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Part I

Reconstructing dynamical systems from time
series
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Time series

Sequence of measurements over time, for example

Historic temperature records

Electrical activity on the heart (ECG)

Stock prices

Example: Atrial fibrillation (Koefib217)
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Time series analysis

Main goals of time series analysis

Modelling & prediction

Characterisation & classification

Approaches

Linear versus nonlinear

Parametric versus nonparametric
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Time series methods from chaos theory

Correlation integrals

Originally used for estimation of dynamic invariants
(deterministic dynamics)

Measure of complexity (Hoekstra et al.)

Tests for independence (BDS test, 1987, 1996)

Distance measures between distributions (Diks et al.)

Information theoretic dependence measures
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Nonlinear dynamics and chaos

Dynamical system
State space Ω

Time variable t ∈ Z (discrete) or t ∈ R (continuous)

Evolution operator φ(x , t), defines a map

φt : Ω → Ω, φt(x ) = φ(x , t)

(flow over time t)

(semi-)group properties

φ0 = Id, φs ◦ φt = φs+t

s, t ≥ 0 (∀s, t ∈ Z resp. R for invertible dynamics)
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The logistic map

Example: logistic map
Map:

xt = f (xt−1) = axt−1(1− xt−1), 0 < a < 4
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Iterating the logistic map
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Qualitative behaviour depends on a
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Bifurcation diagram for logistic map
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Sensitive dependence on initial conditions

Near states may either diverge or converge in the long-run

Average growth rate of near trajectories characterized by the
Lyapunov exponent

Lyapunov exponent (for 1-dimensional maps)

λ = lim
T→∞

1
T

T∑
t=1

log
∣∣f ′(xt)

∣∣ , with f ′(x) = d f (x)
dx

If the system has a unique invariant measure, µ say, λ is the
same for µ-almost all initial states x0 ∼ µ



Time series Nonlinear dynamics and chaos Attractor reconstruction from time series

Lyapunov exponents
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The Hénon map

Example: The Hénon map

xt+1 = 1− ax2
t + yt

yt+1 = bxt

Default values: a = 1.4, b = 0.3

Jacobian

J =

(
−2axn 1

b 0

)
det J = −b

⇒ volume contracting for |b| ≤ 1
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Phase plot – Hénon attractor
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Bifurcation plot – Hénon map
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Largest Lyapunov exponent – Hénon map
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The Lorenz attractor

Lorenz system

ẋ = σ(y − x)
ẏ = (r − z)x − y
ż = xy − bz

Default parameter values

b = 8/3,
σ = 10, (Prandtl number)
r = 28 (Rayleigh number)
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Lorenz butterfly
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The Rössler dynamical system

Rössler system

ẋ = −y − z
ẏ = x + ay
ż = b + z(x − c)

Standard parameter values

a = 0.15,
b = 0.2,
c = 10
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Rössler attractor
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Takens reconstruction theorem

The state space can be reconstructed from an observed scalar
time series.

Main idea: starting from a given state, a unique time series
pattern arises

Use consecutive data (Xt , Xt+τ , . . . , Xt+(m−1)τ ) to fix the state at
time t

Under which conditions does this work? If it does, how should
m and τ be chosen?
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Takens reconstruction theorem

Assumptions (continuous time case):

Unknown dynamical system

dy
dt

= F (y t), y ∈ Ω

Dynamics confined to finite dimensional compact
subspace M ⊂ Ω

Observations are generated as xt = h(y t), at regularly
spaced times t = t0 + kτ , (k integer) where h is a
continuous measurement function

h : M → R, y 7→ h(y )

For flows: some requirements on the time interval τ (e.g.
no periodic orbits with period kτ )
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Takens reconstruction theorem

Continuous time: flow over time interval τ is described by map

φτ : Ω → Ω, φt(y ) = φ(y , t)

From now, use same notation for discrete and continuous time,
with map F : Ω → Ω describing the flow over a time lag τ

Note:
Φ2 : y 7→ (h(y ), h(F (y )))

is a map from M ⊂ Ω to the plane, R2
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Reconstruction of the Hénon attractor
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Takens reconstruction theorem

Generalisation:

Φm : y 7→ (h(y ), h(F (y )), . . . , h(F m−1(y )))

is a map from M ⊂ Ω to Rm

Takens reconstruction theorem
For smooth measurement functions h, and for m sufficiently
large, Φm generically is a smooth invertible map from M to Rm

with a smooth inverse (diffeomorphism)
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Reconstructed attractor

Corollary of the reconstruction theorem
Delay vectors (xt , xt+τ , . . . , xt+(m−1)τ ) Ω ∈ Rm lie on a faithful
image of the attractor (for m large enough)

In case there is a finite dimensional attractor, the delay vectors
also lie on a finite dimensional set, the reconstructed attractor

Takens: m ≥ 2 dim M + 1 suffices

This bound can be improved further (Sauer et al., 1991):
m > 2 boxdim A (box-counting dimension of the attractor)

For estimation of dim A, only m ≥ dim A is required
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Pespective

Control theory: Takens’ theorem is an observability result
(Aeyels)

Generalisation of Whitney’s embedding theorem (to a
restricted set of maps from M to Rm)
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Part II

Correlation integrals
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Characterising the reconstructed attractor

Delay vectors (Xt , Xt+τ , . . . , Xt+(m−1)τ ) for stationary time
series have a well-defined long-run distribution

Reconstruction has an associated measure µm,τ , called
reconstruction measure

The dynamics has some properties that don’t depend on
the representation of the dynamics (dynamic invariants)

For instance, correlation dimension and correlation entropy
are independent on the representation
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Correlation integrals

Definition of the correlation integral
The correlation integral of the reconstruction measure for
embedding dimension m is

Cm(r) =

∫
Rm

∫
Rm

Θ(r − ‖x − y ‖) µ(dy ) µ(dx )

with

Θ(s) =

{
0, s < 0,
1, s ≥ 0.

(Heaviside function)

Compact notation

Cm(r) =

∫
Rm

∫
Br (x )

µ(dy ) µ(dx ) :=

∫
Rm

µ (Br (x )) µ(dx )
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Scaling law

For finite dimensional attractors: scaling relation

Cm(r) ∼ e−mrK2rD2

D2 is called the correlation dimension. Geometric measure
of complexity

K2 is known as the correlation entropy. Dynamical
measure of complexity
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Renyi spectrum

Renyi family of correlation integrals indexed by order q

Cq,m(r) =
(∫

Rm

(∫
Rm Θ(r − ‖x − y ‖) µ(dy )

)q−1
µ(dx )

) 1
q−1

=
(∫

Rm (µ (Br (x )))q−1 µ(dx )
) 1

q−1

Scaling law

Cq,m(r) ∝ e−mrKq rDq

Directly generalises D2 and K2
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Sufficient condition for chaos

Definition of chaos: K1 > 0
Estimation of inner integral(∫

Rm
Θ(r − ‖x − y ‖) µ(dy )

)q−1

problematic for q = 1. For q → 1, one finds (l’Hopital)

C1,m(r) := lim
q→1

Cq,m(r) =

∫
ln

(∫
Br (x )

µ(dy )

)
µ(dx )

K2 > 0 implies K1, hence chaos
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Estimating correlation integrals

empirical reconstruction measure

The set of delay vectors with equal mass 1
n associated to each

point (also called empirical delay vector distribution)

Empirical correlation integral

1
n2

n∑
i=1

n∑
j=1

Θ(r − ‖x i − x j‖)

(V-statistic)

2
n(n − 1)

n∑
i=2

i∑
j=1

Θ(r − ‖x i − x j‖)

(U-statistic)



Correlation integrals Dynamic invariants Correlation integrals for noisy data

Theiler correction

In practice we use

2
(n − T )(n − T + 1)

n∑
i=T+1

i−1∑
j=1

Θ(r − ‖x i − x j‖)

T is called the Theiler correction. T = 1 corresponds to a
U-statistic (no Theiler correction)

Statistically, the Theiler correction is a finite sample size
correction
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Grassberger-Procaccia method for estimating D2 and
K2

1 Estimate the correlation integral for m = 1, . . . , mmax

Ĉm(r) =
2

(n − T )(n − T + 1)

n∑
i=T+1

i−1∑
j=1

Θ(r − ‖x i − x j‖)

for a range of r -values, typically r = cak for integer k
2 Look for a ‘scaling region’ of r -values
3 Estimate D2 and K2 using the estimated correlation

integrals from the scaling region
4 Check for convergence with m
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Correlation integrals for the Rössler
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Estimated correlation dimension and entropy
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Application to atrial fibrillation
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Atrial fibrillation: correlation integrals
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Atrial fibrillation: estimated D2 and K2
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Observational vs dynamic noise

Observational noise

Y t = F (Y t−1)

Xt = h(Y t) + εt ,

Dynamic noise

Y t = F (Y t−1, εt),

For example:
Y t = F (Y t−1) + εt ,

Xt = h(Y t)
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Phase plots from clean and noisy (5%, normal)
Rössler data
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Correlation integrals for noisy Rössler data
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Effect of observational noise on reconstruction
measure

Delay vector (m-dimensional)

X m
t := (Xt−m+1, . . . , Xt)

is replaced by

X m
t := (Xt−m+1 + εt−m+1, . . . , Xt + εt)

⇒ The ‘clean’ reconstruction measure µ0
m is replaced by

µm = µ0
m ◦ νm (convolution) where νm denotes the noise

reconstruction measure
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Correlation integrals under observational noise

Correlation integral

Cm(r) =

∫
Rm

∫
Rm

I[0,r ](‖x − y ‖)µ(dx )µ(dy )

=

∫
Rm
· · ·
∫

Rm
I[0,r ](‖x + v − y − w ‖)ν(dv )ν(dw )µ0(dx )µ0(dy )

=

∫
Rm

∫
Rm

I[0,r ](‖z + s‖)ν(ds)ξ(dz)

with

η(A) = P[V −W ∈ A], (V , W ∼ ν independent)

and

ξ(A) = P[X − Y ∈ A], (X , Y ∼ µ0 independent)
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Correlation integrals under observational noise (ctd)

Clean correlation integral:

C0
m(r) =

∫
Rm

I[0,r ](‖z‖)ξ(dz) =

∫ r

0
dC0

m(s)

Correlation integral in presence of observational noise

Cm(r) =

∫
Rm

∫
Rm

I[0,r ](‖z + s‖)ν(ds)ξ(dz)

Gaussian observational noise already difficult analytically

Inner integral difficult to evaluate

Generally, noisy CI is not a functional of the ‘clean’ CI



Correlation integrals Dynamic invariants Correlation integrals for noisy data

Gaussian kernel correlation integral

Although the CI generally is not a functional of the ‘clean’ CI, it
is if ‖ · ‖ is the Euclidean norm. In that case we can define:∫

Rm
I[0,r ](‖z + s‖)νm(ds) := gr (‖z‖),

and hence

Cm(r) =

∫
Rm

gr (‖z‖)ξ(dz) =

∫ ∞

0
gr (s)f 0

‖Z‖(s) ds =

∫ ∞

0
gr (s)dC0

m(s)

More generally, whenever the kernel function used for
calculating the CI depends on the Euclidean distance, the noisy
CI is a functional of the noise-free CI



Correlation integrals Dynamic invariants Correlation integrals for noisy data

Relations between ‘noisy’ and ‘clean’ correlation
integrals

The ‘classical’ correlation integral is of the general form

T 0
m(h) =

∫ ∞

0
Km,h(s)f 0

‖Z‖(s) ds

with Km,h(s) = I[0,h](s).

Tm(r) =

∫ ∞

0
gr (s)f 0

‖Z‖(s) ds

If gr (s) is of the same form as the kernel function used for
calculating the correlation integral, the noisy and clean CI’s
then will be automatically simply related.
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The Gaussian kernel
For

Km,h(s) = e−
1
2

s2

h2

gr (‖z‖) =

∫
Rm

e−
1

2h2 ‖z+s‖2
νm(ds)

= (2πσ)
m
2

∫
Rm

e−
1

2h2 ‖z+s‖2− 1
2σ2 (s2

1+...+s2
m) ds1 · · ·dsn

=
m∏

i=1

∫
R

e−
1

2h2 (zi+si )
2− 1

2σ2 s2
i ds1 · · ·dsn

Since ∫
R

e−
1

2h2 (z+s)2− 1
2σ2 s2

=

(
h2

h2 + σ2

) 1
2

e
− 1

2(h2+σ2) ds

one finds

gr (‖z‖) =

(
h2

h2 + σ2

)m
2

e
− ‖z‖2

2(h2+σ2)
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Modified scaling law in the presence of noise

Gaussian kernel correlation integral in the presence of
noise

Tm(h) =

(
h2

h2 + σ2

)m
2

T 0
m(h2 + σ2)

The noise-free gaussian kernel behaves similar to the usual

T 0
m(h) ' cnst×m−D

2 e−KmhD.

Modified scaling law

Tm(h) ' cnst×m−D
2 ×

(
h2

h2 + σ2

)m
2

e−Km(h2 + σ2)
D
2
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Noisy and noise-free Hénon CI
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Estimation of D2 and K2 in presence of noise

Nonlinear least squares (Levenberg-Marquardt), either

Weighted least squares. Requires standard errors and
possibly covariances of T̂m(h).

We used VarT̂m(h) ∝ T̂m(h)(2− T̂m(h)).

Unweighted

Implicitly also imposes weights (log-log scale, lin-lin scale)



Correlation integrals Dynamic invariants Correlation integrals for noisy data

Estimated invariants from noisy Hénon CI�̂ ♦
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Course-grained quantities

Even if assuptions made so far (determinism + gaussian
observational noise) are violated, one may use correlation
integrals

Idea is to use behavior of correlation integrals as a measure of
complexity:

Large slope of ln Cm(r) indicates large number of relevant
state variables

Difference ln Cm(r)− ln Cm+1(r) is a measure of
unpredictability at scale r

Motivates examining course-grained quantities
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Definition of course-grained quantities

Course-grained correlation dimension and entropy
Coarse-grained correlation dimension

D2(m, r) =
d ln Cm(r)

d ln r

Course-grained correlation entropy

K2(m, r) = ln Cm(r)− ln Cm+1(r)
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Part III

Local linear prediction
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7 Prediction by analogy

8 Casdagli method
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Prediction by analogy, nearest neighbour method
Reconstruct state space, state vectors X m

s , 1 ≤ s ≤ n
Idea is to exploit

Xt+` = g(X m
t )

To make `-step-ahead forecast from X m
t we need an

approximation (estimate) of g

find k nearest neighbours X m
si

among X m
s , s < t or s 6= t

locally constant model leads to prediction by averaging

X̂t+` =
k∑

i=1

Xsi+`

alternatively, construct local linear map through linear
regression (requires k > m). Model:

Xt+` = a0 +
m∑

j=1

ajXsi+1−j + εt+`, i = 1, . . . , k
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Prediction by analogy, kernel methods

Comparable to k -nearest neighbour method, only using all
points with weights determined by distance
Prediction

X̂t+` =
∑

s

ws,tXs+`

weights wi determined by distance in state space

ws,t =
Kh(X m

s − X m
t )∑

s Kh(X m
s − X m

t )
.
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Prediction by analogy, other methods

Polynomials (global nonlinear model)

Neural networks (global nonlinear)

Radial basis functions (local, linear in coefficients)

F (x ) = α0 +
∑

i

αiΦ(‖x − x i‖)

e.g. Φ(s) = 1/(1 + ebx−c)

Parameter estimation by error backpropagation (gradient
descent)
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Casdagli method

Divide the data in a fitting set x1, . . . , xNf
and a testing set

XNf +1, . . . , xNf +Nt

Vary k in the nearest neighbour method, for each k :

Choose a number of random reference points to predict
from

Determine prediction error ei(k) = |x̂i+`(k)− xi+`|
Repeat to determine RMSE

Em(k) =

(
1
n

∑
i

e2
i (k)

) 1
2

/σ
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Example Casdagli method (Hénon data)

m = 3, ε = 0.1, 200 predictions
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Takens’ reconstruction theorem, correlation integrals,
fractal dimensions, correlation entropy, estimation of
dynamic invariants, local linear prediction
Nonparametric tests based on correlation integrals:
Divergences between reconstruction measures,
U-statistics estimators, tests for symmetry of multivariate
distributions, attractor comparison, testing for reversibility,
tests for serial independence and linearity
Statistical aspects of nonparametric tests: asymptotic
results for U-statistics in time series context, bootstrap and
Monte Carlo tests, consistency, bandwidth selection
problem, diagnostic model checking, nuisance parameters,
tests based on empirical copulas
Granger causality tests: conditional independence, linear
versus nonlinear Granger causality, nonparametric
Granger causality tests, testing for Granger causality using
correlation integrals, consistency, local measures of
conditional dependence
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