# Games, Interactions and Networks

# Giorgio Fagiolo

https://mail.sssup.it/~fagiolo

University of Verona, Verona, Italy and S.Anna School of Advanced Studies, Pisa, Italy

# Outline of the Talk (1/2)

- Macro Order from Micro Disorder
- Examples:
  - How do market prices and interest rates emerge?
  - How do GNP, unemployment, consumption, investment move together along economic cycles?
  - How do some technological standards manage to dominate a market?
- Coordination and Technological Adoption
- Insights from Standard Models



- Interactions, Networks and Adoption Choices
- Examples
  - How can networks help us in understanding technological adoption and diffusion?
- Conclusions

## Macro Order from Micro Disorder (1/2)

- Economies and societies as complex systems
  - Micro Level (Firms, Consumers, Households, Individuals...)
  - Macro Level (Aggregate Variables, Macro Patterns, ...)
- Micro Level
  - Many entities interacting over time
  - Possibly conflicting interests
- Macro Level
  - Properties emerging from micro level
  - Feedback to micro level

### Macro Order from Micro Disorder (2/2)



 Undertaking strategic decisions (output, investments, marketing, R&D, innovation, etc.)

### Macro Order: Coordination

- Coordination among individuals
  - Technological adoption between standards (PC vs. Mac, Unix vs. Windows, Qwerty vs. Dvorak, etc.)
  - Social norms (languages, currencies, etc.)
- Micro Level
  - Network externalities: my utility from choosing X increases in the number of agents choosing X
  - Coordination on a single technology in agents' interest
- Macro Level
  - Which technology will be adopted?
  - Why does one observe co-existence of standards?

# Standard Answers: Game Theory (1/4)

- Common Setup: Two basic assumptions
  - Economic agents are perfectly rational
    - Maximize expected utility
  - Each agent "interacts" with anyone else
    - Individual utility depends on what every other single player does
- Interaction networks
  - Complete Network: every pair of agents is connected



# Standard Answers: Game Theory (2/4)

- Coordination: Strategic complementarities
  - Two standards (Unix vs. Windows, Mac vs. PC)
  - Each individual has interest in doing what the other does



# Standard Answers: Game Theory (3/4)

- Coordination: Strategic complementarities
  - Two standards (Unix vs. Windows, Mac vs. PC)
  - Each individual has interest in doing what the other does



# Standard Answers: Summary (4/4)

- Coordination will occur
  - Full coordination on one single technology should be the case
- Which technology will prevail?
  - We cannot predict
    - which technology will be selected
    - whether the "ex-ante" superior technology will emerge

# A Critique: Three Basic Observations

#### Rationality.

- People are not fully rational
- Make persistent mistakes, explore non-optimal options

### Dynamics.

- Behaviors are often revised through time
- Choices are based on observation of the past or "status quo"

#### Interactions.

- Agents do not typically care about any other single behavior
- Interaction networks are far from being "complete"



#### Interactions: Basic Assumption

Agents only care about a small subset of other agents

### Significant others

- Friends, relatives, peers, neighbors, ...
- Competitors, technologically-similar agents

#### Interaction networks are not complete

• Graph (links) describing who interacts with whom is sparse

# Interaction Networks: Three Types

#### Type 1: Random Graphs

• Agents make a few random phone calls in each time period

### Type 2: Local Interactions

Agents always interact with their close friends

#### Type 3: Interaction Trees

There are hierarchical relationships among agents

# Interaction Networks (1/3)

### Interaction Networks as Random Graphs

- Agents make random phone-calls, search, meet people, etc.
- No underlying geographical or social structure

### Dynamics

- In each time period
  - any two agents in the population meet at random
  - agents tend to meet different but few people























Dynamics of Random Graphs : t=5 ... and so on ...



# Interaction Networks (2/3)

### Random Graphs

- Agents always switch interacting people
- Ok if switching (search) costs are small and there is no underlying spatial or social structure

### Alternative: Local Interactions

- Friendships, neighboring relations, etc. can be sticky
- There is some underlying geographical (spatial) structure
- Agents always interact with their "nearest neighbors"

# Interaction Networks (2/3)

#### Local interactions: example

• Agents are thought to be arranged on a 2-dim lattice



# Interaction Networks (2/3)

#### Local interactions: example

Each interacts with his 4 nearest-neighbors



# Interaction Networks (4/4)

#### Random graphs and local interactions

- No hierarchy whatsoever
- Ok there is no information or role asymmetry among agents

### Alternative: Interaction Networks as Trees

- Agents are not all the same as to their influence on others
  - Large firms can have advantages, upstream firms can move first
  - "Gurus" and "leaders" can force "followers" choices
- There is some order in the way agents choose
- Agents choosing
  - **first** face a higher uncertainty but are not influenced by others
  - **later** know what happened but are not free to choose



#### Interaction networks as trees



# **Our New Questions**

#### What happens when

- Real-world agents <u>are not</u> fully rational (mistakes, exploration)
- They are dynamically allowed to revise their choice through time
- They do so by taking into account only their "relevant others"

### What do these new insights add to our understanding of

- Aggregate coordination patterns generated out of micro level ?
- Prediction of:
  - Which technology (if any) will get the whole market (full coordination)?
  - If and when "technological niches" will emerge (coexistence of techniques) ?



#### Agents

• i = 1, 2, ..., 100

#### Time

### Technologies

- S = {A,B}
- s(i,t) : technology adopted by agent *i* at time *t*

# Example I: Random Meetings (1/2)

### Initial Conditions

• 50 agents choosing A, 50 agents choosing B

### Dynamics

- At each t, two agents meet at random (only 1 phone call)
- The first agent asks the second which technology he uses
- Then the first agent:
  - With probability p: sticks to his previous choice
  - With probability 1-p: adopts the technology suggested by the second

### Remarks

- Interaction networks are random
- The smaller p, the more agents are sensible to others' opinions

### Example I: Random Meetings (2/2)

#### Results: Two cases

Large p (agents are "idiosyncratic"): almost exact coexistence



Number of agents adopting A

### Example I: Random Meetings (2/2)

#### Results: Two cases

Number of agents adopting A

Small p (agents are sensible): one technology wins



Number of agents adopting A

# Example II: Local Interactions (1/3)

### Initial Conditions

• 50 agents choosing A, 50 agents choosing B

### Interaction Networks

- Agents are spatially located on a 2-dim lattice
- They only care about their 4 nearest-neighbors



# Example II: Local Interactions (2/3)

#### Dynamics

- At each t, one agent chosen at random is allowed to revise
- The agent looks at which technology prevails in his neighborhood
- He chooses the locally prevailing technology
- With some probability p he changes his mind and chooses the other technology (mistake or experimentation)

### Remarks

- Interaction networks are fixed
- The smaller p, the more agents are sensible to others' opinions

# Example II: Local Interactions (3/3)

### Result I

- Similar to before as to how p affects dynamics
- For small p, technological niches remain in the system
- No technology gets the whole market



# Example II: Local Interactions (3/3)

- Result II
  - Can we predict winning technology? No answers so far
    - <u>Here</u>: The one associated to highest **average** payoffs will prevail
  - This is not necessarily the Pareto-efficient one !



### Example III: Tree Networks (1/4)

### Initial Conditions

- Small number of agents
- 50% agents choosing A, 50% agents choosing B

### Interaction Networks

- Agents choose sequentially
- They stick to their choices once they have chosen
- When choosing, they look at current number of adopters of A,B



### Example III: Tree Networks (2/4)

#### Dynamics

- At each t, one agent enters the economy
- He acquires information about prevailing technology
- He chooses prevailing technology
- With some probability p he changes his mind and chooses the other technology

### Remarks

- Interaction networks are fixed and sequential
- The smaller p, the more agents are sensible to others' opinions
- Agents choosing late are not able to change relative frequencies of adopters

# Example III: Tree Networks (3/4)

#### Early choices (leaders)

- Agents choosing first face higher uncertainty
  - They do not know which technology will prevail
  - Choices are partly random and idiosyncratic
- Their early choices make one technology better than the other
  - The gap between adopters increases in the early stages
  - They "build" the gap and "set the trend" to be followed afterwards

#### Late choices (followers)

- Agents choosing late face low uncertainty
  - They can see which technology is prevailing
- Their choices cannot displace the "status quo"
  - The gap between adopters is already large
- They will tend to follow the herd

### Example III: Tree Networks (4/4)

#### Result 1

- One technology will (almost) get the whole market
- Which one will be is unpredictable

#### Result 2

 Which technology will prevail is determined by "leaders" choices, which are partly random

### Result 3

- Followers choices are almost completely predetermined by leaders
- Informational cascade: followers do not use their information or freedom (fundamentals may not count)

# Summary

### Interaction, Networks and Adoption Choices

### Question

 How can networks help us in understanding technological adoption and diffusion?

#### Answers

- Non-trivial interaction networks help us in addressing issues as:
  - Can one technology get the whole market?
  - Can one explain coexistence of techniques and niches?
  - Which technology will tend to prevail?
  - What is the role of information asymmetries (leaders/followers)

### **Concluding Remarks**

### Interaction Networks: Additional Applications

- Cooperation
- Financial bubbles
- Credit market, systemic risk
- [...]

#### Interaction Networks: Current research topics

- This lecture: agents cannot choose whom to interact with
- What if agents can choose their interaction networks?
- Interesting questions:
  - Can we explain observed real-world interaction networks
  - Small-world, scale-free, etc. ?