Introduction	Example	Existence	Welfare	Discussion	Conclusions

Advanced Microeconomics Partial and General Equilibrium

Giorgio Fagiolo

giorgio.fagiolo@sssup.it http://www.lem.sssup.it/fagiolo/Welcome.html

LEM, Sant'Anna School of Advanced Studies, Pisa (Italy)

Part 4

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Introduction	Example	Existence	Welfare	Discussion	Conclusions
●000	0000000	OO	00000	000	O
Recap					

So far: We have been studying reductions of the full-fledged GE model to simplify the analysis

- 1 Reducing the number of markets to only one, while keeping many consumers and firms: partial-equilibrium analysis
- 2 Reducing the number of firms to zero, while keeping many markets and consumers: pure-exchange analysis

Now: Analyzing the full-fledged GE model, but starting with yet another simplification

3 Allowing for 2 markets, 1 consumer and 1 firm (Robinson Crusoe's economy)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Introduction	Example	Existence	Welfare	Discussion	Conclusions
○●○○	0000000	OO	00000	000	O
The Full-Fled	ged Model				

Consider a model of a decentralized economy *E* with the following ingredients:

- Consumers: *i* = 1, ..., *I*
- Firms: *j* = 1, ..., *J*
- Commodities: *I* = 1, ..., *L*

Let us also assume that:

- Each consumer *i* has preferences (\succeq_i, X_i) and an associated (continuous) utility function u_i which maps consumption bundles $x_i = (x_{1i}, ..., x_{Li}) \in X_i$ into \Re ; and holds an initial endowment vector $\omega_i \in \Re_+^L$; ; let $\Omega = (\omega_1, ..., \omega_l)$ and $\omega = \sum_i \omega_i \in \Re_+^L$
- Each firm *j* holds a technology Y_j ⊆ ℜ^L and define y_{ij} as the netput of firm *j* for commodity *l*; hence, the "net amount" available for good *l* will be: ω_l + Σ_j y_{ij}

Introduction	Example	Existence	Welfare	Discussion	Conclusions
	0000000	OO	00000	000	O
The Full-Fled	ged Model				

Moreover, assume that:

- Private Ownership: Consumers own firms. Each consumer holds a share θ_{ij} ≥ 0 of firm *j*, s.t. Σ_i θ_{ij} = 1, all *j*, i.e. θ_i ∈ [0, 1]^J. Profits are entirely redistributed to consumers accordingly to shares.
- Markets are complete (there exist *L* markets for the *L* commodities).
- Commodities are undifferentiated (homogeneous). No firms have then advantage whatsoever in selling them and consumers cannot discriminate between commodities sold by different firms.
- There is perfect information about prices across agents. Consumers and firms are perfectly rational (maximizers) and act as price takers.
- All actual exchanges take place simultaneously at a single price vector, after the latter has been quoted. If a firm sells at lower prices, she will undercut competitors. Reselling is not allowed. Pricing is linear (every unit of commodities is sold at the same unit price).

As a result, the economy will be completely defined by:

$$\boldsymbol{E} = \left(\{ \boldsymbol{X}_{i}, \boldsymbol{u}_{i} \}_{i=1}^{I}, \{ \boldsymbol{Y}_{j} \}_{j=1}^{J}; \{ \omega_{i}, \theta_{i} \}_{i=1}^{I} \right)$$

Introduction Example Existence Welfare Discussion Conclusions oco

Definition (Competitive (Walrasian) Equilibrium)

An allocation $(x_i^*)_{i=1}^{j}, (y_j^*)_{j=1}^{j}$ and a price vector $p^* \in \Re_{++}^{L}$ is a **Competitive (or Walrasian) Equilibrium (CE)** for the economy E iff the following three conditions are satisfied:

● (Profit Maximization): Given p^* , then $y_j^* = \arg \max(p^* y_j)$, s.t. $y_j \in Y_j$, $\forall j = 1, ..., J$

(Utility Maximization): Given Condition 1 and p^* , then $x_i^* = \arg \max u_i(x_i)$, s.t. $p^*x_i \le p^*\omega_i + \sum_j \theta_{ij}p^*y_j^*$, $x_i \in X_i$, $\forall i = 1, ..., I$

(Market Clearing): $\sum_{i} x_{li}^* \leq \sum_{i} \omega_{li} + \sum_{j} y_{lj}^*, \forall l = 1, ..., L$

Introduction	Example	Existence	Welfare	Discussion	Conclusions
	•000000	OO	00000	000	O
A Robinson C	Crusoe's Ecor	nomy			

Consider a general-equilibrium model of an economy composed of a single producer and a single consumer. Ingredients:

- 1 price-taker consumers (*I* = 1)
- 1 price-taker firm (J = 1)
- Two goods (L = 2): Labor/leisure (input) and consumption good (output)
- Labor is used to produce output consumption good
- Endowments: $\omega_L = \overline{L}$ (hours), $\omega_c = 0$ (must be produced)
- Preferences: $u(x_1, x_2) = u(L, x)$, where *L*=leisure (\overline{L} -labor), *x*=consumption good
- Technology: *f* : ℝ₊ → ℝ₊, where *y* = *f*(*z*)=consumption good efficiently produced with *z* units of labor
- Prices (*p*, *w*), *p*=consumption good price, *w*=labor price (unit wage)

Therefore: RC owns the firm, works for the firm, gets wage and buys the consumption good that the firm produces (... a rather weird institutional setting!)

Introduction	Example	Existence	Welfare	Discussion	Conclusions
	o●ooooo	00	00000	000	O
A Robinson (Crusoe's Eco	nomy			

RC as a firm

- Solves max_z pf(z) − wz
- Labor demand: z(p, w)
- Output function: q(p, w)
- Profit function: π(p, w)

RC as a consumer

- Solves $\max_{L,x} u(L,x)$, s.t. $px + wL \le w\overline{L} + \pi(p,w)$
- Leisure: L(p, w)
- Labor: $\overline{L} L(p, w)$
- Consumption good: x(p, w)

Assumptions

- Strictly convex, strictly monotone preferences
- Strictly convex technologies

• General equilibrium: It is a p^*/w^* ratio such that

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

$$x(p^*, w^*) = q(p^*, w^*) $\bar{L} - L(p^*, w^*) = z(p^*, w^*)$$$

Introduction	Example	Existence	Welfare	Discussion	Conclusions
	000000	OO	00000	000	O
A Robinson (Crusoe's Eco	nomy			

• FOCs for RC as a firm

- From max_z pf(z) wz one gets:
- FOCs: f'(z(p, w)) = w/p

• FOCs for RC as a consumer

- From $\max_{L,x} u(L,x)$, s.t. $px + wL \le w\overline{L} + \pi(p,w)$ one gets:
- $\mathcal{L} = u(L, x) \lambda [px + wl w\overline{L} + \pi(p, w)]$

•
$$\partial u/\partial L = \lambda w$$

•
$$\partial u/\partial x = \lambda p$$

• FOCs:
$$u_L/u_x = w/p$$

Introduction	Example	Existence	Welfare		Conclusions
0000	0000000	00	00000	000	
A Robins	on Crusoe's F	conomy: Eq	uilibrium		

$$f'(z(p^*, w^*)) = \frac{w^*}{p^*} = \frac{u_L}{u_x}$$
$$x(p^*, w^*) = q(p^*, w^*)$$

If (p^*, w^*) is a WE, then RC maximizes utility while satisfying technological and resource constraints. Therefore the resulting allocation is PO (1st welfare theorem revisited). It is easy to see that also the 2nd WT holds (given convexity assumptions).

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

The case of non-convex technologies. In x^* the consumer is maximizing his utility and its welfare and the allocation is PO. However, at the unique price ratio that supports this allocation the firm is not maximizing her profits since her technology exhibits increasing returns to scale (she would prefer to use more labor). Therefore the 2nd WT fails because there is no price vector supporting the PO allocation x^* .

Even if technology presents some non-convexities the 1st WT applies. The allocation and price vector (x^*, p^*, w^*) is a WE and the consumer is maximizing her welfare.

Introduction	Example	Existence	Welfare	Discussion	Conclusions
	000000●	OO	00000	000	O
What's Next					

So far: Showing that in a RC economy with some peculiar features (convexity throughout) an equilibrium exists and welfare theorems apply

Now: Analyzing the full-fledged GE model with many markets, many consumers, and many firms. We ask two questions:

- 1 Does an equilibrium always exist? If not, what are sufficient conditions guaranteeing existence of (at least one) equilibrium?
- 2 If an equilibrium exists, do the 1st and 2nd welfare theorem apply in the most general setting? Under what conditions?

(ロ) (同) (三) (三) (三) (三) (○) (○)

Introduction	Example	Existence	Welfare	Discussion	Conclusions
0000	0000000	●O	00000	000	O
Excess of De	mand				

The 'production-inclusive excess of demand' (excess demand in what follows) is the function/ correspondence that we obtain by computing the difference between Marshallian demand functions/correspondences (given profit functions/correspondences) and net amount of available commodities (initial endowments plus net supply)

More formally: For any price vector $p \gg 0$, define the 'excess of demand' $\overline{z}: \Re^L_{++} \to \Re^L$ as

$$\overline{z}(p) = \sum_{i=1}^{I} x_i(p, p\omega_i + \sum_j \theta_{ij}\pi_j(p)) - \left[\sum_{i=1}^{I} \omega_i + \sum_{j=1}^{J} y_j(p)\right]$$

where $x_i(\cdot, \cdot)$ is the Marshallian demand function of consumer i; $\pi_j(p)$ and $y_j(p)$ are the profit- and the net-supply functions/correspondences of firm j.

Obviously (but try to prove it formally!) we have that: $p^* \gg 0$ is a price-equilibrium vector if and only if $\overline{z}(p^*) = 0$.

Studying the existence of a CE means studying whether a $p^* \gg 0$ exists which solves the system in *L* equations and *L* unknowns defined by $\overline{z}(p) = 0$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Introduction	Example	Existence	Welfare	Discussion	Conclusions
		0•			
Existence o	f a Walrasia	n Fauilibrium	ו		

Claim

Assume that:

- Utility functions ui are continuous, strictly increasing and concave;
- Technology sets Y_i are closed, convex and bounded from above;
- **9** By using $\omega = \sum_{i=1}^{l} \omega_i$ it is possible to produce a strictly positive consumption bundle $\overline{x} \gg 0$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Then there exists a $p^* \gg 0$ such that $\overline{z}(p^*) = 0$.

Proof.

See Mas-Colell, Whinston and Green, Ch. 17.A, 17.B, 17.C. For a historical perspective, see Ingrao and Israel (1990).

Introduction	Example	Existence	Welfare	Discussion	Conclusions
	0000000	OO	●0000	000	O
First Welfare	Theorem				

Theorem (First Welfare Theorem in a General Equilibrium Model with Production)

Suppose that $(x_i^*)_{i=1}^{l}$, $(y_j^*)_{j=1}^{J}$ and p^* is a competitive equilibrium for the associated economy E and that utility functions u_i all satisfy local non-satiation. Then the allocation $(x_i^*)_{i=1}^{l}$, $(y_i^*)_{j=1}^{J}$ is Pareto Efficient.

Proof.

Suppose $(x_i^*)_{i=1}^l$, $(y_i^*)_{i=1}^J$ and p^* is a competitive equilibrium for *E*. Define:

$$w_i = p^* \omega_i + \sum_j heta_{ij} p^* y_j^*$$

Notice that:

$$\sum_{i} w_{i} = p^{*} \sum_{i} \omega_{i} + \sum_{j} p^{*} y_{j}^{*}$$

Equilibrium conditions read: (1) $\forall j : p^* y_j \leq p^* y_j^*, \forall y_j \in Y_j;$ (2) $\forall i : u_i(x_i) \leq u_i(x_i^*), \forall x_i \in X_i \text{ such that } p^* x_i \leq w_i;$ (3) $\sum_i x_i^* = \sum_i \omega_i + \sum_j y_j^*.$

Introduction	Example	Existence	Welfare	Discussion	Conclusions
	0000000	00	⊙●○○○	000	O
First Welfare	Theorem				

Proof (Cont'd).

By (2) above, we know that:

 $u_i(x_i) > u_i(x_i^*)$ implies that $p^*x_i > w_i$.

Moreover, by local non-satiation (LNS) we also know that:

 $u_i(x_i) \ge u_i(x_i^*)$ implies that $p^*x_i \ge w_i$.

To see this, suppose that $u_i(x_i) \ge u_i(x_i^*)$ implied that $p^*x_i < w_i$. Then by LNS $\exists x'_i$ sufficiently close to x_i which is strictly preferred to x_i but is still strictly affordable, i.e. $p^*x'_i < w_i$. Then $u_i(x'_i) > u_i(x^*_i)$ and $p^*x'_i < w_i$ which contradicts the hypothesis that x^*_i is a utility maximizing bundle.

Introduction	Example	Existence	Welfare	Discussion	Conclusions
0000	0000000	OO	00●00	000	O
First Welfare	Theorem				

Proof (Cont'd).

We are then ready to show that the allocation $(x_i^*)_{i=1}^J, (y_j^*)_{j=1}^J$ is Pareto Efficient. Suppose not. In this case, there will exist another **feasible** allocation $(x_i)_{i=1}^J, (y_j)_{j=1}^J$ such that:

> $u_i(x_i) \ge u_i(x_i^*) \quad \forall i$ $u_h(x_h) > u_h(x_h^*) \text{ some } h$

As a consequence:

 $p^* x_i \ge w_i \ \forall i$ $p^* x_h > w_h \text{ some } h$

Summing up over all *i*'s:

$$\sum_{i} p^* x_i > \sum_{i} w_i = p^* \sum_{i} \omega_i + \sum_{j} p^* y_j^*$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 - のへで

Introduction	Example	Existence	Welfare	Discussion	Conclusions
	0000000	OO	○○○●○	000	O
First Welfare	Theorem				

Proof (Cont'd).

Since y_i^* maximizes j's profits, then $\forall j : p^* y_i^* \ge p^* y_j$. Hence:

$$\sum_{i} p^* x_i > p^* \sum_{i} \omega_i + \sum_{j} p^* y_j^* \ge p^* \sum_{i} \omega_i + \sum_{j} p^* y_j$$

so that:

$$p^*\left[\sum_i x_i - \sum_i \omega_i - \sum_j y_j\right] > 0$$

And as $p^* \gg 0$, then $\sum_i x_i - \sum_i \omega_i - \sum_j y_j \neq 0$, which means the the alleged allocation is not feasible. This contradicts the thesis that $(x_i^*)_{i=1}^I, (y_j^*)_{j=1}^J$ is not Pareto Efficient.

・ロト・日本・モート ヨー うへで

Introduction	Example	Existence	Welfare	Discussion	Conclusions
	0000000	00	0000●	000	O
Second Welfa	are Theorem				

Theorem (Second Welfare Theorem in a General Equilibrium Model with Production)

Suppose E is such that: (1) Production sets are convex; (2) Utility functions u_i have convex upper contour sets and satisfy LNS. Then if the allocation $(x_i^*)_{i=1}^l, (y_j^*)_{j=1}^J$ is Pareto Efficient, there exists a redistribution of endowments and profits such that $(x_i^*)_{i=1}^l, (y_j^*)_{j=1}^J$ and p^* is a WE.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Proof.

See Mas-Colell, Whinston and Green, Ch. 16.D.

Introduction	Example	Existence	Welfare	Discussion	Conclusions
	0000000	00	00000	•oo	O
The GE Mode	el				

- We have shown that, under some restrictions, there are very stringent relationships between concepts as decentralized CE, PO allocations and social welfare optima.
- Suppose that we are given an economy

$$\boldsymbol{E} = \left(\{ \boldsymbol{X}_{i}, \boldsymbol{u}_{i} \}_{i=1}^{l}, \{ \boldsymbol{Y}_{j} \}_{j=1}^{J}; \{ \omega_{i}, \theta_{i} \}_{i=1}^{l} \right)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where all assumptions made at the beginning apply.

Introduction	Example	Existence	Welfare	Discussion	Conclusions
	0000000	00	00000	O●O	O
The GE Mode	el				

- If a CE (p^{*}, (x_i^{*})^l_{i=1}, (y_j^{*})^J_{j=1}) exists for *E*, then irrespective of any convexity assumption, the allocation (x_i^{*})^l_{i=1}, (y_j^{*})^J_{j=1} is a Pareto Optimum. Moreover, if *U* is convex and the SWF is linear, then there exist weights λ^{*} ≥ 0 such that the associated utility levels maximize the SWF (i.e. the correspondent allocation would have been chosen by a benevolent planner).
- Irrespective of any convexity assumption, if the allocation $(x_i^*)_{i=1}^l, (y_j^*)_{j=1}^d$ corresponds to a social welfare optimum chosen by the benevolent planner for some $\lambda^* \ge 0$, then $(x_i^*)_{i=1}^l, (y_j^*)_{j=1}^d$ is PO. Moreover, under some convexity assumptions (see Second Welfare Theorem), there exists a price vector $p^* \gg 0$ and a redistribution of endowments and profits such that $(x_i^*)_{i=1}^l, (y_i^*)_{i=1}^d$ can be sustained by p^* as a CE.

Introduction	Example	Existence	Welfare	Discussion	Conclusions
	0000000	00	00000	OO●	O
The GE Mode	əl				

Therefore:

- If a planner maximizes *W*, s/he reaches a PO allocation, but only under convexity assumptions this allocation is supported by equilibrium prices.
- If we let the economy work, then we reach a PO allocation, but only under convexity assumptions this allocation is socially fair.

Introduction	Example 0000000	Existence OO	Welfare 00000	Discussion 000	Conclusions
What's Next					

So far: We have established that if the economy satisfies certain (very stringent) properties, then at least one WE exists. We are left with other crucial questions to answer...

- Uniqueness: When a WE exists, is it unique? How many WE are there?
- Stability: Suppose that a unique WE does exist. How does the economy (as distinct from the modeler) "find" the equilibrium, i.e. how does it go there? And if the economy starts far from the equilibrium, is it able to actually go back to the WE?
- Empirical validity: Can we take the GET to the data and test whether its implications are true? What implications can we test?

(日)