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This study looks at the United States biotechnology industry as a community of prac-
tice caught between two evolutionary logics by which valuable scientific knowledge and

valuable innovations are selected. We analyze the publications and patents of 116 biotech-
nology firms during the period 1988–1995. In models that link scientific capabilities to patent
citations, we show that scientific ideas are not simply inputs into inventions; important sci-
entific ideas and influential patents follow different and conflicting selection logics. Publica-
tion, collaboration, and science intensity are associated with patented innovations; however,
important scientific papers are negatively associated with high-impact innovations. These
results point to conflicting logics between science and innovation, and scientists must con-
tribute to both while inhabiting a single epistemic community. We identify individuals listed
on patents and scientific papers and find they effectively integrate science with innovation,
leading to more successful innovations. Our findings suggest that the role of the small,
research-intensive firm is to create a repository of knowledge; to act as an organizational
mechanism to combine the capabilities of versatile scientists within and outside the bound-
aries of the firm; and to manage the selection of scientific ideas to produce valuable technical
innovations.
(Science; Citations; Patents; Scientists; Epistemic Community; Biotechnology )

Introduction
One of the important lessons of the sociology of sci-
ence is that the creation of scientific knowledge is an
activity that is institutionally constructed and orga-
nized. Until the sixteenth century, scientific endeav-
ors were cloaked in secrecy to withhold knowledge
and the powers it conferred from the “vulgar mul-
titude” (David 1998). The institutionalization of sci-
ence encouraged the validation and diffusion of ideas
as open to public scrutiny (Merton 1973). To support
these institutions, norms that standardized the lan-
guage and presentation of results developed under

the auspices of academic journals. The careers of sci-
entists were tied to their success in publishing these
results in prestigious journals and withstanding sub-
sequent public criticism. As science evolved, it also
fragmented into distinct communities, with separate
identities, journals, and models of experimentation
and validation.
The sociology of science, though rich and varie-

gated, broadly agrees with the view of science as
embedded in distinctive communities. As Merton
(1973) and economists such as Dasgupta and David
(1994) and Stephan (1996) have noted, these norms
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create incentives that are efficient insofar as profes-
sional ranking is related to effort, excess duplica-
tion of effort is contained, and scientists desire to
broadly disseminate results to earn respected rep-
utations. A priority-based publication system is an
important principle that promotes rapid dissemina-
tion of knowledge within scientific communities and
organizes individual contributions in the form of a
series of races. De Solla Price (1970, p. 6) observes,
“scholarship is a conspiracy to pool the capabilities of
many men, and science is an even more radical con-
spiracy that structures this pooling so that the total-
ity of this sort of knowledge can grow more rapidly
than any individual can move by himself.” At the
bench level, science is “manufactured” in laborato-
ries in which scientists seek power and alliances to
persuade each other that they occupy important posi-
tions (Knorr Cetina 1999, Latour and Woolgar 1979).
In this context, a published paper is a legitimate tool
of persuasion and a symbol of achievement.
Even though science is “manufactured” in the con-

text of academic communities, firms can usefully
apply scientific knowledge to develop new technolo-
gies; indeed, the argument that science could drive
commercial innovation was a major justification for
public support of a nation’s scientific infrastructure.
The dilemma for firms seeking to profit from scientific
knowledge, however, is that science is not available
as ready-made inputs, but is produced by scientists
situated in these scientific communities. The useful
equation of science as an input to technology is prob-
lematic when scientific inputs are also seen as not only
producing technology but also manufacturing scientific
outputs valued by other scientists.
The importance of a community operating within a

well-organized social structure, sharing a strong epis-
temic culture, has not been addressed in studies on
the economics of science and technology, which have
been concerned with showing the functional relation
between scientific inputs and technological outputs.
The focus on the “production function” is seen in
recent studies that have taken a more fine-grained
approach to understanding this relationship; these
have found that better science leads to more tech-
nology (Cockburn and Henderson 1998, Henderson
and Cockburn 1994). What happens when the inputs,

called professional scientists, care about their percep-
tion of what they do, why they do it, when, and for
what kinds of rewards?
We propose that the logic of scientific discovery

does not adhere to the same logic that governs the
development of new technologies, and that these
conflicting logics pose potential problems for science-
based innovation. The communities in which scien-
tific ideas circulate and the logics by which they are
selected mean that value calculations in science and
industry are different. Innovation builds on knowl-
edge made in science, but science that is “good”
for innovation is propelled by a logic that is differ-
ent than that employed by a scientific community to
determine “valuable” or “important” science. While
industry may need scientific insights to resolve tech-
nological problems or find new projects, firms do not
directly benefit from contributing to important or con-
troversial scientific questions. We use the difference
in the processes by which highly cited scientific dis-
coveries are acknowledged by other scientists and
by which valuable innovations are selected by mar-
ket forces to show how different evolutionary logics
weaken the science-technology linkage. Consequently,
we generate evidence regarding how firms differen-
tially manage the disconnect between the two evolu-
tionary logics by which science and innovations are
rewarded. In all, we find evidence for a single epis-
temic community, for different and conflicting evolu-
tionary logics between science and technology, and
for the important role of bridging scientists in the pro-
duction of valuable innovations.

Science, Epistemic Communities,
and Citation Analysis
The community perspective implies a stickiness in
the flow of scientific knowledge to firms. The lit-
erature on the motives for firms to publish their
research in scientific journals has implicitly or explic-
itly acknowledged the central importance of forming
ties to this community, via boundary-spanning “gate-
keepers,” to access socially embedded knowledge
(Allen 1977, Hicks 1995, Lieberman 1978, Tushman
1977). Research in pharmaceutical and biotechnology
companies reveals, in particular, the importance of
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personal links between commercial firms and univer-
sities. The fortunes of biotechnology companies are
linked to their engagement of “star scientists” and
their location in research regions (Zucker et al. 1998).
Indeed, because star scientists often maintain uni-
versity employment, colocation with research centers
is a natural and necessary requirement of success-
ful biotechnology firms. In numerous studies in phar-
maceuticals and biotechnology, collaboration with
researchers external to the firm and an internal sci-
ence orientation leads to higher research productivity
(Cockburn and Henderson 1998, Cockburn et al. 2000,
Gambardella 1995, Powell et al. 1996, Zucker et al.
2002). These studies suggest the operation of absorp-
tive capacity to include direct participation in external
communities as a means of acquiring knowledge out-
side the firm’s boundaries (Cohen and Levinthal 1990,
Rosenberg 1990). In other words, how firms access and
practice science—in particular, whether they estab-
lish credible linkages with the scientific community—
matters to the production of valuable innovations.
Of course, investing in science represents a cost to

the firm. Stern (1999) argues that research-oriented
scientists have an inherent “taste” for research and
publication. The skills of these scientists are needed
for translating research into product development.
The firm allows them to engage in research and pub-
lish as a form of payment in exchange for these other
activities; these scientists receive lower wages than
scientists who are not allowed to publish. Stern’s
thesis raises the intriguing implication that the rela-
tionship of commercial innovations and scientific
knowledge is problematic for the scientist whose
activities are aimed at commercial outcomes, but
whose identity remains embedded in the values and
reward systems of a scientific community.
In effect, those scientists working on research for

firms engage in commercial innovative endeavors,
while operating within a single “epistemic culture,”
to appropriate Knorr Cetina’s (1999) term to different-
iate scientific communities. These cultures code for
rules by which scientists define their careers, iden-
tities, methods of empiricism, and collaboration
with others. Experimental physics utilizes large-scale
equipment and engages the efforts of hundreds of
scientists who publish jointly. Research in the life

sciences relies on smaller teams and is less capi-
tal intensive; collaborative publishing, though com-
mon, is characterized by fewer authors. Clearly, rules
regarding empirical validation and publication are
powerful cultural expressions of the collective organi-
zation of individual contributions in the development
of scientific knowledge.
Citation traces are the bibliometric fossils by which

to measure the replication success of an idea. These
fossil records permit an investigation of the relative
success of an idea to influence subsequent work. Cita-
tions to papers are an important way that scien-
tists evaluate their relative standing, by which they
exchange gifts, acknowledge prestige, and seek to
prevail in their arguments (Crane 1972, Latour and
Woolgar 1979). Forward patent citations, that is, cita-
tions made by later patents to a patent previously
issued, are similarly indicative traces of the impor-
tance of commercial innovations, although the process
by which they are generated is less deferential to sta-
tus and reputation effects (Hall et al. 2000). Campbell
(1974) contended that academic fields advance by an
“evolutionary epistemology” in which favored ideas
are promulgated and disfavored ones are lost. The
sociology of science shows that articles that are not
cited within five years are unlikely to be remembered
(Crane 1972). Citation patterns to patents show a sim-
ilar time frame (Jaffe et al. 1993).
Our analysis relies principally upon citations. We

analyze citations in scientific papers to other scientific
papers, and also look at citations in patent documents
to other patents and to scientific papers. We propose
that the difference in evolutionary logics that generate
paper and patent citations reflects the difficulty faced
by private firms to translate knowledge produced in a
scientific setting into valuable technologies. Where the
scientific and commercial endeavors diverge is seen
in the different citation traces generated by the dis-
tinctive rules that govern the logic by which a good
paper or a valuable patent is selected and replicated.
How do scientists jointly operate in the distinct

communities of science and technology, without dam-
aging their credibility in the former, or their effi-
ciency in producing the latter? To demonstrate first
the importance of this question, we turn to an anal-
ysis of citations to scientific papers included in other
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scientific papers and in patents. We put forth the
hypothesis that both of these artifacts, papers and
patents, will share common antecedents, i.e., they will
show similar citation patterns to scientific papers. In
other words, there is no ascriptive distinction in the
acknowledgments paid by scientists when they pub-
lish a paper or when a patent is filed, naming them as
the inventor (even if the property right is held by the
firm). The citation patterns should reflect membership
in the relevant scientific community.
If scientists in universities and those in firms

inhabit a single epistemic community, should we not
then expect that influential patents should be the
product of influential research? At a first pass, it
would seem that if citations to scientific research in
patents follow the same norms as citations in papers,
then influential patents should also cite influential
papers. However, the evolutionary logic that selects
out “better” patents is different than that which
selects the more influential papers. The evolution-
ary dynamics for patents reflect the joint factors of
market demand, technological opportunity, and legal
claims on property rights. Market demand increases
the efforts to commercialize, and hence patent, more
in particular sectors, thus favoring only those related
and relevant patents (Mowery and Rosenberg 1982).
Second, technologies differ in their opportunities,
with some offering a richer set of opportunities than
“dead-end technologies” (Kim and Kogut 1996, Stuart
and Podolny 1996). Because of the difference in
these selection dynamics, we do not expect influen-
tial papers to lead to influential patents. Scientists do
not reward papers for their market and technological
promise; they reward them for reasons proper to their
own epistemic community.
Collaborative activity, we would also expect by

this argument, reveals the long hand of the sociol-
ogy of scientific communities. Certainly, firms desire
their scientists to engage in external collaboration to
improve their productivity and to acquire property
rights to research generated in universities and pub-
lic laboratories. Scientists collaborate on publications,
but they do so in accordance within the norms of
doing science. Thus, we expect collaboration to help
research, and to result in more or better papers, but

we propose that this collaboration will be embed-
ded in the social relations and rituals of the scientific
community.
We expect to find firm-level heterogeneity in the

relationship between scientific inputs and innovation
outputs. We model this heterogeneity as the degree
to which firms succeed in integrating the two worlds
of science and invention. Because we believe that
scientific knowledge is embedded in a community
inhabited by scientists, we identify these individual
scientists and look at whether they publish or patent.
We focus on the intersection of these groups as the
set of individuals who inhabit both the world of open
science and the world of technology creation, and
measure their impact on patenting. We pose the ques-
tion: Are individual scientists who perform both more
productive in producing important patents? In this
sense, these scientists are technological gatekeepers,
as studied by Allen (1977) and Tushman (1977), but
more specifically, as suggested by Lieberman (1978),
they help firms patent by bridging the worlds of dis-
covery and innovation.
To summarize, we make the following propositions:

Proposition 1. Papers and patents exhibit similar
citation patterns to scientific papers.

Proposition 2. The evolutionary logics that select
valuable scientific papers and valuable patents are different,
and because of this, influential papers are no more likely to
lead to influential patents than other papers.

Proposition 3. Collaboration choices are influenced by
status in a scientific community.

Proposition 4. Scientists who bridge discovery and
innovation are able to reconcile these two conflicting logics
more effectively than those specializing in either science or
technology.

Science, Publications, and the
United States Biotechnology
Industry
We address these issues in the context of the United
States (U.S.) biotechnology industry, which is char-
acterized by rapid knowledge diffusion and intense
technological competition. Biotechnology firms are
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actively engaged in keeping at the forefront of pub-
lishing in the scientific literature (Powell et al. 1996).
Because this industry so heavily relies on commer-
cializing on the basis of scientific discovery, the rela-
tionship between scientific knowledge and innovation
outputs are especially strong.
Biotechnology firms act as organizational vehi-

cles for the private appropriation of knowledge pro-
duced in university laboratories and moving it to
a commercial marketplace. Indeed, the professional
and cognitive divide between individuals engaged
in scientific research and those engaged in commer-
cialization is much less sharp in biotechnology than
in other technology-intensive industries, e.g., micro-
electronics. Zucker et al. (1998) show that specialized
biotechnology firms are formed with the intent of cap-
turing knowledge held by academic scientists close to
the “frontier” of knowledge discovery. A startup com-
pany enables them to extract economic value from
their valuable knowledge (Audretsch and Stephan
1996).
Biotechnology firms are defined in our study as

new firms specializing in the use of molecular tech-
nologies to develop new drugs, diagnostic tools, or
other novel products. However, their collaboration
networks extend beyond their own field. If we were to
describe, to use Callon’s (1986) terminology, the action
networks of a biotechnology firm, they would con-
sist of partnerships with other pharmaceutical firms,
research institutes, universities, and, to a lesser extent,
other startup companies. We know that these net-
works have two important properties. First, Powell
et al. (1996) showed that firm performance increases
with the intensity of interfirm collaboration. Sec-
ond, Shan et al. (1996) found that networks have a
self-replicating property; cooperation reenforces the
network by building upon the previous pattern of
relationships. Thus, collaboration appears to result
in the creation of useful knowledge in a durable
web of relationships for the production of patentable
knowledge.
In summary, biotechnology startups are character-

ized by a heavy reliance on scientific knowledge
sourced from university and academic laboratories.
Their own scientists, while competing to produce
valuable technologies, also actively engage them in

the production of that knowledge. Thus, the biotech-
nology industry is a rich field for an analysis of the
relationship between scientific capabilities of firms
and valuable innovations.

Modeling Science as an Input to
Discovery
Sample of Firms and Data Collection
The first step in the sampling procedure was to cre-
ate a representative sample of U.S. biotechnology
firms. To accomplish this, we made use of an existing
database established by one of the authors (Gittelman
2000). This database includes some 14,000 biotech-
nology patent records, each corresponding to a sin-
gle invention filed by U.S. organizations during the
period 1982–1997. The source of the data is Derwent
Biotechnology Abstracts, a comprehensive database of
biotechnology patents. Patents are restricted to those
as classified by Derwent as relating to genetic engi-
neering and/or biopharmaceuticals. Patents relating
to plant and agricultural uses, and other indus-
trial applications outside of human health care, are
excluded. From the patent data, a number of sources
were used to identify which of the assignees were
U.S. biotechnology firms. All identifiable biotechnol-
ogy firms were included, subject to the criterion
that the company was based in the U.S., and was
granted at least one U.S. patent during 1988–1995.
Biotechnology firms that are subsidiaries of other
firms, but have maintained an independent identity
are included, e.g., Genentech, once partially owned
by Roche. Biotechnology divisions of pharmaceuti-
cal firms are not included. The primary sources used
to identify biotechnology firms include BioScan, a
proprietary directory of the biotechnology industry,
Ernst & Young annual biotechnology reports, member
directories of the Biotechnology Industry Organiza-
tion, and company sources.
These criteria yielded a sample of 116 U.S. biotech-

nology firms. We collected four kinds of data for the
firms in our sample: (1) data on publications in the
scientific literature during the period 1988–1994 (these
data also reveal research collaborations with external
institutions), (2) patents issued to the firms in the U.S.
during 1992–1995, (3) individual scientist data, and
(4) data on firm-level characteristics.
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Publications and Collaborative Research
Among Sample Firms
The sample firms produce many more publications
than they do patents. Our sample of firms published
nearly 7,000 articles in the scientific literature (about
1,000 per year) during the sample period (1988–1994),
with 30% of articles published in just 10 journals
(including the prestigious publications Nature, Science,
and Cell). The total number of articles published by
the firms has been rising at about 10% per year, from
711 articles in 1988 to 1,258 articles in 1994.1

The firms were granted some 1,200 U.S. patents, a
rate of about 300 per year, during 1992–1995. This is
a rough indication that a significant portion of pub-
lications did not lead to a patent. The average firm
in our sample published 60 articles, was granted 10
patents, was founded in 1984, and employed 262 per-
sons. There is a great deal of heterogeneity among
these firms. One firm (Genentech) accounted for 1,400
publications, while some firms had no publications.
Size differences are also great, from 3,000 employees
(Amgen) to 5 employees (Symbollon and Immuno-
logic Pharmaceuticals).
Collaboration with external organizations is a

defining feature of the research activities of the sam-
ple firms. We measure research collaboration as rep-
resented by articles in which both the firm and an
outside organization are listed as institutional affilia-
tions of one or more of the authors. The share of col-
laborative publications is about 70% of total articles
published, and this has remained steady during the
sample period. This high proportion is not skewed by
firm size.
The great majority of shared research is between a

biotechnology firm on the one hand and a university
on the other; firm-to-firm collaborations are a small
portion of the total. In all, some 1,800 organizations
are listed as collaborating institutions with the sam-
ple firms. An analysis of the top 200 of these research
partners shows that only 15 were other firms; the rest
were universities, research institutes, and government
labs, U.S. and foreign. Extrapolating from this, it is

1 We use the ISI Science Citation Index to collect information on all
publications in which the firm is listed as an institutional author
during the period 1988–1994.

estimated that 90% of the research partners were uni-
versities or other research institutions (government
labs, hospitals, or research institutes). The data indi-
cate that copublications allow the firms in our sample
to tap into high-quality networks of academic scien-
tists, with prestigious universities and research insti-
tutes in the life sciences dominating the population
of collaborators.2 Given the sensitivity to prestige and
grounding in scientific practice, it is not surprising
that past studies found that many collaborations are
not formalized in legal contracts (Liebeskind et al.
1996).

Dependent Variable: Forward Patent Citations
We are interested in exploring whether scientific
research impacts the value of a firm’s innovations,
as captured by its patents. Our dependent variable
is the cumulative forward citation frequencies to an
individual patent.3 Forward citations count the num-
ber of times a patent (the “cited patent”) is included
in the prior art of subsequent patents. The evidence
strongly supports the conclusion that patent citations
contain information about a patent’s technological
importance, and that they can also be used as a proxy
for economic value to the innovator (see Hall et al.
2000 for a review). In biotechnology, where patents
are a key means of appropriating returns to innova-
tion, citation rates are more likely than in other fields
to contain information about the technological and
economic value of a given invention. We count all for-
ward citations received by each patent at of the end
of 1999. We call this measure CITES TO PATENT.

2 The top institutional collaborators are (with percent of all collabo-
rative articles): Harvard University (6%), University of California–
San Francisco (5%), University of Washington (5%), National
Cancer Institute (5%), Stanford University (4%), University of Texas
(4%), University of California–Los Angeles (3%), Scripps Clinic
and Research Institute (2%), Johns Hopkins University (2%), and
University of California–San Diego (1%). In total, the University
of California (UC) system accounts for 13% of the collaborations,
reflecting the pronounced role of the UC system in fostering a
California biotechnology industry and the linkages between UC
researchers and scientists at those firms.
3 Our data give information on the full patent family, comprising
the full portfolio of patents issued around the world on a given
invention. We utilize the first U.S. patent in the family issued dur-
ing 1992–1995, inclusive.
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Citations may accrue to a patent for reasons that
do not reflect its importance but rather its vintage:
older patents are likely to be cited more than, but are
not necessarily more important than, younger patents.
Technological field effects may also influence citation
rates: patents in crowded fields may be cited more
than patents in sparse fields because there are more
citing patents. On the other hand, patents in sparse
fields may have higher odds of being cited by subse-
quent patents because there are fewer cited patents.
In these cases, the reasons for citations are likely unre-
lated to the importance of the patent that we are aim-
ing to measure. We are, therefore, careful to include
variables in our regressors that control for patent age
and technological field, as well as other characteris-
tics of the firm and cited patent that could affect the
frequency with which it is cited.
Our models seek to capture knowledge capabilities

at the level of the firm as a whole; to do this, we
aggregate various data from all of the firm’s patents
and publications. For firms with only one patent, the
data likely give a poor measure of firmwide capa-
bilities. We, therefore, leave out firms with only one
patent in our sample when we estimate our mod-
els. This eliminates 15 patents (corresponding to 15
firms). As we are not modeling the level of innova-
tion effort, but rather citations to patents, our models
should be interpreted as estimating the relative suc-
cess of the innovative effort, conditional on the firm
having a capability to innovate. Additionally, to help
ensure that the research effort covered by our patents
does not precede the research effort represented by
publications, we eliminate 96 patents that were filed
prior to 1987, corresponding to an expected 1988 jour-
nal publication date, the first year of our publication
data.

Independent Variables: The Bibliometrics of
Publishing, Copublishing, and Patenting
First, we consider the effect of investing in science on
the firm’s patents. To measure this effect, we develop
several variables from the bibliometric and patent
data.

Firm Publish Dummy. This takes a value of 1 if the
firm published at least one article up to the year in
which the observed patent was filed.

Publication Volume. The total number of firm pub-
lications, cumulated up to the year in which the
observed patent was filed. This gives an indication of
the volume of publishing. The variable is specified in
log form to take account of the highly skewed distri-
bution of publications.

Percent of Copublications. Percentage of all publica-
tions by the firm that were collaborative publications
with an external organization, cumulated up to the
year the observed patent was filed.

Science Intensity of Firm’s Patents. We measure the
closeness of the firm’s technologies to knowledge pro-
duced in open science. A patent is required to list the
prior art that it builds upon: this includes both other
patented inventions and publications in the scientific
literature that are not patented. Firms that seek to
integrate scientific findings into their inventions are
more likely to cite scientific findings in their patents,
hence have more nonpatent references in their prior
art. Science intensity is a “backwards” citation count,
measured as the number of times a patent references
nonpatented literature in its prior art. Deng et al.
(1999) find that science intensity is positively asso-
ciated with subsequent financial performance for a
group of technology- and science-based companies.
There is great variation in the degree to which patents
in our sample build upon science: the mean is around
40 citations to published works, with up to as many
as 1,675 such citations. For the firm, we calculate the
mean number of citations to nonpatented literature
across all of its patents.

Firm Average Cites to Publications. This variable
captures citations to a firm’s publications and is
our primary measure of firm-level scientific research
capabilities. Raw citation counts to each article are
normalized by the mean and standard deviation of
citations received by all sampled articles in its pub-
lication year. Normalizing the raw citations by year
allows citations to be summed across years for each
firm; the aggregate citation counts are then divided
by the number of the firm’s publications, to yield
an average citation measure for the firm as a whole.
Averaging the citations this way removes bias toward
large-volume publishers; we have separately esti-
mated the effect of publication volume and here we
want to isolate the effect of publication quality. In

372 Management Science/Vol. 49, No. 4, April 2003



GITTELMAN AND KOGUT
Does Good Science Lead to Valuable Knowledge?

our models, normalized citations are aggregated up
to the year the observed patent was filed. The mea-
sure, therefore, represents the relative quality of the
firm’s stock of scientific knowledge, cumulated from
the start of the publication period up to the time of
the observed innovation.

Control Variables
We also include a number of control variables, to
account for heterogeneity among the firms, as well as
to control for age and field effects.

Patent-Level Controls.
Age of Patent. Years elapsed since the patent was

filed. This control is particularly important, because
we expect citations to patents and to papers to
increase with age.

Patent Family Size. This variable is an indicator
of the value of the invention to the firm, as evi-
denced by the number of the patents the firm issued
or renewed in different countries (Cockburn and
Henderson 1998). We count the total number of
patents in the patent family, including patents granted
overseas, whose forward citations are captured in our
dependent variable. It is costly to maintain multiple
patents; this variable, therefore, acts as a fixed-effect
control for each invention, allowing for random luck
in the innovation process and firm efforts to promote
their innovations in multiple markets.

Patent Number of Inventors. We hypothesize that the
research effort is associated with the number of peo-
ple assigned to that effort, and that this is reflected in
the number of people listed on the patent. We there-
fore include this measure as a proxy for the resources
invested in the research project that resulted in the
observed patent.

Technology Class of Patent (Patent Drug, Patent Test).
We wish to control for technology segments that may
be inherently more cited than others. We expect that
patents that are in drug-related categories may be less
cited than technique-based patents, as the former may
represent a stopping point in further innovation once
a patent has been issued, whereas techniques may
spawn a host of incremental innovations. As these
patterns would not necessarily reflect the underly-
ing importance of the innovations (and, indeed, may

mask importance in the case of a drug patent), we
need to create controls for them, as the classification
system does not automatically distinguish patents
in this way. Using international patent classification
codes, we create two main categories of technologies:
Patent drug indicates whether the patent is classified
in A61K, medicines and pharmaceuticals; patent test
indicates whether the classification is C12Q or G01N,
which cover measuring, testing, and immunoassays
using genetic materials. These two categories account
for 345 patents.4

Firm-Level Controls.
Firm Age. Number of years since the firm was

founded. Older firms have had more time to accu-
mulate a knowledge base that can be applied across
a range of innovations, however, they may represent
knowledge of an older vintage than younger firms.

Firm Pharmaceutical Strategy. This is a broad mea-
sure of the technological orientation of the firm,
to identify those firms that are seeking to develop
biopharmaceuticals against firms that are primarily
specialized in research tools, tests, instruments, and
information-based products and services. From the
BioScan (1994) data, we coded for a dummy vari-
able that takes a value of 1 if the firm is involved in
research oriented toward discovering new human bio-
therapeutics. Sixty-seven firms are coded as belonging
to this category. We expect that on average invest-
ments in science will have a greater payoff for firms
engaged in drug discovery.
Table 1 gives summary data for the dependent and

independent variables, and Table 2 gives the bivariate
correlations. None are high enough to suspect mul-
ticollinearity, further confirmed by regression results
and additional tests (discussed further below).

Model Specification
Because the data are counts of citation frequencies, we
employ a count model that makes use of the infor-
mation contained in the numerous observations that

4 In models not shown here, we control for all technological sub-
fields by adding dummies for the main (first) patent class listed on
each patent, but these controls were not significant and did not add
to the power of the model.

Management Science/Vol. 49, No. 4, April 2003 373



GITTELMAN AND KOGUT
Does Good Science Lead to Valuable Knowledge?

Table 1 Summary Statistics

Mean Median Maximum Minimum Std. dev.

Cites to patent 12�3 7 463 0 21�5
Patent age 8�88 9 13 5 2
Patent family size 6�14 6 39 1 5�32
Patent number inventors 3�05 3 20 1 2�12
Firm age 16�9 17 25 7 3�98
Firm pharma strategy 0�69 1 1 0 0�46
Patent drug 0�28 0 1 0 0�45
Patent test 0�08 0 1 0 0�28
Firm publication dummy 0�93 1 1 0 0�26
Firm publication volume 139 31 1�395 0 260
Firm % copublication 0�66 0�7 1 0 0�24
Firm % joint patent-publishers 0�6 0�63 1 0 0�21
Firm average cites to publications −0�29 −0�19 5�63 −3�36 1�12
Firm science intensity 39�9 28�8 373 0 32�7
Patent science intensity 37�9 17 1�675 0 82�8
Patent % joint patent-publishers 0�69 0�86 1 0 0�37

are never cited. Count data are frequently estimated
with one parameter Poisson models. Poisson mod-
els are nested within the negative binomial model,
a two-parameter model that estimates an overdisper-
sion parameter and produces correct standard errors
for count data that is overdispersed (Cameron and
Trivedi 1998). Because patent citations exhibit a great
deal of overdispersion, we estimate negative binomial
models. We test for robustness by estimating cluster
regression models.

Table 2 Bivariate Correlations

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 Cites to patent 1
2 Patent age 0�36 1
3 Patent family size 0�33 0�47 1
4 Patent number inventors 0�24 0�12 0�26 1
5 Firm age 0�08 0�17 0�05 0�05 1
6 Firm pharma strategy 0�12 0�04 0�11 0�11 0�24 1
7 Patent drug 0�06 0�12 0�22 0�08 0�11 0�25 1
8 Patent test 0�00 −0�05 −0�07 −0�03 −0�11 −0�22 −0�20 1
9 Firm publication volume −0�04 −0�22 −0�06 0�01 0�55 0�28 0�08 −0�04 1
10 Firm % copublications 0�09 0�05 0�06 0�09 0�15 0�24 0�06 0�09 0�07 1
11 Firm % joint patent-publishers 0�08 0�05 −0�01 −0�05 0�22 0�26 0�09 −0�16 0�32 −0�09 1
12 Firm average cites to publications 0�07 0�20 0�11 0�05 0�29 0�33 0�09 −0�07 0�33 0�25 0�14 1
13 Firm science intensity 0�09 −0�01 0�09 0�10 0�40 0�32 0�12 −0�08 0�47 0�03 0�24 0�19 1
14 Patent science intensity 0�07 −0�08 0�16 0�14 0�14 0�11 0�11 −0�04 0�18 0�02 0�06 0�07 0�27 1
15 Patent % joint patent-publishers 0�09 0�07 −0�03 −0�07 0�11 0�06 0�05 −0�09 0�14 −0�10 0�47 0�03 0�07 0�09 1

Models of Publishing Effects on Patent Citations
Models 1–4 (see Table 3) include the control vari-
ables and add different science investment variables.
Model 1 includes only the control variables. As
expected, older patents and patents from large fami-
lies receive more citations. The proxy for cost of the
project, number of inventors on the patent, is also
positive (p < 0�01). There is a small negative effect
of firm age but it is not significant. Firms coded as
working on drug development do receive higher cita-
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Table 3 Negative Binomial Models of the Effect of the Quality of a Firm’s Science Capability on the Production of Highly Cited Patents

4. Citation to
3. Collaboration publications

2. Firm and science without other
1. Control publication measures for firm-level

Model variables only dummy firms that publish science indicators

All firms with > 1 All firms with > 1
All firms with > 1 All firms with > 1 patent and > 1 patent and > 1

Sample patent patent publication publication

Variable � S.E. � S.E. � S.E. � S.E.

Constant −2�64∗∗∗ 0�34 −2�80∗∗∗ 0�37 −3�67∗∗∗ 0�42 −3�35∗∗∗ 0�40
Log (patent age) 2�02∗∗∗ 0�16 2�05∗∗∗ 0�16 2�38∗∗∗ 0�19 2�19∗∗∗ 0�19
Patent family size 0�05∗∗∗ 0�01 0�05∗∗∗ 0�01 0�03∗∗∗ 0�01 0�04∗∗∗ 0�01
Patent number of inventors 0�06∗∗∗ 0�01 0�06∗∗∗ 0�01 0�08∗∗∗ 0�02 0�08∗∗∗ 0�02
Firm age −0�00 0�01 −0�00 0�01 −0�02∗ 0�01 0�00 0�01
Firm pharma strategy 0�21∗∗∗ 0�07 0�21∗∗∗ 0�07 0�23∗∗∗ 0�09 0�33∗∗∗ 0�08
Patent drug −0�05 0�07 −0�05 0�07 −0�06 0�07 −0�06 0�07
Patent test 0�23∗∗ 0�11 0�23∗∗ 0�11 0�19 0�12 0�24∗∗ 0�12
Firm publication dummy 0�13 0�12
Log (publication volume)a� b 0�05∗∗ 0�03
Firm % copublicationsb 0�23 0�15
Firm science intensity 0�00∗∗∗ 0�00
Firm average cites to publicationsb −0�14∗∗∗ 0�04 −0�11∗∗∗ 0�03
Overdispersion parameter −0�14∗∗∗ 0�05 −0�14∗∗∗ 0�05 −0�15∗∗∗ 0�05 −0�13∗∗∗ 0�05
N 1�120 1�120 934 934
Log likelihood −3�748 −3�748 −3�044 −3�052

∗p < 0�10, ∗∗p < 0�05,∗∗∗p < 0�01.
aA value of 1 is added to each observation.
bCumulated to the year of patent filing.

tions to their patents. On the other hand, drug patents
do not receive significantly more citations, although
patents in test-related categories patents do. These
are not necessarily contradictory results: firms with
a pharmaceutical strategy also patent in test-related
categories.
Model 2 adds a dummy variable to show whether

the firm had any publications up to the file date of
the observed patent. It is positive but not significant.
This surprising result may indicate that science has
no significant impact on innovation outcomes; or it
may indicate that there are groups of firms within our
sample, and that for some of the firms, science does
not impact innovation. Finally, poor specification of
the variable is a plausible explanation. Because most
of the firms in our sample had at least one publication
(only 7% of patents were issued by firms with no pub-
lications), this rather crude measure of science invest-

ments may not pick up real differences in research
levels and capabilities.
The models that follow use measures taken from

each firm’s publications; in all subsequent models,
we, therefore, only include patents of firms that
have published at least one article up to the filing
date of the cited patent. Model 3 includes publica-
tion volume, percent of collaborative publications, sci-
ence intensity of the firm’s patents, and the average
citations to the firm’s publications. We consider each
in turn.
Publication volume raises the patent citation rate

and is significant (p < 0�05). This result is counter
to the findings of Cockburn and Henderson (1998)
and Gambardella (1995) among pharmaceutical firms,
who find (respectively) that the volume of pub-
lication does not appear important in predicting
patent performance, and that only recent publica-
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tions appear to matter in estimates of patent outputs.
However, if we remove Genentech from the analysis
shown in Model 3, the variable is no longer signif-
icant (p = 0�14), while the coefficients and standard
errors of all the other variables remain unchanged.
Because Genentech is such a large part of our
sample—accounting for 10% of patents and 20% of
publications—and places such strong emphasis on
science-driven discovery, we ran all our models both
with and without it. We do not report those sepa-
rately; in all cases, coefficients and standard errors
of the reported variables only slightly change signifi-
cance levels are unchanged.
The degree to which the firm collaborates is pos-

itive but not significant in Model 3 (in subsequent
models, it is just significant at the 10% level). Empir-
ical evidence has shown the positive role of collabo-
ration in innovation (Cockburn and Henderson 1998,
Powell et al. 1996); the measure here may not be suf-
ficiently fine grained to pick up these effects. Science
intensity is positive and highly significant (p < 0�01).
Patents that build on science are more likely to be
cited, hence, more likely to generate further innova-
tions and value. This result supports the notion that
integrating scientific research with innovation has a
positive impact on a firm’s innovation performance,
and adds to earlier findings that science intensity is
associated with firm value (Deng et al. 1999).
The variable of central importance to our study

is firm average cites to publications. It has a nega-
tive effect on the citation rate (p < 0�01). Highly cited
papers are associated with less cited patents. The
negative sign implies that the production of high-
quality publications actually detracts from the inno-
vation effort. This is a strong result, for it indicates
that successful patents and successful papers follow
different selection logics, and that these logics are
opposing. To confirm this, we construct the scientific
quality variable in a variety of different ways. We
measure research quality as the firm’s percentile rank-
ing among all firms in the sample, ranked according
to citations to their publications; by including the cita-
tions to the firms’ single most highly cited publication
across all years in the sample period; and by estimat-
ing separate models for citations to firm-only versus
collaborative publications. The results are robust to all

specifications of the variable: negative and significant
effect (p < 0�01) on patent citations.
It is important to note that the bivariate correla-

tion between highly cited patents and highly cited
papers is positive at 0.36, and a regression of impor-
tant papers on important patents shows a significant
and positive relationship. However, once age of the
patent is included, the relationship turns negative and
significant; a likelihood test shows the added vari-
able significantly improves the fit. Theoretically, this
is to be expected: older patents cite older papers and
both have more forward citations. Thus, the bivariate
correlation is spurious, reflecting age, and, hence, dis-
appears once a control is added. As a further check,
in Model 4, we regress average citations to publica-
tions without any of the other firm science measures.
The coefficient is still negative and significant and the
standard error is stable, indicating that the relation-
ship is not due to collinearity with the other firm
science measures.

Robustness: An Independent Test to
Investigate Measurement Error
To test the validity of this important finding, we
collect additional data and perform additional tests.
We want to see whether patents that build upon
highly cited scientific articles are more influential than
patents that build on undistinguished scientific arti-
cles. If influential patents are associated with highly
cited scientific articles, that would contradict our
model result of publication citations having a nega-
tive impact on patent citations.
We construct two separate samples, ranked sam-

ple and firm sample, to measure important science on
an absolute scale and on a firm-specific scale, respec-
tively. Each sample includes two groups: highly cited
articles and a control group. We first consider the
ranked sample. The highly cited group in the ranked
sample includes articles falling into the top 0.05 per-
centile of all articles published by the firms in 1990 (49
articles) or 1991 (57 articles), for a total of 106 highly
cited articles. The average publication in this group
was cited 470 times; the group includes major scien-
tific findings published in prestigious journals such
as Nature, Science, and Cell. It is an indicator of the
excellent science carried out by the firms publishing
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these articles that one-quarter of the articles (26 out of
106) were firm-only publications; the remainder were
coauthored with scientists at universities or research
institutes. To create the control group, each of these
top-ranked articles is matched to 106 randomly sam-
pled articles from our database published in 1990 (49
articles) or 1991 (57 articles) that are not in the highly
cited group. The average publication in the control
group was cited 42 times, with one-quarter (27/106)
as firm-only publications.
The firm sample is constructed to measure science

quality on a scale relative to a firm’s total scientific
outputs. We select the most highly cited article pub-
lished by the firm in any year to create the highly
cited group (total = 93 articles, 1 per firm).5 The aver-
age publication in this group received 321 citations,
and 24 were firm-only articles. For the control group,
we match the firm’s most highly cited article to the
median article published by the firm in the same year
(total = 93 articles; average citations = 30, 26 firm-only
articles). We run separate tests for ranked sample and
firm sample.
Table 4 shows that for both the ranked sample and

the firm sample, highly cited articles generate many
more patents than the control group. This is true
for total patents as well as patents by the firm that
authored the article (self-patents). Important science
attracts innovation efforts, both by firms that gener-
ated the findings and by other organizations.
These data establish that firms cluster their inno-

vate efforts around important scientific findings.
Interestingly, this is true whether science importance
is measured in an absolute sense (ranked sample) or
relative to a firm’s own scientific research outputs
(firm sample).
We next consider whether these patent clusters

around important science are more valuable as inno-
vations. We test whether patents that build on highly
cited scientific articles receive more citations, through
the year 2000, than patents that build on the con-
trol groups. We regress the citations received by each
patent against a dummy variable, indicating whether

5 This sample is smaller than our full sample of firms, because it is
limited to firms that published at least two articles during a given
year of our sample period.

Table 4 Number of Patents Citing Articles: Highly Cited Articles Versus
Control Groups (Self-Patents Shown in Parentheses)

Group Ranked sample Firm sample

Highly cited articles 232 (46) 194 (29)
Control group articles 44 (6) 58 (13)

the patent references a highly cited article in its prior
art (variable takes a value of 1) or a control group
article (variable takes a value of 0). In the ranked
sample, only 3 patents cite both a highly cited arti-
cle and a control group article, indicating that these
are different clusters of innovations. In the firm sam-
ple, 12 patents cite both a highly cited and a control
group article. We remove these patents from our esti-
mations. A positive and significant coefficient for the
dummy variable would indicate that patents that cite
important articles are more highly cited themselves:
valuable science leads to valuable innovations. This
finding would contradict our earlier model results.
Table 5 reports the results of these regressions. Both

are negative binomial estimations. We include con-
trols for the age of the cited patent, the total num-
ber of articles cited in the patent’s prior art, and
whether or not the patent was a self-patent (assigned
to the same firm as authored the article). The results
provide strong corroboration for our earlier result.
In the ranked sample, highly cited articles are neg-
atively associated with patent citations (p < 0�01). In
the firm sample, the sign is positive but not signif-
icant (p < 0�68). The findings are strongly suggestive
that highly cited patents do not build upon valuable

Table 5 Negative Binomial Models of Citations to Patents Citing
Sampled Articles

Ranked sample Firm sample

Variable Coeff. S.E. Coeff. S.E.

Intercept −2�88∗∗∗ 0�49 −3�17∗∗∗ 0�51
Log (patent age) 2�29∗∗∗ 0�23 1�98∗∗∗ 0�19
Science intensity of patent 0�30∗∗∗ 0�09 0�30∗∗∗ 0�09
Self-patent 0�27 0�27 0�49∗ 0�28
Cites a highly cited article = 1 −0�81∗∗∗ 0�33 0�11 0�26
Overdispersion parameter 0�67∗∗∗ 0�13 0�38∗∗∗ 0�14
Log likelihood −452 −444
N 229 212

∗p < 0�10� ∗∗p < 0�05, ∗∗∗p < 0�01�
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science, and, indeed, important science leads to inno-
vations that poorly perform.
The tests of patenting and patent citations indicate

that firms cluster their innovation activities around
important scientific discoveries, both their own and
those made by other firms. However, innovation clus-
ters around highly cited scientific discoveries do not
result in highly cited patents, indeed, patent clusters
around important science produce less cited patents.
This provides support for our earlier finding of con-
flicting logics between the selection of valuable scien-
tific ideas and valuable technologies.

Bridging Scientists: Joint
Patent-Publishers
Why, then, do firms invest in carrying out excellent
science, and why do they associate with prestigious
scientists? One possibility is that some firms are “cap-
tured” by star scientists whose reputations bring pres-
tige and tangible resources to firms. The most skilled
practitioners of their art are those who are most wed-
ded to its selection logic yet our results suggest that
the process of selecting among ideas comes into con-
flict with the selection logic of patents. The firm’s
ability to integrate and mediate these conflicting log-
ics becomes important: as shown by Cockburn et al.
(1999), the balancing of incentives based on science
with rewards that are market oriented becomes a ful-
crum for explaining firm heterogeneity in innovation
performance.
We model firm heterogeneity in innovation as the

degree to which firms succeed in integrating the
two worlds of science and invention at the level of
the individual scientist. We identify two overlapping
sets of scientists. The first group, called publishers,
includes those scientists who are listed on at least
one publication in our sample. In total, we identified
19,638 different names of publishers; while our data
do not allow us to identify where these individuals
actually work, we suspect that a significant propor-
tion are employed by outside institutions, mainly uni-
versities. The second group, called inventors, includes
scientists involved in developing new technologies,
as revealed by their being listed on a patent. On
the patents, we identified 2,035 names. This yields a

ratio between publishers to inventors of about 10 to
1. Our data indicate that these two groups of scien-
tists are largely distinct, though they overlap. Among
inventors, the overlap with the publishers is relatively
large: 57% of inventors are also publishers (1,170 out
of 2,035 inventors). We identify these individuals as
forming a group of joint patent-publishers. However,
only 6% of publishers are also inventors (1,170 out
of 19,638). This indicates that the firms are intensely
leveraging the contributions of scientists working in
academic institutions, because few of this large group
ever appear on a patent for the firm.
We expect that this measure of overlap between sci-

entists who publish and patent at the firm level is an
important indicator of the degree to which a firm is
able to successfully translate research into invention.
To capture this heterogeneity, we construct a variable
called percent of joint patent-publishers. We calculate
this variable first at the patent level, as the percent-
age of all individuals listed on a patent who are also
listed on at least one publication. We then calculate
this variable for the firm as a whole, by aggregating
all scientists listed on the firm’s patents during the
sample period. These give measures of the degree to
which scientists who patent are also active (or have
been active) in scientific research, at the level of the
individual project (patent) and at the aggregate firm
level.
Model 5 (See Table 6) adds the effect of joint patent-

publishers at the firm level to the earlier models of
patent citations. The variable is positive and signif-
icant (p < 0�05) and including it does not affect our
previous findings about science intensity and science
quality. Model 6 replaces the measure at the firm level
to show the percent of joint patent-publishers at the
level of the cited patent itself. We also include the sci-
ence intensity of the cited patent rather than for the
firm as a whole. These measures can pick up effects at
the more detailed project level rather than the aggre-
gated data for the firm. Both variables are positive
and significant (p < 0�01). Finally, to show robustness,
in Model 7, we re-estimate Model 6 by using a clus-
tering regression that controls for random firm effects.
A fixed-effect model, with firm dummies included but
not shown, is reported in Model 8; several firms are
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Table 6 Negative Binomial Models of Effects of Bridge Scientists on the Production of Highly Cited Patents

7. Model (6) with
5. Effect of firm’s standard errors 8. Model (6) with firm

joint patent- 6. Effect of patent’s joint adjusted for clustering fixed effects (firm 9. Model 7:
publishers patent-publishers of firm dummies not shown) elasticities

All firms with > 1
patent and > 1
publication Same as (6) Same as (6) Same as (6) Same as (6)

Variable � S.E. � S.E. � Robust S.E. � S.E. ey/ex S.E.

Constant −3�82∗∗∗ 0�43 −4�0∗∗∗ 0�44 −3�98∗∗∗ 0�61
Log (patent age) 2�33∗∗∗ 0�20 2�38∗∗∗ 0�20 2�34∗∗∗ 0�12 3�11∗∗∗ 0�34 5�05∗∗∗ 0�63
Patent family size 0�03∗∗∗ 0�01 0�03∗∗∗ 0�01 0�03∗∗∗ 0�01 0�04∗∗∗ 0�01 0�18∗∗∗ 0�07
Patent number of inventors 0�08∗∗∗ 0�02 0�08∗∗∗ 0�02 0�08∗∗∗ 0�02 0�10∗∗∗ 0�12 0�23∗∗∗ 0�07
Firm age −0�02 0�01 −0�01 0�01 −0�01 0�02 0�33 0�44 −0�21 0�27
Firm pharma strategy 0�20∗∗ 0�09 0�25∗∗∗ 0�09 0�25 0�14 −0�52 0�85 0�18∗ 0�10
Patent Drug −0�08 0�08 −0�08 0�08 −0�07 0�09 −0�09 0�08 −0�02 0�02
Patent Test 0�22∗ 0�12 0�21∗ 0�12 0�21 0�16 0�31∗∗∗ 0�12 0�02 0�01
Log (publication volume)a� b 0�04 0�03 0�04 0�03 0�04 0�22 0�18∗ 0�10 0�15 0�13
Firm % copublicationsb 0�29∗ 0�15 0�26∗ 0�15 0�26 0�22 0�40 0�36 0�17 0�15
Firm science intensity 0�00∗∗∗ 0�00
Firm average cites to publicationsb −0�14∗∗∗ 0�04 −0�13∗∗∗ 0�04 −0�013∗∗∗ 0�05 −0�15∗ 0�08 −0�05∗∗∗ 0�02
Firm % joint patent-publishers 0�43∗∗ 0�21
Patent science intensity 0�07∗∗∗ 0�03 0�07∗ 0�04 0�05∗∗ 0�03 0�19∗ 0�12
Patent % joint patent-publishers 0�25∗∗∗ 0�10 0�25∗∗ 0�11 0�21∗∗ 0�10 0�18∗∗ 0�08
Overdispersion parameter −0�15∗∗∗ 0�05 −0�16∗∗∗ 0�05 −0�16 0�07 −0�46∗∗∗ 0�06
N 934 934 934 934 934
Log likelihood −3�042 −3�040 −3�040 −2�916

∗p < 0�10, ∗∗p < 0�05, ∗∗∗p < 0�01.
aA value of 1 is added to each observation to take the log.
bCumulated to the year of patent filing.

dropped due to collinearity. Both indicate robustness
of the main results to within-firm variance.
In the final column, we report the elasticities of

Model 7. The coefficient to the highly cited publica-
tion variable implies an elasticity of −0�05, with a
95% confidence interval ranging from 0.01 to −0�35.
These effects are not high, until it is recalled that the
citations to the more successful papers (see Discus-
sion below) average around 500. The important effect
of patent-publishers, shown here at the project level
(with an elasticity of 0.18 for Model 7) supports the
interpretation that integrating research and innova-
tion at the level of the individual scientist is more
important to the innovation effort than firm-level sci-
entific capabilities as measured by the volume and
quality of scientific publications. As a note on the side,

by far the most influential effect on patent citations is
age, with an elasticity near five.

Discussion
In a knowledge-based industry, it is reasonable to
expect that firms with access to superior knowl-
edge resources or skills should outperform those
with weaker resources or skills. Our models do not
provide strong support for this hypothesis. Highly
cited patents are associated with science intensity and
firm effects, but not with cutting-edge science; they
are associated with scientists who publish, but only
weakly associated with publication volume. Indeed,
we find that the ability to produce excellent science
has a strong negative impact on the patent citation
rate. Taken together, the models indicate that invest-
ing in scientific research produces mixed results, and
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the relationship between research and innovation is
more complex than a simple human capital story
would predict.
Instead of a smooth internal transfer between firm

scientific capabilities and innovation, the results indi-
cate the very different processes involved in acquir-
ing scientific knowledge and generating high-impact
innovations. The negative relationship between sci-
entific capabilities and the innovation effort points
to a problematic disconnect between the scientific
knowledge of the firm and its ability to generate
high-impact innovations. Scientific ideas are not sim-
ple inputs into inventions; important scientific ideas
and influential patents follow different and appar-
ently conflicting evolutionary logics. This raises the
question: Why do firms invest in scientific research
when those investments do not seem to pay off in
terms of more highly cited patents?
Two factors emerge as important in predicting

patent citations. High-impact innovations heavily
build upon the scientific literature and are made by
people who both invent and do research. These fac-
tors are not independent of one another. Joint patent-
publishers may perform the important function of
identifying and applying the scientific research that
the firm would most profit from in its projects. This
function includes identifying as well as accessing
external researchers in the field who are likely to
bring new or complementary knowledge to the firm.
Put another way, bridging the disconnect between sci-
entific knowledge and innovation appears to depend
on access to individuals who perform both activi-
ties, rather than on the ability to generate valuable
scientific knowledge alone. Papers and patents do
not follow the same selection logics and, yet, scien-
tists produce both. Firms recruit scientists who can
successfully bridge these logics and provide incen-
tives that support their dual activities. In this regard,
our findings imply the firm-level properties that
Cockburn et al. (2000) found important.

Conclusions
Scientific knowledge and patents are related, but good
publications and good patents are not. This can be
easily explained by recalling that the two artifacts are

not chosen by the same evolutionary logic of selec-
tion. In other words, patent citations are filtered by
the conjoint influence of technical richness and market
impact. These are very different evolutionary criteria
than those faced in the world of publications. As long
as these heavily cited patents defer to the papers that
influenced them, the process will generate a very dif-
ferent selection citation pattern for influential patents
than for patents overall.
This filtering of the technologically valuable patents

by the selection dynamics among patent citations
means that there is a technological and market
component to patenting. Namely, because certain
patents open richer technological veins, the sub-
sequent advances in related technical knowledge
encourage more innovative efforts in that area and,
hence, more patents. These, in turn, cite the ini-
tial patents that opened this avenue of technologi-
cal innovation. It is this feedback that carves a trace
in the patent patterns. Patent citation patterns do
not acknowledge what Merton (1973) called Matthew
effects in science of prestige, attracting citations and
resources; they reflect perceived technical and market
opportunities.
This conclusion has a simple implication for under-

standing what firms do in biotechnology. On the most
basic level, a firm that has excellent capabilities to do
scientific research may not succeed well in produc-
ing marketable innovations, as indicated by Stern’s
(1999) analysis of scientists’ wages. However, having
a reputation for performing “good” science may be
necessary to attract the kinds of people the firm needs
to innovate. Firm heterogeneity in innovation perfor-
mance centers on the ability to translate knowledge
produced within the epistemic community of science
into knowledge that a market will value. Scientists
who simultaneously publish and invent are instru-
mental in bridging the disconnect between scientific
knowledge and important technologies. Heterogene-
ity in innovation performance comes from firms’ abil-
ities to access and create the capability to do science,
while bypassing the evolutionary logic that selects
among its outputs. This role points to potential differ-
ences in the capabilities of firms to recruit and man-
age intellectual capital, as found in the studies by
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Cockburn and Henderson (1998) and Cockburn et al.
(2000).
Our study concerns an industry with particularly

strong linkages between technological innovation and
scientific knowledge (Cohen et al. 2002). Although the
reliance on public science sets this industry apart, in
a wider perspective, these findings are not unique to
science- or technology-based industries. They point
to the broad claim that knowledge of firms is cre-
ated within and shaped by occupational and epis-
temic communities. Individuals embody knowledge
that is useful when moving within the firm (Argote
et al. 1995) or between firms (Almeida and Kogut
1999, Gittelman 2000). They are also anchored in iden-
tities and in what van Maanen and Barley (1984)
call “occupational communities” that span across firm
boundaries. These communities influence as well the
organizing principles that guide the internal struc-
ture and the coordination among people and divi-
sions inside the firm. While a resource to the firm,
occupational communities pose potential conflicts in
directing the exploration and efforts of their mem-
bers. These results point to the important influence
of membership in communities broader than a firm’s
boundaries that both abet and hinder the search for
commercially valuable technological innovations.
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