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1 Introduction

Policy evaluation in macroeconomics is traditionally carried out within the framework of

formal models. Such models serve as surrogates of laboratories in which, through simu-

lation, counterfactual questions can be addressed. Questions may concern the effects of

systematic changes in fiscal or monetary policy, but also the economic consequences of

climate change. It is evident that the results of simulations are reliable and useful insofar

as the models are empirically plausible; namely to the extent that they are taken to the

data through estimation, calibration or validation (see, e.g., Ireland, 2004; Christiano et al.,

2018). In this paper, we propose a general procedure to both calibrate and (at a subse-

quent stage) validate macroeconomic models that are sufficiently complex that they must

be analysed through simulations.

Calibration has a long tradition in empirical macroeconomics (Kydland and Prescott,

1982; Hansen and Heckman, 1996; Cooley, 1997; Gomme and Rupert, 2007). Its scope

is to restrict the parameters of a model so that this is consistent with empirical properties

of the data (e.g., stylized facts about long run growth, or moments of selected time series)

or microeconomic observations. We follow in part this tradition but introduce the novel

idea that, if the scope of the model is policy analysis, parameters should be selected so

that the model is consistent with key properties of the causal structure underlying the data,

where such properties are identified via a statistical identification approach, that is, under a

minimal set of assumptions, not related to economic theory.

Our idea of calibration has potential overlappings with the strand of literature on cal-

ibration of dynamic stochastic general equilibrium (DSGE) models that involves the min-

imization of the distance between the impulse response functions of the models and the

empirical impulse response functions (see, in particular, Christiano et al., 2005; Del Negro

et al., 2007; Dridi et al., 2007; Hall et al., 2012; Guerron-Quintana et al., 2017). At odds
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with these studies, however, we do not rely on indirect inference or simulated minimum-

distance.

Validation is a notion that is used to address the following question: How good is your

model? The assessment is relative when model’s goodness is relative to other models and

absolute when the model’s performance is measured by fixing a unit of measure. The

literature on DSGE modelling has devised important tools to compare different models and

evaluating the model’s capacity of fitting data, adopting a Bayesian approach. Comparisons

of posterior marginal likelihoods and comparisons of the model’s implied characteristics

with a benchmark DSGE-Vector Autoregressive (VAR) model are prominent examples of

relative and absolute validation tools, respectively (Del Negro et al., 2006; Cantore et al.,

2013). The literature on agent-based models (ABMs) has also duly discussed the question

of validation (see Windrum et al., 2007; Fagiolo et al., 2019). Here, the emphasis has been

posed on the idea that validation is about measuring the extent by which the data generating

process (DGP) associated to the calibrated theoretical model is a good representative of the

actual (“real-world”) DGP.

In the last decades, a large literature has emerged on calibration and estimation of com-

plex simulation models, where key notions useful for validation have been discussed. We

have mentioned above indirect inference (Gouriéroux et al., 1993; Smith, 1993) and simu-

lated minimum-distance (Altissimo and Mele, 2009). Related approaches are the method

of simulated moments (McFadden, 1989; Pakes and Pollard, 1989), simulated maximum

likelihood method (Lee, 1992; Kristensen and Shin, 2012; Kukacka and Sacht, 2023), and

approximate Bayesian computation (Frazier et al., 2018). Frameworks based on surrogate

meta-models have also been developed (Lamperti et al., 2018), which can address com-

putational issues emerging from simulation and improve the performance of the above-

mentioned methods.

In the present work, in the spirit of Guerini and Moneta (2017), we claim that not only
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calibration, but also validation should be designed by taking into account the adequacy for

purpose of model building (Parker, 2020). If the objective is policy analysis, and, specif-

ically, the prediction of the effect of a policy intervention on some variables of interest, a

model should be considered “valid” by the extent of which the causal structure associated

to the model’s DGP matches the causal structure underlying the “real-world” DGP.

Therefore, our general approach necessarily hinges on tools for causal inference. Causal

inference in macro-econometrics is intertwined with the discussion of identification of

structural equation models (Hoover, 2012), which most economists see as plagued by the

the two famous critiques of Lucas (1976) and Sims (1980) (see Favero, 2001). We tackle

here causal inference from a very “agnostic” perspective, in tune with the discussion of

identification in structural vector autoregressive (SVAR) analysis (Kilian and Lütkepohl,

2017). For the sake of calibration and validation, we do not need, indeed, to identify a

fully-fledged structural equation model. Nor is our scope to uncover the entire network of

causal relationships among time series variables. We aim at identifying a set of structural

shocks and how they impact a set of variables of interests.

We do this both for the model’s and the “real-world” DGP: we estimate VAR mod-

els both from synthetic (i.e. generated by the model) and actual data and we identify

the corresponding SVAR model by adopting a statistical identification approach. Specif-

ically, local identification of the impact matrix is achieved by exploiting non-Gaussianity

in the data, i.e., by applying independent component analysis (ICA) to SVAR modelling,

as proposed by Moneta et al. (2013); Lanne et al. (2017); Gouriéroux et al. (2017); Her-

wartz (2018). Our identification strategy is agnostic because, not only we do not rely on

economic-theoretic restrictions, but also, differently from Guerini and Moneta (2017), we

do not impose a recursive causal structure on the variables, which can be difficult to justify

from an economic point of view. This comes, however, with a price, since our identification

is local and we are not able to label the shocks. Nevertheless, by calculating a minimum
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distance index (MDI) between impact matrices, we show that it is possible to match shocks

between the SVAR models derived from synthetic data and the ones derived from actual

data.

This result is suited to our objective because, on the basis of the MDI, we can build a

model confidence set (MCS) procedure (Hansen et al., 2011; Seri et al., 2021; Barde, 2020)

that selects a set of model’s configurations of parameters containing the most appropriate

(best) one with a given level of confidence. In other words, MDI enters as loss function

in MCS. This step allows us to achieve calibration of model’s parameters that is consistent

with causal analysis. Furthermore, by comparing the causal links between shocks and

variables — the shocks-variables structure — associated with the calibrated configurations

of parameters with the one derived by the actual data, we can propose an absolute measure

of validation.

The proposed approach can be applied to any macroeconomic numerical simulation

model, including, e.g., DSGE models, heterogeneous agent (HA) models and ABMs. The

only requirements are that the theoretical model under scrutiny can be represented through

a state-space model and that both the data generated from the model and the actual data

have non-Gaussian features (see full details below). In this work, we use our protocol

to validate the “Dystopian Schumpeter meeting Keynes” (DSK) model (Lamperti et al.,

2019), a large-scale macroeconomic ABM that includes some characteristics peculiar to

“Integrated Assessment Models”, such as the energy sector, the Carbon Dioxide emissions

produced by manufacturing firms, and the climate damages. We consider a version of the

DSK embodying three sectors: the consumption and capital good sector, the banking sector

and the energy industry. The focus on ABM is due to the fact that we need non-Gaussianity

for identification. While non-Gaussianity is a common feature in data generated by an

ABM (see Guerini and Moneta, 2017), is less so in data generated by a general equilibrium

model in which a linearized version with normal disturbances is commonly studied (see,
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e.g., Smets and Wouters, 2007).1

The contributions of this paper can be summarised as follows: First, we introduce a

general protocol that, in subsequent steps, can perform both calibration and validation. We

spell out its theoretical underpinnings based on SVAR-ICA, MDI, and MCS. The proposed

method turns out to be faster than other procedures based on optimization or the explo-

ration of the parameter space and reduces the risk to deviate from the (pseudo-)true values

(e.g., the probability of incurring in multiple local minima, tipping points or flat regions

of the objective function). Second, we propose a novel employment of a statistical (i.e.

data-driven) identification procedure in the context of calibration and validation. We show

that in such context, differently from other settings, lack of global identification does not

create any hurdle. Third, we present an application of MCS which allows the possibil-

ity of ranking model’s causal structures from the most to the least plausible. Notice that

MCS is also in tune with the data-driven approach, as it focuses on the informativeness of

the real-world data (Hansen et al., 2011; Seri et al., 2021). Fourth, we apply our general

protocol to an agent-based integrated assessment model (Lamperti et al., 2019). This type

of models serves as an alternative benchmark to computable general equilibrium models,

which have been extensively used in energy and climate policy research, but have faced

criticism for their simplistic portrayal of the complex interplay between the economy and

the environment (Weyant, 2017; Stern and Stiglitz, 2021). Our application identifies, in

the model, a set of shocks that hit energy and investment and match quite accurately the

empirical counterpart found in U.S. data.

The rest of the paper is structured as follows. In Section 2, we summarize the different

steps involved in our calibration and validation technique. In Section 3, we introduce the

statistical framework and we provide the SVAR representation for both the model and the

1Examples of DSGE models characterized by non-Gaussian shocks can be found in An and Schorfheide
(2007) and Cúrdia et al. (2014).
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actual data. In Section 4, we present our general protocol of calibration and validation.

In particular: in Subsection 4.1, we describe the SVAR-ICA approach to identification;

in Subsection 4.2, we discuss the MDI used as loss function in the MCS; in Subsection

4.3, we describe the MCS-based calibration procedure; in Subsection 4.4, we discuss the

validation step. In Section 5, we briefly illustrate the DSK model. This model is calibrated

and validated by applying our general protocol in Section 6. Section 7 concludes.

2 Sketch of the protocol

We summarize here below our general protocol for calibration and validation. Two steps

(1-2) can be seen as preliminary:

1. Select a discrete setM0 := {1, . . . ,m0} of configurations of parameters (henceforth,

CoPs) from the parameter space of the theoretical model object of the study. A vector

of parameters θi (i = 1, . . . ,m0) is associated to each CoP. From the same model, for

each CoP i, simulate nMonte Carlo runs zjt (θi), with j = 1, . . . , n and t = 1, . . . , T .

The vector zjt (θi) is K−dimensional.

2. Select a K × 1 vector yt of observed time-series macroeconomic data, with t =

1, . . . , τ . We refer to yt as the real-world or actual data. Estimate a reduced-form

VAR model both from zjt (θi) (for each i and j) and yt.

The next 3 steps (3-5) refer to calibration:

3. For each estimated VAR model, estimate the impact matrix, i.e. the matrix that

describes the contemporaneous impact of the shock on the variable of interest. This

matrix, which we refer to as the mixing matrix, is locally identified by ICA applied

to the VAR residuals. We call Ψ̂0 the mixing matrix estimated from yt, and Ψ̂j,0(θi)

the one estimated from zjt (θi).
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4. Calculate the MDI between Ψ̂j,0(θi) and Ψ̂0 and record the unique signed-permutation

matrix Cji associated to it, for each j and i.

5. Apply the MCS using the MDI as loss function and select the setM? of CoPs that

minimizes the expected loss. The selected CoPs are statistically indistinguishable

given a level of confidence.

The last 2 steps (6-7) concern only validation:

6. For each Ψ̂j,0(θi)C
′
ji, with i ∈M? ⊆M0, test the significance of its entries, exploit-

ing distributions obtained by Monte Carlo simulations across j. In a similar manner,

test the significance of the entries of Ψ̂0 via bootstrap. For each CoP and the actual

data, infer a causal structure (which we call independent component representation)

representing the significant influences from shocks to variables.

7. Compare the shocks-variables structure associated to CoPs i ∈ M? ⊆ M0 to the

“real-world” shocks-variables structure, using a validation measure (VM) based on

the Structural Hamming Distance (SHD). SHD measures how many entries of the

matrices representing the two structures do not coincide.

3 SVAR representation

Our method moves from the assumption that both the stochastic process underlying a set

of observed macroeconomic data (what we call the “real-world” DGP) and the process

underlying a macroeconomic simulation model (model DGP) can be approximated by a

SVAR model.

Example 1. (DSGE representation) A DSGE model can be represented by a reduced-form

VAR following the conditions devised in Fernández-Villaverde et al. (2007) and Ravenna

(2007).
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Example 2. (ABM representation) Analogously, the relationship between an ABM and a

SVAR (see, e.g., Guerini and Moneta, 2017 and Delli Gatti and Grazzini, 2020) can be jus-

tified by the fact that an ABM can be represented through a state-space model (Hinkelmann

et al., 2011), and the latter can be approximated by a finite-order VAR model (Giacomini,

2013).

In the following, we consider a set of K time series variables yt = (y1t, . . . , yKt)
′,

corresponding to a set of K observed macroeconomic variables and a set of K time series

variables zjt(θi) corresponding to a set of data generated by a (simulated) theoretical model

for vector of parameters θi and Monte Carlo run j (i = 1, . . . ,m0; j = 1, . . . , n).

The process generating yt is represented by the following SVAR model:

Γ0yt = Γ1yt−1 + · · ·+ ΓPyt−P + εt (3.1)

where Γp (for lag p = 0, . . . , P ) are K × K matrices denoting the contemporaneous and

lagged structural coefficients, and εt is a K-dimensional vector of i.i.d. structural error

terms (or shocks) with covariance matrix Σε, which we assume to be diagonal. Equation

(3.1) may also contain a constant (or even a deterministic trend), which we omit here for

convenience, not being relevant for the present discussion. This model can be rewritten in

a form that omits contemporaneous causality. This is the reduced-form VAR model, which

turns out to be more convenient for estimation:

yt = A1yt−1 + · · ·+ APyt−P + ut (3.2)

where Ap = Γ−10 Γp (p = 1, . . . , P ), and ut = Γ−10 εt, i.e. ut is a vector of i.i.d. processes

with covariance matrix Σu = E {utu′t} = Γ−10 ΣεΓ
−1,′
0 . We call the impact matrix Ψ0 =

Γ−10 the real-world mixing matrix.
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Analogous representation holds for data generated by the simulation model:

Γj,0 (θi) zj,t (θi) =Γj,1 (θi) zj,t−1 (θi) + · · ·+ Γj,P (θi) zj,t−P (θi) + εj,t (θi) (3.3)

zjt (θi) =Aj,1 (θi) zj,t−1 (θi) + · · ·+ Aj,P (θi) zj,t−P (θi) + ujt (θi) , (3.4)

where εj,t (θi) and ujt (θi) are the model’s shocks and the reduced-form residuals, respec-

tively. We call the impact matrix Ψj,0 (θi) = Γ−1j,0 (θi) the model mixing matrix associated

to the j-th Monte Carlo run of the i-th CoP of the simulated model. As well known in the

SVAR analysis, the mixing matrix is key for identification. In the proposed method, we

will rely on a statistical identification approach.

4 Calibration and validation protocol

We now enter in the core of our calibration-validation procedure. Moving from the VAR

representability of our data generating processes, in this section we provide the theoretical

background for the steps 3-7 of Section 2.

4.1 The SVAR-ICA approach to identification

Our general protocol is based on a comparison between the SVAR models estimated from

the synthetic data (one for each Monte Carlo) and the one derived from the actual data.

Thus, there is a problem of identification to be faced. We adopt here a data-driven ap-

proach to identification which allows us to avoid strong a priori restrictions (e.g., theoret-

ical short-run or sign restrictions). Specifically, we use independent component analysis,

which exploits non-Gaussianity. With this approach, we obtain local identification, but, as

we will explain in the next subsection, our index of comparison between SVAR models

remains invariant to lack of global identification.

We now state the assumptions and the theoretical background underlying ICA, which is

a statistical method that models a set of observed random variables as a linear combination
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of independent latent random variables, called the independent components (Comon, 1994;

Hyvärinen et al., 2001). In line with the applications of ICA to SVAR analysis (see, e.g.,

Moneta et al., 2013; Gouriéroux et al., 2017; Lanne et al., 2017; Herwartz, 2018), the input

data are the estimated reduced-form residuals ut (or ujt(θi)) and the latent independent

components are the structural shocks εt (or εjt(θi)).

Given that ut = Ψ0εt, ICA recovers (up to some indeterminacy, see below) Ψ0 and εt

from realisations of ut on the basis of the following assumption (see, e.g., Hyvärinen et al.,

2001 and Hyvärinen, 2013):

Assumption 1. (i) The components εt are statistically independent;

(ii) The components εt are non-Gaussian with at most one exception;

(iii) The matrix Ψ0 is invertible.

Notice that the same assumption holds for εjt (θi) and Ψj,0 (θi). The indeterminacy

relates to the fact that Ψ0 is identified by ICA up to the post-multiplication of a generalized

permutation matrix DP, where D is a diagonal matrix and P is a permutation matrix.

This means that the order and the scale of the shocks are not identified. Our choice of the

minimum-distance index allows us to tackle this issue.2

In the ICA literature, many methods have been developed to estimate Ψ0 from ut. Some

of them are based on the minimization of a contrast function whose argument is a vector of

parameters ω determining the rotation angles of the orthogonalized input data. The method

based on the minimization of the Cramér-von-Mises statistics proposed by Herwartz and

Plödt (2016) and the method based on distance covariance developed by Matteson and

2It is customary to normalize the SVAR models so that the structural shocks have unit standard deviations,
so that impulse response functions refer to one standard-deviation shock. In this manner the scale problem is
resolved (this normalization involves a re-scaling of the columns of the mixing matrix), but not completely,
because the sign of shocks (or of their impacts) remains undetermined. One can therefore conclude that Ψ0

is identified up to the post-multiplication of a signed permutation matrix JP (where J is sign-change matrix,
i.e. a diagonal matrix with only +1 or -1 entries in the main diagonal, and P is a permutation matrix).
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Tsay (2017) use this approach. Another established technique considers semi-parametric

estimators of the pseudo-maximum likelihood function (Gouriéroux et al., 2017).

A different approach exploiting information theory techniques has been developed by

Hyvärinen (1999) and Hyvärinen and Oja (2000). The authors formulate a fixed-point al-

gorithm called fastICA. This technique relies on the maximization of the non-Gaussianity

of γ ′kut, where γ ′k is the k-th row of the matrix Γ0. The non-Gaussianity is measured

using negentropy. Given a continuous random vector y and a Gaussian vector x with

the same covariance matrix, negentropy is defined as J (y) = H (x) − H (y), where

H (y) = −
´
f (y) log f (y)dy is the differential entropy (Shannon, 1948) and f (y) is

the probability density function. To avoid the estimation of the probability density func-

tions, the fastICA algorithm exploits the following approximation of negentropy:

J (y) ≈ [E (g (y))− E (g (z))]2 , (4.1)

where g (·) is a specific nonquadratic function of a random variable, i.e. g (z) = − exp (z2/2),

where z ∼ N (0, 1). The approximation devised in Equation (4.1) drastically reduces the

computational time to find ICA projections (see Issoglio et al., 2021, for a discussion).

Finally, we have the following estimator:

γ̂0 = arg max
γ

E [J (γ ′kut)] . (4.2)

The statistical properties of the fastICA estimator hold under the following assumption:

Assumption 2. (i) E [ut] = 0 and ut has all moments up to the fourth;

(ii) g′ (·) and g′′ (·), i.e. the first and second derivatives of g (·), satisfy Lipschitz con-

tinuity, which means that ∃δ1, δ2 < ∞ such that ‖g′ (y1) − g′ (y2) ‖ ≤ δ1‖y1 − y2‖ and

‖g′′ (y1)− g′′ (y2) ‖ ≤ δ2‖y1 − y2‖;

(iii) g′′ (·) is bounded.
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Therefore, it can be shown that, under Assumptions 1-2, γ̂0 = vec
(
Γ̂0

)
is consistent

and asymptotically normal (see Reyhani et al., 2012), where Γ̂0 is the estimator of Γ0.

Notice that maximizing non-Gaussianity is strictly related to minimizing mutual statis-

tical independence. This connection has been shown by Hyvärinen and Oja (2000) who

demonstrate that the most non-Gaussian directions γ ′kut can be found by minimizing the

Kullback-Leibler divergence between the joint density f (γ ′1ut, . . . ,γ
′
Kut) and the product

of the marginals f (γ ′1ut) ·. . . ·f (γ ′Kut). Moneta and Pallante (2022) provide a perfor-

mance evaluation study comparing fastICA with other ICA estimators, showing its relative

robustness and reliability in a SVAR setting. We therefore choose to adopt fastICA algo-

rithm to estimate and identify our SVAR-ICA model.

4.2 Minimum distance index

We present here the minimum distance index, which allows us to calculate the distance

between impact matrices identified by ICA, tackling the issue of the scale/order indetermi-

nacy. The MDI is inspired by Matteson and Tsay (2017), who suggest to measure the error

between the estimate Ψ̂0 and the true value Ψ0 exploiting the metric proposed by Ilmo-

nen et al. (2010). Here, instead, we want to measure the discrepancy between the model

mixing matrix and the real-world mixing matrix. The index finds the shortest discrepancy

by searching across all the possible permutations and changes of signs of the columns of

the model mixing matrix, by keeping the real-world mixing matrix as reference matrix.3

In other words, the MDI is invariant to all possible column’s permutations and changes of

sign of the estimated model mixing matrix. To simplify the notation, in the following we

write Dji := D
(
Ψ̂j,0 (θi) , Ψ̂0

)
.

3In our application of the procedure, for convenience, the columns of the real-world mixing matrix are
signed-permuted by applying the Maxfinder criterion in a hierarchical manner, as proposed by Bruns et al.
(2021). However, results are not sensitive to any signed-permutation of the columns of the matrix Ψ̂0 .
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Definition 1. The minimum-distance index for Ψ̂j,0 (θi) is:

Dji :=
1√

K − 1
inf

Cji∈C

∥∥∥CjiΨ̂
−1
j,0 (θi) Ψ̂0 − IK

∥∥∥
F

(4.3)

where

C = {Cji ∈ G : Cji = PjiJji for some Pji and Jji} ,

G is the set of full-rank K ×K matrices, Pji is a permutation matrix, Jji is a sign-change

matrix, Ψ̂j,0 (θi) is the estimator of the model mixing matrix Ψj,0 (θi) , Ψ̂0 is the estimator

of the real-world mixing matrix Ψ0 (from real data), IK is the identity matrix and ‖·‖F is

the Frobenius norm. When the value of Dji approaches 0, we have that Ψ̂j,0 (θi) is close to

Ψ̂0.

Since it implies the minimization over all choices Cji ∈ C, Dji seems to require high

computational costs, especially when the number of variables K increases. However, this

is not a real drawback in our case. First, VAR models that are usually treated in the macroe-

conomic literature considers a limited number of variables (typically K < 10). Second, we

compute the MDI following the two-steps procedure described by Ilmonen et al. (2010,

pp. 234-235), which reduces the optimization problem over all permutation matrices P of

equation (4.3) to a linear programming problem that can be solved using specific algorithms

(e.g., the Hungarian method).

4.3 Model Confidence Set

We now present our calibration procedure, which is based on the Model Confidence Set.

MCS is a statistical procedure which allows the researcher to find the best CoPs, with a

given level of confidence, among a discrete set of candidates (Hansen et al., 2011). To

perform this selection, the researcher needs to specify a loss function, a selection criterion,

and an elimination rule. Since our purpose is to select the set of CoP(s) which delivers

causal structures that match as close as possible the structure underlying the actual data,
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we use the MDI as loss function.

From the set of CoPsM0, MCS selects a setM∗ with cardinality greater or equal than

one. We recall that to each CoP is associated a vector of parameters (to be calibrated)

θi, for i = 1, . . . ,m0. For each CoP i: (i) we run n Monte Carlo simulations zjt (θi)

(j = 1, . . . , n); (ii) we derive the model mixing matrix Ψ̂j,0 (θi) (for each Monte Carlo j);

and (iii) we compute the MDI between Ψ̂j,0 (θi) and the real-world mixing matrix Ψ̂0 (for

each j).

Let Di := EΨ̂0(θi)
D
(
Ψ̂j,0 (θi) , Ψ̂0

)
be the expected MDI relative to CoP i, where

the expectation term is taken over the values that the estimated model mixing matrix takes

across Monte Carlo runs. Let D := (D1, . . . , Dm0)
′ be the m0-dimensional vector of such

expected values for the m0 CoPs. Let D
(n)

i := 1
n

∑n
j=1Dji and D

(n)
:=
(
D

(n)

1 , . . . , D
(n)

m0

)′
be the sample counterparts of Di and D respectively. Defining Dj := (Dj1, . . . , Djm0)

′,

the sample average distance can be rewritten as D
(n)

:= 1
n

∑n
j=1 Dj .

We aim at finding the CoPs achieving the minimal MDI. Let

M? :=

{
h ∈M0 : Dh = min

i∈M0
Di

}
(4.4)

be the set of parameters minimizing the distance Di. For i ∈ M0, the estimator î(n) is the

value that minimizes the sample average distance D
(n)

i . Note that î(n) is a singleton while

M∗ is not necessarily so.

To achieve a given level of confidence in the selection procedure, we need to formulate

a statistical test. To this aim, we estimate, via Gaussian quasi-likelihood, Di and σ2
i :=

VΨ̂0(θi)
D
(
Ψ̂j,0 (θi) , Ψ̂0

)
, following Seri et al. (2021). To do that, we need the following

assumptions.

Assumption 3. For j = 1, . . . , n the vectors Dj are independent and identically dis-

tributed. For each i ∈ M0, the distances Dji are independent. The mean EDji exists
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and is finite for each i ∈M0.

Assumption 3 guarantees consistency and measurability of î(n). These properties derive

directly by the fact that each simulation zjt (θi) is independent across Monte Carlo runs.

Moreover, fixed i ∈ M0, zjt (θi) are identically distributed (see also Choirat and Seri,

2012, Proposition 1, p. 280).

Assumption 4. The variance σ2
i is finite for any i ∈M0.

While Assumption 3 is fulfilled by the construction of the simulation model, Assump-

tion 4 can be verified in the data. Therefore, we can use standard statistical hypothesis

testing to test m0 restrictions of the model at the same time.

We define the equivalence test δM and the selection rule eM associated to the setM⊆

M0. The test has a null H0,M and an alternative hypothesis H1,M:

H0,M :Di = Dh,∀i, h ∈M; (4.5)

H1,M :∃i, h ∈M such that Di 6= Dh. (4.6)

If the test rejects the null hypothesis, then δM = 1, else δM = 0. When δM = 1 we

use eM := arg maxh∈MD
(n)

h to remove a CoP fromM (i.e. we select the index h ∈ M

which provides the largest value D
(n)

h ). Now, we introduce the sequence of subsets ofM0,

Mi+1 = Mi \ eMi
for i = 1, . . . ,m0 − 1, and the p-values of the test procedure pH0,Mi

,

where we impose that pH0,Mm0
≡ 1. Therefore, the MCS p-value can be defined as follows:

p̂eMh
:= max

i≤h
pH0,Mi

, (4.7)

for h = 1, . . . ,m0.

The implementation of the MCS procedure follows an algorithm in which the main

steps are iterated:
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1. start from the setM0 := {1, . . . ,m0} and test, with level 1− α, that all the average

distances are equal: if p̂eM1
> α, do not reject H0,M and the procedure is over; if

p̂eM1
≤ α, reject H0,M and go to step 2;

2. use the elimination rule eM = eM0 to remove one CoP from M0, getting M1 :=

{1, . . . ,m0 − 1};

3. test, with level 1−α, that all the average distances associated with i ∈M1 are equal;

again, if the p̂eM2
> α, do not reject the null hypothesis and the procedure is over; if

the p̂eM2
≤ α reject the null hypothesis, use again the elimination rule, and perform

the test with i ∈ {1, . . . ,m0 − 2};

4. the procedure continues until the null hypothesis is not rejected. The final set of CoPs

is defined as M̂∗.

Note that our MCS-based calibration procedure can be easily adapted to a MDI which

refers not just to the mixing matrices, i.e. Ψ0, Ψj,0 (θi), but rather to structural moving-

average matrices at different lags, Ψ`, Ψj,` (θi) (with ` = 1, . . . , H). However, we focus on

the former matrices, since the identification of the latter depends on the mixing matrices,

which ICA is able to locally identify in a data-driven fashion. Therefore, the compari-

son of structural matrices at time horizons greater than zero does not provide additional

information about structural identifiability.

4.4 Validation step

Once the MCS-based calibration is performed, it is possible to investigate the behaviour

of the causal structures associated to the CoPs which pass the test. By comparing such

behaviour with the causal structure associated with the real-world DGP, we propose a mea-

sure of model validation. Such measure fulfills two desirable criteria. First, it is a measure
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that is bounded by construction between zero and one. Thus, it delivers an absolute assess-

ment and can be used to compare the performance of models of different nature. Second,

it focuses on properties of the causal structures that both are significant from a statistical

point of view and can be inferred from the data without further theoretical restrictions.

Notice that we have only partial information about the causal structure underlying the

real-world DGP, which is our reference point. From ICA, as already pointed out, we get

an estimate of Ψ0 which is underdetermined by permutations and changes of sign of its

columns. Thus, since we do not want to impose further restrictions, we do not obtain labels

of shocks, i.e. we cannot relate shocks with variables. But, by bootstrap, we can recover

the causal structures between the (mutual independent) real-world shocks and variables,

by inferring which shocks εks,t (with ks = 1, . . . , K) have significant impacts on variables

yt = (y1,t, . . . , yK,t)
′. From the simulated data, we get an estimate of Ψj,0 (θi), which

contains in principle the same column/sign indeterminacy. However, the calculation of

the MDI Dji has delivered a unique matrix Cji for each j and i. From Ψ̂j,0 (θi) C′ji, we

get a one-to-one mapping between the impacts of the simulated shocks and the impacts of

the real-world shocks. This warrants the possibility of comparing the real-world shocks-

variables structures with the model’s shocks-variables structures, that can be inferred by

exploiting the Monte Carlo simulations.

We represent the shocks-variables structure via a matrix which we call “independent

component representation” (ICR) (see Casini et al., 2021, for a graph-theoretic definition).

An ICR is a K × K matrix whose entries are zeros or ones. The entry < kv, ks > is 1 if

and only if there is a significant impact of the shock εks,t (or εks,t (θi)) on the variable ykv ,t

(or zkv ,t (θi)), for kv, ks = 1, . . . , K.

Whether an impact is significant or not is based on significance tests on the coefficients

which enter in the matrices Ψ̂0 and Ψ̂j,0 (θi) C′ji, with i ∈ M∗ ⊆ M0. As regards Ψ̂0,

the significance tests is based on the wild bootstrap procedure (see Kilian and Lütkepohl,
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2017, Sec. 12.2.3): at each bootstrap iteration n∗ (n∗ = 1, . . . , N∗), the bootstrap-estimated

mixing matrix Ψ̂n∗
0 is right-multiplied by a signed permutation matrix C′n∗ , where Cn∗

corresponds to the arg inf of the MDI between Ψ̂∗0 and Ψ̂0 (consistently to the scheme we

apply to the model mixing matrices).

Once obtained ICRs for both synthetic and real data we calculate the Structural Ham-

ming Distance (SHD) to be used in the proposed validation measure. SHD originates from

information theory and is generally used to compare the similarity of blocks of words

of equal length. In the field of causal networks, SHD has been introduced by Acid and

de Campos (2003) and Tsamardinos et al. (2006) to confront directed acyclic graphs.

Let ICRrw be the ICR representing the real-world shocks-variables structure and ICRsim

the analogous structure for the model’s shocks and variables. We adapt SHD such that it

counts how many entries of the two matrices do not coincide. We define our validation

measure (VM) as follows:

Definition 2. The validation measure of ICRsim with respect to ICRrw is:

VM := 1− SHD/K2, (4.8)

where K2 is the number of entries in each ICR.

If SHD � K2, then VM → 1. For a given K, the smaller is SHD, the closer is, under

this interpretation, the model’s causal structure to the real-world causal structure. This

measure is alternative to the measures proposed by Guerini and Moneta (2017) (namely,

sign-based, size-based and conjunction measures) as it is both general and more in tune

with the literature on causal search.

5 The DSK model

In this section, we briefly illustrate the DSK model by Lamperti et al. (2019), which is the

object of our application. The DSK family of models represents the first attempt to provide
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an agent-based integrated assessment model, in the spirit of contributions in environmental

economics (Weyant, 2017), as it combines energy, climate and economic modelling to offer

an integrated perspective on emission trajectories, decarbonization pathways and the corre-

sponding policies to implement. It has been recently used to study scenarios under which

green transitions are more likely to occur (Lamperti et al., 2020) and to analyze the public

costs of climate-induced financial instability (Lamperti et al., 2019), as well as to evaluate

financial policies aimed at dealing with increasing climate risks. In particular, DSK mod-

els allow tackling several problems that plague traditional general-equilibrium integrated

assessment models, by enhancing the degree of heterogeneity, improving the representa-

tion of radical uncertainties, refining the technological change process, and obtaining an

accurate assessment of climate scenarios (Stern and Stiglitz, 2021).

The DSK model by Lamperti et al. (2019) features a manufacturing sector, populated by

heterogeneous and interacting firms, devoted to the production of either capital or consump-

tion goods and receiving inputs from an energy sector. The financial system is represented

by a banking sector in which banks — heterogeneous in number of clients, balance-sheet

structure, and lending conditions — decide the amount of credit to provide to its clients

subject to a capital requirement and leverage conditions. The energy sector is populated

by heterogeneous plants embracing different energy generation technologies (“clean” and

“dirty”) which possess diverse cost structures and emission intensities. Moreover, it is

characterized by an exogenous fossil fuel sector which provides dynamics and boundary

conditions (reflecting scarcity) on the price of an undifferentiated fossil fuel. The pro-

duction activities of energy and manufacturing firms lead to CO2 (equivalent) emissions,

which increase temperature in a nonlinear way. Technical change occurs both in the manu-

facturing and energy sectors. Capital-good firms develop new vintages of machines that are

both more productive and more “green”. The energy sector can improve both the “brown”

and “green” energy generation technologies. Innovation determines the cost of energy pro-
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duced by dirty and green technologies, which, in turn, affect the energy-technology pro-

duction mix and the total amount of CO2 emissions. Finally, the government sector collects

taxes on profits and pays unemployment benefits. A detailed description of the model is

provided in Appendix A.

Our approach to calibration and validation puts emphasis on the ability of the model to

deliver empirically reliable causal structures concerning the real side of the economy, the

energy sector, and climate-related outcomes. For this reason, the K variables of interest

are: aggregate output (GDP ), consumption (Cons), investments (Inv), unemployment

rate (UR), a price index (CPI), demand of energy (Ener), and total emissions of Carbon

Dioxide (Emiss).

6 Application of the general protocol

In this section, we show the results of the application of the general protocol for calibration

and validation, presented in Section 4, to the DSK model illustrated in Section 5.

The starting point is the choice of the discrete set of parameters to be calibrated. This

choice hinges on the detection of those features that have the highest influence on the

behaviour of the macroeconomic output (see Lamperti et al., 2019). In Table 6.1, we sum-

marize the selected parameters and the intervals in which they vary.

The range of variation of the parameters is defined considering previous experiments

(see Lamperti et al., 2019, and references therein). The price of consumption-good firms

is determined as a mark-up on the unit production cost that changes over time. We let the

initial mark-up µ0 vary between 0.2 and 0.3 (see Section A.2). The mark-down for bank

deposits µdep and the mark-down on bank reserves deposited at the Central Bank µres reg-

ulate banks’ profit margins. We vary µdep between 0.75 and 0.95 and µres between 0.5 and

0.9 (details in Section A.4). The firm search capabilities parameters ζ1,2 vary between 0.3
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Table 6.1: Parameter notations and interval values

Description Parameter Values
Consumption-good firm initial mark-up µ0 [0.2, 0.3]

Mark-down for bank deposits µdep [0.75, 0.95]

Mark-down on the bank reserves at Central Bank µres [0.5, 0.9]

Firm search capabilities parameters ζ1,2 [0.3, 1]

Beta distribution support (innovation)
x [−0.15,−0.05]
x [0.05, 0.15]

Beta distribution support (energy)
xen [−0.1,−0.01]
xen [0.01, 0.1]

Payback period (industrial) b [2, 3.75]

and 1. This feature determines whether a firm is able to access to innovation or imitation.

When a firm innovates, the probability of drawing a new machinery is modelled according

to a Beta distribution. The parameter x is the lower bound of the support of the Beta dis-

tribution for innovation and it varies between−0.15 and−0.05, while x is the upper bound

of the support and it ranges between 0.05 and 0.15. The parameters x and x are symmetric,

hence when x = −0.15, x = 0.15 (Section A.1). We adopt the same reasoning for the sup-

port of the Beta distribution related to green technologies. In this case xen varies between

−0.1 and −0.01, while xen varies between 0.01 and 0.1. Finally, the range of variation of

the payback period parameter b for the industrial sector, measuring the replacement of a

machinery with respect to its obsolescence, goes from 2 to 3.75 (Section A.2).

Once the parameters are defined, we draw m0 = 200 CoPs using Quasi Monte Carlo

with sampling based on Sobol’ sequence (QMCS). Although other sampling methods are

possible (e.g., Monte Carlo with pseudo-random numbers and Latin Hypercube Sampling),

we decide to exploit QMCS as it gives a better way of arranging points in high-dimensional

spaces than standard Monte Carlo methods and standard Latin Hypercube Sampling, hav-

ing the advantage of a safer rate of convergence (Kucherenko et al., 2015, p. 10). According

to Sobol’ (1967), QMCS is convenient for many reasons: (i) it allows to reach the best uni-
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formity of distribution as the number of points in the parameter space N → ∞; (ii) it has

a good distribution also for small initial sets; (iii) it is very fast in terms of computation

time, as its rate of convergence is close to O (N−1) (while Monte Carlo techniques hold a

convergence rate of O
(
N−1/2

)
).

The appropriate number of Monte Carlo runs for each CoP can be determined following

the power analysis for ANOVA described in Secchi and Seri (2017) and Seri and Secchi

(2017). To proceed with the power analysis, we must consider two features: the number

of CoPs and the effect size f . Given m0 = 200, we choose the values of the significance

level α (the probability of rejecting the null hypothesis when it is true) and the power of

test 1−β (the probability of rejecting the null when it is false). The value of 1−β depends

on f , which measures the ability to discern between the null and the alternative hypothesis

(see, e.g., Cohen, 1988). Generally, the effect size can have different impacts: small= 0.1,

medium= 0.25 and large= 0.4. In order to be conservative, and in line with the literature

(see Secchi and Seri, 2017), we consider α = 0.01, 1 − β = 0.95 and f = 0.1. These

values lead to an optimal number of Monte Carlo runs n = 46 per configuration, for a

total of n × m0 = 9200 runs. However, to reduce as much as possible the effect of the

model’s stochasticity, we simulate the ABM n = 200 times for each CoP. Therefore, the

total number of Monte Carlo runs considered in the exercise is n×m0 = 40000.

We generate T = 500 synthetic observations for each Monte Carlo run and we delete

the first 105 observations to remove the transients. Therefore, the final sample size is

T = 395. We then inspect the parameter space to check whether some simulated time

series provide unexpected values (e.g., “N/A”, “NaN”, “-Inf”, “Inf”, etc.). However, we do

not encounter such cases.

The actual data we use for calibration and validation are U.S. data. We rely on two

different sources. We draw the macroeconomic variables (i.e. GDP, consumption, invest-

ments, unemployment rate, and CPI) from the FRED-QD Database of the Federal Reserve
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Bank of St. Louis (McCracken and Ng, 2020), and the energy variables (i.e. total energy

consumption and total Carbon Dioxide emissions) from the U.S. Energy Information Ad-

ministration.4 We take logs of all variables except for the unemployment rate. A description

of the empirical dataset is provided in Table 6.2.

Table 6.2: Empirical dataset

Variable Unity of measure Description
GDP Billions of chained 2012 Dollars Real Gross Domestic Product
Consumption Billions of chained 2012 Dollars Real personal consumption expenditures
Investment Billions of chained 2012 Dollars Real Gross Private Domestic Investment
Unemp rate Percent Civilian Unemployment Rate
CPI Index 1982− 84 = 100 Consumer Price Index for all consumers
Energy Trillion Btu Total energy consumption
Emissions Milion Metric Tons of CO2 Total Carbon Dioxide emissions

All the variables are on quarterly basis and the time series go from 1973:Q1 to 2021:Q1,

for a total of τ = 193 observations.5

We start by fitting a reduced-form VAR model on the actual data, selecting the number

of lags with the Akaike Information Criteria (AIC). Then, we perform the Ljung-Box test

to check whether the VAR residuals are uncorrelated. For all the variables considered in

the empirical application, we cannot reject the null hypothesis of uncorrelatedness. In light

of this, we fit a VAR(2) model in levels on both the actual data and the simulated time

series. Imposing the same number of lags on both VAR models guarantees coherence in

the calibration step.

As explained in Section 4.1, the estimation of the matrices Ψ̂0 and Ψ̂j,0 (θi) is achieved

via fastICA from the estimated reduced-form residuals ût and ûjt(θi). On these residuals,

4Macroeconomic variables are downloaded from: https://research.stlouisfed.org/
econ/mccracken/fred-databases/, total energy consumption are downloaded from: https:
//www.eia.gov/totalenergy/data/monthly/index.php, and total Carbon Dioxide emissions
from energy consumption are downloaded from: https://www.eia.gov/environment/.

5Energy variables are available either on yearly or monthly basis, therefore we compute the quarterly
data summing up the monthly values in each quarter.
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we perform the Jarque-Bera test. The hypothesis of normality is rejected both for actual

data and (in the vast majority of cases) for simulated data. Hence, we conclude in favour

of non-Gaussianity. We then compute MDI for each Monte Carlo run of each CoP and we

take the mean across Monte Carlo runs:

D
(200)

i =
1

200

200∑
j=1

√
tr

[(
CjiΨ̂

−1
j,0 (θi) Ψ̂0 − IK

)(
CjiΨ̂

−1
j,0 (θi) Ψ̂0 − IK

)′]
, (6.1)

for i = 1, . . . , 200.

We then use the MDI as input for the MCS. We select only CoPs that pass the testing

procedure, so we discard CoPs with p-value< 0.05. In Table 6.3, we report the order of

elimination of the CoPs, the p-values of the test procedure, the MCS p-values and the sam-

ple average distances D
(200)

i for the contemporaneous causal structures. CoPs are ranked

according to their p-values; these p-values measure the likelihood of the simulated causal

structures with respect to the ones embodied in the real-world data. For readability, we re-

port only the first ten (the last ten) eliminated CoPs. The only configuration selected for the

validation procedure is CoP 35. The fact that the MCS procedure selects a single CoP (the

“best” model) suggests that, as pointed out by Hansen et al. (2011, p. 454), the actual data

used in our application are very informative. This warrants the reliability of our data-driven

approach. The values of the parameters associated to CoP 35 are reported in Table 6.4. If

compared with the baseline parametrization in Lamperti et al. (2019), CoP 35 suggests that,

in order to better match the contemporaneous causal structure embedded in the model: (i)

bank profitability margins should be tighter (µdep, µres); (ii) firms’ capabilities in innovative

activities are stronger because ζ1,2 are higher and the support upon which innovation-driven

productivity shocks are drawn (x and x) is larger; (iii) on the other hand, in the energy sec-

tor the same support is very close to the baseline specification (xen, xen); (iv) finally, the

payback parameter b seems to be slightly lower than for the baseline calibration, suggesting

that firms are willing to replace their old machineries more often.
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Table 6.3: Order of elimination of the different CoPs with p-values and sample average distances.

k eMk
p-value of δMk

(pH0,Mk
) MCS p-value (p̂eMk

) D
(200)
i

1 108 0.0000 0.00000 0.5037
2 44 0.0000 0.00000 0.4993
3 112 0.0000 0.00000 0.4960
4 166 0.0000 0.00000 0.4945
5 188 0.0000 0.00000 0.4922
6 48 0.0000 0.00000 0.4857
7 199 0.0000 0.00000 0.4851
8 129 0.0000 0.00000 0.4816
9 13 0.0000 0.00000 0.4732
10 20 0.0000 0.00000 0.4652
...

...
...

...
...

191 159 0.00000 0.00000 0.0313
192 63 0.00000 0.00000 0.0312
193 65 0.00000 0.00000 0.0311
194 195 0.00000 0.00000 0.0310
195 133 0.00000 0.00000 0.0302
196 27 0.00011 4.69e-05 0.0301
197 179 0.00012 0.00011 0.0286
198 99 4.69e-05 0.00012 0.0284
199 139 0.00015 0.00015 0.0275
200 35 1.00000 1.00000 0.0268

The shaded area identifies the selected CoP.

Table 6.4: CoP 35 values compared to baseline in Lamperti et al. (2019).

Empirical calibration

Parameter CoP 35 Baseline

µ0 0.2875 0.28

µdep 0.8669 1

µres 0.5525 0.33

ζ1,2 0.7597 0.3

x −0.1417 −0.08
x 0.1417 0.08

xen −0.0566 −0.058
xen 0.0566 0.058

b 2.59 3
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In the validation step of our protocol (steps 6 and 7 in Section 2), we measure the

goodness-of-match of the shocks-variables structure embodied in CoP 35, with respect to

the actual shocks-variables structure. In so doing, we test the significance of the coeffi-

cients of the matrix Ψ̂0, using bootstrap, and the significance of the entries of the matrix

Ψ̂j,0 (θ35), relying on the distributions of the Monte Carlo runs. Then, we infer ICR for

both the simulated and the actual causal structures. The ICRrw and ICRsim are reported in

Table 6.5. To simplify the notation, we write εks,t = εks , with ks = 1, . . . , 7.

Table 6.5: Independent Component Representation from actual data (left) and simulated data asso-
ciated to CoP 35 (right).

ICRrw ICRsim

ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε1 ε2 ε3 ε4 ε5 ε6 ε7

GDP 0 1 1 0 0 0 0 GDP 0 0 0 0 0 0 0
Cons 0 1 0 0 0 0 0 Cons 0 0 1 0 0 0 0
Inv 1 1 1 1 1 0 0 Inv 1 1 1 0 0 1 1
UR 0 1 1 0 0 0 0 UR 0 0 1 0 0 0 0
CPI 0 0 0 0 0 0 0 CPI 0 0 0 0 0 0 0
Ener 0 1 1 0 0 0 1 Ener 0 0 0 0 0 0 1
Emiss 0 1 1 0 0 0 1 Emiss 0 0 0 0 0 0 0

The analysis of the ICRs provides the following outcomes: (i) as regards the ICRrw,

ε1 has a significant (contemporaneous) impact on investment, ε2 has an impact on GDP,

consumption, investment, unemployment rate, demand of energy and emissions, ε3 on

GDP, investment, unemployment rate, demand of energy and emissions, ε4 and ε5 im-

pact only on investment, and ε7 has an impact on the demand of energy and emissions;

(ii) as regards the ICRsim, ε1 influences investment, ε2 has an impact on investment, ε3

impacts consumption, investment and unemployment rate, ε6 hits investment and ε7 has

an impact on investment and demand of energy emissions; (iii) the validation measure

VM = 1 − 14/49 = 0.714, therefore, the simulated model is able to recover the 71.4% of

the real-world shocks-variables structures.
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It is worth noting that CoP 35 is the “best” configuration across different SVAR speci-

fications, confirming the robustness of the calibration exercise (see Appendix C). The anal-

ysis provided in Appendix C shows also that a set of shocks hitting energy and investment,

identified in the simulated model, match quite accurately their empirical counterpart.

7 Conclusion

In this paper, we propose a new general protocol for calibration and validation of complex

simulation models by searching causal structures both from synthetic and actual data. The

emphasis on causal search is linked to the importance that policy analysis, specifically,

the prediction of the effects of policy interventions, plays in macroeconomic simulation

models. Our procedure combines MCS and causal inference: first, we estimate reduced-

form VAR models from both the data generated by a macroeconomic simulation model and

a set of observed data, and we identify, through ICA, a vector of structural shocks and a

mixing matrix; then, we compute the MDI between, on the one hand, the mixing matrix

associated to each CoP and Monte Carlo run and, on the other hand, the mixing matrix

estimated from real data, and we apply the MCS to the distribution of the MDIs to select

the set of CoPs that best approximate actual data; finally, for the selected CoP(s), we infer

an ICR describing which shocks have a significant impact on the variables, and we compare

such ICR with the analogous ICR derived from the actual data.

We apply our method to the DSK model of Lamperti et al. (2019). The results show

that the MCS procedure based on the MDI discriminates well among different CoPs (only

CoP 35 passes the test). According to our validation measure, the best CoP turns out to

mimic the 71.4% of the shocks-variables structure underlying the actual data.

Our protocol can be seen as a complement and a generalization of other existing cali-

bration and validation methods, for at least three reasons: (i) it allows the researcher to rank
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causal structures associated to different CoPs of a simulation model from the most to the

least plausible according to a statistical measure; (ii) it is faster than other procedures based

on the optimization of an objective function or the exploration of the parameter space; (iii)

it applies both to calibration and validation.

Further developments are possible. First, one can replace the minimum-distance index

with another metric which accounts for the long-run dynamics of the macroeconomic vari-

ables. Second, SVARs can be estimated through Vector Error Correction Models to account

for potential cointegration among the variables. More in general, causal structures between

shocks and variables can be estimated by econometric time series models that relax many

features of the standard linear VAR model.
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Appendix

A The DSK model: Detailed description
This appendix provides a description of the DSK model’s structure of Lamperti et al. (2019,
2021). We start with an account of the capital-good sector, which determines how research,
production and pricing decisions are taken. We then describe the consumption good sector
and the energy sector. After having described the functioning of the banking sector, we
outline the equations that refer to the public sector and to the conduct of the monetary
authorities. Finally, we sketch the functioning of the climate module.

A.1 Capital-good sector
Capital goods firms produce a machine of vintage τ , whose technology is characterized
by a given level of labor productivity (LP), energy efficiency (EE) and environmental
friendliness (EF). These features are represented by a set of coefficients (Ali,τ , B

l
i,τ ), where

l = {LP,EE,EI}.
The coefficient ALPi,τ can be considered as the productivity of the machinery in the con-

sumption good industry; BLP
i,τ is the productivity of the process leading to the manufactur-

ing of the capital good. Analogously, AEE,EFi,τ and BEE,EF
i,τ represent the level of energy

efficiency (EE) and environmentally friendliness (EF) in the production processes of both
type of goods.

In order to gain market power and be selected by the competitive forces of the market,
upstream firms undertake a costly process for technology improvement, both via innovation
and imitation. Following Dosi et al. (2010), both activities are modelled in two steps. In
the first, the dynamics of technical change randomly determines the probability of success:
this is modelled by realization of Bernoulli-distributed random variables in which the level
of R&D investments INNOVi(t) positively determines the probability that the innovation
is successful, namely with parameter ϑin(t) = 1−exp−ζ1INNOVi(t). Similarly, R&D invest-
ments for imitation of existing technologies, IMITi(t), are positively correlated with the
probability of successful imitation ϑim(t) = 1− exp−ζ2IMITi(t). In a second step, the char-
acteristics of the machines which result from the first process are determined. The same
process applies both in case of imitation and innovation. The new discovered machinery
(i.e. vintage τ + 1) is described as:

Aki,τ+1 = Aki,τ (1 + χkA,i) for k = LP,EE (A.1)

Bk
i,τ+1 = Bk

i,τ (1 + χkB,i) for k = LP,EE, (A.2)

AEFi,τ+1 = AEFi,τ (1− χEFA,i ) (A.3)

BEF
i,τ+1 = BEF

i,τ (1− χEFB,i ), (A.4)

39



where χkA,i and χkB,i are independent draws from Beta(αk, βk) distributions over the sup-
ports [xk, xk], respectively for k ∈ {LP,EE,EF}. The higher the support of each distri-
bution, the higher the technological opportunities. In Lamperti et al. (2019) the support is
equal for all levels of k, so that xk = x and x̄k = x̄.

A.2 Consumption good sector
Consumer-good firms produce a homogeneous good using their stock of machines, energy
and labour under constant returns to scale. Workers consumption determines the level of
demand to be satisfied and accordingly, firms adaptively plan their production quantities
Qd
j (also considering desired inventories (Nd

j ) and the actual stock (Nj)) according to the
expected level of demand De

j = f [Dj(t− 1), Dj(t− 2), ..., Dj(t− h)]:

Qj(t)
d = De

j(t) +Nd
j (t)−Nj(t), (A.5)

where Nj(t) = ιDe
j(t), ι ∈ [0, 1].

The production levels of downstream firms are constrained by the level of their capital
stock (Kd). Accordingly, if the current capital, Kj(t), is not sufficient to satisfy the desired
level of production, they can invest and buy new machineries.

EIdj (t) = Kd
j (t)−Kj(t). (A.6)

Firms also invest by replacing technologically obsolete machineries that is, for a given
set of capital goods Ξj(t), the vintage τ is substituted with a more productive one if

pnew

cconj (t)− cnew
=

pnew

w(t)

ALPi,τ
+ c(t)en

AEEi,τ
− cnewj

≤ b, (A.7)

with pnew and cnew being the price of the machinery and its unitary cost of production,
respectively. The parameter b discounts firms’ “patience” on the rate of return on invest-
ments.6

To finance their investments, consumption good firms operate in imperfect credit mar-
kets and prioritize internal funds. If the latter are not sufficient to fully cover production
plans and investments, external funds are borrowed from a bank in the form of a credit line.
Given the total credit supply of a bank, the latter lends out money to firms on a pecking-
order, determined by the ratio between equity and sales. In the case the credit demand is
greater than the credit supply of the borrower, credit-rationing is observed.

The pricing decision of consumption good firms also follow the rule of charging a

6The unitary cost of production for both consumption and capital goods firms are as follows: cconj (t) =

w(t)/ALPi,τ + pe(t)/AEEi,τ . The price of any machinery is set with a fixed mark-up µ1 > 0.
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markup over the unit cost of production:

pconj (t) = cconj (t)[1 + µj(t)]. (A.8)

The distribution of markups’ levels depends on selection processes of the markets in
which firms operate. In particular, it depends on the evolution firms’ market share, fj:

µj(t) = µj(t− 1)

[
1 + υ

fj(t− 1)− fj(t− 2)

fj(t− 2)

]
, (A.9)

with 0 ≤ υ ≤ 1.
Moreover, market shares evolution is determined by a “quasi replicator” mechanism:

less competitive firms do not survive the selection process and are driven out from the
market.

At the end of every period, all firms’ profits (net of taxes) are computed and the level
of cash reserves is updated. They are calculated as follows:

Πj(t) = Sj(t) + rDNWj(t− 1)− cj(t)Qj(t)− rdebj (t)Debj(t), (A.10)

with total sales Sj(t) = pj(t)Dj(t), production costs cj(t)Qj(t), and debt costs rdebj (t)Debj(t),
where Deb denotes the stock of debt. The tax rate for firm profits is taxp. The stock of
liquid assets (NWj(t)) is defined as:

NWj(t) = NWj(t− 1) + (1− tr)Πj(t)− CIj(t), (A.11)

with CIj internal funds used by firm j to finance investment. If net wealth is negative or
the market share goes to zero, a firm exits the market and it is replaced by a new entrant
that charges an initial mark-up µ̄0.

A.3 Energy sector
The energy sector is characterized by green plants (whose variables are labelled with ge,
i.e. “green energy”) and by brown plants (labelled with de, i.e. “dirty energy”). Energy
is provided as input for the production of the capital and consumption goods. Demand for
electricity,De, and aggregate energy production,Qe, are matched from the energy portfolio
of plants, since it is assumed that energy cannot be stored.

“Brown” plants use fossil fuel to produce energy with vintage-specific thermal effi-
ciencies Aτde, which indicates how much energy is produced for units of employed non-
renewable resources. Energy production also implies CO2 emissions, depending on the
emission intensity emτ

de (amount of emissions per unit of energy produced).7 The average

7The parameter τ denotes the technology vintage.
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production cost for a brown plant of vintage τ is:

cde(τ, t) =
pf (t)

Aτde(t)
, (A.12)

where pf is the price of fossil fuels, exogenously determined on an international market.
“Green” plants produce (from renewable resources) energy at a null production cost,

i.e., cge(t) = 0. Given that the total (potential) production of green plants is Kge, IM is
the set of plants which should be gradually activated to meet the effective energy demand.
Given the costs of production using brown and green plants, green power plants are em-
ployed first. Instead, if total green installed capacity De(t) is greater than Kge(t), some
dirty plants need to be activated too. The total production cost then corresponds to the sum
of the production costs of the brown plants that are activated. Assuming that the absolute
frequency of vintage τ plants is gde(τ, t), if dirty plants are operative the total production
cost is:

PCe(t) =
∑
τ∈IM

gde(τ, t)cde(τ, t)A
τ
de(t) (A.13)

The energy price is computed by adding a fixed markup µe ≥ 0 to the average cost of
the most expensive infra-marginal plant:

pe(t) = µe, (A.14)

if De(t) ≤ Kge(t), and
pe(t) = cde(τ, t) + µe (A.15)

if De(t) > Kge(t), where cde(τ, t) = maxτ∈IM cde(τ, t). This unit cost level ensures that
all infra-marginal plants are obtaining positive profits.

Investment in the energy sector is due to the replacement of obsolete power plants (after
η periods they cannot produce energy anymore) or for capacity expansion. Expansionary
investments are undertaken if the maximum electricity production level Qe(t) is lower than
electricity demand De(t). The amount of new expansion investments EIe thus equals:

EIe(t) = Kd
e (t)−Ke(t), (A.16)

if Qe(t) < De(t), whereas EIe(t) = 0 if Qe(t) ≥ De(t). What type of new plants will
be installed in this case? Construction costs for new dirty plants are normalized to zero,
whilst the construction of new green plants of vintage τ come with a fixed cost ICτ

ge. The
decision is based upon a profitability rule according to which green plants are compared to
brown counterparts in terms of lifetime costs. This means that green energy technologies
are chosen whenever the fixed cost of building the cheapest green vintage is below the
discounted (variable) production cost of the most efficient dirty plant. Hence, the following
payback rule should be satisfied:

ICge ≤ ben · cde, (A.17)
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where ben is a payback period parameter (as in Dosi et al., 2010), ICge = minτ IC
τ
ge, and

cde = minτ c
τ
de.

8 Accordingly, in case of new green capacity, the expansion investment cost
amounts to

ECe(t) = ICgeEIe(t); (A.18)

whereas it is zero if the payback rule is not met and the firm builds new dirty plants.
As it is for the capital-good sector, plants’ costs and characteristics vary due to the

process of technical change. Energy plants invest a fraction ve ∈ (0, 1) of total past sales
in R&D and stochastically improve their cost structure and emission intensity through a
two-step procedure. At the end of the period, the central authority computes profits in the
energy sector (see eq. A.21 below) and levies taxes at the rate taxp.

R&D expenses in the energy sector aim at improving the technology of green and dirty
plants. Better green plants are characterized by lower fixed costs of installation. Instead,
more technological advances for dirty plants lead to an increase in energy efficiency (A) and
a reduction in carbon emissions (em). The budget for innovative activities is split between
green innovations (INge(t) = ξeRDe(t)) and dirty ones (INde(t) = (1− ξe)RDe(t)). The
level of these expenses positively affect the probability of having access to the first step of
the innovation step. For example, for the case of green innovations we have:

θge(t) = 1− e−ηgeINge(t) (A.19)

with ηge ∈ (0, 1). A similar process underlies the access to dirty innovations.
In the second step, energy firms may be successful or not in the process of discovery.

For green plants the improvement will reduce the fixed costs of constructing and installing
the plant by a factor xge ∈ (0, 1) (a random draw from a Beta distribution over the support
[χen, χ̄en]) with respect to the previous vintage:

ICτ
ge = ICτ−1

ge xge

For brown plants, two independent random draws xAde and xemde (again, from a Beta
distribution) will affect the thermal efficiency and the emission intensity as follows:

Aτde = Aτ−1de (1 + xAde) emτ
de = emτ−1

de (1− xemde ) (A.20)

Finally, the profits Πe(t) of the energy monopolist are calculated as follows:

Πe(t) = pe(t)De(t)− PCe(t)− ICe(t)−RDe(t), (A.21)

where pe(t) is the energy price, De(t) the quantity produced. On the expenditure side
PCe(t), ICe(t) and RDe(t) are the total, investments and R&D costs, respectively.

The energy firm then pays taxes on positive profits at the rate taxp.

8Under the assumption that plants are utilized for energy production the same number of periods, equa-
tion A.17 boils down to a comparison of levelized costs of energy.
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A.4 Banking Sector
Following Dosi et al. (2015), the banking sector consists ofB commercial banks that collect
deposits from households and workers and supply credit to firms, as well as a central bank
that manages monetary policy and buys government bonds as needed. Banks vary in the
number of clients they serve, their balance sheet structure, and their lending conditions.
Imperfect information makes it difficult for firms to find the best lending rates, so the bank-
firm network is assumed to be fixed and based on the empirical distribution of bank size.

A key decision for a financial institution is how much credit to offer to its clients. It is
assumed that the supply of credit is a multiple of a bank’s net worth (i.e., equity):

TCb(t) =
NWb(t− 1)

τCAR

(
1 + βBDb(t−1)

TAb(t−1)

) , (A.22)

with TCb(t) being total credit supplied by bank b at time t, NWb(t − 1) is the bank’s
equity at time (t − 1) and TAb(t − 1) the value of total assets in (t − 1), τCAR the policy
parameter that governs capital adequacy requirements, β is a behavioural parameter that
allows banks to have a prudential buffer over the capital requirement the more sensitive it
is to financial fragility of the balance-sheet. The magnitude of this buffer changes over the
business cycle, in particular according to the ratio of “bad debt” (BDb(t − 1), indicating
the amount of non-performing loans in (t− 1)) and total assets of bank b.

The interest rate on private loans rdeb(t) is determined by two factors. The first is a
mark-up (µdeb), which is the same for all banks and is applied to the Central Bank interest
rate rcb(t). The second factor is a firm-specific risk premium rdebk,cl(t), which reflects the
financial fragility of the firm cl. This risk premium is calculated by dividing firms into four
credit classes (qcl = 1, 2, 3, 4) based on their financial stability. According to Dosi et al.
(2015), the risk premium charged by bank k to firm cl at time t is given by:

rdebk,cl(t) = rdeb(t)(1 + (qcl − 1)kconst), (A.23)

where rdeb(t) is the base loan interest rate defined as rdeb(t) = rcb(t)(1 + µdeb). Firm
deposits are paid at an interest rate of rdep(t), bonds are rewarded at a rate of rbonds(t), and
deposits are paid at the central bank facility cost rres(t). The entire interest rate structure is
such that the following inequalities hold:

rdep(t) < rres(t) < rcb(t) < rbonds(t) < rdeb(t). (A.24)

It is important to note that rdep(t) = r(t)(1− µdep) and rres(t) = r(t)(1− µres). The main
refinancing operation rate is set by the central bank according to a dual-mandate Taylor
rule:

rcb(t) = rT + γπ(π(t)− πT ) + γU(U(t)− UT ), with γπ > 1, γU ≥ 0 (A.25)
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where the terms in parentheses represent the gaps in the inflation rate and unemployment
rate, while the parameters (γπ, γU) measure the central bank’s aggressiveness in pursuing
each objective.

A.5 The public sector
The public sector collects taxes on incomes generated by firm profits and household wages,
while government expenditures are in the form of unemployment subsidies, proportional
to the current level of market wage. Institutional, market-related and macroeconomic fac-
tors affect wage levels. Accordingly, they ultimately depend on the inflation gap, average
productivity, and unemployment rate, as follows:

∆w(t)

w(t− 1)
= πT + ψ1[π(t− 1)− πT ] + ψ2

∆AB(t)

AB(t− 1)
− ψ3

∆U(t)

U(t− 1)
, (A.26)

where AB stands for the economy-wide average productivity and ψ1, ψ2, ψ3 > 0.
The sum of all unemployment subsidies adds up to the level of Government expendi-

tures G(t) = wu(t)[LS − LD(t)]. Since workers consume all their income, aggregate con-
sumption is determined by the sum of all incomes, both from employed and unemployed:
C(t) = w(t)LD(t) +G(t).

The tax rate is fixed at tr. Public expenditures also comprises the bank bailout costs.
Public deficit is calculated accordingly and is set to be equal to Def(t) = Debtcost(t) +
Gbailout(t) +G(t)−Tax(t). Whenever the deficit is positive, the Government issues bonds
that are acquired by banks according to their size.

All the aggregate variables are then the result of microeconomic behavior and interac-
tion. Since there are not intermediate goods, aggregate production is the sum of firms’ value
added. National accounting entities are also met: the value of total production corresponds
to the sum of aggregate consumption, investment and change in inventories (∆N(t)):

F1∑
i=1

Qi(t) +

F2∑
j=1

Qj(t) = Y (t) = C(t) + I(t) + ∆N(t). (A.27)

A.6 Climate module
The relationship between the economy and climate change is straightforward and relies
on the well-established linear relationship between cumulative emissions and temperature
increases. Economic losses resulting from changes in temperature are firm-specific, via
damages to labour or capital production factors:

∆TA

∆CE
= λCCR, (A.28)

with ∆ being the yearly variations and λCCR the carbon-climate response.
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The distribution of climate damage shocks depends on the temperature level. Indeed,
following Nordhaus (2017), the damages function Ω(t) is a quadratic function of tempera-
ture levels,

Ω(t) =
1

1 + c1TA(t) + c2TA(t)2
, (A.29)

with c1, c2 ∈ [0; 1] first and second-order response parameters, respectively. However, for
the sake of the calibration and validation exercise we focus on the baseline version of the
model where climate-induced shocks are not hitting the agents operating in the economy,
with CO2 emissions being the only economic feedback that affects the environment.

B Behaviour of the validated simulated variables
Figure B.1 represents the behaviour of the real-world (upper plots) and the simulated vari-
ables (bottom plots) considered in the analysis, obtained with the validated configuration.

Figure B.1: Plots of the real-world vs simulated variables obtained with CoP 35.
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C Robustness checks
We compute the MCS at 95% for different SVAR models, to investigate whether the cal-
ibration procedure is robust across different specifications. To do that, we estimate four
different SVAR models, for both simulated and actual data, that we call SVAR1, SVAR2,
SVAR3 and SVAR4. The composition of these SVAR models is reported in Table C.1.

Table C.1: SVARs specifications

Model Variables

SVAR1 GDP , Inv, Ener
SVAR2 GDP , Inv, Ener, Emiss
SVAR3 GDP , Inv, CPI , Ener
SVAR4 GDP , Cons, Inv, CPI , Ener

The outcomes of the MCS at 95% (the order of elimination of the CoPs, the MCS
p-values and the sample average distances) for SVAR1, SVAR2, SVAR3 and SVAR4 are
reported in Table C.2 (for readability, we show only the first ten and the last ten eliminated
CoPs).
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All these SVAR specifications highlight a common finding; the theoretical model iden-
tifies the same set of common shocks hitting the investment and energy variable. To this
extent, the model seems to match quite accurately the empirical structure found in U.S data
that link energy demand to investment dynamics. In Table C.3, we devise the validation
measures and the shocks-variables structures common to both simulated and actual data,
for all the SVAR specifications.

Table C.3: Validation measures and common shocks-variables structures for different SVAR spec-
ifications

Model VM Shocks-variables structures

SVAR1 0.56 ε1 → Inv, ε2 → Inv, ε3 → Ener

SVAR2 0.63 ε1 → Inv, ε2 → Inv

SVAR3 0.75 ε1 → Inv, ε2 → Inv

SVAR4 0.76 ε1 → Inv, ε2 → Inv, ε3 → Inv

D Moving-average representation and impulse response
functions

Suppose to compare the structural impulse response matrices at different time horizons
` = 0, . . . , H , then yt and zjt (θi) must be represented as a moving-average process.

If the process yt is stable (i.e., det(IK −A1z − . . .−AP z
P ) 6= 0 ∀z ∈ C, |z| ≤ 1),

then yt admits a Wold moving-average (MA) representation:

yt =
∞∑
`=0

Φ`ut−`, (D.1)

where Φ0 = IK and Φ` =
∑`

d=1 Φ`−dAd. We can also write:

yt =
∞∑
`=0

Ψ`εt−`, (D.2)

where Ψ` = Φ`Γ
−1
0 and, in particular, Ψ0 = Γ−10 . The entries of the matrices Ψ`, for

` = 0, . . . , H , are referred in the literature as the impulse response functions since ψdk,` =
∂yd,t+`
∂εkt

, where ψdk,` is the (d, k) entry of Ψ`.
If the yt contains processes with unit roots, although the VAR model does not admit

a Wold representation, the matrices Φ`Γ
−1
0 = (

∑`
d=1 Φ`−dAd)Γ

−1
0 still represent impulse

response functions, which, however, may not approach zero for ` → ∞ (see Kilian and
Lütkepohl, 2017).
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Analogous representations hold for data generated by the simulation model, therefore
we can write:

zjt (θi) =
∞∑
`=0

Ψj,` (θi) εjt−` (θi) . (D.3)

The impulse response functions for VAR2, obtained using real-world data, are displayed
in Figure D.1, while the impulse response functions for VAR2, estimated using the data
simulated from the model, are shown in Figure D.2.

Figure D.1: Plots of the real-world IRFs of VAR2.
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Figure D.2: Plots of the simulated IRFs of VAR2 obtained with CoP 35.
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E R Codes and Data
The R codes and data to replicate the results reported in this article are available at the
following repository:
https://www.dropbox.com/sh/953wx8zedosk7bq/AADKHrbthlVCNw30LK4iYnRNa?dl=0
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