
How?

Giorgio Fagiolo
Sant’Anna School of Advanced Studies, 

Pisa (Italy)
giorgio.fagiolo@sssup.it

https://mail.sssup.it/~fagiolo

Acknowledgment: Some of the slides below are taken
from lecture slides by Prof. Axtell and Prof.
Tesfatsion. 



The Structure of Agent-Based Models

Main ingredients (to cook an ABM)
Bottom-up (agent-based) Philosophy (Tesfatsion, 1997)

Agents live in complex systems evolving through time (Kirman, 1998) 

Agents might be heterogeneous in almost all their characteristics

“Hyper-rationality” not viable (Dosi et al., 1996)

Agents as boundedly rational entities with adaptive expectations

“True” dynamics: Systems are typically non-reversible

Agents interact directly, networks change over time (Fagiolo, 1997)

Endogenous and persistent novelty: open-ended spaces

Selection-based market mechanisms (Nelson & Winter, 1982)



The Outcomes of ACE/EV Models (1/2)

Micro-Dynamics
(induced by decision rules, 

interactions and expectations)

Macro-Dynamics 
(obtained as aggregation of 

individual behaviors)

• Stochastic components in decision rules, expectations, interactions imply that the dynamics of 
micro and macro variables can be described by some (Markovian) stochastic process 
parameterized by (θi ), Θ :

(xi,t ) | (xi,t-1 ) , (xi,t-2 ) , … ; (θi ), Θ

Xt | (Xt-1 , Xt-2 , … ; (θi ), Θ )

• Non-linearities in decision rules, expectations, interactions may imply that it is hard to analytically 
derive laws of motion, kernel distributions, time-t probability distributions, etc. 



An important distinction

Analytically-solvable ABMs
Very simple, toy models

Little microeconomics 

ABM delivering NO analytical solution in their full-fledged version
More micro-founded

Over parameterized?

Model selection: KISS vs. KIDS vs. TAPAS  

In what follows: some examples of analytically-solvable ABMs
Simple dynamic coordination games 

Boundedly-rational players

Global (population) interactions



 Kirman (1993): Ants, rationality and recruitment 
 

• Agents:  i = 1, …, N 
• Time:   t = 0, 1, 2, … 
• Choices:    A = {−1, +1} 

•State of the system: kt∈{0, 1, 2, …, N}   (# agents choosing +1) 
 
• Individual Dynamics: 

- Suppose there are kt = k (resp. N−k) agents choosing +1 (resp. −1) at t 
 
- An agent is drawn at random  and makes a “phone call” to another randomly 

drawn agent in the population 
 

- The agent is converted to other’s choice with probability 1−δ   (NB: 1−δ measures 
the strength of interactions) 

 
- There is a small probability ε > 0 that the agent switches without doing the “phone 

call” (NB: ε measures the strength of idiosyncrasy) 
 



• Aggregate Dynamics: 
- Given kt = k then we will only have kt+1∈{k−1, k, k+1}.  
- Kt is a Markov Chain 
- Transition probability matrix P(kt+1| kt) has entries different from zero only if kt+1∈{ kt 
−1, kt, kt +1} 

- Must compute only: 
• Prob{k+1| k},  Prob{k−1| k} 
• Prob{k| k} = 1− Prob{k+1| k}− Prob{k−1| k}) 
 
 

pk+1,k= Prob{k+1| k} = Prob{A (−1) player is drawn}⋅ 
Prob{The player changes his mind}= 

 
= Prob{A (−1) player is drawn}⋅ 

[ Prob{Changes independently of the phone call}  + 
Prob{Meets a (+1) player}  ⋅  Prob{Changes his idea}   ]   = 
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pk−1,k = Prob{k−1| k} = Prob{A (+1) player is drawn}⋅ 
Prob{The player changes his mind}= 

 
= Prob{A (+1) player is drawn}⋅ 

[ Prob{Changes independently of the phone call}  + 
Prob{Meets a (−1) player}  ⋅  Prob{Changes his idea}   ]   = 
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Results 
 

• Kt is a Markov chain 
•The transition probability matrix reads: 

k 0 1 2 … k-1 k k+1 … N-2 N-1 N 
0 1−ε ε 0 … 0 0 0 … 0 0 0 
… … … … … … … … … … … … 
k 0 0 0 … pk−1,k pk,k pk+1,k … 0 0 0 
… … … … … … … … … … … … 
N 0 0 0 … 0 0 0 … 0 ε 1−ε

 
•The chain is aperiodic and irreducible. Therefore there exists a unique invariant (limit) 
distribution μ that satisfies: 

μk ⋅ pk+1,k = μk+1 ⋅ pk,k+1
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• Shape of invariant distribution: 
 

 Depends on  θ = ε / (1−δ) 
 

 Meaning of θ 
- Large θ: Weak interactions, strong idiosyncrasy 
- Small θ: Strong interactions, weak idiosyncrasy 

 
 If θ = θ* = (N−1)−1

  ⇒   μk/μk+1=1    ⇒   μ  is UNIFORM 
 

 If θ>θ*   ⇒  μ  is ∩-shaped  (unimodal) around N/2 
 

 If θ<θ*   ⇒  μ  is ∪-shaped  (bimodal) w/ peaks {0,N}  
 

 
 



Arthur et al. (1994): Polya-Urn Schemes 
 

• Agents:  i = 1, 2, …    (infinitely enumerable) 
• Time:   t = 0, 1, 2, … 
• Choices:    A = {−1, +1} 
• State of the system: xt ∈ [0,1]    (share of agents choosing +1) 

or: yt=0,1,2,…  (# of firms choosing +1) 
 
• Individual Dynamics: 

- Suppose at time t=0 there are N0 firms of which a share x0 chooses +1 (i.e. y0 
=N0x0 firms in total) 

 
- Let p(x) the probability that a firm chooses +1 given existing adoption shares; p(x) 

increasing in x due to positive network externalities 
 
- At any t=1,2,… a new firm enters the industry and irreversibly chooses +1 with 

probability p(xt) [and of course −1 with probability 1−p(xt)]  
 
- NB: At time t there will be N0+t firms in the industry 



 
• Aggregate Dynamics: 

 
- Given y0=N0x0 , then: 
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- Therefore: 

yt+1 = yt + z(xt) 
 
where z(xt) =   1   with prob=p(xt) 

0 with prob=1−p(xt) 
 

NB: E[z(xt)]=1⋅ p(xt)+0⋅(1− p(xt))= p(xt) 
 

 
 



 
 
(N0+t+1)xt+1 = (N0+t)xt + z(xt) 
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where:    ε(xt) = z(xt) − p(xt)  = z(xt) − E[z(xt)] 

⇒ E[ε(xt)]=0 
 
NB: The equivalent deterministic system reads: 
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Results 
 
•  Theorem (Arthur, 1988) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Define V={x∈[0,1]: p(x)=x} 

 

• If p(xt) is a CONTINUOUS function from [0,1] to [0,1] and: 

• The equivalent deterministic system has a Lyapunov function (i.e. it is globally 

stable);  

Then:  xt converges with probability one to a STABLE point in V, i.e. a point x*∈V s.t. 

for any small ε>0: 

 

- If x*∈(0,1) ⇒  p(x*+ε) ≤ x*+ε 

 p(x*−ε) ≥ x*−ε 

- If x*=0 ⇒ p(ε) ≤ ε 

- If x*=1 ⇒ p(1−ε) ≥ 1− ε 

 



 
• Key Points 

 
- The system always LOCKS-IN into a stable frequency because noise introduced 

by entrants later on becomes negligible. 
 
- The process is PATH-DEPENDENT: Initial conditions and history matter ! 

 
- Necessity (structural conditions embodied in p) determines possible long-run 

behavior 
 

- Chance (small early entrants) determines actual long-run behavior 
 

- Dynamic interplay between chance and necessity implies non predictability and 
possible inefficiency (QWERTY). 

 
 

 



What if the model is not analytically solvable?
Different levels of lack of analytical solutions

The model is analytically solvable but the modeler does not figure it out

The model allows for numerical solutions (equilibrium)

The model is inherently non-solvable

Simulating the behavior of the model
Build an algorithmic description of micro and macro dynamics 

Run the model (for given seed, parameters, initial conditions)

Store model’s outputs

Understand what happens and why

It seems plain vanilla but it is not! Critical phases
Writing the code (implementation, bugs, etc.)

Analyzing the model (graphical and statistical tools)

Understanding the outcomes (dependence on seeds, initial conditions, 
parameters)



Writing the code
Some important decisions

Choosing a language vs. choosing a platform

Choosing the programming approach (standard vs. OOP)

Choosing how to analyze the output  (built-in vs. external code/software)

Language
Many available: C/C++, Java, Python

Compiled: faster

Flexible, powerful, control over code, self-development, availability of 
functions and classes, can handle any ABMs

Huge initial investment, poor results in the short-run, needs more work

Platform
Many available: Repast, Swarm, CAS, LSD, Matlab, etc.

Interpreted: slower

Less flexible (its own language), less control, cannot handle any ABMs

Small initial investment, good results in the short-run, needs less work



Summary

Programming ‘maturity’/experience

Performance

Java

C/C++

<-----RePast Simphony?----->                  LSD  
RePast

Ascape 1.9

Mathematica
MatLab

Ascape 3.0
MASON

Mycroft
Typewritten Text
Python

Mycroft
Typewritten Text

Mycroft
Typewritten Text



Implementing a 2-dim binary Cellular Automata

•  S=2 (# of states)
•  SP={0,1}
•  K = # of neighbors
•  # of all possible local configurations = 2^(K+1)
•  # of all possible rules: 2^(2^(K+1))
•  How to code a rule? A number from 0 to [2^(2^(K+1))-1]. Why?  

Example: S=2, K=2:   8 local configurations, 256 rules

000 0

001 1

010 0

011 1

100 1

101 0

110 1

111 0



Bin-to-dec representation of local configurations

000 0 =0*2^2+0*2^1+0*2^0

001 1 =0*2^2+0*2^1+1*2^0

010 2 =0*2^2+1*2^1+0*2^0

011 3 ...

100 4 ...

101 5 ...

110 6 ...

111 7 =1*2^2+1*2^1+1*2^0

•  We can order local configurations in a unique way using 
their decimal representation
•  Each local configuration can be associated to a number 
from 0 to 2^(K+1)-1



Bin-to-dec representation of rules

000 0 0 0*2^0=0

001 1 1 1*2^1=2

010 2 0 0*2^2=0

011 3 1 1*2^3=8

100 4 1 1*2^4=16

101 5 0 0*2^5=0

110 6 1 1*2^6=64

111 7 0 0*2^7=0

sum=90

•  Given decimally-ordered 2^(K+1) configurations, a rule is 
a 2^(K+1)-digit binary number
•  EX (K=2): A rule is a 8-digit binary number
•  A 2^(K+1)-digit binary number can be univocally 
associated to a decimal number from 0 to [2^(2^(K+1))-1]
• EX (K=2): A rule can be associated to a decimal number 
from 0 to 255
• EX: Rule 90



Therefore:

Fully 
characterized 

by

0

1

2

3

4

5

6

7

000

001

010

011

100

101

110

111

0

1

0

1

1

0

1

0

1-to-1 with Rule 
number

Given any r in {0,...,255}:   Apply DEC2BIN(r,8) to get a 8-digit string a={a0 a1 a2 ... a7}   (binary 
equivalent of the rule number)

1-to-1 with

Given any 3-digit binary local configuration b={b0 b1 b2} apply BIN2DEC(b) to get the decimal 
equivalent of the local configuration, i.e. the entry in the look-up table of the rule 
(on a 0 to 7 scale)

EX1: DEC2BIN(90,8)={01011010}
EX2: BIN2DEC(010)=2
EX3: How to find the output associated to {010}? Look in the 3rd row (2+1, REM: 0-7 scale) in 
the look up table (i.e. in the 3rd position of the output string {01011010})  



 1dim CAs: Structure of the code 
 

1. Set number of cells (N), number of states (K), rule (dec) 
number, number of neighbors, number of iterations (T) 

2. Define structure of interactions (ring) 
3. Convert rule using dec2bin  
4. Set initial conditions (possibly using different options) 

 
5. Begin cycle for t=1:T 

a. Copy current system state into temp configuration 
b. Begin cycle for i=1:N 

• Read neighborhood state of i 
• Convert neighborhood state into decimal 

representation and employ it to get new output 
• Update new output into temp system state 

c. Copy temp system state into new current system state 



Platform Example: 1-DIM Cellular Automata
Code to simulate a 1-DIM cellular automata in Matlab (1/3)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CA in 1-dimensional space with periodic boundaries  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all;

% Number of cells
N=100;

% Number of iterations and output matrix
MAXT=100;
PLOTMAT=zeros(MAXT+1,N);

% Number of states
S=2;

% Number of neighbors (excluding agent)
% NB: Must be even
K=2;

% Defining Radius of Interaction
INTRAD=K/2;

% State space
SP=0:S-1;

% Define rule
RNUM=33;



Platform Example: 1-DIM Cellular Automata
Code to simulate a 1-DIM cellular automata in Matlab (2/3)

% Convert rule into output vector
% NB: Second parameter = number of bits required to define a lookup table
% It is equal to the number of possible configurations 
NCONF=S^(K+1);
TEMPOUT=str2num(transpose(dec2bin(RNUM,NCONF)));
OUT=TEMPOUT(NCONF:-1:1);                                    % Neded to correctly match I/O 
                                                                                  

% Define neighboring structure
NEIGH=zeros(N,K+1);             % Rows: Cells; Columns: Labels of K+1 Neighbors
LABELS=[[1:N] [1:N] [1:N]];     % Needed in order to allow for boundary conditions

for i=1:N
    h=1;
    for j=-INTRAD:INTRAD
            NEIGH(i,h)=LABELS(N+j+i);
            h=h+1;
    end
end

% Define initial configuration

% Random
%INICONF=unidrnd(2,1,N)-1;

% ONLY MID CELL ON
INICONF=zeros(1,N);
INICONF(N/2)=1;



Platform Example: 1-DIM Cellular Automata
Code to simulate a 1-DIM cellular automata in Matlab (3/3)

% Set iteration 
time=1;

% Set current configuration (the one agents look to adjust)
CURRCONF=INICONF;
PLOTMAT(1,:)=CURRCONF;

% Begin iteration cycle

while(time<=MAXT)
    time
    TEMPCONF=zeros(1,N);                                % Create temp configuration 
    for i=1:N
        NEIGH_STATUS=CURRCONF(NEIGH(i,:));              % Copy status of neighborhood 
        CELL_INP=bin2dec(num2str(NEIGH_STATUS))+1;      % Compute decimal value of 
                                                        % neighborhood 
        CELL_OUT=OUT(CELL_INP);                         % Lookup output value in out 
                                                        % matrix
        TEMPCONF(i)=CELL_OUT;
    end
    CURRCONF=TEMPCONF;
    PLOTMAT(time+1,:)=CURRCONF;
    time=time+1;
end

imagesc(PLOTMAT,[0 1])
tit=strcat('Rule = ',num2str(RNUM));
title(tit);
xlabel('Cells');
ylabel('Generations');
colormap(1-gray)



 1dim CAs: Take-Home Messages 
 
 

1. Allow for generality in your code, but not too much: generality 
comes at a cost 
 

2. Encoding a model requires finding shortcuts, inventing tricks, 
learning about the model and sometimes even changing it 
 

3. Always comment the code as much as possible 
 

4. Employ in-built routines to solve your problems, but always 
understand well how do they work before using them 
(otherwise build your own version) 

 
 



Writing the code in C/C++
What do you need to get started 

A C++ compiler/debugger: Borland C++ Compiler 5.5, GCC, g++

A good text editor/IDE: DevC++ (Win), XCode (Mac OSX), CodeBlocks (Linux)

A fundamental choice: plain or OOP approach
Rule of thumb: It mainly depends on ABM sophistication 

Constant population, single type of agents 
No need for OOP, agents encoded in vectors and arrays

Many type of agents, population grows/shrinks in time
OOP is better

What does it mean encoding agents in vectors and arrays
Population: I={1,2,…,N} constant through time

{1,2,…,N} are the labels of the entries of an KxN array
Columns: Agents

Rows: Variables

Mycroft
Highlight

Mycroft
Highlight

Mycroft
Typewritten Text

Mycroft
Typewritten Text



Agents, Vectors and Arrays: Example 

Agents

Production

Profits

Price

1 2 … N-1 N

Q(1,1) Q(1,2) … Q(1,N-1) Q(1,N)

Q(2,1) Q(2,2) … Q(2, N-1) Q(2,N)

… … … … …

Q(K,1) Q(K,2) … Q(K,N-1) Q(K,N)

Time t: Encoding of microeconomic variables



A generic time step t

Agents

Production

Profits

Price

1 2 … N-1 N

Q(1,1) Q(1,2) … Q(1,N-1) Q(1,N)

Q(2,1) Q(2,2) … Q(2, N-1) Q(2,N)

… … … … …

Q(K,1) Q(K,2) … Q(K,N-1) Q(K,N)

Inheriting matrix 
from time t-1

Store time t matrix Agents adjust 
microeconomic variables

Matrix is updated
and passed to time t+1

Price

Profits

Production

Q(K,N)Q(K,N-1)…Q(K,2)Q(K,1)

……………

Q(2,N)Q(2, N-1)…Q(2,2)Q(2,1)

Q(1,N)Q(1,N-1)…Q(1,2)Q(1,1)

NN-1…21

Agents



C/C++ : Getting started 
Basic Data Types (signed, unsigned)

Integer: int, long

Floating point: float, double



C/C++ : Getting started 
Basic Data Types (signed, unsigned)

Integer: int, long

Floating point: float, double

The simplest C++ program



C/C++ : Getting started 
Basic Data Types (signed, unsigned)

Integer: int, long

Floating point: float, double

The simplest C++ program

Libraries



C/C++ : Getting started 
Basic Data Types (signed, unsigned)

Integer: int, long

Floating point: float, double

The simplest C++ program

{ } : Block



C/C++ : Getting started 
Basic Data Types (signed, unsigned)

Integer: int, long

Floating point: float, double

The simplest C++ program

Semicolon!



C/C++ : Getting started 
Basic Data Types (signed, unsigned)

Integer: int, long

Floating point: float, double

The simplest C++ program

C++ Functions
Always: main()

Structure of function body:
[data type out] FunctionName ([data type in]) { }

Important: return [output data];

Function definition (prior to function body):
[data type out] FunctionName ([data type in]);



C/C++ : Getting started 

Constants initialization
const int M=100;

const double a=1.5;

Scalar variable initialization
int M=100;

double a=1.5;

Vectors and arrays (variable) initialization (N must be a constant)
int M[100];

double a[N];

int M[100][100];

double a[N][N];



C/C++ : Getting started 

“Conditional if” statement

“While” loop



C/C++ : Getting started 

“For” loop
int mysum;
int i;
const int size=10;
int vect[size];

for (i=0; i<size; i++)
{

mysum += vect[i];
}

Things to know  
a++ means a=a+1; a+=b means a=a+b; many abbreviations available…

Passing a vector to a function: float myFun(int[]);

Global and local variables

Importance of commenting the code using \\

Input/output: <iostream.h> and <fstream.h>



Example: Dynamic Games

• Time t = 0, 1, 2, …

• Sets of Agents I = {1, 2, …,N} Players

• Sets of Micro States i  → {1,0} Pure strategies

• Micro-Parameters r(i) Interaction Radius

• Vector of Macro-Parameters Stage-Game Payoffs

• Micro Decision Rules BR Rule Strategy Updating

⎥
⎦

⎤
⎢
⎣

⎡
dc
ba

• Interaction Structures Gt = 1-Dim Lattice Circle

• Aggregate variables Mean/Var Action Coordination Level



Example: Dynamic Games

• Time t = 0, 1, 2, …

• Sets of Agents I = {1, 2, …,N} Players

• Sets of Micro States i  → {1,0} Pure strategies

• Interaction Structures Gt = 1-Dim Lattice Circle

• Micro-Parameters r(i) Interaction Radius

• Vector of Macro-Parameters Stage-Game Payoffs

• Micro Decision Rules BR Rule Strategy Updating

⎥
⎦

⎤
⎢
⎣

⎡
dc
ba

• Aggregate variables Mean/Var Action Coordination Level

r (i)=1

r (h)=1

r(k) =2



Time-t Loop

Choose an agent at random from {1,2,…,N}

Agent plays game with its neighbors

Computes payoff of 1 and payoff of 0

Chooses action delivering highest payoff
(sticks to previous choice in case of a tie)

Update action configuration

Repeat T times



Best Reply Rules w/ Risk Aversion

Let 
n the total number of agent neighbors: n=2*r
n1 the number of an agent neighbors playing 1
n0 the number of an agent neighbors playing 0
We have: n0 = n – n1

Payoffs 
1: a*n1+ [n – n1]*b
0: c*n1+ [n – n1]*d
The agent chooses 1 if:

In case of = the agent sticks to current choice

n
b)(dc)(a

bdn1
−+−

−
>



Dynamic Games: Writing the Code

• C++ Code
– See <IntSource.cpp>

• User-friendly VB Platform
– See <locint.exe>



3

ObjectObject--Oriented Programming (OOP)Oriented Programming (OOP)

Á Object
− Methods (behaviors, functions, procedures,…)
− Attributes (data, state information,...)
− Access:  public, private, or protected

Á Class
Á Interface
Á Encapsulation
Á Inheritance (subclass, superclass)
Á Composition
 

KEY CONCEPTS:KEY CONCEPTS:
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ObjectObject--Oriented Programming (OOP)Oriented Programming (OOP)

Á An object is a software entity containing 
attributes plus methods that act on these 
attributes.

Á An object controls access to its attributes and 
methods by declaring them 
Á public (accessible to all other objects);
Á private (inaccessible to all other objects);
Á or protected (accessible only to certain designated other 

objects).

Á A class is a blueprint for an object, i.e., a 
template used to create (“instantiate”) an object.
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Class = Object TemplateClass = Object Template

 Class Employee

Ann Ping MarioMario Dan

Employee Objects (Instances of Employee)
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OOP OOP …… ContinuedContinued

Á The public methods and public attributes of an 
object are called the interface of the object.

Á Objects communicate with each other via 
their public methods, i.e., by activating 
(“invoking”) the public methods of other objects.
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Illustration: Payroll ClassIllustration: Payroll Class
(invokes public methods in Employee class)(invokes public methods in Employee class)

Class PAYROLL
{
Public Access:
Methods:

getEmployeeSSN( ) ;
getEmployeeGender( ) ;
getEmployeeDateOfBirth( ) ;
calculateEmployeePay( ) ;
payEmployee( ) ;

Private Access Only:
Attributes:

CurrentProfits ;
EmployeePayoll ;

}
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OOP OOP …… ContinuedContinued

ÁEncapsulation is the process of 
determining which aspects of a class are not 
needed by other classes, and hiding these 
aspects from other classes.

Á More precisely, encapsulation is the process 
of dividing each class of a program into two 
distinct parts:
 (1) (public) interface; 

 (2) private (or protected) stuff that other classes do 
 not need to know about.
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Class Inheritance Class Inheritance 

Á A class C can inherit the attributes and 
methods of another class B. 

Á The class C is then called the subclass of 
class B, and class B is called the superclass
of class C.  

Á A subclass can also include specialized 
attributes and methods that are not present in 
the superclass.
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Class Inheritance: Example Class Inheritance: Example 

 
TradeBotTradeBot

data         Price ;data         Price ;
method   trade( ) ;method   trade( ) ;

BuyerBuyer
Price     =  BidPrice ;
trade( )  =  buy( ) ;  
calculateUtility( ) ;

SellerSeller
Price      =  AskPrice ;Price      =  AskPrice ;
trade( )   =  sell( ) ;trade( )   =  sell( ) ;
calculateProfits( ) ;calculateProfits( ) ;

Superclass of Buyer and Seller

Subclass of TradeBot Subclass of TradeBot



OOP and C++ : An Example

• OOP-C++ Code for the 2D-CA
– See <CellAuto.zip> in DevCpp



The Outcomes of ACE/EV Models (1/2)

Micro-Dynamics
(induced by decision rules, 

interactions and expectations)

Macro-Dynamics 
(obtained as aggregation of 

individual behaviors)

• Stochastic components in decision rules, expectations, interactions imply that the dynamics of 
micro and macro variables can be described by some (Markovian) stochastic process 
parametrized by (θi ), Θ :

(xi,t ) | (xi,t-1 ) , (xi,t-2 ) , … ; (θi ), Θ

Xt | (Xt-1 , Xt-2 , … ; (θi ), Θ )

• Non-linearities in decision rules, expectations, interactions may imply that it is hard to analytically 
derive laws of motion, kernel distributions, time-t probability distributions, etc. 

• Need to resort to computer simulation as tool of analysis to study the properties of (stochastic)   
processes describing xi,t and Xt



Analyzing ABMs: A Recipe

Initial Conditions: ( xi,0 )
Micro & Macro Pars: (θi ), Θ

Generate Time-Series through Simulation
{( xi,t ), t =1,…,T}
{ Xt , t =1,…,T}

Compute a Set of Statistics 
S= {s1, s2 , … }

on micro/macro Time-Series 

Repeat M ind. times

Generate Montecarlo
Distribution for each 

Statistics in S= {s1, s2 , …}

Studying how Montecarlo
Distributions of Statistics in 

S= {s1, s2 , …} behave as 
initial conditions, micro and 
macro parameters change

Statistical Tests for 
difference between moments



Analyzing ABM Output: An Alternative Recipe 

•  Sampling at Random the Parameter Space 
–  Focus on a set of statistics {s1, …, sk} 
–  Choose a set of L control (independent) parameters  
–  With the remaining parameters, identify a number of H scenarios 
–  For each scenario h=1,…,H, draw independently at random D times a L-vector 

of control parameters (possibly with the help of prior distributions on each 
control parameter) 

–  For each random draw, run the model M times, collect output statistics            
{s1, …, sk}, and possibly average out statistics across the M independent 
replications (if applicable) 



Analyzing ABM Output: An Alternative Recipe 

•  Sampling at Random the Parameter Space 
–  Focus on a set of statistics {s1, …, sk} 
–  Choose a set of L control (independent) parameters  
–  With the remaining parameters, identify a number of H scenarios 
–  For each scenario h=1,…,H, draw independently at random D times a L-vector 

of control parameters (possibly with the help of prior distributions on each 
control parameter) 

–  For each random draw, run the model M times, collect output statistics            
{s1, …, sk}, and possibly average out statistics across the M independent 
replications (if applicable) 

•  Regression Models 
–  This exercises allows one to collect a database of D observations for each of the 

K dependent statistics {s1, …, sk}, L independent controls, and H scenarios    
–  Question: How does a parameter affect any given statistic sj? 
–  We can regress sj  against parameters and scenario dummies 
–  Testing for significance of parameter coefficients can give us an idea about how 

in the model a given parameter affects the output (given all other controls) 



Example: Dynamic Games (1/5)

• Time t = 0, 1, 2, …

• Sets of Agents I = {1, 2, …,N} Players

• Sets of Micro States i  → s(i) ∈ {-1,+1} Pure strategies

• Strategic Problem: Overall Coordination out of 2-person games ( a > 1.5)

+1 -1
+1 2a 0
-1 3 2

Pareto-Efficient Strategy

Risk-Efficient Strategy
if a<2.5

EU(+1)=2a•½+0 •½ = a

EU(-1)=3•½+2 •½ = 2.5



A Primer on Coordination Games 

 

• Importance and meaning of coordination among individuals 
 
• Examples of coordination patterns 

 Choice of compatible technologies (new vs. old technologies, existing 
standards),  

 Evolution of conventions (languages, currencies, codes of dress, accounting 
standards, etc.) 

 Cf. H.P. Young (1998) 
 
• Standard analysis of a coordination problem. Ingredients: 

 Game among n individuals (n=2) 
 Static: No time involved 
 One-Shot: Only one stage of decisions 
 There are k≥2 options available 

 



 Definition of a coordination game: 
 

A coordination game is a stage game 

where there is some incentive to choose 

the strategy that you expect your opponent 

to play. 

 
• A General Coordination Stage-Game: 
 

A ; B +1 −1 
+1 a ; a b ; c
−1 c ; b d ; d

 
Ass:   a>c    &   d>b 
   

 



• Definition of 
 

1. Nash equilibrium (NE) 
    Which are the NE of the game ? 
    Multiple equilibria ! 

 
 
 

2. Pareto efficient NE 

    

A NE is Pareto efficient if there are no 

other NE wherein an individual is strictly 

better off while the other is no worse off.  

• a>d: (+1,+1) PE;  

• a<d: (−1,−1) PE;  

• a=d: Both NE are Pareto equivalent 

 



 
• Some examples: 
 

1. Pure coordination game: a=d, b=c 
   

A\B +1 −1 
+1 1 0 
−1 0 1 

 
Features: Two NE, both Pareto equivalent 
Prediction:  (Efficient) coordination will always arise; if the two outcomes can be 

discriminated, no way of saying which one will be selected. 
 
 
 
 
 
 



2. Coordination game with a Pareto Efficient NE : a>d, b=c 
   

A\B +1 −1 
+1 5 0 
−1 0 1 

 
Features: Two NE, (+,+) is Pareto efficient 
Prediction:  Coordination will always arise; no way of saying which NE will be 

selected; ⇒ inefficient NE can be selected but we cannot say when 
and why !! 



• Definition of Risk-dominant NE 
 

• PE is not the only way of ranking NE: Possible loss counts ! 
 

5 0   5 −10
0 1   0 1 

 
• If agents take into account possible losses and they have no idea about 

opponent move (+1,+1) will be better than (−1, −1) in terms of lower risk iff: 
 

a+b > c+d 
 or also iff:  

 

2
1

b)(dc)(a
b)(d

<
−+−

−
=p  

 
• NB: p is the probability that player A assigns to the event that his opponent is 

playing −1 necessary to leave A indifferent between the +1 and −1 strategies. 
If p is smaller than ½ than A is taking a low risk in choosing +1. 



 
3. Coordination game with a PE and a RD equilibrium (a>d but a+b < c+d) 
   

A\B +1 −1 
+1 3 −1 
−1 1 2 

 
 

Features: Two NE, (+,+) is Pareto efficient BUT (−,−) is Risk Dominant: 
  Eπ(+1) = 3⋅½ + (−1)⋅ ½ = 1 
  Eπ(−1) = 1⋅½ + (2)⋅ ½ = 1.5  
 
Prediction:  Coordination will always arise; no way of saying which NE will be 

selected; ⇒ inefficient NE is more likely in terms of risk-dominance !! 



Example: Dynamic Games (1/5)
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Example: Dynamic Games (2/5)

• Interaction Structures Gt = 1-Dim Lattice Circle

• Each agent i interacts with neighbors closer than r(i)

)}(|:|{)( irjijiV ≤−=

r (i)=1

r (h)=1

r(k) =2



Example: Dynamic Games (3/5)

• Micro-Parameters r(i) Interaction Radius

• Macro-Parameter a Stage-Game payoff of (+1,+1)

• Micro Decision Rules and Dynamics

- At t=0 random draw of strategies

- At each t>0 one agent is chosen at random

- Chooses st(i) s.t. max total payoffs given neighbors choices at t-1

))(;(maxarg)( 1
)(}1,1{

* jssuis t
iVjs

t −
∈+−∈
∑=



Example: Dynamic Games (4/5)

• Aggregate Variable: LR Coordination Level 

• Goal: Studying MC distributions of LR coordination levels as a function of

1) Aggregate Parameter (a)
2) Micro Parameters (e.g. average radius)

]1,1[)(1
1

+−∈= ∑
=

N

i
T is

N
c

• Choosing T large enough (stability/convergence of moments)



Example: Dynamic Games (5/5)

• Results with r(i)=1 all i:

1)  (+1,+1) Pareto-Efficient and Risk Efficient ( a > 2.5)

2)  (+1,+1) and (-1,-1) Risk Equivalent ( a = 2.5)

3)  (-1,-1) Risk Efficient ( a < 2.5)

(+1,+1) Pareto and Risk Eff
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The Islands Model (Fagiolo and Dosi, 2003)

Technological Space Notionally Unbounded Sea 
Technology Island (‘mine’) 

Output Homogeneous Good 
Firms Stylized Entrepreneurs 

Production Mining/Extracting the Good 
Technological Search Exploration of the Sea 

Innovation Discovering a new island 
 Technological Diffusion Spreading knowledge  

from islands 
Imitation Traveling between  

already known islands 
Technological  

Difference 
Distance  

between Islands 
 



The Islands Model (Fagiolo and Dosi, 2003)

 Miners update output
 Miners become explorers
 Explorers look around
 Imitators approach islands

 Information diffusion
 Miners and explorers collect

signals
 Imitation decisions

Time t−1 Time t

Given t−1 micro &
macro variables

Update time t micro & macro
variables; next iteration starts

• Focus on
– Aggregate output (sum of firms’ output) and growth rates
– Number of explorers, imitators, miners



The Islands Model (Fagiolo and Dosi, 2003)

• Model parameters

ρ : globality of information diffusion
ϕ : path-dependency in learning
λ : likelihood of radical innovations
π : baseline opportunity conditions
α : increasing returns to scale in exploitation
ε : willingness to explore
N : population size
T : time horizon



Initial Conditions: ( xi,0 )
Micro & Macro Pars: (θi ), Θ

Generate Time-Series through Simulation
{( xi,t ), t =1,…,T}
{ Xt , t =1,…,T}

Compute a Set of Statistics 
S= {s1, s2 , … }

on micro/macro Time-Series 

Repeat M ind. times

Generate Montecarlo
Distribution for each 

Statistics in S= {s1, s2 , …}

Studying how Montecarlo
Distributions of Statistics in 

S= {s1, s2 , …} behave as 
initial conditions, micro and 
macro parameters change

Statistical Tests for 
difference between moments

Analyzing simulation output



A first question…

Under which general conditions 
is the economy able to generate 

self-sustaining growth
as the outcome of the 

joint processes of exploitation and exploration ?



A closed economy without exploration (1/2)

• Diffusion of information drives growth
– In this case the model is analytically solvable!
– Whenever an island manages to capture all agents the growth 

process stops (growth rates are zero)
– The process is path-dependent and possibly inefficient 

(convergence toward an inefficient level of output is a non-
zero probability event)

• Shutting down exploration and innovation
– A given initial set of islands (e.g, only 2)
– Firms initially mining on them (50%, 50%)
– They can only exchange information among the 2 existing 

technologies (initial set of islands cannot be expanded)



A closed economy without exploration (2/2)

• Growth is always a transitory phenomenon

Log of
GNP

-0,4

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

0,4

Time

Growth

Rates

Time

• Lock-in may occur on the ex-ante less efficient 
island



A closed economy with exploration (1/4)

• Diffusion of information still drives growth
– Process driven by information diffusion
– Steady states can be destabilized by ‘irrational’ entrepreneurs 

who decide to leave their island even if everyone is there

• Allowing for exploration in a closed box
– Initial set of islands cannot be expanded (no innovation)
– Explorers are allowed to search only inside initial box 
– Imitation still occurs as before



A closed economy with exploration (2/4)

• Absorbing states become basins of attraction: 
growth is a transitory phenomenon but 
fluctuations can arise
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A closed economy with exploration (3/4)

• Two ex-ante equally efficient islands
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A closed economy with exploration (4/4)

• One ex-ante more efficient island: temporary 
inefficiency may arise
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Exploration in a Open-Ended Economy

• In the full-fledged model self-sustaining growth 
can arise!
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A second question…

When the economy does generate 
self-sustaining growth (full-fledged model), 
do log(GNP) time-series display empirically 

observed statistical properties?



Statistical Properties of Simulated GNP Series

• Yes, if self-sustaining growth does emerge
– log(GNP) time series are I(1), i.e. difference-stationary
– growth rates are positively correlated over short horizons
– persistence of shocks are in line with empirical evidence

• Scale-effects are not present
– As in reality, unlike in many endogenous growth models are!
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A third question…

When the economy does generate 
self-sustaining growth (full-fledged model), 

what are the roles played by 
system parameters 

(i.e. by the sources of growth)?



The Sources of Growth (1/4)

• Average growth rates (AGRs) increasing in 
– path-dependency in knowledge accumulation
– globality of information diffusion
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– … as well as in returns-to-scale strength and opportunities



The Sources of Growth (2/4)

• The exploitation-exploration trade-off
– AGR are maximized only if there is a balance between resources 

devoted to exploration and resources devoted to exploitation
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The Sources of Growth (3/4)

• Emergence of thresholds
– I(1) log(GNP) time-series only emerge if increasing returns to scale, 

opportunities, path-dependency and globality of information are 
strong enough!
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The Sources of Growth (4/4)

• Emergence of thresholds
– … and if the exploitation-exploration trade-off is solved
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A fourth question…

Does the self-sustaining growth process 
generated by the model                         

lead to explosive growth patterns? 
Does the variability of growth rates increase over 

time and tends to infinity?



Time Evolution of GNP Growth Rate Variability

• Higher growth is always associated to smaller 
GR variability!

– Self sustained growth is a self-organized process leading to ordered 
growth patterns
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A final question…

What happens in we inject in the economy             
more rational firms?



Irrationality as a necessary condition for growth

• Simple setup
– CRTS, no info diffusion, no path-dependency
– Injecting in the economy a representative rational firm (RRF) who 

decides whether to exploit or explore by maximizing expected 
returns

– RRF knows the structure of the economy and the direction where 
best islands are (but not where they are)
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A laboratory for further research

• Possible extensions 
– Learning
– Multi-layer economies
– Demand side and Keynesian cycles
– Growth and development
– …



… and have fun …
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