
How?

Giorgio Fagiolo
Sant’Anna School of Advanced Studies,

Pisa (Italy)
giorgio.fagiolo@sssup.it

https://mail.sssup.it/~fagiolo

Acknowledgment: Some of the slides below are taken
from lecture slides by Prof. Axtell and Prof.
Tesfatsion.

The Structure of Agent-Based Models

Main ingredients (to cook an ABM)
Bottom-up (agent-based) Philosophy (Tesfatsion, 1997)

Agents live in complex systems evolving through time (Kirman, 1998)

Agents might be heterogeneous in almost all their characteristics

“Hyper-rationality” not viable (Dosi et al., 1996)

Agents as boundedly rational entities with adaptive expectations

“True” dynamics: Systems are typically non-reversible

Agents interact directly, networks change over time (Fagiolo, 1997)

Endogenous and persistent novelty: open-ended spaces

Selection-based market mechanisms (Nelson & Winter, 1982)

The Outcomes of ACE/EV Models (1/2)

Micro-Dynamics
(induced by decision rules,

interactions and expectations)

Macro-Dynamics
(obtained as aggregation of

individual behaviors)

• Stochastic components in decision rules, expectations, interactions imply that the dynamics of
micro and macro variables can be described by some (Markovian) stochastic process
parameterized by (θi), Θ :

(xi,t) | (xi,t-1) , (xi,t-2) , … ; (θi), Θ

Xt | (Xt-1 , Xt-2 , … ; (θi), Θ)

• Non-linearities in decision rules, expectations, interactions may imply that it is hard to analytically
derive laws of motion, kernel distributions, time-t probability distributions, etc.

An important distinction

Analytically-solvable ABMs
Very simple, toy models

Little microeconomics

ABM delivering NO analytical solution in their full-fledged version
More micro-founded

Over parameterized?

Model selection: KISS vs. KIDS vs. TAPAS

In what follows: some examples of analytically-solvable ABMs
Simple dynamic coordination games

Boundedly-rational players

Global (population) interactions

 Kirman (1993): Ants, rationality and recruitment

• Agents: i = 1, …, N
• Time: t = 0, 1, 2, …
• Choices: A = {−1, +1}

•State of the system: kt∈{0, 1, 2, …, N} (# agents choosing +1)

• Individual Dynamics:

- Suppose there are kt = k (resp. N−k) agents choosing +1 (resp. −1) at t

- An agent is drawn at random and makes a “phone call” to another randomly

drawn agent in the population

- The agent is converted to other’s choice with probability 1−δ (NB: 1−δ measures
the strength of interactions)

- There is a small probability ε > 0 that the agent switches without doing the “phone

call” (NB: ε measures the strength of idiosyncrasy)

• Aggregate Dynamics:
- Given kt = k then we will only have kt+1∈{k−1, k, k+1}.
- Kt is a Markov Chain
- Transition probability matrix P(kt+1| kt) has entries different from zero only if kt+1∈{ kt
−1, kt, kt +1}

- Must compute only:
• Prob{k+1| k}, Prob{k−1| k}
• Prob{k| k} = 1− Prob{k+1| k}− Prob{k−1| k})

pk+1,k= Prob{k+1| k} = Prob{A (−1) player is drawn}⋅
Prob{The player changes his mind}=

= Prob{A (−1) player is drawn}⋅

[Prob{Changes independently of the phone call} +
Prob{Meets a (+1) player} ⋅ Prob{Changes his idea}] =

 ⎟
⎠
⎞

⎜
⎝
⎛ −

−
+⋅⎟

⎠
⎞

⎜
⎝
⎛ −=)1(

1
1 δε

N
k

N
k

pk−1,k = Prob{k−1| k} = Prob{A (+1) player is drawn}⋅
Prob{The player changes his mind}=

= Prob{A (+1) player is drawn}⋅

[Prob{Changes independently of the phone call} +
Prob{Meets a (−1) player} ⋅ Prob{Changes his idea}] =

 ⎟
⎠
⎞

⎜
⎝
⎛ −

−
−

+⋅=)1(
1

δε
N

kN
N
k

Results

• Kt is a Markov chain
•The transition probability matrix reads:

k 0 1 2 … k-1 k k+1 … N-2 N-1 N
0 1−ε ε 0 … 0 0 0 … 0 0 0
… … … … … … … … … … … …
k 0 0 0 … pk−1,k pk,k pk+1,k … 0 0 0
… … … … … … … … … … … …
N 0 0 0 … 0 0 0 … 0 ε 1−ε

•The chain is aperiodic and irreducible. Therefore there exists a unique invariant (limit)
distribution μ that satisfies:

μk ⋅ pk+1,k = μk+1 ⋅ pk,k+1

)
1
1

)1((
1

)
1

)1()(1(

1,

,11

−
−−

−+
+

−
−+−

==
+

++

N
kN

N
k

N
k

N
k

p
p

kk

kk

k

k

δε

δε

μ
μ

• Shape of invariant distribution:

 Depends on θ = ε / (1−δ)

 Meaning of θ
- Large θ: Weak interactions, strong idiosyncrasy
- Small θ: Strong interactions, weak idiosyncrasy

 If θ = θ* = (N−1)−1

 ⇒ μk/μk+1=1 ⇒ μ is UNIFORM

 If θ>θ* ⇒ μ is ∩-shaped (unimodal) around N/2

 If θ<θ* ⇒ μ is ∪-shaped (bimodal) w/ peaks {0,N}

Arthur et al. (1994): Polya-Urn Schemes

• Agents: i = 1, 2, … (infinitely enumerable)
• Time: t = 0, 1, 2, …
• Choices: A = {−1, +1}
• State of the system: xt ∈ [0,1] (share of agents choosing +1)

or: yt=0,1,2,… (# of firms choosing +1)

• Individual Dynamics:

- Suppose at time t=0 there are N0 firms of which a share x0 chooses +1 (i.e. y0
=N0x0 firms in total)

- Let p(x) the probability that a firm chooses +1 given existing adoption shares; p(x)

increasing in x due to positive network externalities

- At any t=1,2,… a new firm enters the industry and irreversibly chooses +1 with

probability p(xt) [and of course −1 with probability 1−p(xt)]

- NB: At time t there will be N0+t firms in the industry

• Aggregate Dynamics:

- Given y0=N0x0 , then:

⎪
⎩

⎪
⎨

⎧

−=

=
+=+

)p(xp

)p(xp
yy

t

t

tt

1 with 0

 with 1

1

- Therefore:

yt+1 = yt + z(xt)

where z(xt) = 1 with prob=p(xt)

0 with prob=1−p(xt)

NB: E[z(xt)]=1⋅ p(xt)+0⋅(1− p(xt))= p(xt)

(N0+t+1)xt+1 = (N0+t)xt + z(xt)

()tttt xxz
tN

xx −
++

+=+)(
1

1

0
1

())(
1

1)(
1

1

00
1 ttttt x

tN
xxp

tN
xx ε

++
+−

++
+=+

where: ε(xt) = z(xt) − p(xt) = z(xt) − E[z(xt)]

⇒ E[ε(xt)]=0

NB: The equivalent deterministic system reads:

 ()tttt xxp
tN

xx −
++

+=+)(
1

1)(
0

1E

Results

• Theorem (Arthur, 1988)

Define V={x∈[0,1]: p(x)=x}

• If p(xt) is a CONTINUOUS function from [0,1] to [0,1] and:

• The equivalent deterministic system has a Lyapunov function (i.e. it is globally

stable);

Then: xt converges with probability one to a STABLE point in V, i.e. a point x*∈V s.t.

for any small ε>0:

- If x*∈(0,1) ⇒ p(x*+ε) ≤ x*+ε

 p(x*−ε) ≥ x*−ε

- If x*=0 ⇒ p(ε) ≤ ε

- If x*=1 ⇒ p(1−ε) ≥ 1− ε

• Key Points

- The system always LOCKS-IN into a stable frequency because noise introduced

by entrants later on becomes negligible.

- The process is PATH-DEPENDENT: Initial conditions and history matter !

- Necessity (structural conditions embodied in p) determines possible long-run

behavior

- Chance (small early entrants) determines actual long-run behavior

- Dynamic interplay between chance and necessity implies non predictability and
possible inefficiency (QWERTY).

What if the model is not analytically solvable?
Different levels of lack of analytical solutions

The model is analytically solvable but the modeler does not figure it out

The model allows for numerical solutions (equilibrium)

The model is inherently non-solvable

Simulating the behavior of the model
Build an algorithmic description of micro and macro dynamics

Run the model (for given seed, parameters, initial conditions)

Store model’s outputs

Understand what happens and why

It seems plain vanilla but it is not! Critical phases
Writing the code (implementation, bugs, etc.)

Analyzing the model (graphical and statistical tools)

Understanding the outcomes (dependence on seeds, initial conditions,
parameters)

Writing the code
Some important decisions

Choosing a language vs. choosing a platform

Choosing the programming approach (standard vs. OOP)

Choosing how to analyze the output (built-in vs. external code/software)

Language
Many available: C/C++, Java, Python

Compiled: faster

Flexible, powerful, control over code, self-development, availability of
functions and classes, can handle any ABMs

Huge initial investment, poor results in the short-run, needs more work

Platform
Many available: Repast, Swarm, CAS, LSD, Matlab, etc.

Interpreted: slower

Less flexible (its own language), less control, cannot handle any ABMs

Small initial investment, good results in the short-run, needs less work

Summary

Programming ‘maturity’/experience

Performance

Java

C/C++

<-----RePast Simphony?-----> LSD
RePast

Ascape 1.9

Mathematica
MatLab

Ascape 3.0
MASON

Mycroft
Typewritten Text
Python

Mycroft
Typewritten Text

Mycroft
Typewritten Text

Implementing a 2-dim binary Cellular Automata

• S=2 (# of states)
• SP={0,1}
• K = # of neighbors
• # of all possible local configurations = 2^(K+1)
• # of all possible rules: 2^(2^(K+1))
• How to code a rule? A number from 0 to [2^(2^(K+1))-1]. Why?

Example: S=2, K=2: 8 local configurations, 256 rules

000 0

001 1

010 0

011 1

100 1

101 0

110 1

111 0

Bin-to-dec representation of local configurations

000 0 =0*2^2+0*2^1+0*2^0

001 1 =0*2^2+0*2^1+1*2^0

010 2 =0*2^2+1*2^1+0*2^0

011 3 ...

100 4 ...

101 5 ...

110 6 ...

111 7 =1*2^2+1*2^1+1*2^0

• We can order local configurations in a unique way using
their decimal representation
• Each local configuration can be associated to a number
from 0 to 2^(K+1)-1

Bin-to-dec representation of rules

000 0 0 0*2^0=0

001 1 1 1*2^1=2

010 2 0 0*2^2=0

011 3 1 1*2^3=8

100 4 1 1*2^4=16

101 5 0 0*2^5=0

110 6 1 1*2^6=64

111 7 0 0*2^7=0

sum=90

• Given decimally-ordered 2^(K+1) configurations, a rule is
a 2^(K+1)-digit binary number
• EX (K=2): A rule is a 8-digit binary number
• A 2^(K+1)-digit binary number can be univocally
associated to a decimal number from 0 to [2^(2^(K+1))-1]
• EX (K=2): A rule can be associated to a decimal number
from 0 to 255
• EX: Rule 90

Therefore:

Fully
characterized

by

0

1

2

3

4

5

6

7

000

001

010

011

100

101

110

111

0

1

0

1

1

0

1

0

1-to-1 with Rule
number

Given any r in {0,...,255}: Apply DEC2BIN(r,8) to get a 8-digit string a={a0 a1 a2 ... a7} (binary
equivalent of the rule number)

1-to-1 with

Given any 3-digit binary local configuration b={b0 b1 b2} apply BIN2DEC(b) to get the decimal
equivalent of the local configuration, i.e. the entry in the look-up table of the rule
(on a 0 to 7 scale)

EX1: DEC2BIN(90,8)={01011010}
EX2: BIN2DEC(010)=2
EX3: How to find the output associated to {010}? Look in the 3rd row (2+1, REM: 0-7 scale) in
the look up table (i.e. in the 3rd position of the output string {01011010})

 1dim CAs: Structure of the code

1. Set number of cells (N), number of states (K), rule (dec)
number, number of neighbors, number of iterations (T)

2. Define structure of interactions (ring)
3. Convert rule using dec2bin
4. Set initial conditions (possibly using different options)

5. Begin cycle for t=1:T

a. Copy current system state into temp configuration
b. Begin cycle for i=1:N

• Read neighborhood state of i
• Convert neighborhood state into decimal

representation and employ it to get new output
• Update new output into temp system state

c. Copy temp system state into new current system state

Platform Example: 1-DIM Cellular Automata
Code to simulate a 1-DIM cellular automata in Matlab (1/3)

%%%
% CA in 1-dimensional space with periodic boundaries %
%%%

clear all;

% Number of cells
N=100;

% Number of iterations and output matrix
MAXT=100;
PLOTMAT=zeros(MAXT+1,N);

% Number of states
S=2;

% Number of neighbors (excluding agent)
% NB: Must be even
K=2;

% Defining Radius of Interaction
INTRAD=K/2;

% State space
SP=0:S-1;

% Define rule
RNUM=33;

Platform Example: 1-DIM Cellular Automata
Code to simulate a 1-DIM cellular automata in Matlab (2/3)

% Convert rule into output vector
% NB: Second parameter = number of bits required to define a lookup table
% It is equal to the number of possible configurations
NCONF=S^(K+1);
TEMPOUT=str2num(transpose(dec2bin(RNUM,NCONF)));
OUT=TEMPOUT(NCONF:-1:1); % Neded to correctly match I/O

% Define neighboring structure
NEIGH=zeros(N,K+1); % Rows: Cells; Columns: Labels of K+1 Neighbors
LABELS=[[1:N] [1:N] [1:N]]; % Needed in order to allow for boundary conditions

for i=1:N
 h=1;
 for j=-INTRAD:INTRAD
 NEIGH(i,h)=LABELS(N+j+i);
 h=h+1;
 end
end

% Define initial configuration

% Random
%INICONF=unidrnd(2,1,N)-1;

% ONLY MID CELL ON
INICONF=zeros(1,N);
INICONF(N/2)=1;

Platform Example: 1-DIM Cellular Automata
Code to simulate a 1-DIM cellular automata in Matlab (3/3)

% Set iteration
time=1;

% Set current configuration (the one agents look to adjust)
CURRCONF=INICONF;
PLOTMAT(1,:)=CURRCONF;

% Begin iteration cycle

while(time<=MAXT)
 time
 TEMPCONF=zeros(1,N); % Create temp configuration
 for i=1:N
 NEIGH_STATUS=CURRCONF(NEIGH(i,:)); % Copy status of neighborhood
 CELL_INP=bin2dec(num2str(NEIGH_STATUS))+1; % Compute decimal value of
 % neighborhood
 CELL_OUT=OUT(CELL_INP); % Lookup output value in out
 % matrix
 TEMPCONF(i)=CELL_OUT;
 end
 CURRCONF=TEMPCONF;
 PLOTMAT(time+1,:)=CURRCONF;
 time=time+1;
end

imagesc(PLOTMAT,[0 1])
tit=strcat('Rule = ',num2str(RNUM));
title(tit);
xlabel('Cells');
ylabel('Generations');
colormap(1-gray)

 1dim CAs: Take-Home Messages

1. Allow for generality in your code, but not too much: generality
comes at a cost

2. Encoding a model requires finding shortcuts, inventing tricks,
learning about the model and sometimes even changing it

3. Always comment the code as much as possible

4. Employ in-built routines to solve your problems, but always
understand well how do they work before using them
(otherwise build your own version)

Writing the code in C/C++
What do you need to get started

A C++ compiler/debugger: Borland C++ Compiler 5.5, GCC, g++

A good text editor/IDE: DevC++ (Win), XCode (Mac OSX), CodeBlocks (Linux)

A fundamental choice: plain or OOP approach
Rule of thumb: It mainly depends on ABM sophistication

Constant population, single type of agents
No need for OOP, agents encoded in vectors and arrays

Many type of agents, population grows/shrinks in time
OOP is better

What does it mean encoding agents in vectors and arrays
Population: I={1,2,…,N} constant through time

{1,2,…,N} are the labels of the entries of an KxN array
Columns: Agents

Rows: Variables

Mycroft
Highlight

Mycroft
Highlight

Mycroft
Typewritten Text

Mycroft
Typewritten Text

Agents, Vectors and Arrays: Example

Agents

Production

Profits

Price

1 2 … N-1 N

Q(1,1) Q(1,2) … Q(1,N-1) Q(1,N)

Q(2,1) Q(2,2) … Q(2, N-1) Q(2,N)

… … … … …

Q(K,1) Q(K,2) … Q(K,N-1) Q(K,N)

Time t: Encoding of microeconomic variables

A generic time step t

Agents

Production

Profits

Price

1 2 … N-1 N

Q(1,1) Q(1,2) … Q(1,N-1) Q(1,N)

Q(2,1) Q(2,2) … Q(2, N-1) Q(2,N)

… … … … …

Q(K,1) Q(K,2) … Q(K,N-1) Q(K,N)

Inheriting matrix
from time t-1

Store time t matrix Agents adjust
microeconomic variables

Matrix is updated
and passed to time t+1

Price

Profits

Production

Q(K,N)Q(K,N-1)…Q(K,2)Q(K,1)

……………

Q(2,N)Q(2, N-1)…Q(2,2)Q(2,1)

Q(1,N)Q(1,N-1)…Q(1,2)Q(1,1)

NN-1…21

Agents

C/C++ : Getting started
Basic Data Types (signed, unsigned)

Integer: int, long

Floating point: float, double

C/C++ : Getting started
Basic Data Types (signed, unsigned)

Integer: int, long

Floating point: float, double

The simplest C++ program

C/C++ : Getting started
Basic Data Types (signed, unsigned)

Integer: int, long

Floating point: float, double

The simplest C++ program

Libraries

C/C++ : Getting started
Basic Data Types (signed, unsigned)

Integer: int, long

Floating point: float, double

The simplest C++ program

{ } : Block

C/C++ : Getting started
Basic Data Types (signed, unsigned)

Integer: int, long

Floating point: float, double

The simplest C++ program

Semicolon!

C/C++ : Getting started
Basic Data Types (signed, unsigned)

Integer: int, long

Floating point: float, double

The simplest C++ program

C++ Functions
Always: main()

Structure of function body:
[data type out] FunctionName ([data type in]) { }

Important: return [output data];

Function definition (prior to function body):
[data type out] FunctionName ([data type in]);

C/C++ : Getting started

Constants initialization
const int M=100;

const double a=1.5;

Scalar variable initialization
int M=100;

double a=1.5;

Vectors and arrays (variable) initialization (N must be a constant)
int M[100];

double a[N];

int M[100][100];

double a[N][N];

C/C++ : Getting started

“Conditional if” statement

“While” loop

C/C++ : Getting started

“For” loop
int mysum;
int i;
const int size=10;
int vect[size];

for (i=0; i<size; i++)
{

mysum += vect[i];
}

Things to know
a++ means a=a+1; a+=b means a=a+b; many abbreviations available…

Passing a vector to a function: float myFun(int[]);

Global and local variables

Importance of commenting the code using \\

Input/output: <iostream.h> and <fstream.h>

Example: Dynamic Games

• Time t = 0, 1, 2, …

• Sets of Agents I = {1, 2, …,N} Players

• Sets of Micro States i → {1,0} Pure strategies

• Micro-Parameters r(i) Interaction Radius

• Vector of Macro-Parameters Stage-Game Payoffs

• Micro Decision Rules BR Rule Strategy Updating

⎥
⎦

⎤
⎢
⎣

⎡
dc
ba

• Interaction Structures Gt = 1-Dim Lattice Circle

• Aggregate variables Mean/Var Action Coordination Level

Example: Dynamic Games

• Time t = 0, 1, 2, …

• Sets of Agents I = {1, 2, …,N} Players

• Sets of Micro States i → {1,0} Pure strategies

• Interaction Structures Gt = 1-Dim Lattice Circle

• Micro-Parameters r(i) Interaction Radius

• Vector of Macro-Parameters Stage-Game Payoffs

• Micro Decision Rules BR Rule Strategy Updating

⎥
⎦

⎤
⎢
⎣

⎡
dc
ba

• Aggregate variables Mean/Var Action Coordination Level

r (i)=1

r (h)=1

r(k) =2

Time-t Loop

Choose an agent at random from {1,2,…,N}

Agent plays game with its neighbors

Computes payoff of 1 and payoff of 0

Chooses action delivering highest payoff
(sticks to previous choice in case of a tie)

Update action configuration

Repeat T times

Best Reply Rules w/ Risk Aversion

Let
n the total number of agent neighbors: n=2*r
n1 the number of an agent neighbors playing 1
n0 the number of an agent neighbors playing 0
We have: n0 = n – n1

Payoffs
1: a*n1+ [n – n1]*b
0: c*n1+ [n – n1]*d
The agent chooses 1 if:

In case of = the agent sticks to current choice

n
b)(dc)(a

bdn1
−+−

−
>

Dynamic Games: Writing the Code

• C++ Code
– See <IntSource.cpp>

• User-friendly VB Platform
– See <locint.exe>

3

ObjectObject--Oriented Programming (OOP)Oriented Programming (OOP)

Á Object
− Methods (behaviors, functions, procedures,…)
− Attributes (data, state information,...)
− Access: public, private, or protected

Á Class
Á Interface
Á Encapsulation
Á Inheritance (subclass, superclass)
Á Composition

KEY CONCEPTS:KEY CONCEPTS:

4

ObjectObject--Oriented Programming (OOP)Oriented Programming (OOP)

Á An object is a software entity containing
attributes plus methods that act on these
attributes.

Á An object controls access to its attributes and
methods by declaring them
Á public (accessible to all other objects);
Á private (inaccessible to all other objects);
Á or protected (accessible only to certain designated other

objects).

Á A class is a blueprint for an object, i.e., a
template used to create (“instantiate”) an object.

5

Class = Object TemplateClass = Object Template

 Class Employee

Ann Ping MarioMario Dan

Employee Objects (Instances of Employee)

7

OOP OOP …… ContinuedContinued

Á The public methods and public attributes of an
object are called the interface of the object.

Á Objects communicate with each other via
their public methods, i.e., by activating
(“invoking”) the public methods of other objects.

10

Illustration: Payroll ClassIllustration: Payroll Class
(invokes public methods in Employee class)(invokes public methods in Employee class)

Class PAYROLL
{
Public Access:
Methods:

getEmployeeSSN() ;
getEmployeeGender() ;
getEmployeeDateOfBirth() ;
calculateEmployeePay() ;
payEmployee() ;

Private Access Only:
Attributes:

CurrentProfits ;
EmployeePayoll ;

}

11

OOP OOP …… ContinuedContinued

ÁEncapsulation is the process of
determining which aspects of a class are not
needed by other classes, and hiding these
aspects from other classes.

Á More precisely, encapsulation is the process
of dividing each class of a program into two
distinct parts:
 (1) (public) interface;

 (2) private (or protected) stuff that other classes do
 not need to know about.

12

Class Inheritance Class Inheritance

Á A class C can inherit the attributes and
methods of another class B.

Á The class C is then called the subclass of
class B, and class B is called the superclass
of class C.

Á A subclass can also include specialized
attributes and methods that are not present in
the superclass.

13

Class Inheritance: Example Class Inheritance: Example

TradeBotTradeBot

data Price ;data Price ;
method trade() ;method trade() ;

BuyerBuyer
Price = BidPrice ;
trade() = buy() ;
calculateUtility() ;

SellerSeller
Price = AskPrice ;Price = AskPrice ;
trade() = sell() ;trade() = sell() ;
calculateProfits() ;calculateProfits() ;

Superclass of Buyer and Seller

Subclass of TradeBot Subclass of TradeBot

OOP and C++ : An Example

• OOP-C++ Code for the 2D-CA
– See <CellAuto.zip> in DevCpp

The Outcomes of ACE/EV Models (1/2)

Micro-Dynamics
(induced by decision rules,

interactions and expectations)

Macro-Dynamics
(obtained as aggregation of

individual behaviors)

• Stochastic components in decision rules, expectations, interactions imply that the dynamics of
micro and macro variables can be described by some (Markovian) stochastic process
parametrized by (θi), Θ :

(xi,t) | (xi,t-1) , (xi,t-2) , … ; (θi), Θ

Xt | (Xt-1 , Xt-2 , … ; (θi), Θ)

• Non-linearities in decision rules, expectations, interactions may imply that it is hard to analytically
derive laws of motion, kernel distributions, time-t probability distributions, etc.

• Need to resort to computer simulation as tool of analysis to study the properties of (stochastic)
processes describing xi,t and Xt

Analyzing ABMs: A Recipe

Initial Conditions: (xi,0)
Micro & Macro Pars: (θi), Θ

Generate Time-Series through Simulation
{(xi,t), t =1,…,T}
{ Xt , t =1,…,T}

Compute a Set of Statistics
S= {s1, s2 , … }

on micro/macro Time-Series

Repeat M ind. times

Generate Montecarlo
Distribution for each

Statistics in S= {s1, s2 , …}

Studying how Montecarlo
Distributions of Statistics in

S= {s1, s2 , …} behave as
initial conditions, micro and
macro parameters change

Statistical Tests for
difference between moments

Analyzing ABM Output: An Alternative Recipe

•  Sampling at Random the Parameter Space
–  Focus on a set of statistics {s1, …, sk}
–  Choose a set of L control (independent) parameters
–  With the remaining parameters, identify a number of H scenarios
–  For each scenario h=1,…,H, draw independently at random D times a L-vector

of control parameters (possibly with the help of prior distributions on each
control parameter)

–  For each random draw, run the model M times, collect output statistics
{s1, …, sk}, and possibly average out statistics across the M independent
replications (if applicable)

Analyzing ABM Output: An Alternative Recipe

•  Sampling at Random the Parameter Space
–  Focus on a set of statistics {s1, …, sk}
–  Choose a set of L control (independent) parameters
–  With the remaining parameters, identify a number of H scenarios
–  For each scenario h=1,…,H, draw independently at random D times a L-vector

of control parameters (possibly with the help of prior distributions on each
control parameter)

–  For each random draw, run the model M times, collect output statistics
{s1, …, sk}, and possibly average out statistics across the M independent
replications (if applicable)

•  Regression Models
–  This exercises allows one to collect a database of D observations for each of the

K dependent statistics {s1, …, sk}, L independent controls, and H scenarios
–  Question: How does a parameter affect any given statistic sj?
–  We can regress sj against parameters and scenario dummies
–  Testing for significance of parameter coefficients can give us an idea about how

in the model a given parameter affects the output (given all other controls)

Example: Dynamic Games (1/5)

• Time t = 0, 1, 2, …

• Sets of Agents I = {1, 2, …,N} Players

• Sets of Micro States i → s(i) ∈ {-1,+1} Pure strategies

• Strategic Problem: Overall Coordination out of 2-person games (a > 1.5)

+1 -1
+1 2a 0
-1 3 2

Pareto-Efficient Strategy

Risk-Efficient Strategy
if a<2.5

EU(+1)=2a•½+0 •½ = a

EU(-1)=3•½+2 •½ = 2.5

A Primer on Coordination Games

• Importance and meaning of coordination among individuals

• Examples of coordination patterns

 Choice of compatible technologies (new vs. old technologies, existing
standards),

 Evolution of conventions (languages, currencies, codes of dress, accounting
standards, etc.)

 Cf. H.P. Young (1998)

• Standard analysis of a coordination problem. Ingredients:

 Game among n individuals (n=2)
 Static: No time involved
 One-Shot: Only one stage of decisions
 There are k≥2 options available

 Definition of a coordination game:

A coordination game is a stage game

where there is some incentive to choose

the strategy that you expect your opponent

to play.

• A General Coordination Stage-Game:

A ; B +1 −1
+1 a ; a b ; c
−1 c ; b d ; d

Ass: a>c & d>b

• Definition of

1. Nash equilibrium (NE)
 Which are the NE of the game ?
 Multiple equilibria !

2. Pareto efficient NE

A NE is Pareto efficient if there are no

other NE wherein an individual is strictly

better off while the other is no worse off.

• a>d: (+1,+1) PE;

• a<d: (−1,−1) PE;

• a=d: Both NE are Pareto equivalent

• Some examples:

1. Pure coordination game: a=d, b=c

A\B +1 −1
+1 1 0
−1 0 1

Features: Two NE, both Pareto equivalent
Prediction: (Efficient) coordination will always arise; if the two outcomes can be

discriminated, no way of saying which one will be selected.

2. Coordination game with a Pareto Efficient NE : a>d, b=c

A\B +1 −1
+1 5 0
−1 0 1

Features: Two NE, (+,+) is Pareto efficient
Prediction: Coordination will always arise; no way of saying which NE will be

selected; ⇒ inefficient NE can be selected but we cannot say when
and why !!

• Definition of Risk-dominant NE

• PE is not the only way of ranking NE: Possible loss counts !

5 0 5 −10
0 1 0 1

• If agents take into account possible losses and they have no idea about

opponent move (+1,+1) will be better than (−1, −1) in terms of lower risk iff:

a+b > c+d
 or also iff:

2
1

b)(dc)(a
b)(d

<
−+−

−
=p

• NB: p is the probability that player A assigns to the event that his opponent is

playing −1 necessary to leave A indifferent between the +1 and −1 strategies.
If p is smaller than ½ than A is taking a low risk in choosing +1.

3. Coordination game with a PE and a RD equilibrium (a>d but a+b < c+d)

A\B +1 −1
+1 3 −1
−1 1 2

Features: Two NE, (+,+) is Pareto efficient BUT (−,−) is Risk Dominant:
 Eπ(+1) = 3⋅½ + (−1)⋅ ½ = 1
 Eπ(−1) = 1⋅½ + (2)⋅ ½ = 1.5

Prediction: Coordination will always arise; no way of saying which NE will be

selected; ⇒ inefficient NE is more likely in terms of risk-dominance !!

Example: Dynamic Games (1/5)

• Time t = 0, 1, 2, …

• Sets of Agents I = {1, 2, …,N} Players

• Sets of Micro States i → s(i) ∈ {-1,+1} Pure strategies

• Strategic Problem: Overall Coordination out of 2-person games (a > 1)

+1 -1
+1 2a 0
-1 3 2

Pareto-Efficient Strategy

Risk-Efficient Strategy
if a<2.5

EU(+1)=2a•½+0 •½ = a

EU(-1)=3•½+2 •½ = 2.5

Example: Dynamic Games (2/5)

• Interaction Structures Gt = 1-Dim Lattice Circle

• Each agent i interacts with neighbors closer than r(i)

)}(|:|{)(irjijiV ≤−=

r (i)=1

r (h)=1

r(k) =2

Example: Dynamic Games (3/5)

• Micro-Parameters r(i) Interaction Radius

• Macro-Parameter a Stage-Game payoff of (+1,+1)

• Micro Decision Rules and Dynamics

- At t=0 random draw of strategies

- At each t>0 one agent is chosen at random

- Chooses st(i) s.t. max total payoffs given neighbors choices at t-1

))(;(maxarg)(1
)(}1,1{

* jssuis t
iVjs

t −
∈+−∈
∑=

Example: Dynamic Games (4/5)

• Aggregate Variable: LR Coordination Level

• Goal: Studying MC distributions of LR coordination levels as a function of

1) Aggregate Parameter (a)
2) Micro Parameters (e.g. average radius)

]1,1[)(1
1

+−∈= ∑
=

N

i
T is

N
c

• Choosing T large enough (stability/convergence of moments)

Example: Dynamic Games (5/5)

• Results with r(i)=1 all i:

1) (+1,+1) Pareto-Efficient and Risk Efficient (a > 2.5)

2) (+1,+1) and (-1,-1) Risk Equivalent (a = 2.5)

3) (-1,-1) Risk Efficient (a < 2.5)

(+1,+1) Pareto and Risk Eff

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Example: Dynamic Games (5/5)

• Results with r(i)=1 all i:

1) (+1,+1) Pareto-Efficient and Risk Efficient (a > 2.5)

2) (+1,+1) and (-1,-1) Risk Equivalent (a = 2.5)

3) (-1,-1) Risk Efficient (a < 2.5)

(+1,+1) Pareto and Risk Eff

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

(+1,+1) and (-1,-1) Risk Equivalent

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Example: Dynamic Games (5/5)

• Results with r(i)=1 all i:

1) (+1,+1) Pareto-Efficient and Risk Efficient (a > 2.5)

2) (+1,+1) and (-1,-1) Risk Equivalent (a = 2.5)

3) (-1,-1) Risk Efficient (a < 2.5)

(+1,+1) Pareto and Risk Eff

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

(+1,+1) and (-1,-1) Risk Equivalent

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

(-1,-1) Risk Efficient

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

The Islands Model (Fagiolo and Dosi, 2003)

Technological Space Notionally Unbounded Sea
Technology Island (‘mine’)

Output Homogeneous Good
Firms Stylized Entrepreneurs

Production Mining/Extracting the Good
Technological Search Exploration of the Sea

Innovation Discovering a new island
 Technological Diffusion Spreading knowledge

from islands
Imitation Traveling between

already known islands
Technological

Difference
Distance

between Islands

The Islands Model (Fagiolo and Dosi, 2003)

 Miners update output
 Miners become explorers
 Explorers look around
 Imitators approach islands

 Information diffusion
 Miners and explorers collect

signals
 Imitation decisions

Time t−1 Time t

Given t−1 micro &
macro variables

Update time t micro & macro
variables; next iteration starts

• Focus on
– Aggregate output (sum of firms’ output) and growth rates
– Number of explorers, imitators, miners

The Islands Model (Fagiolo and Dosi, 2003)

• Model parameters

ρ : globality of information diffusion
ϕ : path-dependency in learning
λ : likelihood of radical innovations
π : baseline opportunity conditions
α : increasing returns to scale in exploitation
ε : willingness to explore
N : population size
T : time horizon

Initial Conditions: (xi,0)
Micro & Macro Pars: (θi), Θ

Generate Time-Series through Simulation
{(xi,t), t =1,…,T}
{ Xt , t =1,…,T}

Compute a Set of Statistics
S= {s1, s2 , … }

on micro/macro Time-Series

Repeat M ind. times

Generate Montecarlo
Distribution for each

Statistics in S= {s1, s2 , …}

Studying how Montecarlo
Distributions of Statistics in

S= {s1, s2 , …} behave as
initial conditions, micro and
macro parameters change

Statistical Tests for
difference between moments

Analyzing simulation output

A first question…

Under which general conditions
is the economy able to generate

self-sustaining growth
as the outcome of the

joint processes of exploitation and exploration ?

A closed economy without exploration (1/2)

• Diffusion of information drives growth
– In this case the model is analytically solvable!
– Whenever an island manages to capture all agents the growth

process stops (growth rates are zero)
– The process is path-dependent and possibly inefficient

(convergence toward an inefficient level of output is a non-
zero probability event)

• Shutting down exploration and innovation
– A given initial set of islands (e.g, only 2)
– Firms initially mining on them (50%, 50%)
– They can only exchange information among the 2 existing

technologies (initial set of islands cannot be expanded)

A closed economy without exploration (2/2)

• Growth is always a transitory phenomenon

Log of
GNP

-0,4

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

0,4

Time

Growth

Rates

Time

• Lock-in may occur on the ex-ante less efficient
island

A closed economy with exploration (1/4)

• Diffusion of information still drives growth
– Process driven by information diffusion
– Steady states can be destabilized by ‘irrational’ entrepreneurs

who decide to leave their island even if everyone is there

• Allowing for exploration in a closed box
– Initial set of islands cannot be expanded (no innovation)
– Explorers are allowed to search only inside initial box
– Imitation still occurs as before

A closed economy with exploration (2/4)

• Absorbing states become basins of attraction:
growth is a transitory phenomenon but
fluctuations can arise

100

200

300

400

500

600

1 101 201 301 401
Time

G
N

P

A closed economy with exploration (3/4)

• Two ex-ante equally efficient islands

0

20

40

60

1 101 201 301 401Time

M
in

er
s

A closed economy with exploration (4/4)

• One ex-ante more efficient island: temporary
inefficiency may arise

0

20

1 101 201 Time

M
in

er
s

Exploration in a Open-Ended Economy

• In the full-fledged model self-sustaining growth
can arise!

0

5

10

15

20

25

30

35

40

1 201 401 601 801 1001Time

Lo
g

of
 G

N
P

A second question…

When the economy does generate
self-sustaining growth (full-fledged model),
do log(GNP) time-series display empirically

observed statistical properties?

Statistical Properties of Simulated GNP Series

• Yes, if self-sustaining growth does emerge
– log(GNP) time series are I(1), i.e. difference-stationary
– growth rates are positively correlated over short horizons
– persistence of shocks are in line with empirical evidence

• Scale-effects are not present
– As in reality, unlike in many endogenous growth models are!

600
1600

2600
3600

4600 50 250 450 650 850
0.00%

0.05%

0.10%

0.15%

0.20%
AGR

Econometric Sample
 Size (T)

Population Size (N)

A third question…

When the economy does generate
self-sustaining growth (full-fledged model),

what are the roles played by
system parameters

(i.e. by the sources of growth)?

The Sources of Growth (1/4)

• Average growth rates (AGRs) increasing in
– path-dependency in knowledge accumulation
– globality of information diffusion

0,2
0,4

0,6

1,5
0,5

-0,5
-1,5

-0,05%

0,15%

0,35%

0,55%

0,75%
A

G
R

ϕ
log10 (ρ)

– … as well as in returns-to-scale strength and opportunities

The Sources of Growth (2/4)

• The exploitation-exploration trade-off
– AGR are maximized only if there is a balance between resources

devoted to exploration and resources devoted to exploitation

0,0%

0,1%

0,2%

0,0 0,2 0,4 0,6 0,8 ε

A
G

R

The Sources of Growth (3/4)

• Emergence of thresholds
– I(1) log(GNP) time-series only emerge if increasing returns to scale,

opportunities, path-dependency and globality of information are
strong enough!

1,50,5-0,5-1,5
0

0.2

0.4

0.6

Log10 ρ

ϕ

[% o f Acc.
AD F(1) Test]

 > 90 %

60% < [% of Acc.
ADF(1) Test] < 90 %

30% < [% of Acc.
AD F(1) Test] < 60 %

The Sources of Growth (4/4)

• Emergence of thresholds
– … and if the exploitation-exploration trade-off is solved

0%

20%

40%

60%

80%

100%

0.0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1.0

ε

%
 o

f A
cc

ep
ta

nc
e

of
 A

D
F(

1)
 T

es
t

A fourth question…

Does the self-sustaining growth process
generated by the model

lead to explosive growth patterns?
Does the variability of growth rates increase over

time and tends to infinity?

Time Evolution of GNP Growth Rate Variability

• Higher growth is always associated to smaller
GR variability!

– Self sustained growth is a self-organized process leading to ordered
growth patterns

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 200 400 600 800 990
Time

No Growt h

Mild Growt h

S S G - Low Opp.

S S G - High Opp.

A final question…

What happens in we inject in the economy
more rational firms?

Irrationality as a necessary condition for growth

• Simple setup
– CRTS, no info diffusion, no path-dependency
– Injecting in the economy a representative rational firm (RRF) who

decides whether to exploit or explore by maximizing expected
returns

– RRF knows the structure of the economy and the direction where
best islands are (but not where they are)

0

100

200

300

400

500

1 400 800 1200 1600
Time

G
D

P

Irrational Individuals

Rational Individuals

A laboratory for further research

• Possible extensions
– Learning
– Multi-layer economies
– Demand side and Keynesian cycles
– Growth and development
– …

… and have fun …

	how_0.pdf
	How?
	The Structure of Agent-Based Models
	The Outcomes of ACE/EV Models (1/2)
	An important distinction

	how_1.pdf
	A Primer on Coordination Games

	how_2.pdf
	Alternative Models

	how_3.pdf
	What if the model is not analytically solvable?
	Writing the code

	how_4.pdf
	how_5.pdf
	Writing the code in C/C++
	Agents, Vectors and Arrays: Example
	A generic time step t
	C/C++ : Getting started
	C/C++ : Getting started
	C/C++ : Getting started
	C/C++ : Getting started
	C/C++ : Getting started
	C/C++ : Getting started
	C/C++ : Getting started
	C/C++ : Getting started
	C/C++ : Getting started

	how_6.pdf
	Example: Dynamic Games
	Example: Dynamic Games
	Time-t Loop
	Best Reply Rules w/ Risk Aversion

	how_7.pdf
	The Outcomes of ACE/EV Models (1/2)
	 Analyzing ABMs: A Recipe
	Example: Dynamic Games (1/5)
	Example: Dynamic Games (2/5)
	Example: Dynamic Games (3/5)
	Example: Dynamic Games (4/5)
	Example: Dynamic Games (5/5)

	how_8.pdf
	how_matlab.pdf
	Platform Example: 1-DIM Cellular Automata
	Platform Example: 1-DIM Cellular Automata
	Platform Example: 1-DIM Cellular Automata

	how_2009_10_addons_2.pdf
	Dynamic Games: Writing the Code
	OOP and C++ : An Example

	empval_short.pdf
	Empirical Validation in Agent-Based Models
	ABMs and Empirical Validation
	… an important remark …
	What do we mean by “Empirical Validation”
	Background Literature
	Fagiolo, Moneta, Windrum (2007)
	Fagiolo, Moneta, Windrum (2007)
	Ex 1: Qualitative Simulation Modeling
	Ex 2: Replication of Stylized-Facts
	Ex 3: Empirical Calibration of ABMs
	Ex 4: History-Friendly Industry Models
	Where do they differ?
	… A first assessment …
	Fagiolo, Moneta, Windrum (2007)
	Heterogeneity of ABMs’ Structure
	Heterogeneity of ABMs’ Structure
	Fagiolo, Moneta, Windrum (2007)
	Hot Issues in Empirical Validation of ABMs
	Treatment of initial conditions and parameters
	ABMs’ outputs vs. real-world observations
	Unconditional Objects Critique
	An Empirical Agenda
	Fagiolo, Moneta, Windrum (2007): Summary
	how_summing_ups_final.pdf
	Last Lectures: Summing Up

