Bissau Mauritania Rwanda Zimbabwe

Table 2: Countries in the panel.
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Per Capita GDP GDP Growth Rates
N=5 N=10 N=5 N=10

Observed 0.9913 0.9888 0.7454 0.7371

Markov Chain 0.9912 0.9887 0.7453 0.7368
(0.9900,0.9924) (0.9878,0.9896) (0.7390,0.7516) (0.7304,0.7432)

Perfect Mobility 0.6800 0.6700 0.6800 0.6700
(0.5955,0.7645) (0.6271,0.7129) (0.5955,0.7645) (0.6271,0.7129)

Reshuffling 0.9217 0.9131 0.7016 0.6920
(0.9192,0.9243) (0.9108,0.9153) (0.6957,0.7076) (0.6862,0.6978)

AR Models β ∈ [0.99, 1] β ∈ [0.99, 1] β = 0.3 β = 0.3
σ ∈ [0.01, 0.1] σ ∈ [0.01, 0.1] σ ∈ [0.1, 10] σ = 0.1

Absolute Trade Imbalances Relative Trade Imbalances
N=5 N=10 N=5 N=10

Observed 0.9321 0.8416 0.8590 0.7799

Markov Chain 0.9321 0.8416 0.8590 0.7798
(0.9313,0.9329) (0.8411,0.8422) (0.8575,0.8605) (0.7787,0.7810)

Perfect Mobility 0.6800 0.6700 0.6800 0.6700
(0.5955,0.7645) (0.6271,0.7129) (0.5955,0.7645) (0.6271,0.7129)

Reshuffling 0.8821 0.8010 0.6960 0.6857
(0.8780,0.8863) (0.7996,0.8025) (0.6945,0.6975) (0.6840,0.6874)

AR Models β = 0.7 β = 0.7 β = 0.5 β = 0.5
σ = 0.01 σ = 0.01 σ ∈ [0.01, 0.1] σ ∈ [0.01, 0.1]

Table 3: The index Π and its statistical properties under different null hypotheses for four
macroeconomic datasets. Notes: N=number of quantiles. 95% confidence bands in paren-
theses. Montecarlo sample size: 10,000.
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Figure 1: Mean and Standard Deviation of Π under the hypothesis that the underlying data
generation process is an AR(1). Top Panels: Mean. Bottom Panels: Standard Deviation.
Moments estimated using 1,000 datasets with 100 units and 100 time-periods. Note: Logs
scales are employed for both X and Y axes.
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