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Summary. The paper analyzes the dynamics in a model with heterogeneous agents trading
in simple markets under different trading protocols. Starting with the analytically tractable
model of [4], we build a simulation platform with the aim to investigate the impact of the
trading rules on the agents’ ecology and aggregate time series properties. The keybehavioral
feature of the model is the presence of a finite set of simple beliefs which agents choose each
time step according to a fitness measure. The price is determined endogenously and our focus
is on the role of thestructuralassumption about the market architecture. Analyzing dynamics
under such different trading protocols as the Walrasian auction, the batch auction and the
’order-book’ mechanism, we find that the resulting time series are similar to those originating
from the noisy version of the model [4]. We distinguish the randomness caused by a finite
number of agents and the randomness induced by an order-based mechanisms and analyze
their impact on the model dynamics.

1 Introduction

The paper contributes to the analysis of the interplay between behavioral ecologies of
markets with heterogeneous traders and institutional market settings. The investiga-
tion is motivated by the aim to explain inside a relatively simple and comprehensible
model those numerous “stylized facts” that are left unexplained in the limits of the
classical financial market paradigm (see e.g. [3]). Since the dynamics of financial
market is an outcome of a complicated interrelation between behavioral patterns and
underlying structure, it seems reasonable to start with an analytically tractable model
based on realistic behavioral assumptions and to simulate it in a more realistic market
setting. Such a strategy is chosen in this paper.

The first generation of agent-based models of financial markets followed the so-
called bottom-up approach. The models were populated by an “ocean” of boundedly
rational traders with adaptive behavior and were designed to be simulated on the
computers. The Santa Fe artificial market (AM) model [1, 9] represents one of the
best known examples of such approach. See also [10] and reviews in [7] and [8]. The
inherent difficulty to interpret the results of simulations in a systematic way led many
researchers to build the models with heterogeneous agents which can be rigorously
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analyzed by the tools of the theory of dynamical systems. The achievements of the
latter approach are summarized in [6]. In particular, the evolutionary model of Brock
and Hommes (henceforth BH model) introduced in [4] follows the ideas of the Santa
Fe AM in that the traders repeatedly choose among a finite number of predictors of
the future price according to their past performance.

All the models mentioned so far (both simulational and analytic) are based on a
simple framework with the mythical Walrasian auctioneer clearing the market. Real
markets are functioning in a completely different way, and many recent models try to
capture this fact. For instance, in [11] it is shown that an artificial market with a real-
istic architecture, namely an order-driven market under electronic book protocol, is
capable of generating satisfactory statistical properties of price series (e.g. leptokur-
tosis of the returns distribution) in the presence of homogeneous agents. Similarly,
the agent-based simulations in [2] demonstrate that the architecture bears a central
influence on the statistical properties of returns. The latter contribution is also fo-
cused on the interrelation between market architecture and behavioral ecology, and
in this respect is closely related to our paper. We relax, however, the assumption of a
“frozen” population made in [2], and allow the agents to update their behavior over
time.

More specifically, we assume that before the trading round, each agent can
choose one of two simple predictors for the next price. The individual demand func-
tion depends on the predictor chosen, while the price is fixed later according to the
specific market mechanism. The choice of predictor is implemented as a random
draw with binary choice probabilities depending on the relative past performances
of two predictors. An important parameter of the model is the intensity of choice,
which measures the sensitivity of the choice probability to the relative performance.
The higher the intensity of choice, the higher the probability that the best performing
predictor is chosen. We simulate and compare the market populated by such het-
erogeneous agents under three aggregating mechanisms: Walrasian auction, batch
auction, and an “order-book” mechanism. The latter two cases are interesting, since
they resemble two protocols implemented in real stock exchanges. On the other hand,
simulation of the Walrasian scenario provides a well-understood benchmark. Indeed,
when the number of agents tends to infinity, our stochastic model converges to the
deterministic BH model, thoroughly analyzed in [4].

In this paper, we show that understanding the basic mechanisms of the BH model
can be very helpful also when dealing with more realistic market architecture. In-
deed, the qualitative aspects of the non-linear dynamics generated by the BH model
turn out to be surprisingly robust with respect to the choice of the market mech-
anism. Nevertheless, there are some important effects which realistic mechanisms
supplement to the model. First, the finiteness of the number of agents provides a
stabilizing effect on the model, since it implies a bigger noise in the choice of the
predictor, which is equivalent to a smaller intensity of choice. Second, the inher-
ent randomness of the markets under order-driven protocols (when agents have to
choose one or few points from their demand curves) add destabilizing noise, which
can be amplified, when the fundamental equilibrium is unstable. As a result, the gen-
erated time series remind the noisy version of the BH dynamics, when the system is
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switching between different attractors. This result is now produced, however, with-
out adding either exogenous (e.g. due to the dividend realizations), or dynamic noise
to the model. Third, we investigate the impact of two types of orders, market and
limit orders, on the dynamics. We introduce a new parameter, the agents’ propensity
to submit market orders, which determines agent’s preferences in submitting mar-
ket orders as opposite to limit orders. We show that when this propensity high, the
dynamics under the batch auction greatly deviate from the underlying fundamental,
while the dynamics of the order-driven market converges to the dynamics under the
Walrasian scenario. We also show some descriptive statistics for return time series
generated for different values of the intensity of choice and the propensity to submit
market orders.

The rest of the paper is organized as follows. In the next section we present
the deterministic BH model, focusing on the agents’ behavior, which is modeled
in a similar way in our simulations. We also briefly discuss the properties of the
dynamics for different values of the intensity of choice. In Section 3, we explain
the three market mechanisms and introduce the difference between market and limit
orders. Simulations results are presented and discussed in Section 4. Section 5 points
to possible directions for future research.

2 The Brock-Hommes benchmark model

Let us consider a market where two assets are traded in discrete time. The riskless
asset is perfectly elastically supplied at gross returnR = 1 + rf . At the beginning
of each trading periodt, the risky asset pays a random dividendyt which is an inde-
pendent identically distributed (i.i.d.) variable with meanȳ. The price at periodt is
determined through a market-clearing condition (Walrasian scenario) and denoted by
pt. In the case of zero total supply of the risky asset, the fundamental price, which we
denote bypf , is given by the discounted sum of the expected future dividendsȳ/rf .
This is also the solution to the market-clearing equation for the case of homogeneous
rational expectations.

In modeling the agents’ behavior we closely follow the BH approach taken in [4].
Traders are mean-variance optimizers with absolute risk aversiona. Their demand
for the risky asset reads

Di,t(pt) =
Ei,t−1[pt+1 + yt+1]− (1 + rf ) pt

aVi,t−1[pt+1 + yt+1]
, (1)

whereEi,t−1[pt+1 + yt+1] andVi,t−1[pt+1 + yt+1] denote the expectations of trader
i about, respectively, the mean and variance of price cum dividend at timet + 1
conditional upon the information available at the end of timet − 1. It is assumed
that all the agents expect the same conditional varianceσ2 at any momentt, and
that there are different predictors for the mean. Thus, the agents in the model have
heterogeneous expectations.

We concentrate here on one of a few cases analyzed in [4] and assume that two
predictors are available in the market,fundamentaland trend-chasing. These two
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predictors capture, in a very stylized way, two different attitudes observed in real
markets. Thefundamentalpredictor forecasts the fundamental valuepf = ȳ/rf for
the next period price, so that

E1
t [pt+1 + yt+1] = pf + ȳ .

According to the trend-chasing predictor, the deviations from the fundamental price
pf can be persistent, i.e.

E2
t [pt+1 + yt+1] = (1− g) pf + g pt−1 + ȳ ,

for some positiveg.
In the BH model the population of agents is continually evolving. Namely, at the

beginning of timet, agents choose one predictor among the two, according to their
relative success, which in turn depends on theperformance measureof predictors.
The fractionnh

t of the agents who use predictorh ∈ {1, 2} is determined on the
basis of the average profitπh

t−1 obtained by the traders of typeh between periods
t − 2 andt − 1. Since under the Walrasian market-clearing, all agents with a given
predictor have the same profit, the average profit of a type in the BH model can be
simply referred as the profit of a given type.

As soon as the profitπh
t−1 is determined, the performance measureUh

t−1 of strat-
egyh can be computed. Agents have to pay a positive costC per time unit to get an
access to the fundamental strategy, andU1

t−1 = π1
t−1 − C, while the trend-chasing

strategy is available for free, and hence,U2
t−1 = π2

t−1. In our simulation model,
we, in addition, apply a transformation to this performance measure to make it scale-
free:Ũh

t−1 = Uh
t−1/(|U1

t−1|+|U2
t−1|). Finally, the fractionnh

t is given by the discrete
choice model, so that

nh
t = exp[βŨh

t−1]/Zt−1 , where Zt−1 =
∑

h
exp[βŨh

t−1] . (2)

The key parameterβ measures theintensity of choice, i.e. how accurately agents
switch between different prediction types. If the intensity of choice is infinite, the
traders always switch to the historically most successful strategy. On the opposite
extreme,β = 0, agents are equally distributed between different types independent
of the past performance.

Let us briefly discuss the dependence of the price dynamics on the intensity of
choice in the BH model. For details the reader is refereed to [4], where the deter-
ministic skeleton with constant dividend is analyzed. From the bifurcation diagram
shown in the left panel of Fig. 1, it can be seen that the fundamental equilibrium,
where the price is equal topf , is stable for small values ofβ. Forβ = β∗ ≈ 2.35, a
primary pitchfork bifurcation occurs, where the fundamental equilibrium loses sta-
bility. Two additional stable equilibria appear, one above and one below the funda-
mental and the original equilibrium becomes unstable. (Notice that for eachβ we
show the prices for two initial conditions, belonging to the basins of attraction of
two different equilibria.) A secondary Neimark-Sacker bifurcation takes place for
β = β∗∗ ≈ 2.78. A stable quasiperiodic cycle emerges immediately afterward. With
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Fig. 1. Time-series properties of the Brock-Hommes model.Left Panel: Bifurcation diagram
with respect to intensity of choiceβ. For eachβ ∈ (2, 6), 500 points after1000 transitory
periods are shown for two different initial conditions: one below fundamental price and one
above. The parameters areC = 1, g = 1.2, rf = 0.1 andȳ = 10. Right Panel: Typical time
series for intensity of choice after the secondary bifurcation, in this case forβ = 4. See text
for explanation.

higherβ the amplitude of this cycle increases, so that it almost touches the unstable
fundamental equilibrium. Forβ = ∞ the system is close to a homoclinic bifurca-
tion, which explains the typical time series for highβ, reproduced in the right panel
of Fig. 1.

If the initial pricep0 > pf , then the price will grow (shown by solid thin line),
further diverging from the unstable fundamental equilibrium. The trend following
behavior, which is dominating due to its zero costs, is responsible for this market
bubble. The forecasted error of trend-followers increases over time, however, since
the actual price grows faster than expected. When the error becomes too high, it
offsets the positive costC of fundamental predictor. From this moment agents prefer
to switch to fundamental behavior, contributing to a crash. From (2) it can be seen
that, due to finiteβ, some small fraction of chartists remains in the market. This fact
keeps the price a bit above the fundamental value and new bubble starts. A similar
pattern with negative bubbles can be observed for initial pricep0 < pf (shown by the
thin dotted line in the right panel of Fig. 1). Finally, if a small amount of dynamical
noise is added, the positive and negative bubbles coexist on the trajectory (shown by
the thick solid line). The observed behavior is qualitatively the same for all relatively
high β, only the amplitude of the quasi-periodic cycle increases withβ, as can be
seen from the bifurcation diagram.

It is important to stress that the time series described above are obtained under
the assumption of a constant dividend. Thus, the BH model is able to explain the
excess volatility as an endogenous outcome of the agents’ interactions. A more so-
phisticated model built in a similar spirit in [5] concentrates on the explanation of
other stylized facts. The authors reproduce volatility clustering and realistic auto-
correlation, kurtosis and skewness of the return distribution. Since the main goal of
this paper is an investigation of the impacts of the market mechanisms on the model,
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but not the reproduction of the stylized facts, we will limit our analysis in the next
sections to the simplest possible BH model.

3 Different Market Designs

On the basis of the analytic BH model, we construct an agent-based model and in-
vestigate its behavior under different trading protocols. In the agent-based model, the
fractionnh

t is interpreted as a probability of agenti to be of typeh. The Walrasian
auction is set as a benchmark, since the standard argument of the Law of Large Num-
bers implies that its outcome is equivalent to the original BH model as the number of
agents tends to infinity. We will compare this setting with two more realistic order-
driven markets, i.e. the batch auction and order book. Thought the paper we consider
continuous prices.

3.1 Walrasian Auction

Under the Walrasian auction, at timet each agenti submits his excess demand func-
tion ∆Di,t(p), which is the difference between his demandDi,t defined in (1) and
his current position in the risky asset. The pricept is determined from the market
clearing condition

∑
i ∆Di,t(pt) = 0. Notice that the equilibrium pricept is always

unique for the considered demand functions.

3.2 Batch Auction

Under the batch auction mechanism, each agent submits one or more orders, instead
of the whole demand function. There are two types of the orders: limit and market
order. A limit order consists of a price/quantity combination(p, q). Similarly to [2],
an agent determines the price of a limit order asp = p∗ ± ε|pt−1 − p∗|, where
p∗ is the solution to the agent’s “no-rebalancing condition”∆Di,t(p∗) = 0, ε is a
random variable, uniformly distributed on[0, 1], and “+” corresponds to sell order
and “−” to buy order. The quantity of the limit order at pricep is given byq =
∆Di,t(p). A market orderspecifies only the desired quantity of shares. As in [2],
the type of order is determined by a propensity to submit a market orderm ∈ [0, 1],
which is exogenously given parameter. A limit order(p, q) becomes a market order
(·, q), if ε < m in the limit order price equation. The pricept is determined as an
intersection of demand and supply schedules build on the basis of submitted orders
(see [2] for details). Market buy/sell orders are priced at the min/max price among
the corresponding side limit orders, which guarantees their fulfillment.

3.3 Order Book

In the order-book market, a period of time does not correspond to a single trade any
longer. Instead, there is one trading session over periodt and pricept is the closing
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Fig. 2. Price time series under different market mechanisms (see the legends) for different
number of agents and different propensity to submit market ordersm (see the titles). Intensity
of choiceβ = 2.5.

price of the session. Each agent can place only one buy or sell order during the
session. The sequence in which agents place their orders is determined randomly.

During the session the market operates according to the following mechanism.
There is an electronic book containing unsatisfied agents’ buy and sell orders placed
during current trading session. When a new buy or sell order arrives to the market, it
is checked against the counter-side of the book. The order is partially or completely
executed if it finds amatch, i.e. a counter-side order at requested or better price,
starting from the best available price. An unsatisfied order or its part is placed in the
book. At the end of the session all unsatisfied orders are removed from the book.

As in the batch auction setting, there are two types of the orders: limit and market
orders. The mechanisms for determining type of the order, its price and quantity are
equivalent to those described in Section 3.2. The quantity of the market order is
determined from the excess demand on the basis of the last transaction price.

4 Simulation Results

In Fig. 2, 3 and 4 we present the outcomes of typical simulations for different mar-
ket architectures, different values of intensity of choice parameterβ and different
propensity to market orders. Ignoring transitory1000 points, we show in each panel
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Fig. 3. Price time series under different market mechanisms (see the legends) for500 agents,
different intensities of choice and different propensity to submit market ordersm (see the
titles).

4 time series, corresponding to the equilibrium price in the deterministic BH model
(solid thick line), the equilibrium price in the simulated agent-based model under
Walrasian (solid thin line) and batch (dashed line) auctions, and, finally, the closed
price under order-book protocol (dotted line). Apart from the first two simulations,
all the results are reported for500 agents present in the market. For eachβ we com-
pare the casem = 0.1, when nearly all orders are limit orders, withm = 0.8, when
the majority of the orders are of market type. Finally, we consider five following val-
ues of intensity of choice. First,β = 2.5, which lies between two bifurcation values
β∗ andβ∗∗ (see Fig. 2). Then,β = 2.75 andβ = 2.8, i.e. immediately before and
after the secondary bifurcation (see Fig. 3). And finally,β = 3 andβ = 5, i.e. far
aboveβ∗∗, when the quasi-periodic dynamics discussed at the end of Section 2 has
already emerged (see Fig. 4).

Forβ = 2.5 the fundamental equilibrium is unstable, and the stable equilibrium
of the BH model lies abovepf = 100, at the levelp∗ ≈ 101.3. When the number
of agents is small (as in the upper panels of Fig. 2), the discrepancy between the
theoretical fraction of fundamentalists,nf

t , computed according to (2) and the real-
ized fraction is relatively large. Such discrepancy can be thought of as the agents’
mistake in the computation of the performance measure. Therefore, it corresponds
to a smaller “effective” intensity of choice with respect toβ = 2.5. It explains why
the relatively stable time series of Walrasian scenario lies well below the BH bench-



Heterogeneous Beliefs under Different Market Architectures 9

mark, close topf = 100: this is simply stable steady-state for some smaller value
of β. When the number of agents increases, the error between the theoretical and
realized fraction of fundamentalists decreases and the Walrasian scenario is getting
closer to the BH benchmark (see the lower panels of Fig. 2).

The higher level of noise, which is intrinsic to the order-driven markets, has sim-
ilar stabilizing consequences for the remaining two market mechanisms. This can be
clearly seen in the lower left panel of Fig. 2, where price for both batch and order-
book markets fluctuates around equilibrium, which is stable only for some smaller
value ofβ. This stabilizing “β-effect” takes place also for other parametrizations, but
usually cannot be seen, since other destabilizing effects dominate.

For example, in the right panels of Fig. 2, one can clearly see that an increase
of the propensity to submit market ordersm has strong destabilizing effect on the
batch auction. It is interesting that the same increase ofm has rather stabilizing con-
sequences for the order-book mechanism and shifts the price towards the benchmark
fundamental value (cf. 2, the two lower panels). This should not, however, come
as a surprise, given the difference between these two mechanisms. Indeed, under
the order-book, the executed prices of the market orders always come from some
limit orders. Thus, the realized prices are still mainly determined by the limit orders,
while increasing the randomness from the higher propensity to submit market orders
m, probably leads to the stabilizing “β-effect” which we discussed above. On the
other hand, under the batch protocol with many market orders, the price becomes
very dependent on the relative sizes of buy and sell market orders and, therefore, its
realization becomes more random by itself.

The two upper panels of Fig. 3 reveal another effect, implied by two types of ran-
domness, i.e. one due to the errors between the theoretical and the realized fraction
of traders, and one inherent in order-driven markets. Here, the BH model still gen-
erates stable dynamics converging top∗ ≈ 102. The dynamics under the Walrasian
auction and the order-book are unstable, however. The reason for this is a very small
size of the basin of attractorp∗. The small endogenous noise constantly drives the
dynamics out of this attractor, even if it ultimately comes back due to the instabil-
ity of the fundamental fixed point. In addition, we again observe that “β-effect” has
strong stabilizing effect for the batch auction with small propensity to submit market
orders,m = 0.1. If the propensity is high,m = 0.8, the batch auction again leads
to a very unstable behavior with large fluctuations and, sometimes, outliers. Similar
characteristic can be given to the caseβ = 2.8, which is shown on the lower panels
of Fig. 3.

Finally, Fig. 4 gives examples for relatively high values ofβ, when the stabilizing
“β-effect” does not play a role, since the secondary bifurcation has already occurred
under all market mechanisms. The main inference is that the analytical BH model
based on the Walrasian auction is able to replicate the dynamics under more sophis-
ticated trading mechanisms quite well. In particular, the time series in the two lower
panels resemble the one obtained in the right panel of Fig. 1, when the dynamical
noise triggers the dynamics between the two coexisting quasi-periodic attractors.

Table 1 shows descriptive statistics of the return series for variousβ andm under
different market auctions. In most cases the values of the skewness and kurtosis are
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Fig. 4. Price time series under different market mechanisms (see the legends) for500 agents,
different intensities of choice and different propensity to submit market ordersm (see the
titles).

far from realistic (e.g. S&P series returns statistics reported in [5]). Nevertheless, for
β = 5 andm = 0.8 the values of the statistics for the batch and order-book auctions
become closer to the realistic values.

5 Conclusion

The analytically tractable BH model introduced in [4] is quite successful in repro-
ducing a number of stylized facts. Indeed, when the intensity of choice in this model
is high, the price time series may deviate from fundamental benchmark in a system-
atic way, become quasi-periodic or even chaotic, and exhibit excess volatility. The
phenomenon of volatility clustering can also be reproduced in a similar framework,
as discussed e.g. in

[5]. However, the unrealistic market clearing scenario, where each agent has to
supplement an infinite amount of information to an (in)famous Walrasian auctioneer,
has always cast a shadow on such an explanation of the stylized facts.

The results of this paper suggest that the order-based model is able to replicate the
main features of the evolutionary BH model. Moreover, we found that the finiteness
of the number of agents provides stabilizing effect, which is equivalent to a lower
intensity of choiceβ in the deterministic model. The randomness resulting from the
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Table 1.Deceptive statistics of the return series generated under various market settings.

Auction Walrasian Batch Order-Book Walrasian Batch Order-Book
m = 0.1 m = 0.8

β = 2.50
mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
variance 0.0002 0.0005 0.0003 0.0002 0.0033 0.0004
skewness−0.178 −0.040 −0.468 −0.178 −7.760 −0.033
kurtosis 0.357 0.046 1.153 0.357 123.384 0.631

β = 2.75
mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
variance 0.0007 0.0005 0.0012 0.0007 0.0027 0.0024
skewness−12.693 −0.063 −0.410 −12.693 0.941 2.241
kurtosis 191.460 0.040 97.315 191.460 19.251 181.319

β = 2.80
mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
variance 0.0009 0.0005 0.0017 0.0009 0.0026 0.0019
skewness−12.766 0.129 −9.356 −12.766 −2.141 13.710
kurtosis 185.355 0.073 118.671 185.355 22.256 407.478

β = 3.00
mean 0.0000 0.0000 0.0000 0.0000 0.0005 0.0000
variance 0.0014 0.0010 0.0021 0.0014 0.0269 0.0034
skewness−13.151 −12.891 −10.871 −13.151 −10.757 −0.471
kurtosis 183.716 234.023 138.080 183.716 243.943 103.755

β = 5.00
mean 0.0000 0.0000 0.0001 0.0000 0.0000 0.0001
variance 0.0059 0.0054 0.0091 0.0059 0.0030 0.0133
skewness−10.602 −7.965 −4.988 −10.602 0.199 1.265
kurtosis 115.248 66.308 47.613 115.248 13.820 43.380

batch auction and the order-book mechanism destabilizes the model. This effect is
mainly observed when the basins of attraction of the steady state (cycle) are small,
i.e. in the vicinity of a bifurcation.

While investigating the effects of the limit- and market order, we found that the
presence of the large number of market orders may substantially destabilize the dy-
namics of the batch auction. Instead, under the book-order mechanism, this effect is
not observed.

The analysis of the descriptive statistics of the return series for different parame-
ters and under different market protocols suggests that the structural assumptions are
able to explain only some stylized facts, e.g. excess kurtosis. The model did not gen-
erate volatility clustering under any protocol, which suggest that this phenomenon
should be modeled using the appropriate behavioral assumptions.
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This result brings us to the directions for the future research. It would be interest-
ing to start with a more realistic model (e.g. the model [5]), which is able to reproduce
volatility clustering, and investigate its dynamics under various market mechanisms.
Moreover, we could adopt different mechanisms for the limit order price generation,
which are closer to those observed on the real markets. On the behavioral level, we
could distinguished some parameters (e.g.β) between agents within one group and
introduce a memory parameter into the individual type selection procedure.
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