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Abstract

This paper studies market selection in an Arrow-Debreu economy with
complete markets where agents learn over misspecified models. Under model
misspecification, standard Bayesian learning loses its formal justification
and biased learning processes may provide a selection advantage. Given the
natural connection between selection outcomes and long-run asset prices,
understanding which biased learning processes are evolutionary fit is in-
strumental to build a parsimonious long-run asset valuation model robust
to misspecification. Leveraging two cases of model misspecification and
four learning processes, our analysis reveals a general difficulty in ranking
learning behaviors with respect to their survival prospects. For example, the
advantage of predictions averaging disappears when the true data generating
process does not belong to the same family of models agents use to learn.
Rules that generically guarantee survival, appear to require an unreasonable
amount of knowledge about all the agents that compose the market ecology.
The goal of a parsimonious long-run asset valuation model robust to model
misspecification remains out of reach.

JEL Classification: C60, D53, D81, D83, G11, G12

Keywords : Learning, Market Selection, Model Misspecification, Financial Markets

∗Corresponding author, email: daniele.giachini@santannapisa.it

1



1 Introduction

The market selection hypothesis, applied to competitive environments where agents
are able to learn (i.e., update their beliefs according to given rules), implies that
only those who incorporate evidence into their probabilistic predictions according
to Bayes rule are able to survive and, thus, influence assets’ long-run evaluation
(see e.g. Blume and Easley, 2006, 2009a,b). Such a statement relies upon the
assumption that the learning problem is correctly specified (i.e., the true data
generating process belongs to the set of models over which agents are learning) or,
at least, a version of the complete class theorem holds. In those situations, traders
who learn in a Bayesian way are, indeed, able to drive non-Bayesian traders out
of the market (Sandroni, 2005). However, as reported by Gigerenzer and Gaiss-
maier (2011), Savage (1954) – the founder of Bayesian decision theory – used to
distinguish between situations in which there is perfect information (small worlds)
and situations in which relevant pieces of information are not available to decision
makers (large worlds). Gigerenzer and Gaissmaier (2011), among many others,
argue that real decision makers mostly face large-world situations and, thus, their
learning problems are seldom correctly specified. Indeed, the models on which they
have to rely are approximations or simplified versions of the real data generating
process, thus, they face model misspecification. In such a case, Bayesian learning
loses its formal justification and whether its selection advantage is conserved is not
clear.

A recent study by Massari (2020) shows that a learning bias known as under-
reaction – i.e., giving larger weight to the prior than what Bayesian learning pre-
scribes (Epstein et al., 2010)– provides a selection advantage over Bayesian learn-
ing in Arrow-Debreu economies characterized by model misspecification. That
is, while updating beliefs according to Bayes rule allows an agent to asymptoti-
cally be as accurate as the best model in its support (Berk, 1966), under-reaction
produces either the same beliefs of a Bayesian agent or more accurate ones gen-
erated by a persistent (but not fixed) mixture of models. Since competitive (and
complete) markets favor those who make accurate predictions (Sandroni, 2000),
an under-reacting agent facing a Bayesian one is always able to maintain a posi-
tive consumption share and, in generic cases, it can even asymptotically consume
all the aggregate endowment. Thus, under model misspecification, moving away
from Bayesian learning can be beneficial and under-reaction emerges as a robust
learning behavior in terms of survival. In a similar setting, Antico et al. (2023)
investigate the evolutionary fitness of a trader behaving according to the senti-
ment investor learning model of Barberis et al. (1998) when competing against
a Bayesian agent under model misspecification. The authors find that long-run
selection outcomes are profoundly related to the characteristics of the agents and
of the economy: depending on parameter settings, one can observe either that the
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sentiment investor let the Bayesian trader vanish or vice-versa. Notwithstanding
those results, one may argue that, since under model misspecification Bayesian
updating is no-longer formally justified, selection outcomes derived from competi-
tion against a Bayesian trader may not be very informative about which learning
behavior is actually observed in the long-run and, thus, has a persistent influence
on asset evaluation. Indeed, one can imagine that the introduction of an ecology
of different learning rules may actually generate non-trivial selection results. Once
one acknowledges that, a related issue that immediately emerges is whether one
can devise a ranking of learning processes in terms of their fitness to survive under
model misspecification, since that would be instrumental to build a parsimonious
(i.e., that considers only a limited number of learning behaviors) long-run asset
valuation model that is fully robust to model misspecification.

In this paper we investigate those issues considering an Arrow-Debreu pure-
exchange economy with complete markets, four different learning processes, and
two cases of model misspecification. With respect to learning processes, we extend
the framework of Massari (2020) adding to Bayesian learning and under-reaction
two new processes: limited memory Bayesian learning and moving average. The
first one consists in continuously resetting the Bayesian learning process. The
second one consists in averaging the predictions of a reference learning process.
With respect to the two cases of model of model misspecification, we consider
parametric and structural misspecification. The first case is obtained assuming
that the true probability measure belongs to the same class of probabilistic models
the agents use to learn, but with different parameter values. For simplicity, we
focus on i.i.d. true process and models. The second case consists in assuming that
the true probability measure has a more complex probabilistic structure than the
models agents use to learn. In our case, we consider a Markov true probability
measure and i.i.d. models.

Our analysis draws from two approaches to the study of market selection. The
first is characterized by general equilibrium, intertemporal utility maximization,
and complete markets (see e.g. Sandroni, 2000; Blume and Easley, 2006, 2009a;
Jouini and Napp, 2011; Kogan et al., 2006, 2017; Massari, 2017; Dindo and Mas-
sari, 2020; Beddock and Jouini, 2021; Bottazzi and Giachini, 2022). The second,
instead, relies upon temporary equilibrium, bounded rationality, evolutionary dy-
namics among investment rules (see e.g. Hens and Schenk-Hoppé, 2005; Evstigneev
et al., 2009, 2016; Holtfort, 2019; Bottazzi and Dindo, 2013, 2014; Bottazzi et al.,
2018, 2019; Bottazzi and Giachini, 2017, 2019b,a; Elmiger, 2020).1 Indeed, we
combine the complete market Arrow-Debreu economy, characterizing most of the

1The two approaches are not separated, indeed there generically exist evolutionary models
that produce the same wealth dynamics of general equilibrium ones. The link is built by means
of effective beliefs, see Bottazzi et al. (2018), Dindo (2019), Giachini (2021).
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contributions belonging to the first approach, with biased learning schemes, which
are closer to the second approach. Our choice is motivated by avoiding compen-
sation effects between non-optimality in investment rules and misspecification in
beliefs, as described in Bottazzi et al. (2018) and Giachini (2021).

Our analysis shows that the ecology of learning behaviors operating in the mar-
ket and the type of model misspecification characterizing the economy is of crucial
importance for selection results. Thus, a general difficulty emerges in providing a
ranking of learning processes in terms of their evolutionary robustness to model
misspecification. For instance, under-reaction shows a generic advantage in terms
of selection under parametric misspecification when the true probability measure
is a convex combination of the i.i.d. models the agents use to learn: increasing the
level of under-reaction lets the agent increase its accuracy. Indeed, a sufficiently
high under-reaction degree makes any agent whose beliefs are bounded away from
the truth – such as, for instance, the limited memory Bayesian learner – disap-
pear. Such a particular selection advantage is shared by a moving average agent
that leverages under-reaction. Indeed, our analysis suggest that, under parametric
misspecification, averaging predictions appears as a key mechanism in generating
a selection advantage. Such a mechanism, however, partially breaks down when
structural misspecification occurs. More specifically, a trade-off between how well
beliefs approximate the true Markov chain’s invariant distribution (i.e. the best
i.i.d. model) and how well fluctuations in conditional probabilities are captured,
seems to appear. For instance, on the one hand, averaging past predictions al-
lows an agent to better approximate the invariant distribution, but, on the other
hand, decreases the relevance of fresh information and the speed of adaptation to
changes. As a consequence, the averaging approaches can be generically outper-
formed by the limited memory Bayesian learning process. Finally, we discuss some
examples of learning rules that can survive no matter the form of model misspeci-
fication. Our discussion points out that the key feature of those rules is that they
exploit information about all the other market participants rather than efficiently
combining information about past realizations of the true data generating process.
This is, however, disruptive for the quest of a parsimonious long-run asset evalu-
ation model robust to model misspecification: one cannot dispense from knowing
important features of all the agents in the economy.

2 The Model

Consider an Arrow-Debreu economy with infinite horizon and discrete time (in-
dexed by t = 0, 1, . . .). There is a homogeneous consumption good and markets are
complete. Call st ∈ {1, 2, . . . , S} the state realized at time t > 0. We indicate with
σ = (s1, s2, . . . , st, . . .) a path and with σt = (s1, s2, . . . , st) a partial history until

4



time t. The set of all the possible paths is Σ while Σt indicates the set of all partial
histories until time t. Let C(σt) = {σ ∈ Σ|σ = (σt, . . .)} be the cylinder with base
σt, Ft is the σ-algebra generated by the cylinders C(σt). Then, by construction,
(Ft)

∞
t=0 is a filtration and we indicate with F the σ-algebra generated by the union

of filtrations. We indicate with p the true probability measure on (Σ,F), such that
(Σ,F, p) is a well-defined probability space. We assume that any partial history
has a positive probability of being realized, p(σt) > 0, ∀σt. Expectation is denoted
with E and, when there is no subscript or superscript, it is computed with respect
to p.

The economy is populated by N agents indexed by i = 1, 2, . . . , N . Every
agent i is endowed with a stream of non-zero and uniformly bounded consumption
good for any path σ, (ei(σt))

∞
t=0. Agent i has a subjective probability measure pi on

(Σ,F). Denote with pi(st|σt−1) the (subjective) conditional probability attached to
the realization of st after a partial history σt−1 and with pi(σt) =

∏t
τ=1 pi(sτ |στ−1)

the (subjective) likelihood of partial history σt. Agent i chooses its consumption
plan (ci(σt))

∞
t=0 solving

max
{ci(σt), ∀t,σ}

Epi

[
∞∑
t=0

βt
iui(ci(σt))

]
s.t.

∞∑
t=0

∑
σt∈Σt

q(σt) (ei(σt)− ci(σt)) ≥ 0,

where βi ∈ (0, 1) is agent i’s discount factor, ui is the Bernoulli utility of con-
sumption of agent i, and q(σt) is the price of the Arrow-Debreu security paying
one if partial history σt is realized and zero otherwise. We will further assume
that individual probabilities pi are absolute continuous with respect to p and that
the Bernoulli utilities are continuously differentiable, increasing, strictly concave,
and satisfies the Inada condition at zero. With these hypotheses, a competitive
equilibrium exists unique and ∀σt, q(σt) > 0,

∑N
i=1 ci(σt) =

∑N
i=1 ei(σt) = e(σt).

2.1 Consumption asymptotic behavior

Our main goal is to evaluate the selection dynamics taking place in competitive
markets under different learning protocols. We need the following.

Definition 2.1. An agent i:

• vanishes if lim
t→∞

ci(σt) = 0, p-almost surely;

• survives if lim
t→∞

sup
t

ci(σt) > 0, p-almost surely;

• dominates if lim
t→∞

ci(σt)/et(σ) = 1, p-almost surely.
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The study of the asymptotic dynamics of the relative consumption of agents can
be reduced to the analysis of their individual probability measures and discount
factors by the following mathematical passage (Blume and Easley, 2006). From
the F.O.C. of the optimal consumption problem, ∀i, j ∈ 1, . . . , n,

u′
i(ci(σt))

u′
j(cj(σt))

=

(
βj

βi

)t
pj(σt)

pi(σt)

u′
i(ci(σ0))

u′
j(cj(σ0))

,

that is

1

t
log

u′
i(ci(σt))

u′
j(cj(σt))

= log
βj

βi

+
1

t
log

p(σt)

pi(σt)
− 1

t
log

p(σt)

pj(σt)
+

1

t
log

u′
i(ci(σ0))

u′
j(cj(σ0))

. (1)

To describe the agent’s individual probabilities, consider K i.i.d. measure whose
conditional probabilities are the vectors π1, . . . , πK , belong to the topological
interior of the (S − 1)-simplex, πk = (πk(1), πk(2), . . . , π(S)) ∈ ∆S−1

+ . These
vectors are uniformly bounded away from zero and diverse, that is ∃ϵ, dπ > 0 such
that πk(s) > ϵ and ∥πk − πh∥ > dπ, ∀s, k, h. To simplify our investigation we
assume the following.

Assumption 1. Agents’ individual conditional probabilities belong to the convex
hull HK generated by the conditional probabilities of the K models,

pi(s | σt) ∈ HK =

{
K∑
k=1

ηkπk |
K∑
k=1

ηk = 1, ηk ≥ 0

}
⊆ ∆S−1

+ ,∀s, σt.

Note that the previous assumption guarantees that individual probabilities
have conditionals uniformly bounded away from zero, pi(s | σt) > ϵ, ∀σt, s. Denote
the (conditional) relative entropy of the individual probability measure pi with
respect to the truth p given partial history σt and its partial average as

Dp|pi(σt) =
S∑

s=1

p(s | σt) log
p(s | σt)

pi(s | σt)
and Dp|pi(σt) =

1

t+ 1

t∑
τ=0

Dp|pi (στ ) .

By Assumption 1, these quantities are bounded, Dp|pi(σt), Dp|pi(σt) ∈ [0,− log ϵ].
We shall use the partial average of the relative entropy as a measure of accuracy,
for instance, we will say that an agent j is more accurate than an agent i at σt if
Dp|pj(σt) < Dp|pi(σt). Moreover, we have the following.

Theorem 2.1. Under Assumption 1, ∀i = 1, . . . , N and ∀α < 1/2, p-almost
surely,

1

t
log

p(σt)

pi(σt)
= Dp|pi(σt−1) + o

(
1

tα

)
.
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Proof. Define zi(s | στ−1) = log (p(s|στ−1)/pi(s|στ−1))−Dp|pi(στ−1), so that

log
p(σt)

pi(σt)
=

t∑
τ=1

log
p(sτ | στ−1)

pi(sτ | στ−1)
=

t∑
τ=1

zi(sτ | στ−1) +
t∑

τ=1

Dp|pi(στ−1).

By Assumption 1, and by the fact that the maximum of the function x log2 x for
x ∈ [0, 1] is 4e−2,

E[z2
i | σt] =

S∑
s=1

p(s | σt) log
2 p(s | σt)

pi(s | σt)
−Dp|pi(σt)

2 ≤ 4e−2S − log ϵ.

Hence, if α < 1/2,
∑∞

t=1 t
2α−2E[z2

i | σt−1] < +∞. Since E[zi | σt−1] = 0, ∀σt,
by Theorem 3, p. 243, in Feller (1971), p-almost surely, limt→∞ tα−1

∑t
τ=1 zi(sτ |

στ−1) = 0. This implies that, p-almost surely, log p(σt)/pi(σt) − tDp|pi(σt−1) =
o(t1−α). Dividing by t proves the assertion.

In particular, the previous Theorem applies to the K i.i.d. models of Assump-
tion 1. Substituting the statement of Theorem 2.1 in (1),

1

t
log

u′
i(ci(σt))

u′
j(cj(σt))

=
(
log βj −Dp|pj(σt−1)

)
−
(
log βi −Dp|pi(σt−1)

)
+ o

(
1

tα

)
.

The asymptotic behavior of the quantities inside the parentheses in the right-hand
side determine the asymptotic behavior of the relative marginal utilities of the two
agents. Some results of the literature trivially follow (Sandroni, 2000; Blume and
Easley, 2006; Dindo and Massari, 2020).

Corollary 2.1. Assume there exist two agents i and j such that, p-almost surely,
exist Dp|pi(σ) = limt→∞Dp|pi(σt) and Dp|pj(σ) = limt→∞Dp|pj(σt). Then, if As-
sumptions 1 applies and, p-almost surely,

log βj −Dp|pj(σ) > log βi −Dp|pi(σ),

agent i vanishes.

Proof. By hypothesis, we can apply Theorem 2.1, so that

lim
t→∞

1

t
log

u′
i(ci(σt))

u′
j(cj(σt))

=
(
log βj −Dp|pi(σ)

)
−
(
log βi −Dp|pi(σ)

)
> 0,

which implies limt→∞ log u′
i(ci(σt))/u

′
j(cj(σt)) = +∞ From the boundedness of

the endowment, the quantities u′
i(ci(σt)) are bounded from above. Thus, it must

be limt→∞ log u′
i(ci(σt)) = +∞. According to the Inada condition, this, in turn,

implies that limt→∞ ci(σt) = 0.
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Note that the hypothesis of Corollary 2.1 are not trivial, as Assumption 1 is not
sufficient to guarantee the existence of the limit of Dp|pi(σt) and Dp|pj(σt). How-
ever, the existence of these limits is not necessary. One can, for example, realize
that agent i vanishes if, p-a.s., βj − Dp|pj(σt) > log βi − Dp|pi(σt) for sufficiently
large t.

3 Learning processes

According to Assumption 1, ∀σt agents individual probabilities can be written as

pi(s|σt) =
K∑
k=1

wi,k(σt) πk(s), wi,k(σt) ≥ 0,∀k,
K∑
k=1

wi,k(σt) = 1, (2)

were wi,k(σt) denotes the weight agent i attaches to model k after having observed
the partial history σt. Agents differ on how they compute their wights. We will
consider four learning processes: Bayesian learning, learning with under-reaction,
limited memory Bayesian learning, and moving average of an underlying model.

Bayesian learning The Bayesian learning process can be considered the cor-
nerstone of online learning. Weights are updated according to Bayes rule,

wi,k(σt) =
πk(st)wi,k(σt−1)

pi(st|σt−1)
=

πk(σt)

pi(σt)
wi,k(σ0) ∀k, t, σ . (3)

The weight wi,k(σt) can be considered the probability agent i attaches to the event
“model k is the true one” conditional upon the observation of partial history σt.
The key property of Bayesian learning is that it makes an agent as accurate as the
model with highest likelihood in its set at any t sufficiently large (see also Berk,
1966, for further detail).

Proposition 3.1. Define k∗
t = argmaxk∈{1,...,K}{πk(σt)}. For any Bayesian agent

i and ∀α < 1/2, p-almost surely∣∣∣Dp|pi(σt−1)−Dp|πk∗t
(σt−1)

∣∣∣ ≤ o

(
1

tα

)
.

Proof. By iteratively substituting (3) in (2),

pi(σt) =
K∑
k=1

πk(σt)wi,k(σ0).
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Thus, πk∗t
(σt)wi,k∗t

(σ0) ≤ pi(σt) ≤ πk∗t
(σt) and, as a consequence,

1

t
log

p(σt)

πk∗t
(σt)

≤ 1

t
log

p(σt)

pi(σt)
≤ 1

t
log

p(σt)

πk∗t
(σt)

− 1

t
logwi,k∗t

(σ0) .

The statement follows by applying Theorem 2.1 to the individual probability pi
and the measure πk∗t

.

Notice that, in general, the model with highest likelihood at a date t depends
on the specific realization σt. Moreover, without further assumptions on the true
probability p, we are not guaranteed that the Bayesian agent will asymptotically
follow one specific model in the set.

Learning with under-reaction This learning process consists in a modification
of (3) according to the notion of under-reaction in Epstein et al. (2010) and Massari
(2020). This learning protocol can be considered a form of “moderate” Bayesian
learning where the probability attached to the event “model k is the true one” in
obtained taking a convex combination of Bayes rule with the prior probability:

wi,k(σt) = λi wi,k(σt−1) + (1− λi)
πk(st)wi,k(σt−1)

pi(st|σt−1)
∀k, t, σ , (4)

with λi ∈ [0, 1). Setting λi = 0, Bayesian learning is recovered. Learning with
under-reaction entails a form of averaging. The probabilistic prediction of an
under-reacting agent i for state st+1 after a partial history σt can be seen as
the convex combination of the probabilistic prediction agent i would make after
the partial history σt−1 and the Bayesian prediction given a prior wi(σt−1) =
(wi,1(σt−1), . . . , wi,K(σt−1)) and the observation of state st (Epstein et al., 2010;
Giachini, 2021). Under-reaction represents a robust learning strategy. In case
of model misspecification it can outperform Bayesian learning (Massari, 2020).
Moreover, this rule is equivalent to the Soft-Bayes algorithm of Orseau et al.
(2017), match the dynamics of prices and wealth in the prediction market model
of Bottazzi and Giachini (2017, 2019b), and describe the risk neutral probabilities
and consumption shares in the pure exchange economy model analyzed by Dindo
and Massari (2020). The following proposition adapts a result on under-reaction
by Massari (2020) to our framework.2 It shows that an under-reacting agent is at
least as accurate as the most accurate model in its set for t sufficiently large.

Proposition 3.2. For any under-reacting agent i and ∀α < 1/2, it is p-almost
surely

2The result by Massari (2020) makes use of the notion of empirical distribution of states while
we state it with respect to the true measure p. If p describes an i.i.d. process, then the two
statements are equivalent.
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i) Dp|pi(σt−1) ≤ Dp|ρi,k(σt−1) + o (t−α) ∀k ∈ {1, 2, . . . , K},

ii) Dp|ρi,k(σt−1) ≤ Dp|πk
(σt−1) + o (t−α) ∀k ∈ {1, 2, . . . , K};

where ρi,k(st+1|σt) = λi pi(st+1|σt) + (1− λi)πk(st+1).

Proof. Note that wi,k(σt) = wi,k(σt−1)ρi,k(st|σt−1)/pi(st|σt−1). Iterative substitu-
tion with the previous equation gives

pi(σt) = pi(σt−1)
K∑
k=1

ρi,k(st|σt−1)wi,k(σt−1) = · · · =
K∑
k=1

ρi,k(σt)wi,k(σ0),

where ρi,k(σt) =
∏t−1

τ=1 ρi,k(sτ+1|στ ). Hence, ∀k, pi(σt) ≥ ρi,k(σt)wi,k(σ0), and

log
p(σt)

pi(σt)
≤ log

p(σt)

ρi,k(σt)
− logwi,k(σ0) ≤

λi log
p(σt)

pi(σt)
+ (1− λi) log

p(σt)

πk(σt)
− logwi,k(σ0),

where we have used the inequality log ρi,k(σt) ≥ λi log pi(σt) + (1 − λi) log πk(σt).
Note that, by definition, ρi,k(s | σt) ∈ HK , thus applying Theorem 2.1 to pi, ρi,k
and πk, the statements are recovered.

Again, the most accurate model at a date t depends on the specific realization
σt and Proposition 3.2 does not imply the asymptotic convergence of the under-
reacting agent to a single i.i.d. model.

Limited memory Bayesian learning The limited memory Bayesian learning
is a version of the standard Bayesian learning process in which the agent delib-
erately forgets observations in the past. Here we consider the version with the
shortest possible memory, that is a memory of one. In this case, the weight as-
signed to model k after a partial history σt reads

wi,k(σt) =
πk(st)wi,k(σ0)∑K

k′=1 πk′(st)wi,k′(σ0)
(5)

In any period t, agent i is forgetting all the sequence of states occurred un-
til t − 2 (included) and restarts its Bayesian learning procedure simply consid-
ering the previous state and the initial prior distribution of weights wi(σ0) =
(wi,1(σ0), wi,2(σ0), . . . , wi,K(σ0)). The i.i.d. nature of the models on which the
agent learns makes the limited memory Bayesian learner have a simple Markov
structure. This process also displays a strong dependence on initial weights.
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Moving average learning The moving average learning process consists in tak-
ing a reference learning process p∗ and applying a moving average to the sequence
of probabilistic predictions generated for every state. Assume agent i adopts a
moving average learning with memory Mi, then

pi(s | σt) =


p∗(s | σt) if t < Mi − 1 ,

M−1
i

Mi∑
m=1

p∗(s | σt−m+1) if t ≥ Mi − 1 .

(6)

If the underlying learning process follows Assumption 1, the same thing can be

restated in terms of weights with wi,k(σt) = M−1
i

Mi∑
m=1

w∗
k(σt−m+1) if t ≥ Mi − 1.

The moving average learning represents a further layer of “smoothing” over the
predictions of the underlying process.

4 Misspecified models

In what follows, we study the performance of the learning processes described
above in a competitive environment where the K i.i.d models they use are mis-
specified. We investigate two specific cases of mispecification. We start with an
i.i.d. true measure that does not belong to the set of models the agents can learn.
In this case the i.i.d. models the agent use belong to the same class of the true
measure, but their parameters are, generically, not correct. We call this case para-
metric misspecification. In the second case, the proper structural misspecification
case, we assume that the true measure is Markov. In this case, the models em-
ployed by the agents belong to a different, and less general, class than the truth.

4.1 Parametric misspecification

We assume that states of nature follow an i.i.d. process, such that the models
agents use belong to the same family of the truth but have misspecified parameters.
Formally,

Assumption 2. The true measure p is an i.i.d. process whose conditional dis-
tribution are described by the vector π = (π(1), π(2), . . . , π(S)) ∈ ∆S−1

+ , such
that p(st | σt−1) = π(st). Agents’ models are misspecified: ∥πk − π∥ > 0
∀k ∈ {1, 2, . . . , K}.

We first present some analytic results about the behavior of the different learn-
ing models under this assumption. Then, we propose some numerical simulation
to clarify their relative performances.
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Bayesian learning. Under Assumption 2, p-almost surely

lim
t→∞

Dp|πk
(σt) = Dπ|πk

=
S∑

s=1

π(s) log
π(s)

πk(s)
> 0.

Assuming that model k, on which the Bayesian agent i learns, has the lowest rela-
tive entropy of allK models, then, according to Proposition 3.1, limt→∞Dp|pi(σt) =
Dπ|πk

, which implies that limt→∞wi,k(σt) = 1. The convergence of the weights,
however, is not otherwise guaranteed. In any case, the Bayesian learner is as
accurate as the most accurate model available.

Learning with under-reaction. From Proposition 3.2 it follows that also the
under-reacting agent is never less accurate than a Bayesian learner. Massari (2020)
proves that when the parameter λ is large enough and the conditional probability of
the true i.i.d. model belongs to HK , an agent that learns with under-reaction has a
selection advantage over a Bayesian learner. This represents a specific advantage of
the under-reacting versus the Bayesian agent. Inspired by the results of Bottazzi
and Giachini (2017) and Dindo and Massari (2020), the following Proposition
extends the analysis proving the existence of a generic advantage of an under-
reacting agent.

Proposition 4.1. Suppose there exists a K-dimensional vector ζ with ζk ≥ 0 and∑K
k=1 ζk = 1, such that π =

∑K
k=1 ζk πk. Then, for any under-reacting agent i and

∀α < 1/2, it is p-almost surely

Dp|pi(σt) ≤
1− λi

2(λi + ϵ)2
+

o (t−α)

1− λi

.

Proof. Setting θ = 1 − λi > 0 and using the first order Taylor expansion with
Lagrange remainder of the logarithmic function, for each realization στ ,

Dp|pi(στ )−
K∑
k=1

ζk Dp|ρi,k(στ ) = θ
S∑

s=1

π(s)

(
π(s)

pi(s|σt)
− 1

)

− θ2

2

K∑
k=1

ζk

S∑
s=1

π(s)
(πk(s)− pi(s|σt))

2

(ηk,s(στ )πk(s) + (1− ηk,s(στ )) pi(s|σt))
2 ,

for some ηk,s(στ ) ∈ [0, θ]. Thus, by Assumption 1,

K∑
k=1

ζk

S∑
s=1

π(s)
(πk(s)− pi(s|σt))

2

(ηk,s(στ ) πk(s) + (1− ηk,s(στ )) pi(s|σt))
2 ≤ 1

(1− θ + ϵ)2
,
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and because x− 1 ≥ log x,

S∑
s=1

π(s)

(
π(s)

pi(s|στ )
− 1

)
≥ Dp|pi(στ ),

so that

Dp|pi(στ )−
K∑
k=1

ζk Dp|ρi,k(στ ) ≥ (1− λi)Dp|pi(στ )−
(1− λi)

2

2(λi + ϵ)2
.

Summing on τ from 0 to t− 1 and dividing by t, according to point i) of Proposi-
tion 3.2, the left-hand side is lower then o (t−α), and the statement follows.

Hence, when the truth belongs to HK , an under-reacting agent becomes ex-
tremely accurate as its level of under-reaction increases and, as a consequence,
obtains a survival advantage with respect to other traders. To see it, consider
a market in which there is discount factor homogeneity and agent 1 is under-
reacting with parameter λ1. Any trader i for which it is p-almost surely Dp|pi(σt) >
(1 − λ1)/(2(λ1 + ϵ)2) for t sufficiently large will vanish. If all traders apart the
under-reacting one are bounded away from the truth, Dp|pi(σt) > δ > 0, for i > 1,
then the under-reacting agent dominates if its parameter is sufficiently large. For
instance, a sufficient condition is

λ1 ∈
(√

1 + 8δ − 1

4δ
, 1

)
.

Limited memory Bayesian learning. Under Assumption 2, the limited mem-
ory Bayesian agent’s conditionals only depend on the last realized state of nature.
Thus, one has Dp|pi(σt) = Dp|pi(st) and a straightforward application of the Strong
Law of Large Numbers delivers the following.

Corollary 4.1. For any agent i that uses the limited memory Bayesian learning
process, it is Dp|pi(σ) = limt→∞Dp|pi(σt) =

∑S
s=1 π(s)Dp|pi(s) p-almost surely.

Hence, alternating among different convex combinations of models depending
on the last realized state, the accuracy of the limited memory Bayesian agent de-
pends upon how accurate those convex combinations are on average. A straightfor-
ward implication of Corollary 4.1 is that Dp|pi(sm) ≤ Dp|pi(σ) ≤ Dp|pi(sM) where
sm = argmins{Dp|pi(s)} and sM = argmaxs{Dp|pi(s)}. Thus, a limited memory
Bayesian agent can be maximally accurate only when all of its convex combina-
tions match the true probabilities. This is never possible, for instance, if the K
models on which the agent learns are linearly independent.
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Moving average learning. Under Assumption 2, the smoothing in condition-
als applied by an agent following the moving average learning process reflects
into its average relative entropy. Define the moving window average µ(s, σt) =∑M−1

m=0 p∗(s | σt−m)/M and variance σ2(s, σt) =
∑M−1

m=0 (p
∗(s | σt−m)− µ(s, σt))

2 /M
of the conditional probability of the underlying model.

Proposition 4.2. Consider the conditional expected variance of the prediction
σ2(σt) =

∑S
s=1 π(s)σ2(s, σt), then, ∀σt and for any agent i using the moving av-

erage learning process, it is

1

M

M−1∑
m=0

Dp|p∗(σt−m)−Dp|pi(σt) ≥
σ2(σt)

2 (1− ϵ)
.

If Dp|p∗(σ) = limt→∞Dp|p∗(σt) exists, then lim supt→∞Dp|pi(σt) ≤ Dp|p∗(σ), with
strict inequality if ∃ε > 0 such that σ2(σt) > ε.

Proof. Using the result on the bounds of the arithmetic and geometric means
inequality in Perisastry and Murty (1982), and the bounds on the probability
models in Assumption 1, ∀s, στ ,

σ2(s, στ )

2 (1− ϵ)
≤ log

(
1

M

M−1∑
m=0

p∗(s | στ−m)

)
− 1

M

M−1∑
m=0

log p∗(s | στ−m) ≤
σ2(s, στ )

2 ϵ
.

Focusing on the inequality on the left, adding and subtracting log π(s) to the
central member, multiplying by π(s), and summing over s, one obtains the first
assertion.

Averaging from τ = M − 1 to τ = t − 1 and adjusting in order to obtain the
definitions of average relative entropy, one has

1

M

M−1∑
m=0

t−m

t
Dp|p∗(σt−m−1)−Dp|pi(σt−1) ≥

1

t

t∑
τ=M

σ2(στ−1)

2(1− ϵ)
− o

(
1

t

)
,

that proves the second assertion.

Proposition 4.2 suggests that an evolutionary advantage can be extracted from
averaging predictions. In this case, the moving average learning process is never
less accurate than the learning process it leverages if Dp|p∗(σ) exists. In fact, if
the underlying model p∗ converges p-almost surely to a constant conditional prob-
ability p∗(s|σt), like Bayesian learning in the presence of a best model, then from
Proposition 4.2 one has p-almost surely that limt→∞ Dp|pi(σt) = Dp|p∗(σ). Thus,
assuming that the underlying reference model is adopted by other traders in the
market, averaging does not lead to any long-run advantage over them. If, instead,
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the underlying model entails some sort of persistent fluctuation in conditionals,
moving average brings a definite advantage over other traders adopting the refer-
ence model. In any case, the moving average learning model never under-performs
when compared to the underlying model on which its predictions are built.

Despite providing useful information about the inner workings of the different
learning models, the previous results do not allow to devise any general ranking
among them. The generic advantage that under-reaction learning enjoys depends
upon the degree of under-reaction and the truth belonging to the convex hull of
models. However, Proposition 4.1 does not imply, for instance, that increasing λ
one increases accuracy. The moving average approach has an advantage when the
reference learning process does not converge. Thus, it may be effective when it
leverages (and competes against) an under-reacting agent characterized by persis-
tent fluctuations in beliefs (Massari, 2020). However that advantage generically
disappears when it competes against a Bayesian learner. For generic initial weights,
the limited memory Bayesian learner can never be maximally accurate. This does
not mean that it is the worst learning approach. Indeed, by resetting the learning
process every time, the agent constantly mixes the misspecified i.i.d. models and
never converges to a single one. This might represent an advantage. The numeri-
cal exercises proposed in the next section exemplify the difficulties in ranking and
provide some new insights about the relative performances of the models matter
of study.

4.1.1 Numerical exploration

We consider an economy with two possible states of the world, S = 2, driven by
an i.i.d. true process. Hence, slightly abusing notation, we set p(1|σt) = p ∀t, σ
with p ∈ (0, 1), that is π = (p, 1 − p). Agents learn on two models (i.e. K = 2)
with respective probabilities π1 = (π1, 1−π1) and π2 = (π2, 1−π2); π1, π2 ∈ (0, 1).
The performances of the different learning models are expressed in terms of their
average relative entropy Dp|pi(σt) and are reported in Figure 1. The Bayesian
model λi = 0 (darker and thicker solid line) always converge to the best model (c.f.
Proposition 3.1) and the average relative entropy can be computed analytically. Its
value is zero when the true probability matches one of the two underlying models,
i.e. p = 0.3 and p = 0.8. In the case of an under-reacting agent an analytical
expression is not available. Thus, the average value of Dp|pi(σt) is computed for
different values of λi over 10

2 independent random partial histories of length t = 2×
104 (thinner and lighter lines).3 It is worth to remark that, following Theorem 2.1,
the number we report for each given combination of parameters can be understood

3The first 104 steps of each independent replication have been discarded to mitigate the initial
condition bias.

15



Figure 1: Average relative entropy of the different learning models as a function
of p, i.e. the true probability of the realization of state 1. Parameter settings are
π1 = 0.3, π2 = 0.8, and, for the moving average model, Mj = 10. For estimated
values, standard errors are in the order of 10−4 or smaller.

as an estimate of the value to which t−1 log(p(σt)/pi(σt)) is close for t sufficiently
large. Moreover, Dp|pi(σt) appears extremely stable across the independent replicas
of the cases we consider, suggesting that the selection argument of Corollary 2.1
can be applied. When p ≤ π1 or p ≥ π2, under-reaction learning is equivalent to
Bayesian learning, irrespective of the value of λi. In the parameter domain where
Proposition 4.1 applies, p ∈ (π1, π2), the average relative entropy decreases as the
degree of under-reaction increases. This monotonic decreasing relationship is a
novelty; it is a fresh new feature, not prescribed by the results of the previous
Section. The performances of the moving average learning process, built on top of
the considered under-reaction processes, are reported as dotted lines in Figure 1.
When the under-reacting reference persistently mixes the two models, the usage
of a moving average learning process is fruitful. On the contrary, when the under-
reacting reference settles on the best i.i.d. model, the moving average process does
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Figure 2: Average relative entropy of an under-reacting agent as a function of λi

and for different values of p. Parameter settings: π1 = 0.3, π2 = 0.8. The values
of p has been chosen such that Dp|π2(σ) < Dp|π1(σ) holds. Standard errors are in
the order of 10−4 or smaller.

not deliver any selection advantage. Finally, because the two considered models are
linearly independent, the average relative entropy of the limited memory Bayesian
learner is bounded away from zero (black dashed line in Figure 1). It is worth to
point out that, in case p belongs to a specific sub-interval of (π1, π2) and discount
factor homogeneity holds, this simple model is able to make a Bayesian agent
vanish. Anyhow, it succumbs to an agent showing a sufficiently high level of
under-reaction.

If the value of the parameter p characterizing the true measure is close to the
one of the two models, π1 or π2, the reduction of the relative entropy due to
under-reaction does not seem to click-in immediately when reducing λ. To further
investigate this point, in Figure 2 we report the average relative entropy of an
under-reacting agent i as a function of λi, for different values of p. We consider
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Figure 3: Left: consumption share dynamics of agent 1 (B), agent 2 (UR), agent 3
(LMB), agent 4 (MA). Center: p1(1|σt) (B) and p3(1|σt) (LMB) for the first 150
time steps. Right: p2(1|σt) (UR) and p4(1|σt) (MA) for the first 150 time steps.
Black dots represent on 1 represent the occurrence of st = 1, while black dots on
0 represent st = 2.

the same number and length of partial histories used for Figure 1. For any value of
p, it seems that there exists a threshold value λi such that, as λi increases beyond
it, the monotonically decreasing behavior appears. For λi ≤ λi, the under-reacting
model behaves exactly as the Bayesian one (i.e. λi = 0). Indeed, when λi → 0, the
under-reacting agent behaves as a Bayesian one and converges to a single model.
Thus, the threshold λi represents the point in which under-reaction starts to play
a role and the agent starts persistently mixing both models. Intuitively (see also
the discussion in Massari, 2020), this should happen when the mixing coefficient λi

is large enough for the mixture of the two models to start having a lower average
entropy then the best model. Thus, considering the case in which Dp|π2 < Dp|π1 ,
the threshold value λi should solve the equation Dp|λi π2+(1−λi)π1 = Dp|π2 . Since
π1 < p, Dp|π2 is a decreasing function of π1, thus there exists a number π̃1 ∈ (π1, p)
such that Dp|π̃1 = Dp|π2 . By direct substitution one can verify that the value
λi = (π̃1−π1)/(π2−π1), which is reported as a dashed line in Figure 2, fulfills the
requirement.

4.1.2 Dynamics of consumption shares and subjective probabilities

To study how the characteristics of the learning process we have seen above shape
the dynamics of consumption shares we conduct a market selection exercise. As
in the previous Subsection, we set K = S = 2, π1 = 0.3, π2 = 0.8. The market is
populated by 4 agents: agent 1 is Bayesian; agent 2 under-reacts with λ2 = 0.65,
agent 3 is a limited memory Bayesian learner, agent 4 uses the moving average
learning process with M4 = 10 exploiting the predictions of the under-reaction
learning process of agent 2. Following Bottazzi and Giachini (2022), we assume
ei(σt) = e > 0 ∀i, t, σ and ui(c) = (1 − β) log(c/e) ∀i, with β the homogeneous
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Figure 4: Left: consumption share dynamics of agent 1 (B), agent 2 (UR), agent
3 (LMB), agent 4 (MA). Center:p1(1|σt) (B) and p3(1|σt) (LMB) for the first 100
time steps. Right: p2(1|σt) (UR) and p4(1|σt) (MA) for the first 100 time steps.
Black dots represent on 1 represent the occurrence of st = 1, while black dots on
0 represent st = 2.

discount factor. Hence, the consumption share of agent i at σt+1 is

c̃i(σt+1) =
ci(σt+1)

4e
=

pi(st+1|σt)ci(σt)∑4
j=1 pj(st+1|σt)cj(σt)

∀i, t, σ , (7)

with c̃i(σ0) = 0.25. A random sequence of states is drawn assuming that the true
probability process is i.i.d. with p(1|σt) = p ∈ (0, 1) ∀t, σ. For our first exercise,
we set p = 0.6, such that, from Figure 1, one has that agent 4 (moving average)
is the most accurate trader in the market. Accordingly, Figure 3 left panel shows
the convergence towards 1 of agent 4’s consumption share. On the other hand,
agent 1 is the first to approach a null consumption share, while the last to vanish
appears to be agent 2. Looking at subjective probabilities attached to state 1
(Figure 3 center and right panels), one notices that agent 1 converges to model 2
quite quickly. Agents 2, 3, and 4, instead, persistently fluctuate. However, while
agents 2 and 4 tend to stay between the truth and the best model displaying a
rather smooth path, agent 3 strongly jumps between its two levels.

For the second exercise, we draw the random sequence of states setting p = 0.25.
In this case, Figure 1 shows that agents 1, 2, and 4 achieve the same level of average
relative entropy, while agent 3 is less accurate than them. As one can observe in
Figure 4, consumption shares stabilize quite quickly on their long-run level and,
while agents 1, 2, and 4 show a strictly positive share, agent 3 vanishes. Looking
at subjective probabilities, one notices that agents 1, 2, and 4 converge to model 1,
while agent 3 fluctuate between its two levels in the (π1, π2) interval. Since p < π1,
selecting model 1 is the best possible choice and only those agents able to do that
survive.

19



4.2 Structural misspecification

A more general process for the true probability measure is now considered. Indeed,
here we assume that the states of nature follow a Markov process with transition
matrix composed by strictly positive entries.

Assumption 3. The true measure p follows a discrete-time Markov chain with
transition matrix P : p(st+1|σt) = Pst,st+1 ∀t, σ and p(s|σ0) = ps,0 with ps,0 > 0
∀s ∈ {1, 2, . . . , S}. For any (s, s′) ∈ {1, 2, . . . , S} × {1, 2, . . . , S}, it is Ps,s′ > 0.

The strict positiveness of the transition matrix’s entries implies that the Markov
chain defining the true probability measure p is irreducible and, as a consequence,
the invariant probability distribution π = (π(1), π(2), . . . , π(S)), with π(s) > 0 ∀s,
exists unique (see Feller, 1968, page 393). The invariant distribution emerges in
the computation of models’ average relative entropy and, in turn, this is useful to
understand the accuracy of Bayesian learning.

Bayesian Learning. When the truth follows a Markov chain as in Assumption
3, one can explicitly compute the limiting value of the average relative entropy of
any i.i.d. model. Indeed, the following holds.

Proposition 4.3. Ror any i.i.d. model k, it is p-almost surely

lim
t→∞

Dp|πk
(σt) = Dp|πk

(σ) =
S∑

s=1

π(s) log
π(s)

πk(s)
+

S∑
s′=1

π(s′)
S∑

s=1

Ps′,s log
Ps′,s

π(s)
. (8)

Proof. From the definition of Dp|πk
(σt) one has p-almost surely

Dp|πk
(σ) = lim

t→∞

1

t

t∑
τ=1

S∑
s=1

p(s|στ ) log
p(s|στ )

πk(s)
= lim

t→∞

1

t

t∑
τ=1

S∑
s=1

Psτ ,s log
Psτ ,s

πk(s)
=

= lim
t→∞

1

t

t∑
τ=1

S∑
s′=1

1s′,sτ

S∑
s=1

Ps′,s log
Ps′,s

πk(s)
=

S∑
s′=1

π(s′)
S∑

s=1

Ps′,s log
Ps′,s

πk(s)
,

where 1s′,s represents the indicator function (1s′,s = 1 if and only if s′ = s and
0 otherwise) and the last equality is an application of the Strong Law of Large
Numbers. The equation in the statement directly follows adding and subtracting∑S

s=1 π(s) log π(s) and exploiting the properties of the invariant distribution, i.e.

π(s) =
∑S

s′=1 Ps′,sπ(s
′) ∀s.
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Proposition 4.3 shows that the average relative entropy of an i.i.d. model in
a Markov world results from the sum of two components: the relative entropy of
the model with respect to the “best” i.i.d. distribution – the invariant distribution
of the chain – and the average relative entropy of the “best” i.i.d. model with
respect to the transition probabilities. Thus, from Proposition 3.1, one has that
a Bayesian agent is asymptotically as accurate as the i.i.d. model with the lowest
relative entropy with respect to the invariant distribution. Moreover, a Bayesian
becomes increasingly inaccurate as the true Markov model is increasingly divergent
from the invariant distribution. This can eb understood as the loss of accuracy a
Bayesian agent suffers because of structural misspecification.

Learning with under-reaction. Concerning under-reaction, an application of
Proposition 3.2 combined with the results of Massari (2020) delivers that the
under-reacting agent maintains a specific advantage over the Bayesian one. How-
ever, we cannot provide an extension to the Markovian case of its generic advantage
delivered by Proposition 4.1 in the parametric misspecification case. The intuition
here is that unconditionally averaging predictions becomes less fruitful when the
truth is Markov. Indeed, in so doing one is combining predictions without dis-
criminating the fact that probabilities change depending on the realized state.
Thus, a trade-off emerges: on the one hand, some form of averaging may allow the
learner to get closer to the best i.i.d model (i.e. the invariant distribution), but,
on the other hand, dampening fluctuations may be counterproductive when the
true probabilities naturally fluctuate.

Limited memory Bayesian learning. Concerning the limited memory Bayesian
learning process, the situation is rather different. Indeed, the limitation in the
number of observations the agent adopts makes its predictions show the Marko-
vian property. Thus, in those cases in which the i.i.d. models and the initial
weights are such that the resulting probabilistic prediction are close to true tran-
sition probabilities, it can show an high level of accuracy. More specifically, under
Assumption 3 and for an agent i that uses the limited memory Bayes protocol in
eq. (5), it is p-almost surely

lim
t→∞

Dp|pi(σt) = Dp|pi(σ) =
S∑

s′=1

π(s′)
S∑

s=1

Ps′,s log
Ps′,s

K∑
k=1

πk(s)
πk(s

′)wi,k(σ0)
K∑

k′=1

πk′(s′)wi,k′(σ0)

.

(9)
Hence, if the transition probabilities can be written as a particular convex combi-
nation of the i.i.d. models, then the average relative entropy of the limited memory
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Bayesian agent is zero. That is, Dp|pi(σ) = 0 if Ps′,s =
∑K

k=1 zk,s′πk(s) ∀s′, s, with

zk,s′ =
πk(s

′)wi,k(σ0)
K∑

k′=1

πk′(s′)wi,k′(σ0)

∀s′, k .

As a consequence, learning processes that do not provide relevant selection advan-
tages in the parameter misspecification case, may become effective as structural
misspecification occurs. In the case of the limited memory Bayesian, the key is its
continuous resetting of the learning process. Such a peculiar behavior conveys a
structure to predictions that cannot be recovered otherwise.

Moving average learning. The argument used in Proposition 4.2 to show the
advantage of the moving average approach under parametric misspecification can-
not be generically extended when Assumption 3 holds. Since the basic mechanism
underlying moving average learning is, again, smoothing, the intuition follows the
same logic of the one provided for learning with under-reaction: a trade-off be-
tween getting closer to the the invariant distribution and matching fluctuations
emerges. Hence, it could be generically possible that smoothing the conditional
of the underlying model, a moving average learning agent under-performs with
respect to its reference.

Summarizing, structural misspecification makes the task of ranking learning
processes in terms of survival prospects even harder. Indeed, the aforementioned
trade-offs let the selection picture become much blurrier than the case of paramet-
ric misspecification. To support, validate, and better understand the intuitions
provided here, in the following section we perform a numerical exercise. It clearly
shows that selection outcomes can generically and profoundly change depending
on how one sets the parameters of the true Markov chain.

4.2.1 Numerical exploration

For our numerical exercise, we consider the same settings used in subsection 4.1.1
with the exception of the true probability. That is, we set K = S = 2, π1 =
(π1, 1− π1), π2 = (π2, 1− π2), and states of nature appear according to a Markov
chain with transition matrix

P =

[
P1,1 1− P1,1

P2,1 1− P2,1

]
.

Thus, p(1|σt) = p(1|st) = Pst,1 ∀t, σ. The invariant distribution reads

π =

(
P2,1

1− P1,1 + P2,1

,
1− P1,1

1− P1,1 + P2,1

)
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Figure 5: Average relative entropy of the invariant distribution (left) and of a
Bayesian agent (right) for different combinations of P1,1 and P2,1. Parameter set-
tings: π1 = 0.3, π2 = 0.8.

and we shall use its average relative entropy as a reference point throughout the
analysis. Such a quantity can be analytically computed and in left panel of Figure
5 one can read its values for different combinations of (P1,1, P2,1). In the right
panel, instead, the average relative entropy of a Bayesian agent is showed. One
immediately notices that the loss in accuracy one suffers by using the best i.i.d.
model when the truth is Markov progressively grows as we move away from the
P2,1 = P1,1 line. In the case of a Bayesian agent, one recovers the shape of the
solid black line in Figure 1 along the P2,1 = P1,1 line. Moving towards the corners
(P1,1, P2,1) = (0, 1) and (P1,1, P2,1) = (1, 0), the average relative entropy progres-
sively grows as a consequence of structural misspecification.

Next, we show in Figure 6 the difference between the average relative entropy of
each learning process and the average relative entropy of the invariant distribution.
To compute the average relative entropy of the under-reacting agent and of the
moving average agent, we rely upon a numerical estimation, details are provided
in the caption of each Figure. Even in this case, the reported numbers can be
understood as estimates of the values to which t−1 log(p(σt)/pi(σt)) is close for t
sufficiently large and, given the extremely stability across replicas, the selection
argument of Corollary 2.1 can be applied. As expected, the Bayesian agent cannot
be more accurate than the invariant distribution and, thus, the surface shown in the
top-left panel is completely in the positive part of the graph. Comparing under-
reaction (top-right panel) with moving average built on it (bottom-left panel),
one appreciates the trade-off between dampening fluctuations in predictions to
get closer to the best i.i.d. model and keeping changing predictions in order to
match transition probabilities. Focusing on the regions of the (P1,1, P2,1) space
where the Markov chain favors switching, P1,1 ≃ 0 and P2,1 ≃ 1, one notices that
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Figure 6: Differences between average relative entropy of the learning process and
the average relative entropy of the invariant distribution. Top-left: Bayesian
learning. Top-right: under-reaction with λ = 0.65. Bottom-left: moving aver-
age agent with M = 20 exploiting the under-reaction with λ = 0.65. Bottom-
right: limited memory Bayesian learning. Parameter settings: π1 = 0.3, π2 = 0.8,
wi,1(σ0) = wi,2(σ0) = 0.5. The average relative entropy of under-reaction and mov-
ing average have been estimated over 200 independent realizations of 2500 steps
each. For estimated values, standard errors are in the order of 10−4 or smaller.
The plots are rotated of 90◦ clockwise with respect to Figure 5 in order to improve
the visualization of results.

moving average is more accurate than the under-reacting process it is exploiting.
Thus, averaging seems to provide a gain in accuracy when the underlying process
jumps frequently between states. In such a situation, the trade-off is solved in
favor of averaging. At the same time, the accuracy of the invariant distribution
appears as an upper bound: the two learning processes cannot improve upon the
best i.i.d. model. In the opposite case of a persistent Markov chain averaging
appears less advantageous and letting predictions fluctuate can provide superior

24



Figure 7: Most accurate processes over the (P1,1, P2,1) space. White: Multiple
maximally accurate processes or the difference between the two lowest average
relative entropy processes is not significant at ∼ 99% confidence level. Light
gray: under-reaction with λ = 0.65 is the most accurate. Dark gray: moving
average with M = 20 exploiting under-reaction is the most accurate. Black:
limited memory Bayesian learning is the most accurate.

outcomes. Indeed, when P1,1 ≃ 1 and P2,1 ≃ 0, under-reaction outperforms moving
average and can even be more accurate than the invariant distribution. Hence, the
trade-off is solved towards matching the fluctuations of true probabilities. This is
even clearer looking at the performance of the limited memory Bayesian process
(bottom-right panel). Such a learning rule provides the best outcome in terms of
accuracy – outperforming each other learning process and the invariant distribution
– when the underlying Markov chain is sufficiently (and symmetrically) persistent.
At the same time, the limited memory Bayesian learning process presents the
most extreme levels of average relative entropy: when the true Markov chain is
not sufficiently persistent it performs worse than the other rules.

To complement and further support the previous analysis, Figure 7 shows the
identity of the most accurate agent over the (P1,1, P2,1) space. As argued in ad-
vance, the moving average process exploiting under-reaction is the most accurate
when the true Markov chain frequently switches between states, while the limited
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memory Bayesian process is the most accurate when the Markov chain is persistent
and close to be bi-stochastic. Interestingly, under-reaction prevails over a region
in which P1,1 ≃ 0.8 and P2,1 ≃ 0.6. Following our intuition about the trade-off, in
that region under-reaction is able to achieve the best combination between averag-
ing to get close to the invariant and fluctuating to follow transition probabilities.
In the regions around P1,1 = P2,1 = 0 and P1,1 = P2,1 = 1 and spanning for most of
the white areas in the plot, from a direct comparison with Figure 6, one can con-
clude that Bayes, under-reaction, and moving average achieve the same (maximal)
accuracy level.

4.2.2 Consumption shares dynamics

Finally, we propose some market selection exercises along the same lines of Subsec-
tion 4.1.2 but assuming that the true data generating process is a Markov chain
as in Subsection 4.2.1. That is, we set K = S = 2, π1 = 0.3, π2 = 0.8 and
we populate the market with the same 4 agents of Subsection 4.1.2. Thus, the
consumption share of agent i at σt+1 remains as in equation (7).

For our first exercise we consider a random sequence of states generated setting
P1,1 = 0.15 and P2,1 = 0.75. From Figure 7, one immediately notice that such a
point belongs to the region where the moving average agent (agent 4) has the lowest
average relative entropy. As a consequence of Corollary 2.1 and given discount
factor homogeneity, we shall observe that agent 4 dominates. The left panel of
Figure 8 shows the evolution of agents’ consumption shares in the first 300 steps.
Consistently with our results, one observes that the consumption share of agent
4 approaches one around time-step 200 and stabilizes on such a level afterwards.
One also notice that the order in which agents approach zero consumption is: first
agent 3, second agent 1, and third agent 2. Looking at how the predictions for state
1 of the agents evolve over the first 100 time steps (central and right panel of Figure
8), one notices that agent 1 approaches model 1 quite quickly, agent 2 shows small
fluctuations around a sort of long-run trend, agent 3 strongly fluctuates between
its two predictions, agent 4 captures the long-run trend of agent 2.

Next, we draw our random sequence of states setting P1,1 = 0.75 and P2,1 =
0.15, such that the underlying Markov chain is highly persistent and close to be
bistochastic. Figure 7 indicates that the limited memory Bayesian learning process
generates the lowest average relative entropy. Indeed, as expected, in Figure 9 left
panel, agent 3 attains a (almost) unitary consumption share in less than 100 steps.
Looking at how beliefs evolve – Figure 9 center and right panels –, one notices
that agent 1 settles on model 1 after few fluctuations; agent 2 and 4 persistently
fluctuate but the persistence of states do not allow them to rapidly adapt when
a switch occurs; agent 3, instead, quickly moves and remains close to the true
probabilities as sequences of equal states alternate.
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Figure 8: Left: consumption share dynamics of agent 1 (B), agent 2 (UR), agent
3 (LMB), agent 4 (MA). Center:p1(1|σt) (B) and p3(1|σt) (LMB) for the first 100
time steps. Right: p2(1|σt) (UR) and p4(1|σt) (MA) for the first 100 time steps.
Black dots represent on 1 represent the occurrence of st = 1, while black dots on
0 represent st = 2.

Figure 9: Left: consumption share dynamics of agent 1 (B), agent 2 (UR), agent 3
(LMB), agent 4 (MA). Center: p1(1|σt) (B) and p3(1|σt) (LMB) for the first 100
time steps. Right: p2(1|σt) (UR) and p4(1|σt) (MA) for the first 100 time steps.
Black dots represent on 1 represent the occurrence of st = 1, while black dots on
0 represent st = 2.

Finally, we set P1,1 = 0.35 and P2,1 = 0.2 such that we are in a case of multiple
survivors according to Figure 7. Figure 10 left panel confirms that: in less than
100 steps agent 1, 2, and 4 stabilize on positive and heterogeneous consumption
shares. Interestingly, the under-reacting agent is the one achieving the highest
share. Agent 3’s consumption share, instead, goes to zero and the reason for that
is evident from the center and right panels of Figure 10. Indeed, the probability
that agent 3 assigns to state 1 continues to fluctuate between two levels that are
outside the range defined by the transition probabilities. The other agents, instead,
converge to model 1, whose predictions, lying in-between transition probabilities,
turn out as the most accurate. This also explains why their consumption shares
stabilize: they become identical.
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Figure 10: Left: consumption share dynamics of agent 1 (B), agent 2 (UR), agent
3 (LMB), agent 4 (MA). Center: p1(1|σt) (B) and p3(1|σt) (LMB) for the first
100 time steps. Right: p2(1|σt) (UR) and p4(1|σt) (MA) for the first 100 time
steps. Black dots represent on 1 represent the occurrence of st = 1, while black
dots on 0 represent st = 2.

5 General survival behaviors under model mis-

specification

The previous analyses show that the kind of model misspecification the agents face
crucially affects the selection outcomes one shall observe in the long-run. Indeed,
learning rules with low survival prospects under parametric misspecification, can
dominate when structural misspecification is considered. However, this does not
imply that examples of belief formation rules that persist in the market no matter
the data generating process are nonexistent.4 For instance, consider the averaging
approach: in the previous sections, we investigated the performance of an agent
who averages the predictions of one specific reference learning model, discussing
the advantages and disadvantages it entails. However, if instead of averaging over
time the conditional predictions of a given reference model, an agent averages the
likelihoods of all the other learning processes in the market, such an agent survives
on any path.

Proposition 5.1. Assume that βi = β ∀i and that agent N assigns to partial
history σt the weighted arithmetic mean of the probability of the other agents,

pN(σt) =
N−1∑
i=1

vipi(σt),∀σt, (10)

with vi > 0, ∀i = 1, . . . , N − 1 and
∑N−1

i=1 vi = 1. Then, agent N survives on all
σ.

4Intuitively, survival is guaranteed by any way of assigning probabilities to future events that
makes an agent always consume its endowment.
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Proof. Note that if limt→∞ cN(σt) = 0, that is if limt→∞ u′
N(cN(σt))

−1 = 0, then
limt→∞

∑N−1
i=1 ci(σt) = e(σt) > 0, that is lim inft→∞

∑N−1
i=1 viu

′
i(ci(σt))

−1 > 0.
Thus, if agent N vanishes on σ,

lim
t→∞

u′
N(cN(σt))

−1∑N−1
i=1 viu′

i(ci(σt))−1
= lim

t→∞

pN(σt)∑N−1
j=1 vipi(σt)

= 0.

However, this is impossible, as pN(σt)/
∑N−1

i=1 wipi(σt) = 1 ∀t.

Recursively substituting (3) in (2), it is immediate to realize that (10) is just
Bayesian learning with prior (v1, . . . , vN−1) over the learning models of the other
market participants. Moreover, if Assumption 1 holds for any agents i = 1, . . . , N−
1, then for agent N , behaving as in (10), it is

pN(st+1 | σt) =
K∑
k=1

πk(st+1)wN,k(σt) with wN,k(σt) =
N−1∑
i=i

wi,k(σt)
vipi(σt)

pN(σt)
, ∀k, t.

Hence, Assumption 1 is also valid for agent N and the weights it used to construct
its conditional probabilities are the likelihood-weighted averages of the weights
used by the other agents in the market. Thus, behaving as in (10), an agent
is able to let the accuracy of its beliefs asymptotically match the highest level
achieved by market participants and this provides a survival advantage. Basically,
it can adapt its predictions to the best performing ones on every given sequence of
events. When the most accurate learning process is unique, this implies that such
an agent learns the best learning process in the market. In the examples of the
previous Section, for instance, an agent whose individual probabilities are as in (10)
would asymptotically behave as the moving average agent in the market of Figure
8 and as the limited memory Bayesian in the market of Figure 9. In the market
of Figure 10, where the 3 most accurate agents converge to predict according to
model 1, an agent behaving as in (10) would asymptotically use model 1.

The selection result obtained here perfectly mirrors the necessary and sufficient
condition for a trader to vanish that Massari (2017) recovers under homogeneous
discount factors: an agent vanishes if and only if its beliefs are less accurate than
those obtained via Bayesian learning over agents’ models. Thus, if an agent be-
haves as in (10), it cannot vanish. The learning behavior generated by (10) shares
some similarities with the Follow the Market Strategy (FMS) proposed by the same
author. It prescribes to make condition predictions according to next-period risk
neutral probabilities. Hence, defining q(st+1 | σt) = q(σt+1)/q(σt), for an agent i
forming beliefs according to the FMS, it is

pi(st | σt−1) =
q(st | σt−1)
S∑

s=1

q(s | σt−1)

. (11)
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Simple computations show that the behavior prescribed by (11) is equivalent to
the one implied by (10) if all the agents in the economy have logarithmic Bernoulli
utility. Otherwise, they are generically different. Massari (2017) shows that, in
economies populated by CRRA traders with the same intertemporal discount fac-
tor and risk aversion parameter, if the trader with highest pi(σt) changes infinitely
often and agents have distinct beliefs, the FMS trader: i) dominates if market par-
ticipants are more risk averse than log, ii) survives without dominating if market
participants have logarithmic utility; iii) vanishes if market participants are less
risk averse than log. If there is a unique trader (or model) that assigns the highest
likelihood to a sequence (as in the examples of the previous sections), then the
FMS ensures survival, since it ends up imitating the most accurate behavior. In
such a case, Massari (2017) argues that survival is guaranteed even by the Follow
the Leader Strategy (FLS), that prescribes to imitate the most accurate trader in
the market and for an agent i it is defined as

pi(st | σt−1) =


pj(st | σt−1) j : pj(σt−1) = argmaxn{pn(σt−1)} ,∑
j∈Kt−1

pj(st | σt−1)

|Kt−1|
if ties occur ,

(12)

whereKt−1 is the set of agents whose beliefs have the highest likelihood. If, instead,
the trader with highest likelihood change infinitely often, then an agent i behaving
as in (12) vanishes (Massari, 2017).

The selection results derived by Massari (2017) hold no matter the type of
model misspecification affecting the market. Hence, comparing the learning be-
havior prescribed by (10), (11), and (12) one notices a common feature: to be
implemented they require a trader to know (at least) the learning processes of
all the other agents in the market.5 This is in stark contrast with the learning
processes investigated in the previous sections, where no information about the
whole market ecology is needed to implement them. Hence, the examples and
the discussion presented here indicate that high survival prospects under model
misspecification could be more related to the amount of information one trader
possesses about the other agents populating the market rather than to how so-
phisticated its learning mechanism is.

6 Conclusions

In this paper we study market selection in a complete-market Arrow-Debreu econ-
omy considering four learning processes and two cases of model misspecification:

5Actually, the FMS is more demanding than the other two: it also requires information about
risk preferences, intertemporal discount factors, and endowments.
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parametric and structural misspecification.
Our analysis shows that providing a general ranking of learning processes with

respect to their survival prospects is difficult and the characteristics of the model
misspecification problem strongly influence selection outcomes. Under paramet-
ric misspecification, learning processes build upon an averaging approach have a
selection advantage over generic regions of the parameter space. Such an advan-
tage partially disappears when structural misspecification occurs. Indeed, learning
approaches that have lower fitness than averaging ones under parametric misspec-
ification can become very accurate under structural misspecification. In the cases
we analyze, the intuition is that a trade-off between approximating the best i.i.d.
model and capturing the persistent fluctuations in true conditional probabilities
emerges.

Even if one can generate examples of learning rules that allow an agent to
survive no matter the kind of model misspecification characterizing the economy,
those approaches appear to require the knowledge of fundamental details con-
cerning all the other market participants. Given the natural connection between
selection outcomes and long-run asset prices, a parsimonious long-run asset evalua-
tion model robust to model misspecification appears out of reach, since one cannot
dispense from knowing important features about all the agents in the economy.
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