
Economic Networks
Theory and Empirics

Giorgio Fagiolo
Laboratory of Economics and Management (LEM)
Sant’Anna School of Advanced Studies, Pisa, Italy

http://www.lem.sssup.it/fagiolo/
giorgio.fagiolo@sssup.it

Lecture 3

Giorgio Fagiolo, Course on Economic Networks.

http://www.lem.sssup.it/fagiolo/
http://www.lem.sssup.it/fagiolo/
mailto:giorgio.fagiolo@sssup.it
mailto:giorgio.fagiolo@sssup.it

This Lecture

• What is a network? Examples of networks

• Why networks are important for economists?

• Networks and graphs

• Measures and metrics on networks

• Distributions of metrics and measures in large networks

• Models of network formation

• Null statistical network models

• Economic applications

Giorgio Fagiolo, Course on Economic Networks.

Why Network Statistics?
• Visualization may be useful but often is not enough

✓ Large (many nodes) and dense networks (many links)

✓ Are two networks similar or different?

Giorgio Fagiolo, Course on Economic Networks.

Why Network Statistics?
• Visualization may be useful but often is not enough

✓ Large (many nodes) and dense networks (many links)

✓ Are two networks similar or different?

Giorgio Fagiolo, Course on Economic Networks.

• Goal: Characterize networks by means of a set of statistics that
capture graph-theoretic properties (topology)

✓ Network-wide indicators: one value attached to the network

✓ Node-specific indicators: one value attached to any single node

✓ Link-specific indicators: one value attached to any single link

Why Network Statistics?
• Visualization may be useful but often is not enough

✓ Large (many nodes) and dense networks (many links)

✓ Are two networks similar or different?

Giorgio Fagiolo, Course on Economic Networks.

• Goal: Characterize networks by means of a set of statistics that
capture graph-theoretic properties (topology)

✓ Network-wide indicators: one value attached to the network

✓ Node-specific indicators: one value attached to any single node

✓ Link-specific indicators: one value attached to any single link

• Main problems:

✓ How can one tell whether a value of a statistic computed on a given
network is large or small?

✓ Comparing statistics across different networks or time snapshots

Density

Giorgio Fagiolo, Course on Economic Networks.

• Network density: fraction of existing links (L) over all possible links

Undirected

d =
L

N(N − 1)
=

�
i,j aij

N(N − 1)
Directed

d =
2L

N(N − 1)
=

2
�

i>j aij

N(N − 1)

Density

• Densities range from 0 (empty graph) to 1 (complete graph)

Giorgio Fagiolo, Course on Economic Networks.

• Network density: fraction of existing links (L) over all possible links

Undirected

d =
L

N(N − 1)
=

�
i,j aij

N(N − 1)
Directed

d =
2L

N(N − 1)
=

2
�

i>j aij

N(N − 1)

Density

• Bilateral density in a BDN: fraction of reciprocated links (L)

r =
tr(A2)

N(N − 1)
=

�
i,j aijaji

N(N − 1)

• Densities range from 0 (empty graph) to 1 (complete graph)

Giorgio Fagiolo, Course on Economic Networks.

• Network density: fraction of existing links (L) over all possible links

Undirected

d =
L

N(N − 1)
=

�
i,j aij

N(N − 1)
Directed

d =
2L

N(N − 1)
=

2
�

i>j aij

N(N − 1)

Components: Number and Size Distribution

Giorgio Fagiolo, Course on Economic Networks.

Components: Number and Size Distribution
• Number of connected components in the graph

Giorgio Fagiolo, Course on Economic Networks.

Components: Number and Size Distribution
• Number of connected components in the graph

• Size distribution of connected components

Giorgio Fagiolo, Course on Economic Networks.

Components: Number and Size Distribution
• Number of connected components in the graph

• Size distribution of connected components

10 components

s(1)=3
s(2)=3
s(3)=1
s(4)=2
s(5)=1

Giorgio Fagiolo, Course on Economic Networks.

Components: Number and Size Distribution
• Number of connected components in the graph

• Size distribution of connected components

10 components

s(1)=3
s(2)=3
s(3)=1
s(4)=2
s(5)=1

• Extensions to digraphs: weakly and strongly connected components

Giorgio Fagiolo, Course on Economic Networks.

Diameter, Distances, and Length
• Path length matrix: A symmetric NxN matrix L whose generic element

l(i,j) is the path length (length of geodesic path) between i and j

Giorgio Fagiolo, Course on Economic Networks.

Diameter, Distances, and Length

• Diameter of a graph (D): length of the longest geodesic path
between any pair of nodes, i.e. max among all l(i,j)

• Path length matrix: A symmetric NxN matrix L whose generic element
l(i,j) is the path length (length of geodesic path) between i and j

Giorgio Fagiolo, Course on Economic Networks.

Diameter, Distances, and Length

• Diameter of a graph (D): length of the longest geodesic path
between any pair of nodes, i.e. max among all l(i,j)

• Path length matrix: A symmetric NxN matrix L whose generic element
l(i,j) is the path length (length of geodesic path) between i and j

2

5

1 3

4 6

 1 2 3 4 5 6
1 0 0 1 1 0 1
2 0 0 0 0 1 1
3 1 0 0 1 0 0
4 1 0 1 0 0 1
5 0 1 0 0 0 0
6 1 1 0 1 0 0

A=

 1 2 3 4 5 6
1 0 0 1 1 0 1
2 0 0 0 0 1 1
3 1 0 0 1 0 0
4 1 0 1 0 0 1
5 0 1 0 0 0 0
6 1 1 0 1 0 0

L=
0 2 1 1 3 1
2 0 3 2 1 1
1 3 0 1 4 2
1 2 1 0 3 1
3 1 4 3 0 2
1 1 2 1 2 0

D=4

Giorgio Fagiolo, Course on Economic Networks.

Diameter, Distances, and Length

• Diameter of a graph (D): length of the longest geodesic path
between any pair of nodes, i.e. max among all l(i,j)

• Path length matrix: A symmetric NxN matrix L whose generic element
l(i,j) is the path length (length of geodesic path) between i and j

2

5

1 3

4 6

 1 2 3 4 5 6
1 0 0 1 1 0 1
2 0 0 0 0 1 1
3 1 0 0 1 0 0
4 1 0 1 0 0 1
5 0 1 0 0 0 0
6 1 1 0 1 0 0

A=

 1 2 3 4 5 6
1 0 0 1 1 0 1
2 0 0 0 0 1 1
3 1 0 0 1 0 0
4 1 0 1 0 0 1
5 0 1 0 0 0 0
6 1 1 0 1 0 0

L=
0 2 1 1 3 1
2 0 3 2 1 1
1 3 0 1 4 2
1 2 1 0 3 1
3 1 4 3 0 2
1 1 2 1 2 0

D=4

• Extensions of path length to WUN/WDN do exist
Giorgio Fagiolo, Course on Economic Networks.

Average Path Length
• Given a path length matrix L, we can compute the average node path

length simply as:

ANPLi =

�
j∈Ji

lij

|Ji|
Ji = {j = 1, . . . , N, j �= i : lij < ∞}

Giorgio Fagiolo, Course on Economic Networks.

Average Path Length
• Given a path length matrix L, we can compute the average node path

length simply as:

ANPLi =

�
j∈Ji

lij

|Ji|
Ji = {j = 1, . . . , N, j �= i : lij < ∞}

• The average path length of the graph is the average of all ANPLi

Giorgio Fagiolo, Course on Economic Networks.

Average Path Length
• Given a path length matrix L, we can compute the average node path

length simply as:

ANPLi =

�
j∈Ji

lij

|Ji|
Ji = {j = 1, . . . , N, j �= i : lij < ∞}

• The average path length of the graph is the average of all ANPLi

2

5

1 3

4 6

 1 2 3 4 5 6
1 0 0 1 1 0 1
2 0 0 0 0 1 1
3 1 0 0 1 0 0
4 1 0 1 0 0 1
5 0 1 0 0 0 0
6 1 1 0 1 0 0

A=

 1 2 3 4 5 6
1 0 0 1 1 0 1
2 0 0 0 0 1 1
3 1 0 0 1 0 0
4 1 0 1 0 0 1
5 0 1 0 0 0 0
6 1 1 0 1 0 0

L=
0 2 1 1 3 1
2 0 3 2 1 1
1 3 0 1 4 2
1 2 1 0 3 1
3 1 4 3 0 2
1 1 2 1 2 0

ANPL(1)=8/5
ANPL(2)=9/5
ANPL(3)=11/5
ANPL(4)=8/5
ANPL(5)=13/5
ANPL(6)=7/5

APL=56/(6*5)=28/15≅1.8667

Giorgio Fagiolo, Course on Economic Networks.

Shortest Paths and Breadth-First Search (1)

• How can we find shortest paths and components?

✓ Naive implementation of a simple algorithm (breadth-first search, BFS)

✓ More sophisticated implementations and algorithms are possible

• BFS: finds shortest distance from a given starting node s to every other
node in the same component as s

✓ We know s has d=0 from itself

✓ Find all neighbors of s: they have distance 1
from s

✓ Find all neighbors of neighbors of s excluding
those we have already visited: they are at
distance=2 from s

✓ ... Go on with the cycle by growing on each iteration
the set of visited node by one step

Giorgio Fagiolo, Course on Economic Networks.

Shortest Paths and Breadth-First Search (2)

Giorgio Fagiolo, Course on Economic Networks.

Shortest Paths and Breadth-First Search (2)

Implementation

Giorgio Fagiolo, Course on Economic Networks.

Shortest Paths and Breadth-First Search (2)

Implementation
• Create an Nx1 array x to store the distance of each vertex from s

Giorgio Fagiolo, Course on Economic Networks.

Shortest Paths and Breadth-First Search (2)

Implementation
• Create an Nx1 array x to store the distance of each vertex from s

• Set distance of s from itself to 0 (all other distances can be set to
NaN)

Giorgio Fagiolo, Course on Economic Networks.

Shortest Paths and Breadth-First Search (2)

Implementation
• Create an Nx1 array x to store the distance of each vertex from s

• Set distance of s from itself to 0 (all other distances can be set to
NaN)

• Create a distance variable d=0 keeping track of how far we are from s

Giorgio Fagiolo, Course on Economic Networks.

Shortest Paths and Breadth-First Search (2)

Implementation
• Create an Nx1 array x to store the distance of each vertex from s

• Set distance of s from itself to 0 (all other distances can be set to
NaN)

• Create a distance variable d=0 keeping track of how far we are from s

1. Find all vertices at distance d from s in x

Giorgio Fagiolo, Course on Economic Networks.

Shortest Paths and Breadth-First Search (2)

Implementation
• Create an Nx1 array x to store the distance of each vertex from s

• Set distance of s from itself to 0 (all other distances can be set to
NaN)

• Create a distance variable d=0 keeping track of how far we are from s

1. Find all vertices at distance d from s in x

2. Find all neighbors of those nodes and check each one to see if
its distance from s is NaN

Giorgio Fagiolo, Course on Economic Networks.

Shortest Paths and Breadth-First Search (2)

Implementation
• Create an Nx1 array x to store the distance of each vertex from s

• Set distance of s from itself to 0 (all other distances can be set to
NaN)

• Create a distance variable d=0 keeping track of how far we are from s

1. Find all vertices at distance d from s in x

2. Find all neighbors of those nodes and check each one to see if
its distance from s is NaN

3. Exit if the number of neighbors with NaN distances is zero.
Otherwise, if that number is >0 then set the distance of each of
those neighbors to d+1

Giorgio Fagiolo, Course on Economic Networks.

Shortest Paths and Breadth-First Search (2)

Implementation
• Create an Nx1 array x to store the distance of each vertex from s

• Set distance of s from itself to 0 (all other distances can be set to
NaN)

• Create a distance variable d=0 keeping track of how far we are from s

1. Find all vertices at distance d from s in x

2. Find all neighbors of those nodes and check each one to see if
its distance from s is NaN

3. Exit if the number of neighbors with NaN distances is zero.
Otherwise, if that number is >0 then set the distance of each of
those neighbors to d+1

4. Set d=d+1

Giorgio Fagiolo, Course on Economic Networks.

Shortest Paths and Breadth-First Search (2)

Implementation
• Create an Nx1 array x to store the distance of each vertex from s

• Set distance of s from itself to 0 (all other distances can be set to
NaN)

• Create a distance variable d=0 keeping track of how far we are from s

1. Find all vertices at distance d from s in x

2. Find all neighbors of those nodes and check each one to see if
its distance from s is NaN

3. Exit if the number of neighbors with NaN distances is zero.
Otherwise, if that number is >0 then set the distance of each of
those neighbors to d+1

4. Set d=d+1

5. Repeat from step 1

Giorgio Fagiolo, Course on Economic Networks.

Shortest Paths and Breadth-First Search (2)

Implementation
• Create an Nx1 array x to store the distance of each vertex from s

• Set distance of s from itself to 0 (all other distances can be set to
NaN)

• Create a distance variable d=0 keeping track of how far we are from s

1. Find all vertices at distance d from s in x

2. Find all neighbors of those nodes and check each one to see if
its distance from s is NaN

3. Exit if the number of neighbors with NaN distances is zero.
Otherwise, if that number is >0 then set the distance of each of
those neighbors to d+1

4. Set d=d+1

5. Repeat from step 1

• When the BFS algorithm stops, we get an array with distances to every
node in the component of the network that contains s (every node in
other components have a NaN distance)

Giorgio Fagiolo, Course on Economic Networks.

Shortest Paths and Breadth-First Search (2)

Implementation
• Create an Nx1 array x to store the distance of each vertex from s

• Set distance of s from itself to 0 (all other distances can be set to
NaN)

• Create a distance variable d=0 keeping track of how far we are from s

1. Find all vertices at distance d from s in x

2. Find all neighbors of those nodes and check each one to see if
its distance from s is NaN

3. Exit if the number of neighbors with NaN distances is zero.
Otherwise, if that number is >0 then set the distance of each of
those neighbors to d+1

4. Set d=d+1

5. Repeat from step 1

• When the BFS algorithm stops, we get an array with distances to every
node in the component of the network that contains s (every node in
other components have a NaN distance)

• Therefore, BFS also finds the component to which s belongs, and can
be employed to find all components of the graph

Giorgio Fagiolo, Course on Economic Networks.

Node Degrees (BUN, BDN)
• Binary undirected: Node degree=number of links of a node

ki =
N�

j=1

aij = A(i)1N = AT
(i)1N

Giorgio Fagiolo, Course on Economic Networks.

Node Degrees (BUN, BDN)

• Binary directed:

✓Node in-degree=number of incoming links of a node

✓Node out-degree=number of outcoming links of a node

✓Node total degree=Node in-degree+Node out-degree

ktoti =
N�

j=1

(aij + aji) = (A(i) +AT
(i))1N

kini =
N�

j=1

aji = AT
(i)1N kouti =

N�

j=1

aij = A(i)1N

• Binary undirected: Node degree=number of links of a node

ki =
N�

j=1

aij = A(i)1N = AT
(i)1N

Giorgio Fagiolo, Course on Economic Networks.

Node Strength (WUN, WDN)
• Weighted undirected: Node strength=sum of link weights of a node

si =
N�

j=1

wij = W(i)1N = WT
(i)1N

Giorgio Fagiolo, Course on Economic Networks.

Node Strength (WUN, WDN)

• Weighted directed:

✓Node in-strength=sum of incoming link weights of a node

✓Node out-strength=sum of outcoming link weights of a node

✓Node total strength=Node in-strength+Node out-strength

stoti =
N�

j=1

(wij + wji) = (W(i) +WT
(i))1N

sini =
N�

j=1

wji = WT
(i)1N souti =

N�

j=1

wij = W(i)1N

• Weighted undirected: Node strength=sum of link weights of a node

si =
N�

j=1

wij = W(i)1N = WT
(i)1N

Giorgio Fagiolo, Course on Economic Networks.

Homophily and Assortative Mixing (1)
• Nodes have tendency to link to other nodes with similar characteristics

✓ Node-specific characteristics other than network-related (e.g. people form
links in a social network if they are similar according to age, nationality,
language, income, education level, etc.)

✓ Node-specific network characteristics, e.g. degree or strength: Do high-
degree (or strength) nodes tend to be linked to nodes that in turn have a
high degree or strength (assortativity) or they end up linked to low-degree
or low-strength ones (disassortativity)?

✓ How can we measure assortativity or disassortativity in a network?

Assortative
network

Disassortative
network

Giorgio Fagiolo, Course on Economic Networks.

Average Nearest-Neighbor Degree (ANND)

• Node ANND in BUNs: Average degree of a node’s neighbors

2

5

1 3

4 6

 1 2 3 4 5 6
1 0 0 1 1 0 1
2 0 0 0 0 1 1
3 1 0 0 1 0 0
4 1 0 1 0 0 1
5 0 1 0 0 0 0
6 1 1 0 1 0 0

A=

• Node 4 has k(i)=3 and its 3 neighbors are (1,3,6)

• k(1)=3, k(3)=2, k(6)=3

• Thus ANND(4)=(3+2+3)/3=8/3

Giorgio Fagiolo, Course on Economic Networks.

Average Nearest-Neighbor Degree/Strength

• Node ANND in BUNs: Average degree of a node’s neighbors

ANNDi =

�
j aijkj

ki
=

�
j

�
h aijajh

ki
=

A(i)A1N

A(i)1N

Giorgio Fagiolo, Course on Economic Networks.

Average Nearest-Neighbor Degree/Strength

• Node ANND in BUNs: Average degree of a node’s neighbors

ANNDi =

�
j aijkj

ki
=

�
j

�
h aijajh

ki
=

A(i)A1N

A(i)1N

• Node ANNS in WUNs: Average strength of a node’s neighbors

ANNSi =

�
j aijsj

ki
=

�
j

�
h aijwjh

ki
=

A(i)W1N

A(i)1N

Giorgio Fagiolo, Course on Economic Networks.

ANND/ANNS in Directed Networks
• Total ANND or ANNS (d stands for degree)

– dtot
i = din

i + dout
i = (AT

+ A)(i)1

– d↔i = A2
(ii)

• In-, Out- and Total-Degree vectors

– din
= AT1

– dout = A1

– dtot = (AT + A)1

– d↔i = diag(A2
)

Total Average Nearest-Neighbor Degree

• Total Average Nearest-Neighbor Degree of Node i: Average number of partners

of partners of i (no matter edge directions)

anndtot
i = (dtot

i)
−1

�

j

(ajid
tot
j + aijd

tot
j) =

= (dtot
i)

−1
�

j

(aji + aij)d
tot
j =

= (dtot
i)

−1
�

j

�

h

(aji + aij)(ajh + ahj) =

=
(AT

+ A)(i)(AT
+ A)1

(AT + A)(i)1

• Total Average Nearest-Neighbor Degree

anndtot
=

{(AT + A)21}
{(AT + A)1} (13)

Decomposition of Total Average Nearest-Neighbor Degree

• Note: anndtot
counts every edge as if it were undirected. Since edges from

i to its neighbors can go in two directions and edges from i’s neighbors to

the neighbors of the neighbors can also go in two directions, one can define

additional 4 indices, which gives us information on the flow. See also comments

in the Matlab file. These 4 coefficients are (recall: the first in/out stands for

edges linking i and its neighbors, the second in/out stands for edges linking

i’s neighbors with the neighbors of the latter):

– anndout−out
i : Average number of out-neighbors of i’s out-neighbors

– anndout−in
i : Average number of in-neighbors of i’s out-neighbors

– anndin−out
i : Average number of out-neighbors of i’s in-neighbors

– anndin−in
i : Average number of in-neighbors of i’s in-neighbors

4

Giorgio Fagiolo, Course on Economic Networks.

ANND/ANNS in Directed Networks

• Two additional dimensions to account for:

✓ Nearest neighbors may be either in-neighbors or out-neighbors

✓ Neighbors of nearest neighbors may be either in-neighbors or out-neighbors

Out-Out Out-In In-Out In-In

• Total ANND or ANNS (d stands for degree)

– dtot
i = din

i + dout
i = (AT

+ A)(i)1

– d↔i = A2
(ii)

• In-, Out- and Total-Degree vectors

– din
= AT1

– dout = A1

– dtot = (AT + A)1

– d↔i = diag(A2
)

Total Average Nearest-Neighbor Degree

• Total Average Nearest-Neighbor Degree of Node i: Average number of partners

of partners of i (no matter edge directions)

anndtot
i = (dtot

i)
−1

�

j

(ajid
tot
j + aijd

tot
j) =

= (dtot
i)

−1
�

j

(aji + aij)d
tot
j =

= (dtot
i)

−1
�

j

�

h

(aji + aij)(ajh + ahj) =

=
(AT

+ A)(i)(AT
+ A)1

(AT + A)(i)1

• Total Average Nearest-Neighbor Degree

anndtot
=

{(AT + A)21}
{(AT + A)1} (13)

Decomposition of Total Average Nearest-Neighbor Degree

• Note: anndtot
counts every edge as if it were undirected. Since edges from

i to its neighbors can go in two directions and edges from i’s neighbors to

the neighbors of the neighbors can also go in two directions, one can define

additional 4 indices, which gives us information on the flow. See also comments

in the Matlab file. These 4 coefficients are (recall: the first in/out stands for

edges linking i and its neighbors, the second in/out stands for edges linking

i’s neighbors with the neighbors of the latter):

– anndout−out
i : Average number of out-neighbors of i’s out-neighbors

– anndout−in
i : Average number of in-neighbors of i’s out-neighbors

– anndin−out
i : Average number of out-neighbors of i’s in-neighbors

– anndin−in
i : Average number of in-neighbors of i’s in-neighbors

4

Giorgio Fagiolo, Course on Economic Networks.

Homophily and Assortative Mixing (2)

• How can we measure assortativity or disassortativity in a network?
✓ Computing node-level correlation coefficient between ND and ANND

or NS and ANNS: are well connected nodes linked with nodes whose
neighbors are themselves well connected?

✓ Computing link-level degree-degree or strength-strength correlation
coefficient. Let xi be a node-level statistics, i.e. degree or strength:

r =
cov{xi, xj}

σ2(x)
=

�
i

�
j aij(xi − µx)(xj − µx)�
i

�
j aij(xi − µx)2

Giorgio Fagiolo, Course on Economic Networks.

Homophily and Assortative Mixing (2)
• The link-level degree-degree or strength-strength correlation coefficient

can be further simplified:

Giorgio Fagiolo, Course on Economic Networks.

Homophily and Assortative Mixing (2)
• The link-level degree-degree or strength-strength correlation coefficient

can be further simplified:

r =
cov{xi, xj}

σ2(x)
=

�
i

�
j aij(xi − µx)(xj − µx)�
i

�
j aij(xi − µx)2 :

Giorgio Fagiolo, Course on Economic Networks.

Homophily and Assortative Mixing (2)
• The link-level degree-degree or strength-strength correlation coefficient

can be further simplified:

µx =

�
i

�
j aijxi�

i

�
j aij

=

�
i xi

�
j aij

2L
=

�
i kixi

2L
µ2
x =

�
i

�
j kikjxixj

(2L)2+

r =
cov{xi, xj}

σ2(x)
=

�
i

�
j aij(xi − µx)(xj − µx)�
i

�
j aij(xi − µx)2 :

Giorgio Fagiolo, Course on Economic Networks.

Homophily and Assortative Mixing (2)
• The link-level degree-degree or strength-strength correlation coefficient

can be further simplified:

µx =

�
i

�
j aijxi�

i

�
j aij

=

�
i xi

�
j aij

2L
=

�
i kixi

2L
µ2
x =

�
i

�
j kikjxixj

(2L)2+

�

i

�

j

aij(xi − µx)(xj − µx) =
�

i

�

j

aijxixj − 2Lµ2
x

+

+

r =
cov{xi, xj}

σ2(x)
=

�
i

�
j aij(xi − µx)(xj − µx)�
i

�
j aij(xi − µx)2 :

Giorgio Fagiolo, Course on Economic Networks.

Homophily and Assortative Mixing (2)
• The link-level degree-degree or strength-strength correlation coefficient

can be further simplified:

µx =

�
i

�
j aijxi�

i

�
j aij

=

�
i xi

�
j aij

2L
=

�
i kixi

2L
µ2
x =

�
i

�
j kikjxixj

(2L)2+

�

i

�

j

aij(xi − µx)(xj − µx) =
�

i

�

j

aijxixj − 2Lµ2
x

+

+

r =
cov{xi, xj}

σ2(x)
=

�
i

�
j aij(xi − µx)(xj − µx)�
i

�
j aij(xi − µx)2 :

�

i

�

j

aij(xi − µx)(xj − µx) =
�

i

�

j

(aij −
kikj
2L

)xixj

Giorgio Fagiolo, Course on Economic Networks.

Homophily and Assortative Mixing (2)
• The link-level degree-degree or strength-strength correlation coefficient

can be further simplified:

µx =

�
i

�
j aijxi�

i

�
j aij

=

�
i xi

�
j aij

2L
=

�
i kixi

2L
µ2
x =

�
i

�
j kikjxixj

(2L)2+

�

i

�

j

aij(xi − µx)(xj − µx) =
�

i

�

j

aijxixj − 2Lµ2
x

+

+

r =
cov{xi, xj}

σ2(x)
=

�
i

�
j aij(xi − µx)(xj − µx)�
i

�
j aij(xi − µx)2 :

�

i

�

j

aij(xi − µx)
2 =

�

i

�

j

(aij −
kikj
2L

)x2
i

�

i

�

j

aij(xi − µx)(xj − µx) =
�

i

�

j

(aij −
kikj
2L

)xixj

Giorgio Fagiolo, Course on Economic Networks.

This Lecture: What we have done so far...

Giorgio Fagiolo, Course on Economic Networks.

This Lecture: What we have done so far...

• Introduced a number of network measures and metrics

Giorgio Fagiolo, Course on Economic Networks.

This Lecture: What we have done so far...

• Introduced a number of network measures and metrics

• Network-wide, node-specific, link-specific

Giorgio Fagiolo, Course on Economic Networks.

This Lecture: What we have done so far...

• Introduced a number of network measures and metrics

• Network-wide, node-specific, link-specific

1. Connectivity (density, components, distances,
degrees, strength)

Giorgio Fagiolo, Course on Economic Networks.

This Lecture: What we have done so far...

• Introduced a number of network measures and metrics

• Network-wide, node-specific, link-specific

1. Connectivity (density, components, distances,
degrees, strength)

2. Homophily (ANND/ND and ANNS/NS
correlation, ND-ND and NS-NS correlation)

Giorgio Fagiolo, Course on Economic Networks.

Node Clustering (1)
• What is the likelihood that any two neighbors of a node are themselves

neighbors? Computing this likelihood is about counting triangles...

Giorgio Fagiolo, Course on Economic Networks.

Node Clustering (1)
• What is the likelihood that any two neighbors of a node are themselves

neighbors? Computing this likelihood is about counting triangles...

2

5

1 3

4 6

?

Giorgio Fagiolo, Course on Economic Networks.

Node Clustering (1)
• What is the likelihood that any two neighbors of a node are themselves

neighbors? Computing this likelihood is about counting triangles...

• Node 4 has k(i)=3: how many pairs of distinct neighbors can one count? It’s
3*2/2=3. In general, k(i)(k(i)-1)/2 pairs can be formed out of k(i) neighbors.

2

5

1 3

4 6

?

Giorgio Fagiolo, Course on Economic Networks.

Node Clustering (1)
• What is the likelihood that any two neighbors of a node are themselves

neighbors? Computing this likelihood is about counting triangles...

• Node 4 has k(i)=3: how many pairs of distinct neighbors can one count? It’s
3*2/2=3. In general, k(i)(k(i)-1)/2 pairs can be formed out of k(i) neighbors.

• How many pairs of neighbors are themselves neighbors, i.e. how many
triangles are present in the neighborhood of node 4? 2 out of 3, because
(1,3) and (1,6) are neighbors, but (3,6) are not.

2

5

1 3

4 6

?

Giorgio Fagiolo, Course on Economic Networks.

Node Clustering (1)
• What is the likelihood that any two neighbors of a node are themselves

neighbors? Computing this likelihood is about counting triangles...

• Node 4 has k(i)=3: how many pairs of distinct neighbors can one count? It’s
3*2/2=3. In general, k(i)(k(i)-1)/2 pairs can be formed out of k(i) neighbors.

• How many pairs of neighbors are themselves neighbors, i.e. how many
triangles are present in the neighborhood of node 4? 2 out of 3, because
(1,3) and (1,6) are neighbors, but (3,6) are not.

• Therefore the clustering coefficient of node 4 is 2/3

2

5

1 3

4 6

?

Giorgio Fagiolo, Course on Economic Networks.

Node Clustering (2)
• How can one compute starting from A if a certain triangle is closed?

Giorgio Fagiolo, Course on Economic Networks.

Node Clustering (2)
• How can one compute starting from A if a certain triangle is closed?

j h

i

aij ahi

ajh If: aij ·ajh·ahi=1 then triangle
(i,j,h) is closed

But triangles are cycles of order 3...
thus the number of triangles in i’s

neighborhood is equal to the number
of 3-cycles starting and ending in i!

Giorgio Fagiolo, Course on Economic Networks.

Node Clustering (2)
• How can one compute starting from A if a certain triangle is closed?

j h

i

aij ahi

ajh If: aij ·ajh·ahi=1 then triangle
(i,j,h) is closed

But triangles are cycles of order 3...
thus the number of triangles in i’s

neighborhood is equal to the number
of 3-cycles starting and ending in i!

Giorgio Fagiolo, Course on Economic Networks.

• The number of 3-cycles starting and ending in node i can be recovered
looking at the entry zii of the matrix Z=A3 and dividing that number by 2 (a
cycle i>j>h is different from i>h>j but is the same triangle). Thus:

Ci =
1
2

�
j

�
h aijaihajh

1
2ki(ki − 1)

=
(A3)ii

ki(ki − 1)

Clustering in WUNs
• How can one compute clustering coefficients in weighted undirected nets?

Giorgio Fagiolo, Course on Economic Networks.

Clustering in WUNs
• How can one compute clustering coefficients in weighted undirected nets?

j h

i

wij whi

wjh If: aij ·ajh·ahi=1 then triangle
(i,j,h) is closed

Triangles must be weighted by their
total intensity of interactions, as
measured by some function of

(wij , wjh, whi)

Giorgio Fagiolo, Course on Economic Networks.

Clustering in WUNs
• How can one compute clustering coefficients in weighted undirected nets?

j h

i

wij whi

wjh If: aij ·ajh·ahi=1 then triangle
(i,j,h) is closed

Triangles must be weighted by their
total intensity of interactions, as
measured by some function of

(wij , wjh, whi)

• There are many ways to weight a triangle, here’s one of the most used:

Ci(W) =
1
2

�
i

�
j w

1/3
ij w1/3

ih w1/3
jh

1
2ki(ki − 1)

=
(W [1/3])3ii
ki(ki − 1)

• Where is the (i,i) entry of the matrix obtained first by raising all
entries of W to 1/3 and then by taking the 3-rd power

(W [1/3])3ii

Giorgio Fagiolo, Course on Economic Networks.

Clustering in Directed Networks (1)
• Link directionality implies that there can be 8 different types of triangles and

4 classes that can be formed with node i as the reference node

For more complicated measures, however, extensions to
WUNs are not straightforward. To generalize the CC of node
i to WUNs, one has indeed to take into account the weight
associated to edges in the neighborhood of i. There are many
ways to do that !22". For example, suppose that a triangle ihj
is in place. One might then consider only weights of the
edges ih and ij !15". Alternatively, one might employ the
weights of all the edges in the triangle. In turn, the total
contribution of a triangle can be defined as the geometric
mean of its weights !23" or simply as the product among
them !24–27". In what follows, we will focus on the exten-
sion of the CC to WUNs originally introduced in !23":

C̃i#W$ =
#1/2$% j!i %h!#i,j$ wij

1/3wih
1/3wjh

1/3

#1/2$di#di − 1$
=

#W!1/3"$ii
3

di#di − 1$
,

#3$

where we define W!1/k"= &wij
1/k', i.e., the matrix obtained from

W by taking the kth root of each entry. As discussed in !22",
the measure C̃i ranges in !0,1" and reduces to Ci when
weights become binary. Furthermore, it takes into account
weights of all edges in a triangle #but does not consider
weights not participating in any triangle$ and is invariant to
weight permutation for one triangle. Notice that C̃i=1 only if
the neighborhood of i actually contains all possible triangles
that can be formed and each edge participating in these tri-
angles has unit #maximum$ weight. Again, one can define the
overall clustering coefficient for WUNs as C̃=N−1%i=1

N C̃i.
In this paper we discuss extensions of the CC for BUNs

and WUNs !Eqs. #1$ and #3$" to the case of directed net-
works. It is well known that many real-world complex net-
works involve nonmutual relationships, which imply non-
symmetric adjacency or weight matrices. For instance, trade
volumes between countries !28–30" are implicitly directional
relations, as the export from country i to country j is typi-
cally different from the export from country j to country i
#i.e., imports of i from j$. If such networks are symmetrized
#e.g., by averaging imports and exports of country i$, one
could possibly underestimate important aspects of their net-
work architecture.

Alternative extensions of the CC to weighted or directed
networks have been recently introduced in the literature on
“network motifs” !31". As mentioned, !23" generalizes the
CC to weighted—and possibly directed—networks. Simi-
larly, !32" computes the recurrence of all types of three-node
connected subgraphs in a variety of real-world binary di-
rected networks from biochemistry, neurobiology, ecology,
and engineering. However, the weighted CC in !23" does not
explicitly discriminate between different directed triangles
#cf. Fig. 1$, while !32" does not allow for a weighted analy-
sis. This work attempts to bridge the two latter approaches
and presents a unifying framework where, in addition to the
measures already discussed in !23,32", one is able to #i$ ex-
plicitly account for directed and weighted links; and #ii$ de-
fine a weighted, directed version of the CC for any type of
triangle pattern #i.e., three-node connected subgraph$. To
compute such coefficients, we shall employ the actual and

potential number of directed-triangle patterns of any given
type.

Preliminaries. In directed networks, edges are oriented
and neighboring relations are not necessarily symmetric. In
the case of binary directed networks #BDNs$, we define the
in-degree of node i as the number of edges pointing towards
i #i.e., inward edges$. The out-degree of node i is accordingly
defined as the number of edges originating from i #i.e., out-
ward edges$. Formally,

di
in = %

j!i
aji = #AT$i1 , #4$

di
out = %

j!i
aij = #A$i1 , #5$

where AT is the transpose of A, #A$i stands for the ith row of
A, and 1 is the N-dimensional column vector #1,1 , . . . ,1$T.
The total degree of a node is simply the sum of its in- and
out-degree:

i j

h

a a a = 1

i j

h

a a a = 1

i j

h

a a a = 1

i j

h

a a a = 1

i j

h

a a a = 1

i j

h

a a a = 1

i j

h

a a a = 1

i j

h

a a a = 1

FIG. 1. Binary directed graphs. All eight different triangles with
node i as one vertex. Within each triangle is reported the product of
the form a!!a!!a!! that works as indicator of that triangle in the
network.

GIORGIO FAGIOLO PHYSICAL REVIEW E 76, 026107 #2007$

026107-2

Cycles

Out

In

Middleman

Giorgio Fagiolo, Course on Economic Networks.

Clustering in Directed Networks (2)
• CC in BDN and WDN (see Fagiolo, PRE, 2007)

from and to a large sample of countries !all figures are ex-
pressed in current U.S. dollars". Here, for the sake of expo-
sition, we focus on the year 2000 only #38$. We choose to
build an edge between any two countries in the WTN if there
is a nonzero trade between them and we assume that edge
directions follow the flow of commodities. Let xij be i’s ex-
ports to country j and mji be imports of j from i. In principle,
xij =mji. Unfortunately, due to measurement problems, this is
not the case in the database. In order to minimize this prob-

lem, we will focus here on “adjusted exports” defined as
eij = !xij +mji" /2 and we build a directed edge from country i
to country j if and only if country i’s adjusted exports to
country j are positive. Thus the generic entry of the adja-
cency matrix aij is equal to 1 if and only if eij !0 !and 0
otherwise". Notice that, in general, eij!eji. In order to
weight edges, adjusted exports can be tentatively employed.
However, exporting levels are trivially correlated with the
“size” of exporting and importing countries, as measured,

TABLE I. A taxonomy of the patterns of directed triangles and their associated clustering coefficients. For each pattern, we show the
graph associated to it, the expression that counts how many triangles of that pattern are actually present in the neighborhood of i !ti

!", the
maximum number of such triangles that i can form !Ti

!", for != %cyc ,mid , in ,out ,D&, and the associated clustering coefficients for BDNs and
WDNs. Note that in the last column Ŵ=W#1/3$= %wij

1/3&.

Patterns Graphs t∗i T ∗
i CCs for BDNs CCs for WDNs

Cycle

i j

h

i j

h

(A)3ii din
i dout

i − d↔i Ccyc
i =

(A)3
ii

din
i

dout
i

−d↔
i

C̃cyc
i =

(Ŵ)3
ii

din
i

dout
i

−d↔
i

Middleman

i j

h

i j

h

(AAT A)ii din
i dout

i − d↔i Cmid
i = (AAT A)ii

din
i

dout
i

−d↔
i

C̃mid
i = (Ŵ Ŵ T Ŵ)ii

din
i

dout
i

−d↔
i

In

i j

h

i j

h

(AT A2)ii din
i (din

i − 1) Cin
i = (AT A2)ii

din
i

(din
i
−1)

C̃in
i = (Ŵ T Ŵ 2)ii

din
i

(din
i
−1)

Out

i j

h

i j

h

(A2AT)ii dout
i (dout

i − 1) Cout
i = (A2AT)ii

dout
i

(dout
i

−1)
C̃out

i = (Ŵ 2Ŵ T)ii

dout
i

(dout
i

−1)

All (D) All 8 graphs above
(A+AT)3

ii

2 dtot
i

(dtot
i

− 1) − 2d↔
i

CD
i =

(A+AT)3
ii

2T D
i

C̃D
i =

(Ŵ+Ŵ T)3
ii

2T D
i

0 50 100 150 200
0

50

100

150

200

In−Degree

O
ut

−D
eg

re
e

FIG. 2. WTN: In- vs out-degree in the binary case. Axes are in
log10 scale.

10
1

10
2

10
3

10
−0.2

10
−0.1

10
0

Total Degree

O
ve

ra
ll

C
C

FIG. 3. WTN: Overall directed clustering coefficient vs total-
degree in the binary case. Axes are in log10 scale.

CLUSTERING IN COMPLEX DIRECTED NETWORKS PHYSICAL REVIEW E 76, 026107 !2007"

026107-5

Giorgio Fagiolo, Course on Economic Networks.

Node Centrality
• Which are the most central nodes in a network?

✓ Depends on the definition of “centrality”... many difference measures

✓ Local node-centrality measures: take into account only the
neighborhood of a node to measure its centrality in the network

✓ Global node-centrality measures: account for the position of the node
in the whole network

Giorgio Fagiolo, Course on Economic Networks.

Node Centrality
• Which are the most central nodes in a network?

✓ Depends on the definition of “centrality”... many difference measures

✓ Local node-centrality measures: take into account only the
neighborhood of a node to measure its centrality in the network

✓ Global node-centrality measures: account for the position of the node
in the whole network

• A simple and obvious local node-centrality measure

✓ (Total) node degree (divided by N-1): a node is more (locally) central
if it is more connected (degree centrality)

✓ Network centralization: How much centralized is the whole
network?

Giorgio Fagiolo, Course on Economic Networks.

Node Centrality
• Which are the most central nodes in a network?

✓ Depends on the definition of “centrality”... many difference measures

✓ Local node-centrality measures: take into account only the
neighborhood of a node to measure its centrality in the network

✓ Global node-centrality measures: account for the position of the node
in the whole network

• A simple and obvious local node-centrality measure

✓ (Total) node degree (divided by N-1): a node is more (locally) central
if it is more connected (degree centrality)

✓ Network centralization: How much centralized is the whole
network?

Value attained by the
numerator in a star

network with N nodes

Giorgio Fagiolo, Course on Economic Networks.

Network Centralization: Examples
Flexibility of ACE/EV Paradigm (4/5)

• Interactions
Interaction structure described by a graph

Lattices

• Regular networks (lattices, full networks)

✓ All nodes have the same degree, thus

• Star Networks

✓ There is 1 node (the center) with k=N-1 and N-1
nodes with k=1. Thus the numerator is equal to
(N-1)(N-2) and (check it)ΓD = 1

Giorgio Fagiolo, Course on Economic Networks.

Network Centralization: Examples
Flexibility of ACE/EV Paradigm (4/5)

• Interactions
Interaction structure described by a graph

Lattices

• Regular networks (lattices, full networks)

✓ All nodes have the same degree, thus

• Star Networks

✓ There is 1 node (the center) with k=N-1 and N-1
nodes with k=1. Thus the numerator is equal to
(N-1)(N-2) and (check it)ΓD = 1

2

5

1 3

4 6

• For the network below we have N=6 and
degrees equal to {3,2,2,3,1,3}, thus max
degree = 3 and:

ΓD =
(3− 2) + (3− 2) + (3− 1)

5 · 4 =
4

20
=

1

5

Giorgio Fagiolo, Course on Economic Networks.

Node Closeness Centrality
• A node is more (globally) central the closer is on average to other nodes

CLi =
1

�i
=

1
1
n

�
j dij

=
n�
j dij

�i

dij

= ANPL

= Distance between i and j

Giorgio Fagiolo, Course on Economic Networks.

Node Closeness Centrality
• A node is more (globally) central the closer is on average to other nodes

CLi =
1

�i
=

1
1
n

�
j dij

=
n�
j dij

�i

dij

= ANPL

= Distance between i and j

• Problems

✓ Geodesic distances in networks tend to be very small, hence CL tends
to span very small ranges, making it difficult to compare more and
less central nodes

✓ What if the network is not connected? Some distances become infinite
and closeness becomes zero. A solution: defining CL as the inverse of
the harmonic mean distance between nodes

CL�
i =

1

N − 1

�

j �=i

1

dij

Giorgio Fagiolo, Course on Economic Networks.

Node Betweenness Centrality (1)
• A node is more (globally) central the more it lies on (geodesic) paths

connecting any other two nodes in the network

✓ Assume that (i) something flows through the network (message);
(ii) every pair of nodes exchange messages with equal probability per
unit time; (iii) messages always take the shortest path between any
two nodes (or choose one at random if there are several)

✓ How many messages will be passed through a given node after a
suitably long period of time? A number proportional to the number of
geodesic paths the node lies on. This number is called betweenness
centrality (BC) of a node.

Giorgio Fagiolo, Course on Economic Networks.

Node Betweenness Centrality (1)
• A node is more (globally) central the more it lies on (geodesic) paths

connecting any other two nodes in the network

✓ Assume that (i) something flows through the network (message);
(ii) every pair of nodes exchange messages with equal probability per
unit time; (iii) messages always take the shortest path between any
two nodes (or choose one at random if there are several)

✓ How many messages will be passed through a given node after a
suitably long period of time? A number proportional to the number of
geodesic paths the node lies on. This number is called betweenness
centrality (BC) of a node.

• Nodes with higher BC:

✓ have higher influence because control flow (and might get paid for it)

✓ are crucial for the network: if they fail, most communication is
disrupted

Giorgio Fagiolo, Course on Economic Networks.

Node Betweenness Centrality (2)
• More formally

BCi =
�

h,k

νi
hk

ghk

= # of geodesics from h to k passing through i

= total # of geodesics from h to k

Giorgio Fagiolo, Course on Economic Networks.

Node Betweenness Centrality (2)

• Remarks:

• More formally

BCi =
�

h,k

νi
hk

ghk

= # of geodesics from h to k passing through i

= total # of geodesics from h to k

Giorgio Fagiolo, Course on Economic Networks.

Node Betweenness Centrality (2)

• Remarks:

✓ We count also geodesics from h to h, node i included; we count h to k separately from k to h

• More formally

BCi =
�

h,k

νi
hk

ghk

= # of geodesics from h to k passing through i

= total # of geodesics from h to k

Giorgio Fagiolo, Course on Economic Networks.

Node Betweenness Centrality (2)

• Remarks:

✓ We count also geodesics from h to h, node i included; we count h to k separately from k to h

✓ In undirected networks we count paths twice, but this is irrelevant as we are not interested in BC levels
but in rankings (who is more central)

• More formally

BCi =
�

h,k

νi
hk

ghk

= # of geodesics from h to k passing through i

= total # of geodesics from h to k

Giorgio Fagiolo, Course on Economic Networks.

Node Betweenness Centrality (2)

• Remarks:

✓ We count also geodesics from h to h, node i included; we count h to k separately from k to h

✓ In undirected networks we count paths twice, but this is irrelevant as we are not interested in BC levels
but in rankings (who is more central)

✓ Definition still applies in BDN and can be extended in WUN/WDN by appropriately weighting paths

• More formally

BCi =
�

h,k

νi
hk

ghk

= # of geodesics from h to k passing through i

= total # of geodesics from h to k

Giorgio Fagiolo, Course on Economic Networks.

Node Betweenness Centrality (2)

• Remarks:

✓ We count also geodesics from h to h, node i included; we count h to k separately from k to h

✓ In undirected networks we count paths twice, but this is irrelevant as we are not interested in BC levels
but in rankings (who is more central)

✓ Definition still applies in BDN and can be extended in WUN/WDN by appropriately weighting paths

✓ The denominator g is needed to account for cases where there are more than one geodesic between h
and k

• More formally

BCi =
�

h,k

νi
hk

ghk

= # of geodesics from h to k passing through i

= total # of geodesics from h to k

Giorgio Fagiolo, Course on Economic Networks.

Node Betweenness Centrality (2)

• Remarks:

✓ We count also geodesics from h to h, node i included; we count h to k separately from k to h

✓ In undirected networks we count paths twice, but this is irrelevant as we are not interested in BC levels
but in rankings (who is more central)

✓ Definition still applies in BDN and can be extended in WUN/WDN by appropriately weighting paths

✓ The denominator g is needed to account for cases where there are more than one geodesic between h
and k

✓ The maximum value of BC is attained by the center of a star network: it lies on all N2 geodesics
between node pairs, except the N-1 paths between peripheral nodes to themselves. Thus BC(center)
=N2-(N-1). Prove it. Compute max when one only counts paths from any two nodes different from i

• More formally

BCi =
�

h,k

νi
hk

ghk

= # of geodesics from h to k passing through i

= total # of geodesics from h to k

Giorgio Fagiolo, Course on Economic Networks.

Node Betweenness Centrality (2)

• Remarks:

✓ We count also geodesics from h to h, node i included; we count h to k separately from k to h

✓ In undirected networks we count paths twice, but this is irrelevant as we are not interested in BC levels
but in rankings (who is more central)

✓ Definition still applies in BDN and can be extended in WUN/WDN by appropriately weighting paths

✓ The denominator g is needed to account for cases where there are more than one geodesic between h
and k

✓ The maximum value of BC is attained by the center of a star network: it lies on all N2 geodesics
between node pairs, except the N-1 paths between peripheral nodes to themselves. Thus BC(center)
=N2-(N-1). Prove it. Compute max when one only counts paths from any two nodes different from i

✓ What is the the minimum of BC? If the network is connected, then there must be at minimum: N-1
geodesics from all j≠i to i; N-1 geodesics from i to all j≠i; and a geodesic from i to i. Therefore min(BC)
=2(N-1)+1=2N-1. This happens to “leafs” in a network or peripheral nodes of a star (prove it).

• More formally

BCi =
�

h,k

νi
hk

ghk

= # of geodesics from h to k passing through i

= total # of geodesics from h to k

Giorgio Fagiolo, Course on Economic Networks.

Eigenvector Centrality
• Main Idea

✓ Degree centrality awards to a given node one centrality point for
every neighbor it has. More generally: giving each node a score
proportional to the sum of the scores of its neighbors.

✓ Eigenvector node centrality: node centrality x is proportional to the
sum of centralities of its neighbors

xi = λ
�

j

aijxj � x = λAx

Giorgio Fagiolo, Course on Economic Networks.

Eigenvector Centrality
• Main Idea

✓ Degree centrality awards to a given node one centrality point for
every neighbor it has. More generally: giving each node a score
proportional to the sum of the scores of its neighbors.

✓ Eigenvector node centrality: node centrality x is proportional to the
sum of centralities of its neighbors

xi = λ
�

j

aijxj � x = λAx

✓ Hence x is an eigenvector of A. Usually we take the eigenvector
associated to the largest eigenvalue of A to ensure positive xs

✓ This is called Bonacich centrality: a node is more central either
because it has many neighbors or because it has important neighbors
(it is connected with nodes that count), or both

Giorgio Fagiolo, Course on Economic Networks.

Eigenvector Centrality in Digraphs
• Problem #1

✓ If A is symmetric, there is only one eigenvector sequence. In digraphs
A is asymmetric, so there may be two ways to define centrality,
according to which type (inward or outward) of link contributes to
centrality

Giorgio Fagiolo, Course on Economic Networks.

xi = λout
�

j

Aijxj xi = λin
�

j

Ajixj

✓ Example: in the WWW centrality depends on how many pages point
to you, not from the fact that you build a page that point to many
others... but in other networks it may not be so...

Eigenvector Centrality in Digraphs
• Problem #2

✓ Any node who is in a chain of directed paths starting from a node who
has zero centrality score, will end up having zero centrality score as
well!

Giorgio Fagiolo, Course on Economic Networks.

Red node: no incoming links, so zero centrality

Green node: only one incoming link, but from a
zero-centrality node, thus zero centrality as well

xi = λin
�

j

Ajixj

✓ Only nodes that are in a strongly connected component (SCC) of two or
more vertices, or the out-component of such a component, can have
positive centrality scores

✓ Acyclic networks? They have SCC of 1 node... only zero centrality nodes

A First Solution

Giorgio Fagiolo, Course on Economic Networks.

• Katz Centrality Index

✓ Idea: assigning to every node a small initial (positive) centrality
bonus

✓ Setting the “bonus” equal to 1 for all and solving:

xi = λ
�

j

Ajixj + β

x = λAx+ 1 x = (I− λA)−11

• Problems

✓ How to set λ?

✓ Centrality scores are passed via incoming links... so a highly influential
node with many outgoing links will give high centrality to all of them...
but received centrality should be smaller the more links are pointed...
if you are one among many you should receive less centrality....
Example: importance of a web page received from hubs in the WWW

Google Page-Rank Centrality

Giorgio Fagiolo, Course on Economic Networks.

• How does Google search engine work?

✓ Searching using text queries and other methods in pre-assembled lists
of web pages

✓ Ranking pages according to a number of criteria, including Page-Rank
centrality: Google is not efficient in searching/finding but in ranking

✓ Setting λ=0.85... Why?

• Diluting centrality scores from hubs

✓ Idea: rescaling induced centrality by out-degree

✓ Setting the “bonus” equal to 1 for all and solving:

xi = λ
�

j

Aji
xj

koutj

+ β

x = λAD−1x+ β1 x = (I− λAD−1)−11

Hub and Authority Centrality (I)
• Problem

✓ So far: Centrality scores can be received only through incoming
edges.

✓ Problem: in many cases (e.g., citation networks) nodes can be central
also if they point to many “selected” nodes

• Citation networks: review articles can be central because they
cite many other “influential” papers; influential papers can
become important because they are pointed by reviews

Giorgio Fagiolo, Course on Economic Networks.

• Hubs and Authorities

✓ Authorities: nodes that contain useful information, they are pointed by
many nodes, in particular by many hubs

✓ Hubs: nodes that tell us where authorities are located, they point to
many authorities

✓ A node can then have two measures of centrality and can be central
because it’s a hub or an authority, or both!

Hub and Authority Centrality (II)

Giorgio Fagiolo, Course on Economic Networks.

• How to Compute Hub and Authority Centrality Scores?

✓ Assigning to each node an authority score (x) and a hub score (y)

✓ Authority score (x) depends on how many links a node receives from
nodes that have a (high) hub score

✓ Hub score (y) depends on how many nodes with a (high) autorithy
score a node points to

xi = α
�

j

Ajiyj yi = β
�

j

Aijxj

✓ Letting λ=αβ and solving

x = (I− λATA)−11 y = (I− λAAT)−11

✓ Authority (hub) scores are the eigenvectors of ATA (AAT) associated to
the same (largest) eigenvalue, which can be shown to exist

This Lecture: What we have done so far...

Giorgio Fagiolo, Course on Economic Networks.

This Lecture: What we have done so far...

• Introduced a number of network measures and metrics

Giorgio Fagiolo, Course on Economic Networks.

This Lecture: What we have done so far...

• Introduced a number of network measures and metrics

• Network-wide, node-specific, link-specific

Giorgio Fagiolo, Course on Economic Networks.

This Lecture: What we have done so far...

• Introduced a number of network measures and metrics

• Network-wide, node-specific, link-specific

1. Connectivity (density, components, distances,
degrees, strength)

Giorgio Fagiolo, Course on Economic Networks.

This Lecture: What we have done so far...

• Introduced a number of network measures and metrics

• Network-wide, node-specific, link-specific

1. Connectivity (density, components, distances,
degrees, strength)

2. Homophily (ANND/ND and ANNS/NS
correlation, ND-ND and NS-NS correlation)

Giorgio Fagiolo, Course on Economic Networks.

This Lecture: What we have done so far...

• Introduced a number of network measures and metrics

• Network-wide, node-specific, link-specific

1. Connectivity (density, components, distances,
degrees, strength)

2. Homophily (ANND/ND and ANNS/NS
correlation, ND-ND and NS-NS correlation)

3. Clustering (undirected/directed; binary/weighted)

Giorgio Fagiolo, Course on Economic Networks.

This Lecture: What we have done so far...

• Introduced a number of network measures and metrics

• Network-wide, node-specific, link-specific

1. Connectivity (density, components, distances,
degrees, strength)

2. Homophily (ANND/ND and ANNS/NS
correlation, ND-ND and NS-NS correlation)

3. Clustering (undirected/directed; binary/weighted)

4. Centrality

Giorgio Fagiolo, Course on Economic Networks.

Community Structure (I)
• Detecting groups of tightly interconnected vertices

(Fortunato, 2009)

✓ In many networks the distribution of links is
globally and locally inhomogeneous

✓ High concentration of links among special
groups of vertices, and low concentration of
links between these groups

Giorgio Fagiolo, Course on Economic Networks.

• Community structure (CS) detection

✓ Identifying clusters or modules that due to
high inter-connectivity among them may
share common properties and/or play similar
roles

✓ Definition of CS is not clear: therefore a
huge set of CS detection methods are
available

✓ CS: Non-overlapping vs. overlapping

• Here: Non-overlapping CS detection via
maximization of modularity function

✓ Assigning each partition of the N nodes a
“quality” indicator Source: Fortunato (2009)

2

1736). Since then a lot has been learned about graphs
and their mathematical properties (Bollobas, 1998). In
the 20th century they have also become extremely useful
as representation of a wide variety of systems in different
areas. Biological, social, technological, and information
networks can be studied as graphs, and graph analysis
has become crucial to understand the features of these
systems. For instance, social network analysis started in
the 1930’s and has become one of the most important
topics in sociology (Scott, 2000; Wasserman and Faust,
1994). In recent times, the computer revolution has pro-
vided scholars with a huge amount of data and computa-
tional resources to process and analyze these data. The
size of real networks one can potentially handle has also
grown considerably, reaching millions or even billions of
vertices. The need to deal with such a large number of
units has produced a deep change in the way graphs are
approached (Albert and Barabási, 2002; Barrat et al.,
2008; Boccaletti et al., 2006; Mendes and Dorogovtsev,
2003; Newman, 2003; Pastor-Satorras and Vespignani,
2004).

Graphs representing real systems are not regular like,
e. g., lattices. They are objects where order coexists with
disorder. The paradigm of disordered graph is the ran-
dom graph, introduced by P. Erdös and A. Rényi (Erdös
and Rényi, 1959). In it, the probability of having an
edge between a pair of vertices is equal for all possible
pairs (see Appendix). In a random graph, the distribu-
tion of edges among the vertices is highly homogeneous.
For instance, the distribution of the number of neigh-
bours of a vertex, or degree, is binomial, so most ver-
tices have equal or similar degree. Real networks are
not random graphs, as they display big inhomogeneities,
revealing a high level of order and organization. The de-
gree distribution is broad, with a tail that often follows
a power law: therefore, many vertices with low degree
coexist with some vertices with large degree. Further-
more, the distribution of edges is not only globally, but
also locally inhomogeneous, with high concentrations of
edges within special groups of vertices, and low concen-
trations between these groups. This feature of real net-
works is called community structure (Girvan and New-
man, 2002), or clustering, and is the topic of this review
(for earlier reviews see Refs. (Danon et al., 2007; For-
tunato and Castellano, 2009; Newman, 2004a; Schaeffer,
2007)). Communities, also called clusters or modules, are
groups of vertices which probably share common proper-
ties and/or play similar roles within the graph. In Fig. 1 a
schematic example of a graph with communities is shown.

Society offers a wide variety of possible group organi-
zations: families, working and friendship circles, villages,
towns, nations. The diffusion of Internet has also led
to the creation of virtual groups, that live on the Web,
like online communities. Indeed, social communities have
been studied for a long time (Coleman, 1964; Freeman,
2004; Kottak, 2004; Moody and White, 2003). Communi-
ties also occur in many networked systems from biology,

FIG. 1 A simple graph with three communities, enclosed
by the dashed circles. Reprinted figure with permission
from (Fortunato and Castellano, 2009). c�2009 by Springer.

computer science, engineering, economics, politics, etc.
In protein-protein interaction networks, communities are
likely to group proteins having the same specific function
within the cell (Chen and Yuan, 2006; Rives and Galitski,
2003; Spirin and Mirny, 2003), in the graph of the World
Wide Web they may correspond to groups of pages deal-
ing with the same or related topics (Flake et al., 2002),
in metabolic networks they may be related to functional
modules such as cycles and pathways (Guimerà and Ama-
ral, 2005; Palla et al., 2005), in food webs they may iden-
tify compartments (Krause et al., 2003; Pimm, 1979),
and so on.

Community detection is important for other reasons,
too. Identifying modules and their boundaries allows for
a classification of vertices, according to their structural
position in the modules. So, vertices with a central posi-
tion in their clusters, i.e. sharing a large number of edges
with the other group partners, may have an important
function of control and stability within the group; ver-
tices lying at the boundaries between modules play an
important role of mediation and lead the relationships
and exchanges between different communities. Such clas-
sification seems to be meaningful in social (Burt, 1976;
Freeman, 1977; Granovetter, 1973) and metabolic net-
works (Guimerà and Amaral, 2005). Finally, one can
study the graph where vertices are the communities and
edges are set between clusters if there are connections be-
tween some of their vertices in the original graph and/or
if the modules overlap. In this way one attains a coarse-
grained description of the original graph, which unveils
the relationships between modules. Recent studies indi-

15

where maxP and minP indicates the maximum and

the minimum over all possible graph partitions P and

Ex(lc) = d2
c/4m indicates the expected number of links

in cluster c in the null model of modularity. By adding

and subtracting the total number of edges m of the graph

one finally gets

Qmax = − 1

m
minP

��
m−

nc�

c=1

lc
�
−

�
m−

nc�

c=1

Ex(lc)
��

= − 1

m
minP(|CutP |− ExCutP). (16)

In the last expression |CutP | = m −
�nc

c=1 lc is the cut

size of partition P, and ExCutP = m −
�nc

c=1 Ex(lc) is

the expected cut size of the partition in modularity’s null

model.

According to Eq. 14, a subgraph is a module if the

corresponding contribution to modularity in the sum is

positive. The more the number of internal edges of the

cluster exceeds the expected number, the better defined

the community. So, large positive values of the modu-

larity indicate good partitions4. The modularity of the

whole graph, taken as a single community, is zero, as the

two terms of the only summand in this case are equal

and opposite. Modularity is always smaller than one,

and can be negative as well. For instance, the partition

in which each vertex is a community is always negative:

in this case the sum runs over n terms, which are all neg-

ative as the first term of each summand is zero. This

is a nice feature of the measure, implying that, if there

are no partitions with positive modularity, the graph has

no community structure. On the contrary, the existence

of partitions with large negative modularity values may

hint to the existence of subgroups with very few inter-

nal edges and many edges lying between them (multipar-
tite structure) (Newman, 2006a). Modularity has been

employed as quality function in many algorithms, like

some of the divisive algorithms of Section V. In addi-

tion, modularity optimization is itself a popular method

for community detection (see Section VI.A). Modularity

also allows to assess the stability of partitions (Massen

and Doye, 2006) (Section XIII), it can be used to design

layouts for graph visualization (Noack, 2009) and to per-

form a sort of renormalization of a graph, by transform-

ing a graph into a smaller one with the same community

structure (Arenas et al., 2007).

IV. TRADITIONAL METHODS

A. Graph partitioning

The problem of graph partitioning consists in dividing

the vertices in g groups of predefined size, such that the

4 This is not necessarily true, as we will see in Section VI.C.

FIG. 9 Graph partitioning. The dashed line shows the so-
lution of the minimum bisection problem for the graph illus-
trated, i. e. the partition in two groups of equal size with min-
imal number of edges running between the groups. Reprinted
figure with permission from (Fortunato and Castellano, 2009).
c�2009 by Springer.

number of edges lying between the groups is minimal.

The number of edges running between clusters is called

cut size. Fig. 9 presents the solution of the problem for

a graph with fourteen vertices, for g = 2 and clusters of

equal size.

Specifying the number of clusters of the partition is

necessary. If one simply imposed a partition with the

minimal cut size, and left the number of clusters free,

the solution would be trivial, corresponding to all ver-

tices ending up in the same cluster, as this would yield a

vanishing cut size.

Graph partitioning is a fundamental issue in parallel

computing, circuit partitioning and layout, and in the

design of many serial algorithms, including techniques

to solve partial differential equations and sparse linear

systems of equations. Most variants of the graph parti-

tioning problem are NP-hard. There are however several

algorithms that can do a good job, even if their solutions

are not necessarily optimal (Pothen, 1997). Many algo-

rithms perform a bisection of the graph. Partitions into

more than two clusters are usually attained by iterative

bisectioning. Moreover, in most cases one imposes the

constraint that the clusters have equal size. This prob-

lem is called minimum bisection and is NP-hard.

The Kernighan-Lin algorithm (Kernighan and Lin,

1970) is one of the earliest methods proposed and is still

frequently used, often in combination with other tech-

niques. The authors were motivated by the problem of

partitioning electronic circuits onto boards: the nodes

contained in different boards need to be linked to each

other with the least number of connections. The pro-

cedure is an optimization of a benefit function Q, which

represents the difference between the number of edges in-

Community Structure: Examples

Giorgio Fagiolo, Course on Economic Networks.

4

4

20

22

21 9

28

3

27

18

19

23

29

7

17

24

33

16

30 34

26

25

32
8

2
1

12

11

6

5

13

14

31

10
15

Beak

Beescratch

BumperCCL

Cross

DN16

DN21

DN63

Double

Feather

Fish

Five

Fork

Gallatin

Grin

Haecksel

Hook

Jet

Jonah

Knit

Kringel

MN105

MN23

MN60

MN83

Mus

Notch
Number1

Oscar

Patchback

PL

Quasi

Ripplefluke

Scabs

Shmuddel

SMN5

SN100

SN4

SN63

SN89

SN9

SN90

SN96

Stripes

Thumper
Topless

TR120

TR77

TR82

TR88

TR99

Trigger

TSN103

TSN83

Upbang

Vau

Wave

Web

Whitetip

Zap

Zig

Zipfel

Agent-based

Mathematical

Statistical Physics

Ecology

Models

Structure of RNA

a!

b!

c!

FIG. 2 Community structure in social networks. a) Zachary’s karate club, a standard benchmark in community detection. The

colors correspond to the best partition found by optimizing the modularity of Newman and Girvan (Section VI.A). Reprinted

figure with permission from (Donetti and Muñoz, 2004). c�2004 by IOP Publishing and SISSA. b) Collaboration network

between scientists working at the Santa Fe Institute. The colors indicate high level communities obtained by the algorithm

of Girvan and Newman (Section V.A) and correspond quite closely to research divisions of the institute. Further subdivisions

correspond to smaller research groups, revolving around project leaders. Reprinted figure with permission from (Girvan and

Newman, 2002). c�2002 by the National Academy of Science of the USA. c) Lusseau’s network of bottlenose dolphins. The

colors label the communities identified through the optimization of a modified version of the modularity of Newman and

Girvan, proposed by Arenas et al. (Arenas et al., 2008b) (Section XII.A). The partition matches the biological classification of

the dolphins proposed by Lusseau. Reprinted figure with permission from (Arenas et al., 2008b). c�2008 by IOP Publishing.

explained in the Appendix. Readers not acquainted with
these concepts are urged to read the Appendix first.

II. COMMUNITIES IN REAL-WORLD NETWORKS

In this section we shall present some striking examples
of real networks with community structure. In this way
we shall see what communities look like and why they
are important.

Social networks are paradigmatic examples of graphs
with communities. The word community itself refers to
a social context. People naturally tend to form groups,

within their work environment, family, friends.

In Fig. 2 we show some examples of social networks.
The first example (Fig. 2a) is Zachary’s network of karate
club members (Zachary, 1977), a well-known graph reg-
ularly used as a benchmark to test community detection
algorithms (Section XIV.A). It consists of 34 vertices, the
members of a karate club in the United States, who were
observed during a period of three years. Edges connect
individuals who were observed to interact outside the ac-
tivities of the club. At some point, a conflict between
the club president and the instructor led to the fission of
the club in two separate groups, supporting the instruc-
tor and the president, respectively (indicated by squares

Source: Fortunato (2009)

Community Structure (II)

Giorgio Fagiolo, Course on Economic Networks.

• Consider one of all possible partitions of the N nodes of the network. Let this
partition be C={C1,...,CK}. To evaluate how good this partition is we can
compute the function:

where: i,j=1,...,N, Aij are the entries of the adjacency matrix; Pij represents
the expected number of edges between i and j; m is the total number of
links; and δ yields one if i and j are in the same community, zero otherwise

14

an edge. The definition of performance, for a partition

P, is

P (P) =
|{(i, j) ∈ E,Ci = Cj | + |{(i, j) /∈ E,Ci �= Cj |

n(n− 1)/2
.

(11)

By definition, 0 ≤ P (P) ≤ 1. Another example is cover-
age, i.e. the ratio of the number of intra-community edges

by the total number of edges: by definition, an ideal clus-

ter structure, where the clusters are disconnected from

each other, yields a coverage of 1, as all edges of the

graph fall within clusters.

The most popular quality function is the modularity

of Newman and Girvan (Newman and Girvan, 2004). It

is based on the idea that a random graph is not expected

to have a cluster structure, so the possible existence of

clusters is revealed by the comparison between the ac-

tual density of edges in a subgraph and the density one

would expect to have in the subgraph if the vertices of

the graph were attached regardless of community struc-

ture. This expected edge density depends on the chosen

null model, i.e. a copy of the original graph keeping some

of its structural properties but without community struc-

ture. Modularity can then be written as follows

Q =
1

2m

�

ij

(Aij − Pij) δ(Ci, Cj), (12)

where the sum runs over all pairs of vertices, A is the

adjacency matrix, m the total number of edges of the

graph, and Pij represents the expected number of edges

between vertices i and j in the null model. The δ-function

yields one if vertices i and j are in the same community

(Ci = Cj), zero otherwise. The choice of the null model

graph is in principle arbitrary, and several possibilities

exist. For instance, one could simply demand that the

graph keeps the same number of edges as the original

graph, and that edges are placed with the same proba-

bility between any pair of vertices. In this case (Bernoulli

random graph), the null model term in Eq. 12 would be

a constant (i.e. Pij = p = 2m/[n(n− 1)], ∀i, j). However

this null model is not a good descriptor of real networks,

as it has a Poissonian degree distribution which is very

different from the skewed distributions found in real net-

works. Due to the important implications that broad de-

gree distributions have for the structure and function of

real networks (Albert and Barabási, 2002; Barrat et al.,
2008; Boccaletti et al., 2006; Dorogovtsev and Mendes,

2002; Newman, 2003; Pastor-Satorras and Vespignani,

2004), it is preferable to go for a null model with the

same degree distribution of the original graph. The stan-

dard null model of modularity imposes that the expected

degree sequence (after averaging over all possible configu-

rations of the model) matches the actual degree sequence

of the graph. This is a stricter constraint than merely

requiring the match of the degree distributions, and is

essentially equivalent
3

to the configuration model, which

has been subject of intense investigations in the recent

literature on networks (�Luczak, 1992; Molloy and Reed,

1995). In this null model, a vertex could be attached to

any other vertex of the graph and the probability that

vertices i and j, with degrees ki and kj , are connected,

can be calculated without problems. In fact, in order to

form an edge between i and j one needs to join two stubs
(i.e. half-edges), incident with i and j. The probability

pi to pick at random a stub incident with i is ki/2m, as

there are ki stubs incident with i out of a total of 2m.

The probability of a connection between i and j is then

given by the product pipj , since edges are placed inde-

pendently of each other. The result is kikj/4m2
, which

yields an expected number Pij = 2mpipj = kikj/2m of

edges between i and j. So, the final expression of modu-

larity reads

Q =
1

2m

�

ij

�
Aij −

kikj

2m

�
δ(Ci, Cj). (13)

Since the only contributions to the sum come from vertex

pairs belonging to the same cluster, we can group these

contributions together and rewrite the sum over the ver-

tex pairs as a sum over the clusters

Q =

nc�

c=1

� lc
m
−

�
dc

2m

�2 �
. (14)

Here, nc is the number of clusters, lc the total number of

edges joining vertices of module c and dc the sum of the

degrees of the vertices of c. In Eq. 14, the first term of

each summand is the fraction of edges of the graph inside

the module, whereas the second term represents the ex-

pected fraction of edges that would be there if the graph

were a random graph with the same expected degree for

each vertex.

A nice feature of modularity is that it can be equiva-

lently expressed both in terms of the intra-cluster edges,

as in Eq. 14, and in terms of the inter-cluster edges (Djid-

jev, 2006). In fact, the maximum of modularity can be

expressed as

Qmax = maxP

�
nc�

c=1

� lc
m
−

�
dc

2m

�2 ��

=
1

m
maxP

�
nc�

c=1

�
lc − Ex(lc)

��

= − 1

m
minP

�
−

nc�

c=1

�
lc − Ex(lc)

��
, (15)

3 The difference is that the configuration model maintains the
same degree sequence of the original graph for each realization,
whereas in the null model of modularity the degree sequence of a
realization is in general different, and only the average/expected
degree sequence coincides with that of the graph at hand. The
two models are equivalent in the limit of infinite graph size.

Community Structure (II)

Giorgio Fagiolo, Course on Economic Networks.

• Consider one of all possible partitions of the N nodes of the network. Let this
partition be C={C1,...,CK}. To evaluate how good this partition is we can
compute the function:

where: i,j=1,...,N, Aij are the entries of the adjacency matrix; Pij represents
the expected number of edges between i and j; m is the total number of
links; and δ yields one if i and j are in the same community, zero otherwise

14

an edge. The definition of performance, for a partition

P, is

P (P) =
|{(i, j) ∈ E,Ci = Cj | + |{(i, j) /∈ E,Ci �= Cj |

n(n− 1)/2
.

(11)

By definition, 0 ≤ P (P) ≤ 1. Another example is cover-
age, i.e. the ratio of the number of intra-community edges

by the total number of edges: by definition, an ideal clus-

ter structure, where the clusters are disconnected from

each other, yields a coverage of 1, as all edges of the

graph fall within clusters.

The most popular quality function is the modularity

of Newman and Girvan (Newman and Girvan, 2004). It

is based on the idea that a random graph is not expected

to have a cluster structure, so the possible existence of

clusters is revealed by the comparison between the ac-

tual density of edges in a subgraph and the density one

would expect to have in the subgraph if the vertices of

the graph were attached regardless of community struc-

ture. This expected edge density depends on the chosen

null model, i.e. a copy of the original graph keeping some

of its structural properties but without community struc-

ture. Modularity can then be written as follows

Q =
1

2m

�

ij

(Aij − Pij) δ(Ci, Cj), (12)

where the sum runs over all pairs of vertices, A is the

adjacency matrix, m the total number of edges of the

graph, and Pij represents the expected number of edges

between vertices i and j in the null model. The δ-function

yields one if vertices i and j are in the same community

(Ci = Cj), zero otherwise. The choice of the null model

graph is in principle arbitrary, and several possibilities

exist. For instance, one could simply demand that the

graph keeps the same number of edges as the original

graph, and that edges are placed with the same proba-

bility between any pair of vertices. In this case (Bernoulli

random graph), the null model term in Eq. 12 would be

a constant (i.e. Pij = p = 2m/[n(n− 1)], ∀i, j). However

this null model is not a good descriptor of real networks,

as it has a Poissonian degree distribution which is very

different from the skewed distributions found in real net-

works. Due to the important implications that broad de-

gree distributions have for the structure and function of

real networks (Albert and Barabási, 2002; Barrat et al.,
2008; Boccaletti et al., 2006; Dorogovtsev and Mendes,

2002; Newman, 2003; Pastor-Satorras and Vespignani,

2004), it is preferable to go for a null model with the

same degree distribution of the original graph. The stan-

dard null model of modularity imposes that the expected

degree sequence (after averaging over all possible configu-

rations of the model) matches the actual degree sequence

of the graph. This is a stricter constraint than merely

requiring the match of the degree distributions, and is

essentially equivalent
3

to the configuration model, which

has been subject of intense investigations in the recent

literature on networks (�Luczak, 1992; Molloy and Reed,

1995). In this null model, a vertex could be attached to

any other vertex of the graph and the probability that

vertices i and j, with degrees ki and kj , are connected,

can be calculated without problems. In fact, in order to

form an edge between i and j one needs to join two stubs
(i.e. half-edges), incident with i and j. The probability

pi to pick at random a stub incident with i is ki/2m, as

there are ki stubs incident with i out of a total of 2m.

The probability of a connection between i and j is then

given by the product pipj , since edges are placed inde-

pendently of each other. The result is kikj/4m2
, which

yields an expected number Pij = 2mpipj = kikj/2m of

edges between i and j. So, the final expression of modu-

larity reads

Q =
1

2m

�

ij

�
Aij −

kikj

2m

�
δ(Ci, Cj). (13)

Since the only contributions to the sum come from vertex

pairs belonging to the same cluster, we can group these

contributions together and rewrite the sum over the ver-

tex pairs as a sum over the clusters

Q =

nc�

c=1

� lc
m
−

�
dc

2m

�2 �
. (14)

Here, nc is the number of clusters, lc the total number of

edges joining vertices of module c and dc the sum of the

degrees of the vertices of c. In Eq. 14, the first term of

each summand is the fraction of edges of the graph inside

the module, whereas the second term represents the ex-

pected fraction of edges that would be there if the graph

were a random graph with the same expected degree for

each vertex.

A nice feature of modularity is that it can be equiva-

lently expressed both in terms of the intra-cluster edges,

as in Eq. 14, and in terms of the inter-cluster edges (Djid-

jev, 2006). In fact, the maximum of modularity can be

expressed as

Qmax = maxP

�
nc�

c=1

� lc
m
−

�
dc

2m

�2 ��

=
1

m
maxP

�
nc�

c=1

�
lc − Ex(lc)

��

= − 1

m
minP

�
−

nc�

c=1

�
lc − Ex(lc)

��
, (15)

3 The difference is that the configuration model maintains the
same degree sequence of the original graph for each realization,
whereas in the null model of modularity the degree sequence of a
realization is in general different, and only the average/expected
degree sequence coincides with that of the graph at hand. The
two models are equivalent in the limit of infinite graph size.

• Suppose that the probability of connection between i and j is proportional to
the product of ki and kj. Thus the expected number of links between i and j
is equal to ki*kj/2m (prove it). This is the configuration model that we will
study in Lecture 6. Then the modularity function becomes:

14

an edge. The definition of performance, for a partition

P, is

P (P) =
|{(i, j) ∈ E,Ci = Cj | + |{(i, j) /∈ E,Ci �= Cj |

n(n− 1)/2
.

(11)

By definition, 0 ≤ P (P) ≤ 1. Another example is cover-
age, i.e. the ratio of the number of intra-community edges

by the total number of edges: by definition, an ideal clus-

ter structure, where the clusters are disconnected from

each other, yields a coverage of 1, as all edges of the

graph fall within clusters.

The most popular quality function is the modularity

of Newman and Girvan (Newman and Girvan, 2004). It

is based on the idea that a random graph is not expected

to have a cluster structure, so the possible existence of

clusters is revealed by the comparison between the ac-

tual density of edges in a subgraph and the density one

would expect to have in the subgraph if the vertices of

the graph were attached regardless of community struc-

ture. This expected edge density depends on the chosen

null model, i.e. a copy of the original graph keeping some

of its structural properties but without community struc-

ture. Modularity can then be written as follows

Q =
1

2m

�

ij

(Aij − Pij) δ(Ci, Cj), (12)

where the sum runs over all pairs of vertices, A is the

adjacency matrix, m the total number of edges of the

graph, and Pij represents the expected number of edges

between vertices i and j in the null model. The δ-function

yields one if vertices i and j are in the same community

(Ci = Cj), zero otherwise. The choice of the null model

graph is in principle arbitrary, and several possibilities

exist. For instance, one could simply demand that the

graph keeps the same number of edges as the original

graph, and that edges are placed with the same proba-

bility between any pair of vertices. In this case (Bernoulli

random graph), the null model term in Eq. 12 would be

a constant (i.e. Pij = p = 2m/[n(n− 1)], ∀i, j). However

this null model is not a good descriptor of real networks,

as it has a Poissonian degree distribution which is very

different from the skewed distributions found in real net-

works. Due to the important implications that broad de-

gree distributions have for the structure and function of

real networks (Albert and Barabási, 2002; Barrat et al.,
2008; Boccaletti et al., 2006; Dorogovtsev and Mendes,

2002; Newman, 2003; Pastor-Satorras and Vespignani,

2004), it is preferable to go for a null model with the

same degree distribution of the original graph. The stan-

dard null model of modularity imposes that the expected

degree sequence (after averaging over all possible configu-

rations of the model) matches the actual degree sequence

of the graph. This is a stricter constraint than merely

requiring the match of the degree distributions, and is

essentially equivalent
3

to the configuration model, which

has been subject of intense investigations in the recent

literature on networks (�Luczak, 1992; Molloy and Reed,

1995). In this null model, a vertex could be attached to

any other vertex of the graph and the probability that

vertices i and j, with degrees ki and kj , are connected,

can be calculated without problems. In fact, in order to

form an edge between i and j one needs to join two stubs
(i.e. half-edges), incident with i and j. The probability

pi to pick at random a stub incident with i is ki/2m, as

there are ki stubs incident with i out of a total of 2m.

The probability of a connection between i and j is then

given by the product pipj , since edges are placed inde-

pendently of each other. The result is kikj/4m2
, which

yields an expected number Pij = 2mpipj = kikj/2m of

edges between i and j. So, the final expression of modu-

larity reads

Q =
1

2m

�

ij

�
Aij −

kikj

2m

�
δ(Ci, Cj). (13)

Since the only contributions to the sum come from vertex

pairs belonging to the same cluster, we can group these

contributions together and rewrite the sum over the ver-

tex pairs as a sum over the clusters

Q =

nc�

c=1

� lc
m
−

�
dc

2m

�2 �
. (14)

Here, nc is the number of clusters, lc the total number of

edges joining vertices of module c and dc the sum of the

degrees of the vertices of c. In Eq. 14, the first term of

each summand is the fraction of edges of the graph inside

the module, whereas the second term represents the ex-

pected fraction of edges that would be there if the graph

were a random graph with the same expected degree for

each vertex.

A nice feature of modularity is that it can be equiva-

lently expressed both in terms of the intra-cluster edges,

as in Eq. 14, and in terms of the inter-cluster edges (Djid-

jev, 2006). In fact, the maximum of modularity can be

expressed as

Qmax = maxP

�
nc�

c=1

� lc
m
−

�
dc

2m

�2 ��

=
1

m
maxP

�
nc�

c=1

�
lc − Ex(lc)

��

= − 1

m
minP

�
−

nc�

c=1

�
lc − Ex(lc)

��
, (15)

3 The difference is that the configuration model maintains the
same degree sequence of the original graph for each realization,
whereas in the null model of modularity the degree sequence of a
realization is in general different, and only the average/expected
degree sequence coincides with that of the graph at hand. The
two models are equivalent in the limit of infinite graph size.

Community Structure (III)

Giorgio Fagiolo, Course on Economic Networks.

• Grouping all contributions that come from the same community together, the
modularity function can be rewritten as

where now nc=k, c spans all clusters in C, lc is total number of links joining
nodes of cluster c, and dc is the sum of degrees of nodes in cluster c

14

an edge. The definition of performance, for a partition

P, is

P (P) =
|{(i, j) ∈ E,Ci = Cj | + |{(i, j) /∈ E,Ci �= Cj |

n(n− 1)/2
.

(11)

By definition, 0 ≤ P (P) ≤ 1. Another example is cover-
age, i.e. the ratio of the number of intra-community edges

by the total number of edges: by definition, an ideal clus-

ter structure, where the clusters are disconnected from

each other, yields a coverage of 1, as all edges of the

graph fall within clusters.

The most popular quality function is the modularity

of Newman and Girvan (Newman and Girvan, 2004). It

is based on the idea that a random graph is not expected

to have a cluster structure, so the possible existence of

clusters is revealed by the comparison between the ac-

tual density of edges in a subgraph and the density one

would expect to have in the subgraph if the vertices of

the graph were attached regardless of community struc-

ture. This expected edge density depends on the chosen

null model, i.e. a copy of the original graph keeping some

of its structural properties but without community struc-

ture. Modularity can then be written as follows

Q =
1

2m

�

ij

(Aij − Pij) δ(Ci, Cj), (12)

where the sum runs over all pairs of vertices, A is the

adjacency matrix, m the total number of edges of the

graph, and Pij represents the expected number of edges

between vertices i and j in the null model. The δ-function

yields one if vertices i and j are in the same community

(Ci = Cj), zero otherwise. The choice of the null model

graph is in principle arbitrary, and several possibilities

exist. For instance, one could simply demand that the

graph keeps the same number of edges as the original

graph, and that edges are placed with the same proba-

bility between any pair of vertices. In this case (Bernoulli

random graph), the null model term in Eq. 12 would be

a constant (i.e. Pij = p = 2m/[n(n− 1)], ∀i, j). However

this null model is not a good descriptor of real networks,

as it has a Poissonian degree distribution which is very

different from the skewed distributions found in real net-

works. Due to the important implications that broad de-

gree distributions have for the structure and function of

real networks (Albert and Barabási, 2002; Barrat et al.,
2008; Boccaletti et al., 2006; Dorogovtsev and Mendes,

2002; Newman, 2003; Pastor-Satorras and Vespignani,

2004), it is preferable to go for a null model with the

same degree distribution of the original graph. The stan-

dard null model of modularity imposes that the expected

degree sequence (after averaging over all possible configu-

rations of the model) matches the actual degree sequence

of the graph. This is a stricter constraint than merely

requiring the match of the degree distributions, and is

essentially equivalent
3

to the configuration model, which

has been subject of intense investigations in the recent

literature on networks (�Luczak, 1992; Molloy and Reed,

1995). In this null model, a vertex could be attached to

any other vertex of the graph and the probability that

vertices i and j, with degrees ki and kj , are connected,

can be calculated without problems. In fact, in order to

form an edge between i and j one needs to join two stubs
(i.e. half-edges), incident with i and j. The probability

pi to pick at random a stub incident with i is ki/2m, as

there are ki stubs incident with i out of a total of 2m.

The probability of a connection between i and j is then

given by the product pipj , since edges are placed inde-

pendently of each other. The result is kikj/4m2
, which

yields an expected number Pij = 2mpipj = kikj/2m of

edges between i and j. So, the final expression of modu-

larity reads

Q =
1

2m

�

ij

�
Aij −

kikj

2m

�
δ(Ci, Cj). (13)

Since the only contributions to the sum come from vertex

pairs belonging to the same cluster, we can group these

contributions together and rewrite the sum over the ver-

tex pairs as a sum over the clusters

Q =

nc�

c=1

� lc
m
−

�
dc

2m

�2 �
. (14)

Here, nc is the number of clusters, lc the total number of

edges joining vertices of module c and dc the sum of the

degrees of the vertices of c. In Eq. 14, the first term of

each summand is the fraction of edges of the graph inside

the module, whereas the second term represents the ex-

pected fraction of edges that would be there if the graph

were a random graph with the same expected degree for

each vertex.

A nice feature of modularity is that it can be equiva-

lently expressed both in terms of the intra-cluster edges,

as in Eq. 14, and in terms of the inter-cluster edges (Djid-

jev, 2006). In fact, the maximum of modularity can be

expressed as

Qmax = maxP

�
nc�

c=1

� lc
m
−

�
dc

2m

�2 ��

=
1

m
maxP

�
nc�

c=1

�
lc − Ex(lc)

��

= − 1

m
minP

�
−

nc�

c=1

�
lc − Ex(lc)

��
, (15)

3 The difference is that the configuration model maintains the
same degree sequence of the original graph for each realization,
whereas in the null model of modularity the degree sequence of a
realization is in general different, and only the average/expected
degree sequence coincides with that of the graph at hand. The
two models are equivalent in the limit of infinite graph size.

Community Structure (III)

Giorgio Fagiolo, Course on Economic Networks.

• Modularity maximization: since high values of Q indicate good partitions (as
compared to the null model), then finding the max of Q over the space of all
partitions would yield the best one

• Unfortunately maximizing Q is impossible: it is an NP-complete problem. No
fast solution is known and there is no known efficient way to locate a
solution

• That is, the time required to solve the problem using any currently known
algorithm increases very quickly as the size of the problem grows.

• Grouping all contributions that come from the same community together, the
modularity function can be rewritten as

where now nc=k, c spans all clusters in C, lc is total number of links joining
nodes of cluster c, and dc is the sum of degrees of nodes in cluster c

14

an edge. The definition of performance, for a partition

P, is

P (P) =
|{(i, j) ∈ E,Ci = Cj | + |{(i, j) /∈ E,Ci �= Cj |

n(n− 1)/2
.

(11)

By definition, 0 ≤ P (P) ≤ 1. Another example is cover-
age, i.e. the ratio of the number of intra-community edges

by the total number of edges: by definition, an ideal clus-

ter structure, where the clusters are disconnected from

each other, yields a coverage of 1, as all edges of the

graph fall within clusters.

The most popular quality function is the modularity

of Newman and Girvan (Newman and Girvan, 2004). It

is based on the idea that a random graph is not expected

to have a cluster structure, so the possible existence of

clusters is revealed by the comparison between the ac-

tual density of edges in a subgraph and the density one

would expect to have in the subgraph if the vertices of

the graph were attached regardless of community struc-

ture. This expected edge density depends on the chosen

null model, i.e. a copy of the original graph keeping some

of its structural properties but without community struc-

ture. Modularity can then be written as follows

Q =
1

2m

�

ij

(Aij − Pij) δ(Ci, Cj), (12)

where the sum runs over all pairs of vertices, A is the

adjacency matrix, m the total number of edges of the

graph, and Pij represents the expected number of edges

between vertices i and j in the null model. The δ-function

yields one if vertices i and j are in the same community

(Ci = Cj), zero otherwise. The choice of the null model

graph is in principle arbitrary, and several possibilities

exist. For instance, one could simply demand that the

graph keeps the same number of edges as the original

graph, and that edges are placed with the same proba-

bility between any pair of vertices. In this case (Bernoulli

random graph), the null model term in Eq. 12 would be

a constant (i.e. Pij = p = 2m/[n(n− 1)], ∀i, j). However

this null model is not a good descriptor of real networks,

as it has a Poissonian degree distribution which is very

different from the skewed distributions found in real net-

works. Due to the important implications that broad de-

gree distributions have for the structure and function of

real networks (Albert and Barabási, 2002; Barrat et al.,
2008; Boccaletti et al., 2006; Dorogovtsev and Mendes,

2002; Newman, 2003; Pastor-Satorras and Vespignani,

2004), it is preferable to go for a null model with the

same degree distribution of the original graph. The stan-

dard null model of modularity imposes that the expected

degree sequence (after averaging over all possible configu-

rations of the model) matches the actual degree sequence

of the graph. This is a stricter constraint than merely

requiring the match of the degree distributions, and is

essentially equivalent
3

to the configuration model, which

has been subject of intense investigations in the recent

literature on networks (�Luczak, 1992; Molloy and Reed,

1995). In this null model, a vertex could be attached to

any other vertex of the graph and the probability that

vertices i and j, with degrees ki and kj , are connected,

can be calculated without problems. In fact, in order to

form an edge between i and j one needs to join two stubs
(i.e. half-edges), incident with i and j. The probability

pi to pick at random a stub incident with i is ki/2m, as

there are ki stubs incident with i out of a total of 2m.

The probability of a connection between i and j is then

given by the product pipj , since edges are placed inde-

pendently of each other. The result is kikj/4m2
, which

yields an expected number Pij = 2mpipj = kikj/2m of

edges between i and j. So, the final expression of modu-

larity reads

Q =
1

2m

�

ij

�
Aij −

kikj

2m

�
δ(Ci, Cj). (13)

Since the only contributions to the sum come from vertex

pairs belonging to the same cluster, we can group these

contributions together and rewrite the sum over the ver-

tex pairs as a sum over the clusters

Q =

nc�

c=1

� lc
m
−

�
dc

2m

�2 �
. (14)

Here, nc is the number of clusters, lc the total number of

edges joining vertices of module c and dc the sum of the

degrees of the vertices of c. In Eq. 14, the first term of

each summand is the fraction of edges of the graph inside

the module, whereas the second term represents the ex-

pected fraction of edges that would be there if the graph

were a random graph with the same expected degree for

each vertex.

A nice feature of modularity is that it can be equiva-

lently expressed both in terms of the intra-cluster edges,

as in Eq. 14, and in terms of the inter-cluster edges (Djid-

jev, 2006). In fact, the maximum of modularity can be

expressed as

Qmax = maxP

�
nc�

c=1

� lc
m
−

�
dc

2m

�2 ��

=
1

m
maxP

�
nc�

c=1

�
lc − Ex(lc)

��

= − 1

m
minP

�
−

nc�

c=1

�
lc − Ex(lc)

��
, (15)

3 The difference is that the configuration model maintains the
same degree sequence of the original graph for each realization,
whereas in the null model of modularity the degree sequence of a
realization is in general different, and only the average/expected
degree sequence coincides with that of the graph at hand. The
two models are equivalent in the limit of infinite graph size.

Community Structure (IV)

Giorgio Fagiolo, Course on Economic Networks.

• What is the number of all partitions of a set of N units? They are known as
Bell’s numbers and grow very quickly as N increases

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

'#"

!" #" $!" $#" %!" %#"

!"
#$
%&

!!'
(
)*

+&
,-
'

('

Community Structure (IV)

Giorgio Fagiolo, Course on Economic Networks.

• Therefore modularity maximization needs clever optimization algorithms to
deliver solutions (greedy techniques, simulated annealing, genetic algorithms)

• Extensions of modularity to the case of weighted directed networks are
possible

• What is the number of all partitions of a set of N units? They are known as
Bell’s numbers and grow very quickly as N increases

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

'#"

!" #" $!" $#" %!" %#"

!"
#$
%&

!!'
(
)*

+&
,-
'

('

Next Lecture

• What is a network? Examples of networks

• Why networks are important for economists?

• Networks and graphs

• Measures and metrics on networks

• Distributions of metrics and measures in large networks

• Models of network formation

• Null statistical network models

• Economic applications

Giorgio Fagiolo, Course on Economic Networks.

