Introduction	Literature	Network Analysis	Data	Results (1/2)	Summary (1/2)
0000	00000	000000	00	0000000000	0

The Empirical Analysis of Weighted Directed Networks: An Application to the World Trade Web

G. Fagiolo¹ J. Reyes² S. Schiavo³ giorgio.fagiolo@sssup.it https://mail.sssup.it/~fagiolo

¹Sant'Anna School of Advanced Studies, Pisa, Italy

²University of Arkansas, USA

³University of Trento, Italy

Net Workshop, 12-13 April 2007, Milan (Italy)

(ロ) (同) (三) (三) (三) (○) (○)

Introduction 0000	Literature 00000	Network Analysis	Data oo	Results (1/2)	Summary (1/2) o
My Hor	nepage				

https://mail.sssup.it/~fagiolo/welcome.html

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Illustrating some statistical tools for the analysis of empirically-observed networks

- Three simple but important methodological points
- Leading example: network of trade among World countries

Methodological points

- If appropriate, empirical analyses should be carried out in the framework of weighted networks
- Often, but not always, directed network analyses should be preferred to undirect ones

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The empirical analysis of weighted, directed networks requires new statistical tools

Illustrating some statistical tools for the analysis of empirically-observed networks

- Three simple but important methodological points
- Leading example: network of trade among World countries

Methodological points

- If appropriate, empirical analyses should be carried out in the framework of weighted networks
- Often, but not always, directed network analyses should be preferred to undirect ones

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The empirical analysis of weighted, directed networks requires new statistical tools

- Fagiolo, G. (2006a), "Directed or Undirected? A New Index to Check for Directionality of Relations in Socio-Economic Networks", *Economics Bulletin*, 3: 1-12.
- Fagiolo, G. (2006b), "Clustering in Complex Directed Networks", Working Paper, arXiv:physics/0612169v2.
- Fagiolo, G., Reyes, J. and Schiavo, S. (2007), "The Evolution of the World Trade Web: A Weighted Network Approach", LEM Working Paper, Sant'Anna School of Advanced Studies, forthcoming.

From Social to Hard Sciences...

Networks of interpersonal relations

- Old idea in sociology: "relevant others" (Miller, 1963)
- Explaining patterns of interactions among people of groups
- Friendship (Rapoport & Horvath, 1961; Milgram, 1967)
- Marriage (Padgett & Ansell, 1993)
- Job-market interactions (Granovetter, 1974)

Statistical analysis of network topology

- Albert & Barabási (2002), Newman (2003), Pastor-Satorras & Vespignani (2004), Dorogovtsev & Mendes (2003), ...
- Properties of real-world technological, biological and information networks
 - WWW and the Internet, peer-to-peer networks, power grids, train routes, airline connections, electronic circuits, metabolism, protein interactions, neural networks

From Social to Hard Sciences...

Networks of interpersonal relations

- Old idea in sociology: "relevant others" (Miller, 1963)
- Explaining patterns of interactions among people of groups
- Friendship (Rapoport & Horvath, 1961; Milgram, 1967)
- Marriage (Padgett & Ansell, 1993)
- Job-market interactions (Granovetter, 1974)

Statistical analysis of network topology

- Albert & Barabási (2002), Newman (2003), Pastor-Satorras & Vespignani (2004), Dorogovtsev & Mendes (2003), ...
- Properties of real-world technological, biological and information networks
 - WWW and the Internet, peer-to-peer networks, power grids, train routes, airline connections, electronic circuits, metabolism, protein interactions, neural networks

... And Back to Social Sciences (Econophysics)

Empirical analysis of social and economic networks

Socio-economic systems as networks?

A non-exhaustive list of applications

scientific co-authorship (Newman, 2001) and citation (Redner, 1998)

telephone calls (Aiello et al., 2000)

email exchanges (Kossinets and Watts, 2006)

sexual relationships (Liljeros et al., 2001)

knowledge spill-overs among firms in industrial clusters (Giuliani and Bell, 2001)

market investment (Battiston and Catanzaro, 2004)

patent citation and innovation networks (Breschi and Lissoni, 2001; Ahuja, 2000)

firm alliance formation (Gulati, 1998; Garcia Pont and Nohria, 2002)

R&D teams and other within-firm networks (Reagans and co-authors, 2001, 2004)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

social capital (Walker, Kogut, and Shan, 1997)

company ownership and control (Garlaschelli et al., 2005)

financial networks (Kullman et al., 2001)

bank-firm relationships (De Masi et al., 2007)

and also . . .

... And Back to Social Sciences (Econophysics)

Empirical analysis of social and economic networks

- Socio-economic systems as networks?
- A non-exhaustive list of applications
 - scientific co-authorship (Newman, 2001) and citation (Redner, 1998)
 - telephone calls (Aiello et al., 2000)
 - email exchanges (Kossinets and Watts, 2006)
 - sexual relationships (Liljeros et al., 2001)
 - knowledge spill-overs among firms in industrial clusters (Giuliani and Bell, 2001)
 - market investment (Battiston and Catanzaro, 2004)
 - patent citation and innovation networks (Breschi and Lissoni, 2001; Ahuja, 2000)
 - firm alliance formation (Gulati, 1998; Garcia Pont and Nohria, 2002)
 - R&D teams and other within-firm networks (Reagans and co-authors, 2001, 2004)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- social capital (Walker, Kogut, and Shan, 1997)
- company ownership and control (Garlaschelli et al., 2005)
- financial networks (Kullman et al., 2001)
- bank-firm relationships (De Masi et al., 2007)
- and also ...

Introduction	Literature	Network Analysis	Data	Results (1/2)	Summary (1/2)
0000	0000	000000	00	0000000000	0

The network of international trade flows (1/3)

Main idea

- Web of trade relations among countries as a networks
- Countries = nodes
- Links = existence of trade relationship (import/export)

• Any value added?

• Standard empirics: imports-exports as country-specific variables

(日) (日) (日) (日) (日) (日) (日)

- Network analysis: flows as relational variables
- Topological structure, higher-order trade structure
- Network structure and macroeconomic dynamics

Introduction	Literature	Network Analysis	Data	Results (1/2)	Summary (1/2)
0000	0000	000000	00	0000000000	0

The network of international trade flows (1/3)

Main idea

- Web of trade relations among countries as a networks
- Countries = nodes
- Links = existence of trade relationship (import/export)

Any value added?

- Standard empirics: imports-exports as country-specific variables
- Network analysis: flows as relational variables
- Topological structure, higher-order trade structure
- Network structure and macroeconomic dynamics

Introduction	Literature	Network Analysis	Data	Results (1/2)	Summary (1/2)
0000	00000	000000	00	0000000000	0

The network of international trade flows (2/3)

Old tradition in political sciences

- Relational variables are more important than country characteristics to explain international trade patterns
- Focus on core-periphery and world dependency theories
- Snyder & Kick (1979), Breiger (1981), Nemeth & Smith (1985), Schott (1986), Smith & White (1992), Sacks et al. (2001), Kim & Shin (2002), Kastelle et al. (2006), Mahutga (2006)
- Econophysics enters the stage
 - Serrano and Boguña (2003), Physical Review E
 - Li, Jin, and Chen (2003), Physica A
 - Garlaschelli and Loffredo (2004, 2005), *Physical Review Letters*

(日) (日) (日) (日) (日) (日) (日)

Introduction	Literature	Network Analysis	Data	Results (1/2)	Summary (1/2)
0000	00000	000000	00	0000000000	0

The network of international trade flows (2/3)

Old tradition in political sciences

- Relational variables are more important than country characteristics to explain international trade patterns
- Focus on core-periphery and world dependency theories
- Snyder & Kick (1979), Breiger (1981), Nemeth & Smith (1985), Schott (1986), Smith & White (1992), Sacks et al. (2001), Kim & Shin (2002), Kastelle et al. (2006), Mahutga (2006)

• Econophysics enters the stage

- Serrano and Boguña (2003), Physical Review E
- Li, Jin, and Chen (2003), Physica A
- Garlaschelli and Loffredo (2004, 2005), *Physical Review Letters*

(ロ) (同) (三) (三) (三) (○) (○)

The network of international trade flows (3/3)

Basic ingredients of the analysis

- Take N countries and T time-periods (years)
- Collect statistics on e^t_{ij} = exports from country *i* to country *j* in year t = 1,..., T
- In each *t*, build a $N \times N$ adjacency matrix A^t , where $a_{ij}^t = 1$ iff $e_{ij}^t > \underline{e}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Critical point: thresholds and GDP scaling
- Problems
 - Directed or undirected analysis?
 - Using appropriate tools for directed analysis
 - Disregarding heterogeneity of link importance

The network of international trade flows (3/3)

Basic ingredients of the analysis

- Take N countries and T time-periods (years)
- Collect statistics on e^t_{ij} = exports from country *i* to country *j* in year t = 1,..., T
- In each *t*, build a $N \times N$ adjacency matrix A^t , where $a_{ij}^t = 1$ iff $e_{ij}^t > \underline{e}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Critical point: thresholds and GDP scaling

Problems

- Directed or undirected analysis?
- Using appropriate tools for directed analysis
- Disregarding heterogeneity of link importance

Introduction	Literature	Network Analysis	Data	Results (1/2)	Summary (1/2)
0000	00000	00000	00	00000000000	0

A Taxonomy of Network Classes

Two Dimensions: Links can be

- binary or weighted
- undirected or undirected

Introduction	Literature	Network Analysis	Data	Results (1/2)	Summary (1/2)
0000	00000	00000	00	0000000000	0

A Taxonomy of Network Classes

• Two Dimensions: Links can be

- binary or weighted
- undirected or undirected

Links	Undirected	Directed
Binary	Adjacency Matrix $A = \{a_{ij}\}$ Symmetric: $a_{ij} = a_{ji}$	Adjacency Matrix $A = \{a_{ij}\}$ Asymmetric
Weighted	Weight Matrix $W = \{w_{ij}\}$ Symmetric: $w_{ij} = w_{ji}$	Weight Matrix W = {w _{ij} } Asymmetric

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Introduction	Literature	Network Analysis	Data	Results (1/2)	Summary (1/2)
0000	00000	00000	00	0000000000	0

Binary Undirected Networks (BUNs)

Standard BUN statistics

- Node degree (*d_i*)
- Average nearest-neighbor degree (ANND)
- Clustering coefficient
- Average shortest-distance path
- Betweenness centrality

• When is a BUN analysis appropriate?

- Suppose we can disregard link directionality
- Nature of relationships must be binary
- No heterogeneity among links
- Example: Marriage (Padgett and Ansell, 1993)
- What about airline traffic, the Internet, scientific citations, the WTW?

(日) (日) (日) (日) (日) (日) (日)

• Intensity or importance of links may strongly differ!

Introduction	Literature	Network Analysis	Data	Results (1/2)	Summary (1/2)
0000	00000	00000	00	0000000000	0

Binary Undirected Networks (BUNs)

Standard BUN statistics

- Node degree (*d_i*)
- Average nearest-neighbor degree (ANND)
- Clustering coefficient
- Average shortest-distance path
- Betweenness centrality

• When is a BUN analysis appropriate?

- Suppose we can disregard link directionality
- Nature of relationships must be binary
- No heterogeneity among links
- Example: Marriage (Padgett and Ansell, 1993)
- What about airline traffic, the Internet, scientific citations, the WTW?
- Intensity or importance of links may strongly differ!

Introduction	Literature	Network Analysis	Data	Results (1/2)	Summary (1/2)
0000	00000	000000	00	0000000000	0

What if these conditions are not met?

Employing a weighted undirected network (WUN) approach

- From (symmetric) adjacency matrix to (symmetric) weight matrix
- Need for a generalization of BUN statistics
- Barrat et al. (2004, *PNAS*); Barthélemy et al. (2005, *Physica A*)
- Two crucial necessary conditions
 - WUN analysis should bring some value added: heterogeneity must be relevant
 - Provide the asymptotic and a seture of the asymptotic and a

(ロ) (同) (三) (三) (三) (○) (○)

Introduction Lit	terature	Network Analysis	Data	Results (1/2)	Summary (1/2)
0000 0	0000	00000	00	0000000000	0

What if these conditions are not met?

Employing a weighted undirected network (WUN) approach

- From (symmetric) adjacency matrix to (symmetric) weight matrix
- Need for a generalization of BUN statistics
- Barrat et al. (2004, *PNAS*); Barthélemy et al. (2005, *Physica A*)
- Two crucial necessary conditions
 - WUN analysis should bring some value added: heterogeneity must be relevant
 - Presults must not depend on the weighting setup

(ロ) (同) (三) (三) (三) (○) (○)

Introduction	Literature	Network Analysis	Data	Results (1/2)	Summary (1/2)
0000	00000	000000	00	00000000000	0

WUN Indicators: A brief tutorial (1/2)

Node Strength

$$s_i = \sum_j w_{ij} = W_{(i)} \mathbf{1}.$$

Average Nearest-Neighbors Strength (ANNS)

anns_i =
$$d_i^{-1} \sum_j a_{ij} s_j = d_i^{-1} \sum_j \sum_h a_{ij} w_{jh} = \frac{A_{(i)} W 1}{A_{(i)} 1}$$

Weighted Average of Nearest-Neighbors Degree (WANND)

wannd_i =
$$s_i^{-1} \sum_j w_{ij} d_j = s_i^{-1} \sum_j \sum_h w_{ij} a_{jh} = \frac{W_{(i)} A \mathbf{1}}{W_{(i)} \mathbf{1}}$$

- * ロ > * 個 > * 注 > * 注 > ・ 注 ・ の < @

Introduction	Literature 00000	Network Analysis	Data oo	Results (1/2)	Summary (1/2) o

WUN Indicators: A brief tutorial (1/2)

Node Strength

$$s_i = \sum_j w_{ij} = W_{(i)} \mathbf{1}.$$

Average Nearest-Neighbors Strength (ANNS)

$$anns_i = d_i^{-1} \sum_j a_{ij}s_j = d_i^{-1} \sum_j \sum_h a_{ij}w_{jh} = \frac{A_{(i)}W1}{A_{(i)}1}.$$

Weighted Average of Nearest-Neighbors Degree (WANND)

wannd_i =
$$s_i^{-1} \sum_j w_{ij} d_j = s_i^{-1} \sum_j \sum_h w_{ij} a_{jh} = \frac{W_{(i)} A \mathbf{1}}{W_{(i)} \mathbf{1}}$$

- ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● のへで

Introduction	Literature 00000	Network Analysis	Data oo	Results (1/2)	Summary (1/2) o

WUN Indicators: A brief tutorial (1/2)

Node Strength

$$s_i = \sum_j w_{ij} = W_{(i)} \mathbf{1}.$$

Average Nearest-Neighbors Strength (ANNS)

$$anns_i = d_i^{-1} \sum_j a_{ij}s_j = d_i^{-1} \sum_j \sum_h a_{ij}w_{jh} = \frac{A_{(i)}W1}{A_{(i)}1}.$$

Weighted Average of Nearest-Neighbors Degree (WANND)

wannd_i =
$$s_i^{-1} \sum_j w_{ij} d_j = s_i^{-1} \sum_j \sum_h w_{ij} a_{jh} = \frac{W_{(i)} A \mathbf{1}}{W_{(i)} \mathbf{1}}$$

|▲□▶ ▲圖▶ ▲国▶ ▲国▶ | 国|||のQ@

Introduction	Literature	Network Analysis	Data	Results (1/2)	Summary (1/2)
0000	00000	00000	00	00000000000	0

WUN Indicators: A brief tutorial (2/2)

Node Disparity (Herfindahl Concentration Index)

$$h_{i} = \frac{(N-1)\sum_{j} \left(\frac{w_{ij}}{s_{i}}\right)^{2} - 1}{N-2} = \frac{(N-1)\frac{1}{s_{i}^{2}}\sum_{j} w_{ij}^{2} - 1}{N-2} = \frac{(N-1)\frac{W_{ij}^{(2)}1}{(W_{ij})^{1/2}} - 1}{N-2}$$

Binary Clustering Coefficient (CC)

$$C_i(A) = \frac{\frac{1}{2} \sum_{j \neq i} \sum_{h \neq (i,j)} a_{ij} a_{ih} a_{jh}}{\frac{1}{2} d_i (d_i - 1)} = \frac{(A^3)_{ii}}{d_i (d_i - 1)}.$$

Weighted Clustering Coefficient (WCC)

$$\tilde{C}_{i}(W) = \frac{\frac{1}{2} \sum_{j \neq i} \sum_{h \neq (i,j)} w_{ij}^{\frac{1}{3}} w_{ih}^{\frac{1}{3}} w_{jh}^{\frac{1}{3}}}{\frac{1}{2} d_{i}(d_{i}-1)} = \frac{(W^{\left[\frac{1}{3}\right]})_{ii}^{3}}{d_{i}(d_{i}-1)}$$

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | 重|||の��

[0]

Introduction	Literature	Network Analysis	Data	Results (1/2)	Summary (1/2)
0000	00000	00000	00	00000000000	0

WUN Indicators: A brief tutorial (2/2)

Node Disparity (Herfindahl Concentration Index)

$$h_{i} = \frac{(N-1)\sum_{j} \left(\frac{w_{ij}}{s_{i}}\right)^{2} - 1}{N-2} = \frac{(N-1)\frac{1}{s_{i}^{2}}\sum_{j} w_{ij}^{2} - 1}{N-2} = \frac{(N-1)\frac{W_{ij}^{(2)}1}{(W_{ij})^{1/2}} - 1}{N-2}$$

Binary Clustering Coefficient (CC)

$$C_i(A) = \frac{\frac{1}{2} \sum_{j \neq i} \sum_{h \neq (i,j)} a_{ij} a_{ih} a_{jh}}{\frac{1}{2} d_i(d_i - 1)} = \frac{(A^3)_{ii}}{d_i(d_i - 1)}.$$

Weighted Clustering Coefficient (WCC)

$$\tilde{C}_{i}(W) = \frac{\frac{1}{2} \sum_{j \neq i} \sum_{h \neq (i,j)} w_{ij}^{\frac{1}{3}} w_{ih}^{\frac{1}{3}} w_{jh}^{\frac{1}{3}}}{\frac{1}{2} d_{i}(d_{i}-1)} = \frac{(W^{\begin{bmatrix} 1\\3 \end{bmatrix}})_{ii}^{3}}{d_{i}(d_{i}-1)}$$

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | ≣|||の��

[0]

Introduction	Literature	Network Analysis	Data	Results (1/2)	Summary (1/2)
0000	00000	00000	00	0000000000	0

WUN Indicators: A brief tutorial (2/2)

Node Disparity (Herfindahl Concentration Index)

$$h_{i} = \frac{(N-1)\sum_{j} \left(\frac{w_{ij}}{s_{i}}\right)^{2} - 1}{N-2} = \frac{(N-1)\frac{1}{s_{i}^{2}}\sum_{j} w_{ij}^{2} - 1}{N-2} = \frac{(N-1)\frac{W_{ij}^{(2)}1}{(W_{ij})^{1/2}} - 1}{N-2}$$

Binary Clustering Coefficient (CC)

$$C_i(A) = \frac{\frac{1}{2} \sum_{j \neq i} \sum_{h \neq (i,j)} a_{ij} a_{ih} a_{jh}}{\frac{1}{2} d_i(d_i - 1)} = \frac{(A^3)_{ii}}{d_i(d_i - 1)}.$$

Weighted Clustering Coefficient (WCC)

$$\tilde{C}_{i}(W) = \frac{\frac{1}{2}\sum_{j \neq i}\sum_{h \neq (i,j)} w_{ij}^{\frac{1}{3}} w_{ih}^{\frac{1}{3}} w_{jh}^{\frac{1}{3}}}{\frac{1}{2}d_{i}(d_{i}-1)} = \frac{(W^{[\frac{1}{3}]})_{ii}^{3}}{d_{i}(d_{i}-1)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

[0]

Introduction 0000	Literature 00000	Network Analysis	Data ●○	Results (1/2)	Summary (1/2) o
Data					

• International trade data

- Gleditsch (2002) database
- See http://ibs.colorado.edu/~ksg/trade/

• Data structure

- We employ a panel of 159 countries
- Time period: 1981-2000 (*T* = 20 years)
- Baseline observation
 - $\{e_{ij}^t\}$: Exports from country *i* to country *j* in year *t*
 - GDP_i^t and $pcGDP_i^t$ of country *i* in year *t*
- Data in current US\$ (deflated)
- Important remark
 - Suppose export flows are sufficiently symmetric...

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Introduction 0000	Literature 00000	Network Analysis	Data ●○	Results (1/2)	Summary (1/2) o
Data					

International trade data

- Gleditsch (2002) database
- See http://ibs.colorado.edu/~ksg/trade/

Data structure

- We employ a panel of 159 countries
- Time period: 1981-2000 (*T* = 20 years)
- Baseline observation
 - $\{e_{ij}^t\}$: Exports from country *i* to country *j* in year *t*
 - GDP_i^t and $pcGDP_i^t$ of country *i* in year *t*
- Data in current US\$ (deflated)
- Important remark
 - Suppose export flows are sufficiently symmetric...

(日) (日) (日) (日) (日) (日) (日)

Introduction 0000	Literature 00000	Network Analysis	Data ●○	Results (1/2)	Summary (1/2) o
Data					

International trade data

- Gleditsch (2002) database
- See http://ibs.colorado.edu/~ksg/trade/

Data structure

- We employ a panel of 159 countries
- Time period: 1981-2000 (*T* = 20 years)
- Baseline observation
 - $\{e_{ij}^t\}$: Exports from country *i* to country *j* in year *t*
 - GDP^t and pcGDP^t of country *i* in year *t*
- Data in current US\$ (deflated)

Important remark

Suppose export flows are sufficiently symmetric...

(ロ) (同) (三) (三) (三) (○) (○)

• Adjacency matrix A_i^t

- We follow commodity flow (rows: exporters)
- A link *ij* exists if $e_{ij}^t = e_{ji}^t > 0$
- Weight matrix W_i^t
 - We use the baseline definition
 - Exports from *i* to *j* divided by exporter's GDP (*i*)
 - But we experiment with many alternatives:
 - Exports from *i* to *j* divided by importer's GDP (*j*)
 - Exports from *i* to *j* (not scaled)
 - Same as above but now divided by total exports

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• Weights are renormalized s.t. $w_i^t \in [0, 1]$

• Adjacency matrix A_i^t

- We follow commodity flow (rows: exporters)
- A link *ij* exists if $e_{ij}^t = e_{ji}^t > 0$

• Weight matrix W_i^t

- We use the baseline definition
 - Exports from *i* to *j* divided by exporter's GDP (*i*)
- But we experiment with many alternatives:
 - Exports from i to j divided by importer's GDP (j)
 - Exports from *i* to *j* (not scaled)
 - Same as above but now divided by total exports

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• Weights are renormalized s.t. $w_i^t \in [0, 1]$

WTW Connectivity: Average and Standard Deviation

Highly connected BUN vs. Weakly connected WUN

Node Degree (Ave/StDev)

Node Strength (Ave/StDev)

ヘロマ ヘ動 マイロマー

э

Introduction	Literature 00000	Network Analysis	Data oo	Results (1/2)	Summary (1/2) o

WTW Connectivity: Shape of Degree Distributions

Weak skewness; not lognormal/power-law; bimodality

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | 重||||の��

WTW Connectivity: Shape of Strength Distributions

High skewness; more lognormal/power-law; no bimodality

▲□▶▲□▶▲□▶▲□▶ □ のへで

Introduction	Literature	Network Analysis	Data	Results (1/2)	Summary (1/2)
0000	00000	000000	00	000000000000	0

WTW Connectivity: Degree-Strength Correlation

Positive but not very strong correlation

Deg-Str Correlation

Deg vs. Str in *t*=2000

(ロ)

Remark: WUN analysis, a first value added

WUN Connectivity

- A picture substantially different from BUN
- Trade link heterogeneity matters

Degree-Strength Distributions

- Degree: Bimodality
- Strength: Skewed distributions, quasi scale-free, core-periphery structure

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Remark: WUN analysis, a first value added

WUN Connectivity

- A picture substantially different from BUN
- Trade link heterogeneity matters

Degree-Strength Distributions

- Degree: Bimodality
- Strength: Skewed distributions, quasi scale-free, core-periphery structure

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Introduction 0000	Literature 00000	Network Analysis	Data oo	Results (1/2)	Summary (1/2) o
WTW A	ssortativ	itv			

• Do strongly-connected countries trade with strongly-connected partners?

- In terms of node degree (BUN) and ANND
- In terms of node strength (WUN) and ANNS-WANND

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Networks can be

- Assortative: Positive correlation
- Disassortative: Negative correlation

• Do strongly-connected countries trade with strongly-connected partners?

- In terms of node degree (BUN) and ANND
- In terms of node strength (WUN) and ANNS-WANND

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Networks can be

- Assortative: Positive correlation
- Disassortative: Negative correlation

Introduction	Literature	Network Analysis	Data	Results (1/2)	Summary (1/2)
0000	00000	000000	00	00000000000	0

WTW Assortativity: Correlation patterns

BUN: Strongly disassortative; WUN: Weakly disassortative

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Literature	Network Analysis	Data	Results (1/2)	Summary (1/2)
0000	00000	000000	00	000000000000	0

Remark: WUN analysis, a second value added

WUN Connectivity

• Core-periphery (quasi scale-free) structure

WUN Assortativity

- Poorly-connected trading with highly-connected
- But: Emergence of intermediate periphery
- Medium-highly connected trade with highly-connected

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Introduction	Literature 00000	Network Analysis	Data oo	Results (1/2) ○○○○○○●○○○	Summary (1/2) o

Remark: WUN analysis, a second value added

WUN Connectivity

• Core-periphery (quasi scale-free) structure

WUN Assortativity

- Poorly-connected trading with highly-connected
- But: Emergence of intermediate periphery
- Medium-highly connected trade with highly-connected

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 Introduction
 Literature
 Network Analysis
 Data
 Results (1/2)
 Summary (1/2)

 0000
 00000
 00
 000000
 00
 000000
 0

WTW Clustering: Average Levels

Do countries hold many/intense trade relationships with countries that intensively trade with each other?

Average Node CC (Expected \sim 0.6)

Average Node WCC (Expected \sim 0.4)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

WTW Clustering: Correlation with Degree/Strength

Are better connected countries more clustered?

BUN, CC-Degree: Strongly Negative

BUN, WCC-Strength: Positive

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�()~.

Remark: WUN analysis, a third value added

BUN Clustering

- Highly clustered on average
- Highly-connected countries hold trade partners that do not trade with each other
- Poorly-connected countries do not trade among them but are connected to the hubs

WUN Clustering

- Poorly clustered on average
- Countries holding intense trade relationships are typically involved in highly-interconnected triples

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• A sort of "rich club phenomenon"?

Remark: WUN analysis, a third value added

BUN Clustering

- Highly clustered on average
- Highly-connected countries hold trade partners that do not trade with each other
- Poorly-connected countries do not trade among them but are connected to the hubs

WUN Clustering

- Poorly clustered on average
- Countries holding intense trade relationships are typically involved in highly-interconnected triples
- A sort of "rich club phenomenon"?

Binary vs. Weighted Analysis: Summary

We have shown that

- Link heterogeneity matters a lot in studying WTW
- If link heterogeneity is not taken into account we are disregarding a lot of information: a very different picture may emerge
- A WUN approach is able to provide more and better insights
- Do results depend on weighting setup?
 - Not at all!
 - All previous results hold under alternative weighting schemes
 - If we do not scale by GDP, larger positive correlation between strength and WCC!

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Binary vs. Weighted Analysis: Summary

We have shown that

- Link heterogeneity matters a lot in studying WTW
- If link heterogeneity is not taken into account we are disregarding a lot of information: a very different picture may emerge
- A WUN approach is able to provide more and better insights

Do results depend on weighting setup?

- Not at all!
- All previous results hold under alternative weighting schemes
- If we do not scale by GDP, larger positive correlation between strength and WCC!

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Directed	Networks
00000	

(ロ) (同) (三) (三) (三) (○) (○)

What happens if networks are directed?

Maintained Assumption: Undirected Networks

- Majority of real-world networks are intrinsically directed
- Example: WTW
- Directed or undirected analysis?
- General Rule
 - Undirected: If network is intrinsically symmetric (marriage)
 - Directed: Must statistically detect if empirically-observed network is sufficiently asymmetric

• Why can't we simply employ a directed analysis?

- If network is directed (binary or weighted) appropriate tools and indicators must be employed
- Many papers: analyze directed networks with undirected-network tools
- Directed networks indicators are more complicated but they extract much more information

Directed	Networks
00000	

What happens if networks are directed?

Maintained Assumption: Undirected Networks

- Majority of real-world networks are intrinsically directed
- Example: WTW
- Directed or undirected analysis?
- General Rule
 - Undirected: If network is intrinsically symmetric (marriage)
 - Directed: Must statistically detect if empirically-observed network is sufficiently asymmetric

• Why can't we simply employ a directed analysis?

- If network is directed (binary or weighted) appropriate tools and indicators must be employed
- Many papers: analyze directed networks with undirected-network tools
- Directed networks indicators are more complicated but they extract much more information

Directed Networks	A New Index	Results (2/2)	Summary (2/2) o

In, Out, Total Strength

•
$$s_{i}^{in} = \sum_{j} w_{ji} = W_{(i)}^{T} \mathbf{1}$$

• $s_{i}^{out} = \sum_{j} w_{ij} = W_{(i)} \mathbf{1}$
• $s_{i}^{tot} = s_{i}^{in} + s_{i}^{out} = (W^{T} + W)_{(i)} \mathbf{1}$

Average Nearest-Neighbor Strength

anns^{out-out}: Average out-strength of *i*'s out-neighbors
 anns^{out-in}: Average in-strength of *i*'s out-neighbors
 anns^{in-out}: Average out-strength of *i*'s in-neighbors
 annsⁱⁿ⁻ⁱⁿ: Average in-strength of *i*'s in-neighbors

Directed Networks	A New Index	Results (2/2)	Summary (2/2) o

In, Out, Total Strength

•
$$s_i^{in} = \sum_j w_{ji} = W_{(i)}^T \mathbf{1}$$

• $s_i^{out} = \sum_j w_{ij} = W_{(i)} \mathbf{1}$
• $s_i^{tot} = s_i^{in} + s_i^{out} = (W^T + W)_{(i)} \mathbf{1}$

Average Nearest-Neighbor Strength

- anns^{out-out}: Average out-strength of *i*'s out-neighbors
- anns^{out-in}: Average in-strength of i's out-neighbors
- $anns_i^{in-out}$: Average out-strength of *i*'s in-neighbors
- annsⁱⁿ⁻ⁱⁿ: Average in-strength of *i*'s in-neighbors

Directed Networks A New Index	Results (2/2)	Summary (2/2)
0000 000	0000	0

More formally

•
$$anns_{i}^{out-out} = (d_{i}^{out})^{-1} \sum_{j} a_{ij}s_{j}^{out} = \frac{A_{(i)}W'1}{A_{i}1}$$

• $anns_{i}^{out-in} = (d_{i}^{out})^{-1} \sum_{j} a_{ij}s_{j}^{in} = \frac{A_{(i)}W'1}{A_{i}1}$
• $anns_{i}^{in-out} = (d_{i}^{in})^{-1} \sum_{j} a_{ji}s_{j}^{out} = \frac{A_{(i)}^{T}W'1}{A_{i}^{T}1}$
• $anns_{i}^{in-in} = (d_{i}^{in})^{-1} \sum_{j} a_{ji}s_{j}^{in} = \frac{A_{(i)}^{T}W1}{A_{i}^{T}1}$

Decomposition of Total ANNS

anns^{tot} =
$$\frac{(A^T + A)_{(i)}(W^T + W)1}{(A^T + A)_{(i)}1}$$

 $(A^{T} + A)_{(i)}(W^{T} + W) = A_{(i)}^{T}W^{T} + A_{(i)}^{T}W + A_{(i)}W^{T} + A_{(i)}W.$

Directed Networks	A New Index	Results (2/2)	Summary (2/2)
0000	000	0000	0

More formally

•
$$anns_{i}^{out-out} = (d_{i}^{out})^{-1} \sum_{j} a_{ij}s_{j}^{out} = \frac{A_{(i)}W'^{1}}{A_{i1}}$$

• $anns_{i}^{out-in} = (d_{i}^{out})^{-1} \sum_{j} a_{ij}s_{j}^{in} = \frac{A_{(i)}W'^{1}}{A_{i1}}$
• $anns_{i}^{in-out} = (d_{i}^{in})^{-1} \sum_{j} a_{ji}s_{j}^{out} = \frac{A_{(i)}^{T}W'^{1}}{A_{i1}^{T}}$
• $anns_{i}^{in-in} = (d_{i}^{in})^{-1} \sum_{j} a_{ji}s_{j}^{in} = \frac{A_{(i)}^{T}W^{1}}{A_{i1}^{T}}$

Decomposition of Total ANNS

anns^{tot} =
$$\frac{(A^T + A)_{(i)}(W^T + W)\mathbf{1}}{(A^T + A)_{(i)}\mathbf{1}}$$

$$(A^{T} + A)_{(i)}(W^{T} + W) = A^{T}_{(i)}W^{T} + A^{T}_{(i)}W + A_{(i)}W^{T} + A_{(i)}W$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Directed Networks	A New Index	Results (2/2)	Summary (2/2)
00000	000	0000	0

Clustering in WDNs (Fagiolo, 2006b)

Patterns	Graphs	t_i^*	T_i^*	CCs for BDNs	CCs for WDNs
Cycle	(1) (1)	$(A)^3_{ii}$	$d_i^{in}d_i^{out}-d_i^{\leftrightarrow}$	$C_i^{cyc} = \frac{(A)_{ii}^3}{d_i^{in}d_i^{out}-d_i^{\leftrightarrow \ast}}$	$\hat{C}_i^{cyc} = \frac{(\hat{W})_{ii}^3}{d_i^{in}d_i^{out}-d_i^{i+i}}$
Middleman	(b) (b)	$(AA^TA)_{ii}$	$d_i^{in}d_i^{out}-d_i^{\leftrightarrow}$	$C_i^{mid} = \frac{(AA^TA)_{ii}}{d_i^{in}d_i^{out} - d_i^{\leftrightarrow}}$	$\tilde{C}_i^{mid} = \frac{(\hat{W}\hat{W}^T\hat{W})_{ii}}{d_i^{in}d_i^{out} - d_i^{\leftrightarrow}}$
In	(1)	$(A^T A^2)_{ii}$	$d_i^{in}(d_i^{in}-1)$	$C_{i}^{in} = \frac{(A^{T}A^{2})_{ii}}{d_{i}^{in}(d_{i}^{in}-1)}$	$\tilde{C}_{i}^{in} = \frac{(\hat{W}^{T}\hat{W}^{2})_{ii}}{d_{i}^{in}(d_{i}^{in}-1)}$
Out		$(A^2 A^T)_{ii}$	$d_i^{out}(d_i^{out}-1)$	$C_i^{out} = \frac{(A^2 A^T)_{ii}}{d_i^{out}(d_i^{out}-1)}$	$\bar{C}_{i}^{out} = \frac{(\bar{W}^{2}\bar{W}^{T})_{ii}}{d_{i}^{out}(d_{i}^{out}-1)}$
All (D)	All 8 graphs above	$\tfrac{(A+A^T)_{ii}^3}{2}$	$d_i^{tot}(d_i^{tot}-1)-2d_i^{\leftrightarrow}$	$C_{i}^{D}=\frac{(A+A^{T})_{ii}^{3}}{2T_{i}^{D}}$	$\tilde{C}_{i}^{D}=\frac{(\hat{W}+\hat{W}^{T})_{ii}^{3}}{2T_{i}^{D}}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Directed Networks	A New Index	Results (2/2)	Summary (2/2)
Two crucial is	SUES		

• How can we decide whether a directed analysis should be preferred?

- Computing percentage of reciprocated links
- Correlation between upper and lower diagonal entries (see Garlaschelli and Loffredo, 2004, *Physical Review Letters*)
- More robust statistical checks?
- Values added of a directed analysis?
 - As happens for WUNs, we must show that a directed analysis, when appropriate, adds something to our understanding of the properties of the network under study

Directed Networks	A New Index	Results (2/2)	Summary (2/2)
Two crucial is	SUES		

• How can we decide whether a directed analysis should be preferred?

- Computing percentage of reciprocated links
- Correlation between upper and lower diagonal entries (see Garlaschelli and Loffredo, 2004, *Physical Review Letters*)
- More robust statistical checks?

Values added of a directed analysis?

 As happens for WUNs, we must show that a directed analysis, when appropriate, adds something to our understanding of the properties of the network under study

Directed Networks	A New Index	Results (2/2)	Summary (2/2)
	●○○	0000	o
A Simple Index (Fagiolo, 2006a)		

Idea

• The more the network is undirected, the smaller $\|\tilde{W} - \tilde{W}^{T}\|$ (appropriately normalized)

Technical assumption

$$Q = \{q_{ij}\} = \tilde{W} - (1 - \tilde{W})I_N$$

• Define

$$\widetilde{S}(Q) = \frac{\|Q - Q^T\|_F^2}{\|Q\|_F^2 + \|Q^T\|_F^2} = \frac{\|Q - Q^T\|_F^2}{2\|Q\|_F^2} = \frac{1}{2} \left[\frac{\|Q - Q^T\|_F}{\|Q\|_F} \right]^2$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ◆ ○ ◆ ○ ◆ ○ ◆

Directed Networks	A New Index	Results (2/2)	Summary (2/2)
	●○○	0000	o
A Simple Index (Fagiolo, 2006a)		

Idea

• The more the network is undirected, the smaller $\|\tilde{W} - \tilde{W}^{T}\|$ (appropriately normalized)

Technical assumption

$$Q = \{q_{ij}\} = \tilde{W} - (1 - \tilde{W})I_N$$

• Define

$$\widetilde{S}(Q) = \frac{\|Q - Q^T\|_F^2}{\|Q\|_F^2 + \|Q^T\|_F^2} = \frac{\|Q - Q^T\|_F^2}{2\|Q\|_F^2} = \frac{1}{2} \left[\frac{\|Q - Q^T\|_F}{\|Q\|_F} \right]^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Directed Networks	A New Index ●○○	Results (2/2)	Summary (2/2) o
A Simple Index	(Fagiolo, 2006a)	

Idea

• The more the network is undirected, the smaller $\|\tilde{W} - \tilde{W}^{T}\|$ (appropriately normalized)

Technical assumption

$$Q = \{q_{ij}\} = \tilde{W} - (1 - \tilde{W})I_N$$

Define

$$\widetilde{S}(Q) = \frac{\|Q - Q^T\|_F^2}{\|Q\|_F^2 + \|Q^T\|_F^2} = \frac{\|Q - Q^T\|_F^2}{2\|Q\|_F^2} = \frac{1}{2} \left[\frac{\|Q - Q^T\|_F}{\|Q\|_F} \right]^2$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Directed Networks	A New Index ○●○	Results (2/2)	Summary (2/2) o
A Simple Index	k (Fagiolo, 200	6a)	

• Expanding the sums...

$$\widetilde{S}(Q) = 1 - rac{\sum_{i} \sum_{j} q_{ij} q_{ji}}{\sum_{i} \sum_{j} q_{ij}^2}.$$

• To get an index in [0, 1], define:

$$S(Q) = \frac{N+1}{N-1}\widetilde{S}(Q),$$

• We can find $(m_W(N), s_W(N))$ such that:

$$S_W(Q) = \frac{S(Q) - m_W(N)}{s_W(N)} \sim N(0, 1)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ へ ○

Directed Networks	A New Index ○●○	Results (2/2)	Summary (2/2) o
A Simple Index	(Fagiolo, 2006a)		

• Expanding the sums...

$$\widetilde{S}(Q) = 1 - rac{\sum_{i} \sum_{j} q_{ij} q_{ji}}{\sum_{i} \sum_{j} q_{ij}^2}.$$

• To get an index in [0, 1], define:

$$S(Q) = rac{N+1}{N-1}\widetilde{S}(Q),$$

• We can find $(m_W(N), s_W(N))$ such that:

$$S_W(Q) = \frac{S(Q) - m_W(N)}{s_W(N)} \sim N(0, 1)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ へ ○

Directed Networks	A New Index ○●○	Results (2/2)	Summary (2/2) o
A Simple Index	k (Fagiolo, 200	6a)	

• Expanding the sums...

$$\widetilde{S}(Q) = 1 - rac{\sum_{i} \sum_{j} q_{ij} q_{ji}}{\sum_{i} \sum_{j} q_{ij}^2}.$$

• To get an index in [0, 1], define:

$$S(Q) = rac{N+1}{N-1}\widetilde{S}(Q),$$

• We can find $(m_W(N), s_W(N))$ such that:

$$S_W(Q) = \frac{S(Q) - m_W(N)}{s_W(N)} \sim N(0, 1)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Directed Networks	A New Index	Results (2/2)	Summary (2/2)
00000	00•	0000	0

A Simple Index (Fagiolo, 2006a)

Using the index

- Define $Q = \{q_{ij}\} = \tilde{W} (1 \tilde{W})I_N$
- Compute the index $S_W(Q)$
- Fix a threshold k (in term of standard deviations)
- If $S_W(Q) > k$ the graph is asymmetric

TABLE I: The index S and its standardized version $S_{\{*\}}, \{*\} = \{B(inary), W(eigthed)\}$ for social networks studied in [3], cf. Chapter 2.5.

_	Social Network	N	S	S_*
1	Advice relations btw Krackhardt's hi-tech managers	21	0.521327	0.491228
2	Friendship relations btw Krackhardt's hi-tech managers	21	0.500813	0.004610
3	"Reports-to" relations by Krackhardt's hi-tech managers	21	0.536585	0.860033
4	Business relationships btw Padgett's Florentine families	16	0.000000	-9.232823
5	Marital relationships by Padgett's Florentine families	16	0.000000	-9.232823
6	Acquaintanceship among Freeman's EIES researchers (Time 1)	32	0.109849	-10.025880
7	Acquaintanceship among Freeman's EIES researchers (Time 2)	32	0.094968	-11.143250
8	Messages sent among Freeman's EIES researchers	32	0.014548	-17.181580
9	Country Trade Flows: Basic Manufactured Goods	24	0.260349	-6.643695
10	Country Trade Flows: Food and Live Animals	24	0.311966	-5.217508
11	Country Trade Flows: Crude Materials (excl. Food)	24	0.272560	-6.306300
12	Country Trade Flows: Minerals, Fuels, Petroleum	24	0.403336	-2.692973
13	Country Trade Flows: Exchange of Diplomats	24	0.080208	-11.620970

Directed Networks A New Index ooo Results (2/2)

• The WTW is extremely symmetric

- Binary vs. weighted: no differences
- Symmetric under all weighting schemes
- Procedure employed above was appropriate

Directed Networks	A New Index	Results (2/2)	Summary (2/2
00000	000	0000	0

WTW: A Weighted Directed Network Analysis

Is it worthwhile anyway?

- Despite strong symmetry, does a WDN bring any value added?
- Clustering associated to different triangle patterns
 - Triangles and their meaning in terms of export/import
 - Heterogeneity: CC ranges from 0.0004 to 0.0013
 - Cycles only 18% of all triangles, other 27% each; due to economic redundancy?

(日) (日) (日) (日) (日) (日) (日)

Directed Networks	A New Index	Results (2/2)	Summary (2/2
00000	000	000	0

WTW: A Weighted Directed Network Analysis

Is it worthwhile anyway?

 Despite strong symmetry, does a WDN bring any value added?

Clustering associated to different triangle patterns

- Triangles and their meaning in terms of export/import
- Heterogeneity: CC ranges from 0.0004 to 0.0013
- Cycles only 18% of all triangles, other 27% each; due to economic redundancy?

(日) (日) (日) (日) (日) (日) (日)

Directed	Networks
00000	

WTW: Clustering-Strength Correlation (1/2)

• How do Directed WCC correlate with strength?

- WCC vs. tot-strength: positive correlation
- WCC vs. in-strength: U-shaped
- Low clustering level of weakly connected countries mainly depends on their weakly exporting relationships

900

Directed Networks	A New Index	Results (2/2)	Summary (2/2)
00000	000	0000	0

WTW: Clustering-Strength Correlation (2/2)

WCC for different triangles vs. strength

- WCC for cyc, mid, in are positively correlated with strength
- WCC for out not correlated with strength
- Countries hold exporting relationships with connected pairs of countries independently of total strength

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Directed	Networks
00000	

Results (2/2)

Directed vs. Undirected Analysis

We have shown that

- Apart from extreme cases, deciding whether to employ a directed or an undirected analysis is an empirical issue
- It is possible to introduce an index to check for network symmetry/asymmetry
- This index is not a hypothesis test but has nice statistical properties

• Values added of a directed network analysis

- Even in the case the network looks extremely symmetric (as in the WTW case), a directed analysis can provide interesting insights
- Need to extend network indicators to the WDN case!
- Example: Betweenness centrality

Directed	Networks
00000	

Results (2/2)

Directed vs. Undirected Analysis

We have shown that

- Apart from extreme cases, deciding whether to employ a directed or an undirected analysis is an empirical issue
- It is possible to introduce an index to check for network symmetry/asymmetry
- This index is not a hypothesis test but has nice statistical properties

Values added of a directed network analysis

- Even in the case the network looks extremely symmetric (as in the WTW case), a directed analysis can provide interesting insights
- Need to extend network indicators to the WDN case!
- Example: Betweenness centrality