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Abstract

The development of low emission vehicles (LEVs) in the automotive sector stands out in the literature

as a typical case of technological competition between a dominant design and a set of alternative green

technologies. The incremental trajectory of green technologies aimed at improving the efficiency of the

internal combustion engine (ICEG) is competing with a radical trajectory targeted to the development

of hybrid, electric and fuel cell vehicles (HEF). Exploiting a novel dataset of firm- and patent-level

information retrieved from ORBIS-IP and containing USPTO patent applications between 2001 and

2018 in the automotive sector, we first cluster firms according to their relative patent share and degree of

specialization in each trajectory, identifying a technological landscape in which they locate with distinct

strategies. We then investigate the extent to which different stocks and combinations of knowledge

might explain such heterogeneity in innovative efforts and positioning in the landscape. Our results

suggest that a stock of “brown” knowledge closely related to “green” knowledge proves to be valuable

for firm’s success in each trajectory. Moreover, firms with a broad array of different knowledge sources

are capable of reaching a leadership position in the technological landscape.
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1 Introduction

The acceleration of climate change-induced catastrophes and the growing concern for the side effects

deriving from pollution and environmental degradation have pushed in the latest twenty years the

adoption of more stringent environmental standards, the most relevant being the Kyoto Protocol (2005),

a cross-national agreement meant to control greenhouse gas emissions via market based mechanisms.

Nonetheless, all the latest Intergovernmental Panel on Climate Change (IPCC) reports do agree in de-

picting dramatically alarming scenarios of global warming, mostly derived by anthropic pressures on

the environment (Hsiang and Kopp, 2018; Masson-Delmotte V., 2021).

Among the many sources of greenhouse gas emissions, human mobility is under the spotlight. The

institutional and structural changes occurring in the last sixty years, such as urbanization and con-

centration in cities, commuting, and increasing leisure time, have fuelled the use of automobiles and

reconfigured the role of mobility. In fact, the transport sector alone is responsible for a level of emissions

ranging from 10 to beyond 20 percent of overall annual CO2 emissions.1

The urgency to tackle climate change has pushed the European Commission to propose a 100% cut

in CO2 emissions by 2035.2 Other countries have declared strategies of phasing-out fossil fuel vehicles

by 2040 during the latest COP 26 in Glasgow. In particular, the resulting Climate Path includes a Decla-

ration on Accelerating the Transition to 100% Zero Emission Cars and Vans ratified by 35 countries and

6 major carmakers, with the notable absence of some big players as Toyota not signing the agreement.3

How is the automotive industry responding to climate change mitigation in terms of technological de-

velopment? The study of firm strategies, and of the sector as a whole, to tackle climate change in terms

of technological innovation becomes increasingly urgent (Skeete, 2017; Faria and Andersen, 2017a).

The development of low emission vehicles (LEVs) in the automotive sector represents a textbook

case of competing technological trajectories whose diffusion might be hampered or fostered by socio-

economic bottlenecks or opportunities (Dosi, 1988) and it is a an exemplary case of technological com-

petition between a dominant design and a set of alternative technologies. Indeed, recent empirical ev-

idence, based on patent analysis, documents that while competition between LEVs is extremely active

(Rizzi et al., 2014; Yuan and Cai, 2021), the internal combustion engine (ICE) technology still represents

the dominant design (Dijk and Yarime, 2010; Borgstedt et al., 2017), suggesting the emergence of a sailing

ship effect (Sick et al., 2016), that is the technological improvements of old technologies together with the

emergence of new ones. The concept, also known as red queen effect in biology and applied in studies

of industrial dynamics and organizational learning (Barnett and Hansen, 1996; Derfus et al., 2008), is

relevant in so far competition among alternative designs does not uniquely favour the new, but also

reinforces the old existing technologies/firms which strive to survive.

Hereby, by intersecting the technology/knowledge generation-level with the firm-level innovative

activity in a given industry (automotive), we look at a particular case of competing designs, namely in-

cremental technological solutions in internal combustion engine (ICEG thereof), and radical technolog-

1See for instance the International Energy Agency’s (IEA) data: www.iea.org/global-energy-related-co2-emissions-by-sector
(accessed 07.03.2022).

2See https://ec.europa.eu/european-green-deal/co2-emission-performance-standards-cars-and-vans (accessed 07.03.2022).
3See www.reuters.com/six-major-carmakers-agree-phase-out-fossil-fuel-vehicles-by-2040 (accessed 07.03.2022).
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ical solutions, such as hybrid, electric and fuel cells (HEF thereof), both meant at mitigating greenhouse

gas emissions, although with a different end reduction and impact, exploiting the recent classification

developed by Veefkind et al. (2012). We link information on patenting innovative activities retrieved

from ORBIS-IP and containing all patent applications at USPTO by firms active in the automotive in-

dustry, the latter deeply relying on patents (Cohen et al., 2000), between 2001 and 2018.

Exploiting the co-occurrence of classification codes assigned to a patent, we first assess whether each

green trajectory is based on different knowledge domains and entails different knowledge sources. Us-

ing normalized indexes of relative technological specialization and patent share, we provide evidence of

a variety of innovation strategies and degrees of technological leadership among firms between alterna-

tive green trajectories. We then adopt a data-driven technique in order to cluster firms, obtaining three

distinct groups characterized by low, medium and high technological leadership in each trajectory. Fi-

nally, we perform a multinomial regression analysis in order to shed light on the features characterizing

each cluster, using a set of firm-level variables able to capture the role of different dimensions of firm’s

knowledge. From the one hand, we assess whether a broader scope of knowledge is favouring firm’s

positioning in each identified green trajectory. From the other hand, we test to what extent the degree

of relatedness with established brown technologies proves to be valuable for green leadership in either

the ICEG or HEF trajectory.

According to our results, knowing brown related technologies favours firm’s positioning in the

emerging green trajectories. Two elements explain our results: diversification in innovative strategies

and relatedness/coherence of such diversification. First, highly diversified firms in terms of the knowl-

edge space are more likely to lead the technological landscape in both trajectories. Second, firms with

a portfolio of brown technologies with higher proximity to the underlying knowledge domain of each

green trajectory have higher probability to lead the technological landscape.

Our paper primarily contributes to the literature by providing evidence of firms’ innovation strate-

gies, and their heterogeneity, in incremental and radical green trajectories in the automotive industry.

Our results add insights on previous findings, indicating the presence of firms’ technological inertia in

this sector and therefore suggesting that the knowledge-base complexity characterizing the automotive

industry is playing a crucial role. In addition, we contribute to the eco-innovation literature analyzing

for the first time the role of firm’s knowledge proximity with brown technologies in fuelling emerging

green trajectories. From a policy perspective, our empirical methodology might be quite useful in order

to orient the transition of firms from incremental to radical low-emission trajectories: indeed, identify-

ing the firm-level factors behind their positioning in the landscape allows to act on some specific levers,

as the stock of previous brown knowledge, to foster the transition toward radical innovative strategies

to mitigate climate change.

The remainder of this paper is organized as follows. Section 2 spells out the theoretical underpin-

nings and previous evidence, Section 3 describes the data and methodology adopted in the empirical

analysis, while Section 4 defines the econometric strategy whose results are presented in Section 5. Sec-

tion 6 concludes, with a look at the potential policy implications and future avenues of research.
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2 Theoretical underpinnings and previous evidence

2.1 Emerging trajectories in the automotive industry

The evolutionary approach to technology stresses that sub-optimal equilibria may arise as result of path-

dependency, due to increasing returns in production, network externality in adoption, input interde-

pendence and technological complementarity, leading to a lock-in situation (David, 1985; Arthur, 1989;

Winter et al., 2003), where the old established technology is economically superior to new alternatives

due to the path it has run through. “Increasing returns rolling snowball” are typical of the automo-

bile engine technology, a historical example of the role played by cumulative technologies (Dosi and

Nelson, 2010). The persistence of a dominant design can also be linked to the degree of complexity of

the technology and its underlying knowledge base (Breschi et al., 2000), thus favouring technological

inertia. This argument is particularly relevant in the case of the automotive industry, where firms are

required to coordinate a broad array of different knowledge sources (Oltra and Saint Jean, 2009b), inputs

of production and integration of complex value chains.

The automotive industry is indeed currently facing major technological changes and the emergence

of a variety of technological trajectories. From the 1960s and 1970s, oil shocks and growing environmen-

tal awareness (Meadows et al., 1972) have spurred increasing efforts into the “greening” of the engine,

with the aim to reduce both energy consumption and emissions (Faria and Andersen, 2017a). Firms’

innovation efforts in the automotive industry have been also coupled and shaped by policy regulations.

One milestone in this respect is the Zero Emission Vehicle implemented by the California Air Resources

Board in 1990 (Dijk et al., 2013). Numerous regulations have followed in the last decades, especially in

the U.S. and Europe (Skeete, 2017), that together with different emission scandals, such as the “diesel

gate” (Brand, 2016; Skeete, 2017; Ater and Yosef, 2020; Bouzzine and Lueg, 2020), have spurred new di-

rections of technical change. For these reasons, the recent development of low emission vehicles (LEVs)

stands out in the literature as a typical case of technological competition between a dominant design, the

internal combustion engine (ICE), and a set of alternative technologies (Sierzchula et al., 2012). Among

the variety of technologies related to LEVs, a prominent role is played by all those inventions aimed

at improving the environmental efficiency of the ICE. Both gasoline and diesel engines have benefited

from continuous improvements aimed at optimizing their environmental performance (Oltra and Saint

Jean, 2009b). This group of technologies represents an incremental green trajectory based on the ICE

established domain. The latter is competing with the emergence of hybrid and electric vehicles, recently

seen as the most promising technologies. However, despite increasing adoption, fuel cell technologies

will likely remain a sub-trajectory in the short term (Rizzi et al., 2014; Tanner, 2014; Yuan and Cai, 2021).

Previous contributions in the literature have provided a clear picture of the development of LEVs

(Borgstedt et al., 2017; Oltra and Saint Jean, 2009b; Oltra and Saint Jean, 2009a) and forecasts of techno-

logical trends inside the sector (Yuan and Cai, 2021). Other efforts have been devoted to understand the

role of collaboration among firms and suppliers in the development of such eco-innovations (Golem-

biewski et al., 2015; Potter and Graham, 2019; Aaldering et al., 2019). The impact of external factors

(Dijk et al., 2013), in particular taxes and fuel incentives (Aghion et al., 2016; Barbieri, 2016) have also
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been analyzed. Evidence on firm’s innovation strategies and their drivers under these external stimuli

is however still scarce. Some works have stressed firms’ tendency to diversify among alternative green

technologies and the cumulative nature of green inventions in this industry (Oltra and Saint Jean, 2009b).

For example, Faria and Andersen (2017b) find that firms’ financial conditions are important determi-

nants for fuel cell technologies. Interestingly, using patent analysis, Sick et al. (2016) find evidence of

a specific innovation strategy called sailing ship effect occurring in the sector. The authors argue that in

the automotive industry incumbent firms direct innovative effort to enhance established technologies

instead of switching to new radical technologies.

At the current stage, the eco-innovation literature has mainly focused on the role of institutional

mechanisms and environmental policy instruments in favouring firms’ eco-innovation (Berrone et al., 2013;

Cainelli et al., 2015; Faria and Andersen, 2017b). Notwithstanding the substantial contribution to the

understanding of the role of environmental policies, “this literature barely touches on how firms un-

der similar institutional stimuli form their green technological portfolios” (Faria and Andersen, 2017b).

Moreover, less is known on firms’ heterogeneous behaviours when directing innovative efforts toward

competing technological trajectories.

2.2 Knowledge, firms and the LEV trajectory

If technology presents some specific attributes, as being characterised by cumulativeness and path-

dependence in the generation and adoption processes, firms, and their underlying techno-organizational

capabilities, are the actual locus of knowledge and technological generation (Dosi and Nelson, 2010).

Capabilities, rather than being targeted to the production of a single technology, are in general com-

plementary and able to produce bundles of products, often related to each other (Teece et al., 1994), at

least in more complex and advanced firms. With respect to the questions addressed in this paper, at

the firm-level, so far, the literature has mainly focused on the role of price mechanisms and carbon tax

polices in influencing directed technical change in clean technologies (Aghion et al., 2016), emphasis-

ing continuity in pre-existing innovation strategies, with firms investing more in dirty technologies in

the past doing so also in the future. However, more recently, regional-level analysis has stressed that

green technologies strongly rely on advances in other green and non-green technological domains (Cor-

radini, 2019; Quatraro and Scandura, 2019; Montresor and Quatraro, 2020; Santoalha et al., 2021). These

results tend to stress the importance of complementarity in the technological space (Malerba, 1992) and

the dependency of green and non-green technologies.

How rationalizing such seemingly contrasting evidence? Albeit at the technological adoption level,

the green (clean) and the brown (dirty) trajectories in the automotive sector might be conceived as com-

peting substitute designs, at the knowledge-generation level, the two designs might indeed coexist,

particularly when looking at the firm-level innovative activity. The coexistence of innovative efforts in

both designs might derive from the bundle of capabilities the firm possesses in the search space. A

strong innovative firm, together with strengthening its position in the dominant design, diversifies in

the search space of new alternative technologies, and it does so more effectively than laggard firms or

new entrants for two reasons: first it relies on more cumulative knowledge on which can leverage, sec-
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ond it has higher resilience to eventual failures, therefore it is also more exposed to risky investment.

According to such growing by diversifying strategy, leading market players in one dominant design might

want to acquire dominant positions also in the new one. This type of innovative strategy might there-

fore explain the so called red queen effect, in so far incumbents innovate the old technological design

to keep their positioning, but also invest in alternative designs. Therefore, complementarity, rather than

substitutability as previously suggested, both in terms of the knowledge behind and in the very actors

responsible of the innovative activities might arise. On the contrary, however, new players might enter

into the market specializing in some specific innovative designs, while some incumbents might want to

stick in improving what they are able to do. This suggests that a variety of innovation strategies might

emerge, in general, and in particular with reference to the low-emission trajectory in the automotive

sector.

Against this background, recent evidence on regional diversification found that knowledge proxim-

ity favours the emergence of green technologies and that relatedness between green and non-green tech-

nologies matters for green specialization (Tanner, 2014; Corradini, 2019; Quatraro and Scandura, 2019;

Montresor and Quatraro, 2020; Santoalha et al., 2021). At the country-level, the literature suggests strong

path dependence in the accumulation of green capabilities (Mealy and Teytelboym, 2020; Perruchas et

al., 2020). However, quantitative evidence using micro data is quite scant. Barbieri et al. (2020) find

that the knowledge process leading to the generation of inventions differ between green and non-green

domains, with the former being more complex and novel. In a subsequent work, using spatial autore-

gressive model and co-occurrence matrices to capture technological interdependency, the same authors

find that green technologies rely on advances in other green and in non-green technological domains

(Barbieri et al., 2021). These patent-level analyses underlie that green technologies are not developed in

opposition to “brown” technologies but rely on capabilities and knowledge stemming also from a range

of brown technological domains. Therefore the emergence of a green trajectory should be analyzed in

continuation to established non-green trajectories.

3 Data and methodology

In this section we introduce the data and methodology. In particular, in subsections 3.1 and 3.2 we

present the data source and the classification scheme used to identify two distinct green trajectories in

the automotive industry. In subsection 3.3 we construct two variables to define a technological landscape

in which firms might locate, while in subsection 3.4, three firm clusters are empirically identified. We

then map the technological landscape of each trajectory and the ensuing heterogeneous positioning of

firms. Finally, in subsection 3.5 we discuss two dimensions of the stock of knowledge accumulated

by firms, which will constitute the main explanatory variables of the econometric setting, in Section 4.

Figure 1 summarizes the methodological flow.

6



Figure 1: Flowchart of the empirical methodology

3.1 Data

The main data source is ORBIS-IP, a recently released data set provided by the Bureau Van Dijk, combin-

ing rich firm-level and patent-level information and covering the entire population of registered firms.

To build the dataset, we start by retrieving the universe of patents applied for at USPTO between 2001

and 2018 by applicants active in the automotive sector,4 the latter being defined by the NACE rev.2 classi-

fication (NACE code 29).5 Therefore, our initial dataset includes all manufacturing firms with patenting

activity in the U.S. during the period, including both car producers and component suppliers. For each

firm we obtain a variety of patent-level and firm-level data. Among these, we retrieved the Global Ul-

timate Owner (GUO) identifier, if present, thus indicating that the firm is a subsidiary and belongs to

a broader group with the GUO as holding firm. We exploit this information to aggregate subsidiaries

to their relative holding firms, so to avoid replications of separate entities that are sharing the ultimate

ownership.6 We then perform the analysis at the holding-firm level. This choice allows us to include

firms whose core business is outside the automotive sector but with subsidiaries patenting in this in-

dustry, therefore contributing to the innovation activity of the sector. For instance, our dataset includes

financial firms such as Melrose, recently active in the automotive industry. Differently from previous

studies focusing on car manufacturers (Oltra and Saint Jean, 2009b; Faria and Andersen, 2017b), we con-

duct our analysis on all key players in the automotive industry, including suppliers. Our final dataset

comprises information for 5,440 firms and 115,611 patent applications.

We use the Y02 classification scheme for Climate Change Mitigation Technologies (CCMTs) devel-

oped by Veefkind et al. (2012) to identify technological trajectories using patent data. The advantage

4We retrieve only patent applications, hence discarding both granted patents and other sort of IPR rights, such as design
patents.

5Note that we keep in our sample only those observations with non-missing information on the BvD identifier of the firms. In
most of the cases, this information is missing if the patent applicant is a single inventor not directly related to a corporate entity,
as suggested also in Schmookler (1966).

6Some degree of mistakenly replications of firms due to subsidiaries was also manually cleaned. For instance, Toyota was
present in our dataset with different GUO BvD ID, and we manually assigned all these replication to only one firm’s ID.
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of this approach is that through the CPC code of the patent we are able to directly observe whether the

patent was assigned to CCMTS by “experienced examiners working in the relevant fields, in cooperation

with external expert” (Veefkind et al., 2012), thus reducing the possible arbitrariness of methodologies

based on key-words. Moreover, this approach allows us to include patents that would otherwise be

ignored by the aforementioned methods, as carried out in previous contributions (Borgstedt et al., 2017;

Oltra and Saint Jean, 2009b). Using this classification we can identify as green technologies all patents

with at least one assigned CPC code starting with “Y02”. Using subcategories of the Y02 code, we

can additionally classify patents in two distinct green trajectories related to the automotive industry,

that will be discussed in the following section. The analysis of firm’s patent portfolio is carried out for

those firms in our dataset that have at least one patent in each trajectory, corresponding to 746 distinct

firms. Among the latter firms, some have carried out patenting activity in both periods of our analysis

(2001-2009 and 2010-2018, below). Therefore, the final dataset includes 853 observations.

3.2 Identifying competing LEV trajectories

The automotive industry in the last decades has experienced the development of a variety of different

technologies related to low emission vehicles (LEVs), with the aim to comply with environmental stan-

dards. The strong and persistent dominant design based on the internal combustion engine (ICE) has

experienced the exploration and development of new solutions in order to enhance its environmental

performances. Examples of such incremental technologies are the Common Rail technology or Stop and

Go systems, but also particle filters, bio-fuel, waste heat recovery technologies (Karvonen et al., 2016)

and new materials to lighten vehicles and to decrease frictions (Oltra and Saint Jean, 2009b). However,

in terms of environmental performances, the old and mature ICE trajectory competes also with alterna-

tive power-train technologies that represent a radical move with respect to the ICE design. We therefore

identify two competing green trajectories in the automotive sector using subcategories of the Y02 tag-

ging scheme. The detailed list of codes used to identify the two trajectories are presented in Table 1.7

The first one is the incremental trajectory composed by all green technologies aimed at improving

the efficiency of the ICE domain (ICEG). The second is the radical trajectory that includes all green in-

ventions related to hybrid, electric and fuel cell technologies (HEF), representing a substantial change in

the vehicle’s power-train compared to the ICE dominant design. Our choice to define the HEF trajectory

as radical is not to be confused with the notion of disruptive technology, or radical technology intended

as both a change in architecture and components of the product. The electric power-train is not a new

emerging technology per se and is well recognized to be established. In fact, in terms of product design,

the shift towards HEF vehicles represents what Henderson and Clark (1990) define as modular innova-

tion, that is an innovation in which the architecture of the product remains almost unaltered while the

product components (the engine) are modified.

However, although the power transmission system remains almost unaltered, such as the external

design, HEF vehicles radically modify the energy generation process. In fact, it has only recently been

considered as an alternative competing technology to the ICE dominant design in the automotive indus-

7For a detailed description of the classification scheme see www.uspto.gov/tag CPC-Y (accessed 07.03.2022).
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try (Oltra and Saint Jean, 2009b). In addition, in terms of diffusion patterns, on the demand side, recent

empirical evidence suggests that consumers’ preferences for electric vehicles are associated with specific

socio-demographic conditions, such as higher levels of education, full time employment, occupations

in civil society or academia (Sovacool et al., 2018). Such limited demand opportunities also signal the

infant stage of the radical trajectory. Therefore, radical has to be understood in contrast with to the notion

of incremental technological solutions to mitigate emissions.

Table 1: List of CPC codes characterizing LEVs technologies

Internal Combustion Engine Green (ICEG) Hybrid, Electric and Fuel Cell (HEF)
Y02T10/10 Internal combustion engine (ICE) based vehicles Y02T10/60 Other tech. with climate change mitigation effect
Y02T10/12 Improving ICE efficiencies Y02T10/62 Hybrid vehicles
Y02T10/30 Use of alternative fuels, e.g. biofuels Y02T10/64 Electric machine technologies in electromobility
Y02T10/40 Engine management systems Y02T10/70 Energy storage systems for electromobility, e.g. batteries
Y02E50/00 Tech. for the production of fuel of non-fossil origin Y02T10/7072 Electromobility charging systems or methods for batteries (..)
Y02E50/10 Biofuels, e.g. bio-diesel Y02T10/7005 *
Y02E50/30 Fuel from waste, e.g. synthetic alcohol or diesel Y02T10/72 Electric energy management in electromobility

Y02T10/92 Charging or discharging systems for batteries
Y02T90/10 Technologies relating to charging of electric vehicles
Y02T90/12 Electric charging stations
Y02T90/14 Plug-in electric vehicles
Y02T90/16 IT or CT improving the operation of electric vehicles
Y02T90/167 Systems integrating technologies for electric or hybrid vehicles
Y02T90/168 *
Y02T90/169 *
Y02E60/00 Enabling technologies
Y02E60/10 Energy storage using batteries
Y02E60/13 Energy storage using capacitors
Y02E60/14 Thermal energy storage
Y02E60/16 Mechanical energy storage, e.g. flywheels or pressurised fluids
Y02E60/30 Hydrogen technology
Y02E60/32 Hydrogen storage
Y02E60/34 Hydrogen distribution
Y02E60/36 Hydrogen production from non-carbon containing sources
Y02E60/50 Fuel cells
Y02E60/60 Arrangements for transfer of electric power

Codes identified by * were added in order to account for changes in the CPC classification in the period of analysis

Figure 2 provides a synthetic representation of the relevance of the two identified trajectories in terms

of patents, inside the automotive sector. While so called ICEG patents in the period 2001-2018 are 7261,

HEV patents stand at 10796. The two trajectories appear neatly distinct, in fact, their intersection given

by those patents presenting multiple CPCs assigned to both trajectories, stands at 585.8 Albeit in terms

of products the HEF trajectory is characterized by heterogeneous innovative solutions ranging from

hybrid, electric and fuel cell vehicles, commonalities exist in terms of the underlying technologies in

the HEF trajectory, which recently looks to become even more integrated and complementary in terms

of electric and hydrogen solutions.9 Therefore, given that patents may likely relate to various different

solutions inside the HEF trajectory, we group these technologies together.

To give a sense of the overall patenting activity in terms of brown vs green technological innovations

in the automotive sector, Figure 3 reports the time evolution of the share of patents in the automotive

sector (NACE code 29) in each trajectory, compared with the trend in brown technologies, identified

as the remaining patents without the tag ”Y02”, which being related to human mobility are expected

to provide some positive emissions. While brown patents maintain the lion share of overall efforts in

automotive sector, the trend is overall decreasing over time. Symmetrically, ICEG and HEF patents are

relatively increasing over time, documenting efforts into the greening of the overall technology, with

8In these 585 cases, patents were assigned to both trajectories in our empirical analysis.
9See www.renaultgroup.com/hydrogen-or-electric-cars-its-time-to-clarify/ for an example of overlapping of technological do-

mains between fuel cell and electric vehicles (accessed 07.03.2022).
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Figure 2: Number of patents in ICEG and HEF trajectories (2001-2018)

HEF slightly dominating the ICEG trajectory.

3.3 Technological landscape

Previous patent analyses have shown that firms in the automotive industry have progressively adopted

a position on LEVs, with differences in the patterns of specialisation among competing technologies

(Borgstedt et al., 2017; Faria and Andersen, 2017b; Oltra and Saint Jean, 2009b). In order to map different

innovation strategies and performances of firms among emerging technological trajectories, we perform

a patent portfolio analysis based on two distinct indicators.

The first one is the firm’s Patent Share (PS), measured as the firm’s i share of patenting in each LEV

trajectory j at time t. This indicator captures the relative size of the firm in the overall innovation activity

in each trajectory. Firms with higher PS have a greater relative importance compared to competitors in

the specific trajectory in terms of innovative output.

PSi,t =
pji,t∑
i p

j
i,t

The second indicator is a Balassa Index of Revealed Comparative Advantage, indicating firm’s spe-

cialization in each trajectory compared to the market (Soete, 1987). This Specialization Index (SI) is

measured as follow:

SIi,t =

pji,t∑
j p

j
i,t∑

i p
j
i,t∑

j

∑
i p

j
i,t

where pji,t represents the number of patents applied by firm i in trajectory j at time t. This indicator

provides a measure of firm’s relative specialization between the two identified green trajectories.

Tables 2, 3, 4, 5 display top-10 patenting firms in each technological trajectory in the overall period in

terms of either PS or SI. To compare firms, we normalize average PS and SI indices over time, weighted
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Figure 3: Time evolution of the share of patents in ”brown”, HEF and ICEG technologies

Table 2: Top 10 firms by patent share, ICEG

Firm name Nr of patents Patent
share (PS)

Toyota 1176 1
Ford 1426 0.99
Hyundai 828 0.57
Nissan 269 0.49
General Motors 520 0.39
Kia Motors 357 0.29
Denso 396 0.26
Continental 316 0.23
Porsche 308 0.21
Bosch 315 0.21

Normalized values. Period: 2001-2018

Table 3: Top 10 firms by specialization index, ICEG

Firm name Nr of patents Specialization
index (SI)

Tenneco 38 1
Faurecia 51 0.95
Rheinmetall 21 0.86
Borgwarner 263 0.80
Continental 316 0.74
Mazda 337 0.74
Isuzu Motors 42 0.72
Stellantis 47 0.66
Eberspächer 42 0.66
Paccar 4 0.65

Normalized values. Period: 2001-2018

by year of availability, as follow:

WIi,p,t = Ii,p,t ∗
∑

t 1

9
(1)

Where I represents either the SI or PS indicators and
∑

t 1

9 represents a weighting factor based on the

years in which the firm has at least one patent application at USPTO in each trajectory. This step was

included to penalize non persistent innovators and favouring instead continuous ones, as the case of

Nissan whose ranking position in terms of PS does not reflect the ranking in the raw number of patents.

Next, we applied a normalization procedure of this form:

min max norm =
x−min(x)

max(x)−min(x)
(2)

Previous findings stressing the heterogeneity of innovation strategies in the automotive industry are

confirmed. By mapping firms’ position in terms of PS and SI, we display a variety of patent portfolios,
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Table 4: Top 10 firms by patent share, HEF

Firm name Nr of patents Patent
share (PS)

Toyota 3333 1
Hyundai 2260 0.57
Nissan 911 0.52
Ford 1562 0.44
Kia Motors 1084 0.29
Bosch 987 0.26
General Motors 796 0.25
Porsche 638 0.16
Denso 578 0.15
BMW 433 0.11

Normalized values. Period: 2001-2018

Table 5: Top 10 firms by specialization index, HEF

Firm name Nr of patents Specialization
index (SI)

Melrose 21 1
Lear 38 0.97
Kabushiki Riken 7 0.94
Tesla 119 0.91
Ningbo joyson 1 0.89
Magna international 46 0.88
Sanoh kabushiki 1 0.87
Koito 1 0.87
Nok 41 0.86
Autoliv 3 0.86

Normalized values. Period: 2001-2018

differing in terms of size and relative specialization between the two green trajectories. In terms of PS

and SI, firms with the highest PS coincide in the two competing trajectories. Large established firms have

enormously contributed in terms of innovative output in both trajectories. However, different degrees

of relative specialization between trajectories emerge. First, the most specialized firms are not necessar-

ily those with the highest PS (take the case of Tesla), thus giving justification to our two-dimensional

technological landscape. For instance, while Toyota represents the firm with the highest PS in ICEG, its

specialization in this trajectory relatively to other firms is not sufficiently high to be in the top-10 special-

ized firms in ICEG, signalling diversification strategies. Continental instead is in the list of the top-10

firms in the ICEG trajectory with respect to both dimensions, signalling more specialization rather than

diversification. In line with the diversification strategy of big players in the market, the list of the top-10

firms in terms of PS in the HEF domain does not vary substantially from its corresponding list for ICEG.

Among the most specialized firms in the HEF trajectory, well known automobile’s suppliers stand out,

such as Riken, Lear and Magna. Tesla represents the only car manufacturer in the top-10 specialized

firms in HEF. Taken together, the two variables provide a precise indication of the technological position

of each firm, suggesting both its relative contribution to the amount of innovative output in the sector,

and its relative specialization between the two alternative trajectories (Patel and Pavitt, 1997).

3.4 Clustering analysis

How can be the innovation activity accounted for? How do these firms position in the technological

landscape? In line with Granstrand et al. (1997) we adopt patent share and revealed technological ad-

vantage, in order to account for both a size dimension and a specialization dimension. However, to

avoid setting ex-ante thresholds to cluster firms, we opt for a data driven clustering technique, using a

k-means algorithm. Given that after 2009 the amount of patents in both trajectories swiftly increases,

we divide the overall period of analysis in two distinct time intervals, the first ranging from 2001 and

2009 and the second from 2010 and 2018. We then compute the average of each of the aforementioned

indicators in the two periods, as described in the previous section. In order to assign a higher relevance

to firms with a persistent patenting activity over the period, we use weights computed as the ratio be-
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tween the number of years in which the firm is patenting and the maximum number of years of each

period as described in equation 1. Thereafter, we apply a cubic transformation in order to mitigate the

skewness, and a min-max algorithm to normalize the values between 0 and 1, according to equation 2.

As a second step, we use a data-driven technique to cluster firms in the technological landscape. We

apply a k-means algorithm exploiting the two dimensions identified by the average PS and SI of the

firm in each period. Figure 4 shows the results of our clustering analysis, with firm’s positions pooled

across the two periods. Three different clusters are identified, characterized by distinct levels of PS and

SI.10

Figure 4: Clustering analysis. Periods: 2001-2009 and 2010-2018

Given the position of the three groups in the landscape, we label as “Leaders” firms characterized

by the highest level of SI and a high or moderate level of PS. Compared to the latter, “Jumping ahead”

firms have both a lower SI and PS. Finally, “Laggard” firms have very low levels of both SI and PS, with

the latter often equal to 0, corresponding to firms patenting only in the alternative trajectory.

Quite unsurprisingly top manufacturers (e.g. Toyota, Ford, Bosch) are classified as Leaders in both

periods and trajectories, signalling diversification. However, diverging firm’s positions between the two

trajectories are also present. For instance, Tesla is identified as Leader in the HEF trajectory, specialized

as it is only in electric vehicles, but as Laggard in the ICEG one. A counter example is the U.S. supplier

Tenneco, Leader in ICEG trajectory but Laggard in HEF one, therefore signalling a more conservative

behaviour toward radical efforts.
10Appendix A provides a variety of tests for the choice of the most suitable number of clusters, together with some robustness

tests using alternative clustering techniques.
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What are the underlying knowledge bases giving rise to such positioning in the landscape? We now

turn to investigate whether the diversity in the stock of accumulated knowledge and ensuing combina-

tion might explain firm’s positioning in each trajectory.

3.5 Two dimensions of firm’s knowledge: diversification and relatedness

In the automotive industry, firms are required to coordinate a broad array of different knowledge sources

since the end products are complex artefacts. Figures 5 and 6 show the top-25 most frequent CPC codes

at 4-digit assigned to patents by firms active in the ICEG and HEF trajectories. A variety of different

technological domains and a broad array of knowledge sources can be appreciated in both trajectories,

ranging from vehicle components (B60) to electric elements (H01), and combustion engine (F02) related

technologies. To deal with this complexity, firm’s innovation strategies may be of two different kinds.

On the one hand, firms may focus research efforts on specific technologies, thus narrowing down their

specialization. On the other hand, firms may engage in new complementary technologies, putting in

place a widening process of knowledge creation and broadening the number of technologies they are

able to master (Breschi et al., 2003). In a nutshell, firms may either specialize or diversify in their inno-

vative efforts.

Figure 5: Frequency distribution of CPC codes assigned to patents, ICEG trajectory

A diversified technology base implies a broader set of knowledge, capabilities and heuristics that

can be (re)combined to create new innovations, enhancing the likelihood of a firm to specialize in new

emerging technologies. Corrocher and Ozman (2020) recently found an inverted u-shaped relationship

between technological diversification and the likelihood to invent green. While firm’s technological

diversification drives green innovations overall, excessive diversification decreases the likelihood of

green innovations.

“Good” diversification does not occur randomly. Firms exhibit some relatedness in the technological

activities they are engaged (Teece et al., 1994) and “diversify around groups of technologies that share

a common or complementary knowledge base, rely upon common scientific principles or have similar

heuristics of search” (Breschi et al., 2003). It follows that knowledge-relatedness is a key factor affecting
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Figure 6: Frequency distribution of CPC codes assigned to patents, HEF trajectory

firms’ technological specialization. Dosi et al. (2017) find that as firms develop new technologies, the

relatedness between neighboring activities is high for relatively low levels of diversification, but remains

present also for sufficiently diversified firms.

We want to capture whether a firm with a related knowledge base, although brown, has any ad-

vantage in terms of technological leadership in one of the two emerging green trajectories. To measure

knowledge relatedness between brown and green technologies we follow the methodology developed

by Breschi et al. (2003), exploiting the co-occurrence of classification codes assigned to each individ-

ual patent. The frequency by which two classification codes are jointly assigned to the same patent

document can be interpreted as a sign of the strength of the knowledge relationship between the tech-

nological fields which the codes refer to. All possible pairs of classification codes are collected in a

square symmetrical matrix of co-occurrences, whose cells (Cij) report the number of patent documents

classified in both technological fields i and j. All CPC codes belonging to the two identified trajectories

are aggregated in single technological fields. Brown technologies in our dataset are those patents whose

CPC codes are not assigned to any Y02 category. We compute relatedness values between each of the

two trajectories and each brown technology. Since the number of patents varies in the two competing

trajectories, we apply the cosine similarity following the approach by Breschi et al. (2003), which is not

affected by the number of entries.

The matrix of cosine similarity displays different relatedness values for the two identified trajecto-

ries. Table 6 shows the top-10 CPC codes by cosine similarity values of brown technologies in ICEG and

HEF. Not surprisingly, technologies in the ICEG trajectory are mainly related to inventions aimed at im-

proving the ICE power train. On the contrary, patents assigned to the HEF trajectory are closer in terms

of knowledge to the domains of electrical and battery production, chemistry and electrochemistry. The

two competing trajectories are thus based on different related knowledge domains and entail different

knowledge sources, altough not visible simply looking at most frequent CPC code occurrences (Figures

5, 6). Bottom 10-CPC codes by cosine similarity, e.g. more distant codes, in Table 7 confirm the relia-

bility of our approach: the two displayed lists of technologies are clearly distant from the automotive

technologies, including textile and food storage technologies.
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ICEG trajectory, top-10 codes by cosine similarity
CPC code description
F02D Controlling combustion engines
F01N Silencers/exhaust apparatus for machines or ICEs
F02B Internal combustion piston engines
Y02A Tech. for adaptation to climate change
F02P Ignition for ICEs
G01M Testing static or dynamic balance of machines or structures
B42C Bookbinding
F24V Collection, production or use of heat
F02M Supplying combustion engines with combustible mixtures
F02G Hot gas or combustion-product positive-displacement engine plants

HEF trajectory, top-10 codes by cosine similarity
CPC code description
B60L Propulsion of electrically-propelled vehicles
Y02T CCMT related to transportation
B60M Power supply lines for electrically-propelled vehicles
Y04S Integrating Tech./Improving electrical power generation
H02J Circuit systems for electric power; storing electric energy
G06G Analogue computers
B60Y Indexing scheme relating to aspects cross-cutting vehicle technology
Y10S Technical subjects covered by former uspc cross-reference art collections
A23C Dairy products, e.g. milk, butter, cheese; milk or cheese substitutes
H01M Processes or means, e.g. batteries, conversion of chemical energy into electrical

energy

Table 6: Cosine similarity of CPC codes in the two trajectories. Top-10 CPC codes by cosine similarity

ICEG trajectory, bottom-10 codes by cosine similarity
CPC code description
A01F Processing of harvested produce; hay or straw presses; devices for storing agri-

cultural or horticultural produce
A21D Treatment, e.g. preservation, of flour or dough, e.g. by addition of materials;

baking; bakery products; preservation thereof
A24B Manufacture or preparation of tobacco for smoking or chewing; tobacco; snuff
A41B Shirts; underwear; baby linen; handkerchiefs
A41C Corsets; brassieres
A41H Appliances or methods for making clothes, e.g. for dress-making, for tailoring,

not otherwise provided for
B27L Removing bark or vestiges of branches (forestry a01g); splitting wood; manufac-

ture of veneer, wooden sticks, wood shavings, wood fibres or wood powder
B41L Apparatus or devices for manifolding, duplicating or printing for office or other

commercial purposes; addressing machines or like series-printing machines
B41P Indexing scheme relating to printing, lining machines, typewriters, and to stamps
C07G Compounds of unknown constitution

HEF trajectory, bottom-10 codes by cosine similarity
CPC code description
A41B Shirts; underwear; baby linen; handkerchiefs
A41C Corsets; brassieres
A43C Fastenings or attachments of footwear; laces in general
B27L Removing bark or vestiges of branches (forestry a01g); splitting wood; manufac-

ture of veneer, wooden sticks, wood shavings, wood fibres or wood powder
C07G Compounds of unknown constitution
D01B Mechanical treatment of natural fibrous or filamentary material to obtain fibres

of filaments, e.g. for spinning
D01C Chemical treatment of natural filamentary or fibrous material to obtain filaments

or fibres for spinning; carbonising rags to recover animal fibres
G21G Conversion of chemical elements; radioactive sources
D03C Shedding mechanisms; pattern cards or chains; punching of cards; designing pat-

terns
A21D Treatment, e.g. preservation, of flour or dough, e.g. by addition of materials;

baking; bakery products; preservation thereof

Table 7: Cosine similarity of CPC codes in the two trajectories. Bottom-10 CPC codes by cosine similarity

While previous tables describe the knowledge relatedness of technological trajectories across all

firms, Figure 7 represents the co-occurrences of CPC codes between green and brown technologies per

each firm, an indicator which we label brown-relatedeness, used in the following analysis. A high skew-
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ness in the distributions signals the existence of few firms with a stock of brown accumulated knowl-

edge very much related to new emerging green technologies, and a majority of firms with distant brown

knowledge domains, in both periods.

Figure 7: Brown-relatedness indicator, HEF vs ICEG

4 Econometric strategy

In this section we investigate whether firm’s positioning in the technological landscape (PS ans SI in-

dices) in each trajectory may be explained by its existing stock of knowledge and recombination. Two

firm-level dimensions are crucial for the analysis: namely, knowledge relatedness with brown technolo-

gies and diversification in other patenting activities.

4.1 Variables’ description

Our main variable of interest is the degree of firm i’s relatedness between its brown technologies and

technologies in each of the two emerging green trajectories (brown-relatednessi,t1). For each brown

patent applied for by a firm we assign a relatedness value, exploiting the matrix of co-occurences be-

tween CPC codes. Since the majority of the firms have more than one brown patent, we compute the

average firm-level relatedness value. The indicator is computed separately for each trajectory, therefore

for each firm we measure the degree of brown-relatedness with either the ICEG or HEF trajectory.
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The second dimension of firm’s knowledge is captured by an indicator of technological diversifica-

tion (tech. diversificationi,t1), measuring the breadth of firm’s knowledge. This variable is computed

as the number of distinct CPC codes at 4-digit in which the firm is patenting.

Since we are investigating firm’s innovation strategies in green trajectories, firm’s attitude for green

technologies, beyond specific LEVs solutions, may also play a role. We therefore add an indicator that

measures the percentage of green patents in the overall firm’s patent portfolio during the period (green

propensityi,t1). In this case, we use the broader Y02 tag of the CPC classification to identify green patents

overall, hence including green technologies not necessarily belonging to the ICEG or HEF trajectories.

With respect to other idiosyncratic factors affecting firm’s positioning in the technological landscape,

we add the number of patents applied for at USPTO (patent portfolioi,t1) as a proxy for the size of the

firm. All the above mentioned indicators are calculated at the first year available in the period (t1), in

order to avoid simultaneity biases.

Using the NACE rev.2 classification code of the firm, we add a categorical variable indicating whether

the holding firm is a car maker, a supplier or neither of the two. In this way, we may control for firm’s

position in the supply chain. Continent of origin dummies are also included. Finally, we control for each

of the two periods of analysis with a time dummy.

As robustness analysis, we also add alternative proxies for the size of the firm using firm-level fi-

nancial data such as sales, total assets, number of employees, and sales over employees. Unfortunately,

these data are available only for a subset of firms, thus reducing the number of observations in the re-

gression exercises. Moreover, due to missing data imputation in some years, we include the average

values in each period for these variables.

4.2 Descriptive statistics

Table 8 provides descriptive statistics for firm-level explanatory variables. Our dataset is composed by

patenting firms with a patent portfolio of more than five patents and diversified among six technological

classes, on average. Green propensity is highly dispersed across firms. On average, half of firm’s patent

portfolio is composed by green patents. Finally, on average brown-relatedness is higher for the HEF

trajectory compared to the ICEG one.

Table 8: Descriptive statistics of the main firm-level variables

Nr obs. Mean Std. Dev Min Max
brown-relatedness HEF 853 .2190045 .2343433 0 .9377893
brown-relatedness ICEG 853 .1884948 .2514245 0 .8535996
tech. diversification 853 5.882767 11.10832 1 98
patent portfolio 853 5.55803 19.52086 1 309
green propensity 853 .5671121 .4535408 0 1
ln(avg sales) 370 13.61593 3.553676 1.253911 19.3205
ln(avg assets) 400 13.32211 3.837572 2.491499 19.8363
ln(avg workers) 496 6.315973 4.019353 0 12.88463
ln(avg sales norm) 322 5.583719 .9788954 .3380696 8.579676

Table 9 gives an overview of the categorical variables used in our analysis, including the dependent
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variable indicating firm’s clustering in each technological trajectory. The most populated clusters are

Laggard and Jumping ahead firms, we therefore choose the former as baseline in our multinomial logis-

tic regression, described below. In most of the cases, firms originate in Asia, Europe and North America.

As observed in Table 2 and 4, Asian and European firms are among the top-10 automotive car producers

and patenting firms (Toyota, Volkswagen, Nissan, BMW), while only General Motors (GM) and Ford are

US multinational firms. The number of innovators is higher in the second period. Finally, the majority

of firms in our dataset are not identified as car manufacturers or suppliers, but belong to the residual

category. This is due to the use of the GUO identifiers (as explained in the section 3). Therefore, these

are mainly subsidiaries producing components for the automotive sector that are part of large multi-

national corporations such as Microsoft, Amazon or Melrose. Since our analysis is conducted at the

holding firm-level, in these cases firm’s primary sector is often not the automotive one.

Table 9: Categorical and dependent variables

Variable Elements Frequency
Cluster ICEG Laggard 458
Cluster ICEG Jumping ahead 322
Cluster ICEG Leader 73
Cluster HEF Laggard 251
Cluster HEF Jumping ahead 491
Cluster HEF Leader 111
Period 1 318
Period 2 535
Continent Asia 298
Continent Europe 359
Continent North America 169
Continent Not classified 2
Continent Oceania 21
Continent South America 4
Nace 1 - Car manufacturer 60
Nace 2 - Supplier 139
Nace 3 - Other 654

In Table 10 we report correlation coefficients among our explanatory variables. Financial variables,

clearly correlated, are included one at a time. The correlation between patent portfolioi,t1 and tech.

diversificationi,t1 is also relevant. However, the regression results are robust without including the

former variable.

Table 10: Cross-correlation table

Variables
brown-

relatedness
HEF

brown-
relatedness

ICEG

tech.
diversif.

patent
portfolio

green
propensity

ln(avg
assets)

ln(avg
workers)

ln(avg
sales norm.)

brown-relatedness HEF 1.00
brown-relatedness ICEG -0.41 1.00
tech.diversif. -0.06 -0.05 1.00
patent portfolio -0.05 -0.03 0.89 1.00
green propensity 0.31 0.23 -0.19 -0.16 1.00
ln(avg assets) -0.09 -0.21 0.38 0.30 -0.35 1.00
ln(avg workers) -0.11 -0.25 0.33 0.25 -0.36 0.95 1.00
ln(sales norm.) -0.13 0.04 0.16 0.15 -0.05 0.36 0.18 1.00

4.3 Multinomial logistic regression

We now move to test, with a multinomial logistic regression model, the determinants of firm’s position-

ing in each of the three previously identified clusters (namely Laggard, Jumping ahead and Leader) as
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a function of a set of firm’s characteristics. The dependent variable takes the values 1, 2 or 3 if the firm

belongs to one of the three cluster k in period t. The underlying idea is to detect the extent to which the

knowledge base influences the position of the firm in the technological landscape.

As baseline equations, one for each trajectory, we adopt the following formulations, in which Lag-

gard firms represent the baseline cluster:

ln

(
P (Yi=m,t)

P (Yi=baseline,t)

)
ICEG

= β1 tech.diversificationi,t1 + β2 brown relatedness ICEGi,t1 +

β3 green propensityi,t1 + β4 patent portfolioi,t1 + β5 Xi + λt + ϵi,t

(3)

ln

(
P (Yi=m,t)

P (Yi=baseline,t)

)
HEF

= β1 tech.diversificationi,t1 + β2 brown relatednessHEFi,t1 +

β3 green propensityi,t1 + β4 patent portfolioi,t1 + β5 Xi + λt + ϵi,t

(4)

where i refers to the firm, t to either one of the two periods of our analysis (2001-2009 and 2010-2018),

m stands for the type of cluster, either Leader or Jumping ahead. The main variables of interest are

computed at t1, indicating the first available unit of observation of firm i in each period t. Xi includes

time invariant categorical variables, such as firm’s continent of origin and firm’s position in the supply

chain. Since the set of financial variables used as size proxies are measured as the average over the

period (due to missing values), these indicators are also included in Xi. Finally, we include period fixed

effects (λt).

5 Results

Results of the multinomial logistic models, for the ICEG and HEF trajectory respectively, are presented

in Tables 11 and 12. In all specifications we control for the patent portfolio and the firm’s position

in the supply chain. The first model starts with the introduction of brown-relatedness, progressively

adding other covariates. The second column adds green propensity, while the third column represents

our baseline specification. In the fourth column we add to the baseline regression an interaction term

between the two knowledge indicators, namely technological diversification and brown-relatedness.

In the last column we test the role of firm’s brown-relatedness vis-à-vis the alternative technological

trajectory. Notably, brown-relatedness is the most relevant variable in discriminating the three clusters,

as shown in the Multiroc analysis presented in Appendix C. In fact, the Log likelihood function of the

model in the first column is not much lower than the preferred specification in column 3, the latter also

considering green propensity and diversification. Average marginal effects are displayed in Figure 8

and Table 13.

Starting with the effects of control variables, both car makers and automotive suppliers have higher

probability to lead the technological landscape in the incremental green trajectory compared to other

firms. This evidence stresses the importance in terms of technological leadership of having the ultimate
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ownership in the automotive sector in the ICEG trajectory. On the contrary, car makers and automotive

suppliers do not have any advantage in the HEF landscape. In the same vein, the size of the patent port-

folio, as a proxy of overall innovation activities, is not a determinant of firm’s success in both trajectories.

However, Jumping ahead and Leader firms are characterized by higher sales, number of employees and

assets (see Appendix D).

Green propensity displays a robust negative coefficient. Firms with a higher percentage of green

patents have a lower probability to be positioned in a superior cluster with respect to Laggard firms.

Firms with a low PS and SI are characterized by a “greener” portfolio compared to Jumping ahead

firms and Leaders. This result indicates that broader green technologies and LEVs trajectories are not

necessarily complementary, and that the stock of brown technologies plays a much important role.

Previous contributions (Oltra and Saint Jean, 2009b) have stressed the tendency of firms to diversify

among different LEVs technologies in their early innovative stages. Our results suggest that, overall,

firm’s degree of diversification is positively correlated with the probability of reaching a leadership

position in both trajectories. However, a broader set of knowledge does not characterize Jumping ahead

firms.

Regarding our main indicator of interest, firm’s brown-relatedness displays a positive and significant

coefficient in all our specifications. In both trajectories, firm’s knowledge relatedness exerts a positive

effect on the probability to achieve a better cluster position. In other words, if the firm holds capa-

bilities and knowledge in established technologies that are closely related to emerging HEF of ICEG

technologies, the probability of success in both innovation landscapes is greater. In the development

of LEVs technologies firms exhibit some degree of coherence with respect to the stock of knowledge

accumulated.

Finally, the combination of a highly diversified patent portfolio and high -relatedness is particularly

valuable in the HEF trajectory. The interaction coefficient is instead not significant for the ICEG domain.

A specular finding emerges from column five, representing a robustness test for our analysis. Firms with

capabilities and knowledge closely related to one trajectory have lower probability to lead the other one.

Table 13 shows the average marginal effects of a unitary increase in the independent variables on

firm’s probability to be assigned to a specific cluster, namely dy/dx, with dx = 1. In interpreting the

results, we must bear in mind the distribution of the explanatory variables. In particular, while techno-

logical diversification is distributed in a interval between 1 and 98, the indicators of brown-relatedness

range from 0 to 0.94, being the cosine similarity comprised in the [0, 1] interval (see Table 8). We there-

fore discuss the coefficients as the effect of a unitary increase in firm’s technological diversification and

of a 1% increase in brown-relatedness. A unitary increase of firm’s technological diversification rises the

probability of the firm to achieve a leadership position of about 0.43% in the ICEG trajectory, while it

almost doubles (0.93%) in the HEF one. On the contrary, in the HEF trajectory, one unit increase in firm’s

technological diversification reduces the probability to be a Jumping ahead firm (-1.09% unit effect).

Regarding brown-relatedness, a rise of 0.01 increases the likelihood of the firm to be characterized

as Leader by 0.27% and 0.28% respectively in each trajectory. A percentage increase of firm’s brown-

relatedness strongly affects Jumping ahead firms that are those in transition toward the top cluster (1.3%

21



Table 11: Multinomial logistic model, ICEG

Cluster Variables (1) (2) (3) (4) (5)
Leader brown relatedness ICEG 14.39*** 16.86*** 17.00*** 14.73*** 14.93***

(1.373) (1.556) (1.576) (2.149) (1.658)
green propensity -2.557*** -2.734*** -2.715*** -1.723***

(0.492) (0.507) (0.526) (0.536)
tech diversification 0.118*** 0.0539 0.147***

(0.042) (0.053) (0.042)
tech diversification#brown relatedness ICEG 0.581

(0.375)
brown relatedness HEF -6.291***

(1.955)
patent portfolio 0.0958*** 0.0753*** -0.0101 0.000949 -0.0266

(0.018) (0.016) (0.032) (0.037) (0.030)
car maker 2.916*** 2.865*** 2.564*** 2.523*** 2.962***

(0.530) (0.555) (0.576) (0.595) (0.611)
supplier 1.718*** 1.451*** 1.270*** 1.412*** 1.072**

(0.437) (0.448) (0.459) (0.462) (0.470)
Jumping ahead brown relatedness ICEG 13.48*** 15.45*** 15.31*** 14.54*** 13.60***

(1.245) (1.382) (1.383) (1.965) (1.451)
green propensity -2.075*** -2.123*** -2.116*** -1.274***

(0.273) (0.276) (0.276) (0.297)
tech diversification 0.0434 0.0438 0.0697*

(0.036) (0.043) (0.037)
tech diversification#brown relatedness ICEG 0.160

(0.363)
brown relatedness HEF -4.198***

(0.762)
patent portfolio 0.0450*** 0.0239 -0.00790 -0.00906 -0.0237

(0.017) (0.015) (0.029) (0.029) (0.028)
car maker 0.920** 0.860** 0.778* 0.821* 1.039**

(0.407) (0.434) (0.441) (0.438) (0.459)
supplier 0.653** 0.387 0.308 0.301 0.151

(0.275) (0.285) (0.292) (0.294) (0.304)
Observations 853 853 853 853 853
LogLikelihood -457.979 -420.306 -416.364 -409.947 -395.189
DoF 22 24 26 28 28
Chi2 390.873 357.141 353.620 346.988 331.939
Continent dummies YES YES YES YES YES
Period dummies YES YES YES YES YES

Note: Laggard firms represent the baseline cluster. Time periods: 2001-2009 and 2010-2018.
Standard errors are reported in parenthesis. Legend: *** p<0.01, ** p<0.05, * p<0.1

and 1.26%).

The two dimensions of firm’s knowledge play a different role depending on the degree of success

of the firm. While brown-relatedness is particularly able to discriminate Jumping ahead firms from

Laggards, the degree of technological diversification is of a particular relevance for Leaders compared

to the other clusters.

To highlight the non-linearity of the effects, we display in Figure 8 the predictive margins across the

whole distribution of the two independent variables. Plots of marginal effects confirm the relevance of

technological diversification to strongly discriminate Leaders from inferior clusters in both trajectories,

with probability ranging from 0 to 1 for additional levels of diversification, and with an overall positive

relationship, reverted for Jumping ahead and Laggard clusters. Non-linearity in the effects of brown-

relatedness is also found, with a threshold effect around 0.25-0.3 for both Jumping head and Laggard

firms. As displayed in the bottom right panel of Figure 8, up to this range of values, the probability of

the firm to belong to the Laggard cluster falls dramatically to 0. Jumping head firms instead, after the

threshold is reached, present a wide cone of values in terms of probability of remaining in the cluster. A
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Table 12: Multinomial logistic model, HEF

Cluster Variables (1) (2) (3) (4) (5)
Leader brown relatedness HEF 12.71*** 13.73*** 13.87*** 9.576*** 9.180***

(1.452) (1.437) (1.458) (2.090) (1.443)
green propensity -1.876*** -1.959*** -2.016*** -0.539

(0.385) (0.394) (0.397) (0.439)
tech diversification 0.0933** -0.0130 0.128**

(0.046) (0.064) (0.054)
tech diversification#brown relatedness HEF 1.353**

(0.590)
brown relatedness ICEG -8.723***

(1.748)
patent portfolio 0.115*** 0.0875*** 0.0184 0.0198 0.00339

(0.024) (0.022) (0.040) (0.042) (0.047)
car maker 1.192** 0.995* 0.742 0.659 1.108

(0.553) (0.568) (0.583) (0.597) (0.676)
supplier 0.369 0.228 0.0367 0.0709 0.263

(0.376) (0.386) (0.397) (0.400) (0.433)
Jumping ahead brown relatedness HEF 12.48*** 12.68*** 12.74*** 9.176*** 8.255***

(1.377) (1.321) (1.335) (1.958) (1.313)
green propensity -1.007*** -0.996*** -1.007*** 0.314

(0.223) (0.224) (0.224) (0.287)
tech diversification -0.0285 -0.102* 0.000177

(0.042) (0.058) (0.049)
tech diversification#brown relatedness HEF 1.168**

(0.583)
brown relatedness ICEG -6.039***

(0.659)
patent portfolio 0.0468** 0.0216 0.0407 0.0371 0.0270

(0.023) (0.022) (0.038) (0.039) (0.045)
car maker -0.116 -0.267 -0.213 -0.202 0.107

(0.497) (0.517) (0.518) (0.524) (0.621)
supplier -0.0916 -0.165 -0.119 -0.0818 0.135

(0.269) (0.277) (0.281) (0.286) (0.320)
Observations 853 853 853 853 853
LogLikelihood -551,514 -535,597 -528,819 -524,951 -456,532
DoF 22 24 26 28 28
Chi2 353,514 361,029 362,075 360,014 395,122
Continent dummies YES YES YES YES YES
Period dummies YES YES YES YES YES

Note: Laggard firms represent the baseline cluster. Time periods: 2001-2009 and 2010-2018.
Standard errors are reported in parenthesis. Legend: *** p<0.01, ** p<0.05, * p<0.1

positive increasing relationship is found for Leaders, although with increasing variance for high values

of brown-relatedness. Notably, the intervals of variability are wider for diversification rather than for

brown-relatedness.

Overall, our results indicate a strong persistence of firms to innovate in the neighborhood of their

existing knowledge related to established brown technologies. Knowing brown related technologies

proves to be valuable for green leadership in both radical and incremental trajectories in the automotive

industry. A broader set of knowledge is also valuable for green leadership. Firms mastering a higher

set of different technologies are more likely to lead both the ICEG and HEF trajectory. Such results mil-

itate in favour of the importance of recombination of existing knowledge to produce new technological

artefacts in the LEV trajectory.
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Table 13: Average marginal effects, HEF vs ICEG, baseline model (3)

Variables Cluster ICEG HEF

brown relatedness

Leader 0.269*** 0.282***
(0.0389) (0.0469)

Jumping ahead 1.339*** 1.259***
(0.0888) (0.115)

Laggard -1.608*** -1.541***
(0.0944) (0.126)

tech diversification

Leader 0.00434*** 0.00933***
(0.00157) (0.00225)

Jumping ahead 0.00105 -0.0109**
(0.00381) (0.00506)

Laggard -0.00539 0.00158
(0.00363) (0.00493)

patent portfolio

Leader -0.000206 -0.00118
(0.00113) (0.00154)

Jumping ahead -0.000639 0.00572
(0.00298) (0.00435)

Laggard 0.000845 -0.00454
(0.00291) (0.00456)

car maker

Leader 0.101*** 0.0733**
(0.0243) (0.0312)

Jumping ahead 0.000912 -0.0845
(0.0479) (0.0647)

Laggard -0.102** 0.0112
(0.0608)

supplier

Leader 0.0531** 0.0107
(0.0206) (0.0264)

Jumping ahead -0.00967 -0.0227
(0.0333) (0.0396)

Laggard -0.0434 0.0119
(0.0297) (0.0331)

green propensity

Leader -0.0567** -0.0921***
(0.0235) (0.0280)

Jumping ahead -0.171*** -0.0415
(0.0306) (0.0335)

Laggard 0.227*** 0.134***
(0.0246) (0.0244)

Observations 853 853
Note: Laggard firms represent the baseline cluster.
Time periods: 2001-2009 and 2010-2018.
Standard errors are reported in parenthesis.
Legend: *** p<0.01, ** p<0.05, * p<0.1
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Figure 8: Predictive margins, technological diversification and brown-relatedness, ICEG vs HEF
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6 Discussion and conclusions

The urgency of reducing GHG emissions has recently involved car makers and the automotive sector in

general. This paper provides an empirical detection of firm-level innovation strategies in the automotive

sector and identified determinants of firm’s technological leadership with respect to their knowledge

base. We use a novel dataset comprising firm-level information of patenting firms in the automotive

sector during the period 2001-2018 and adopt a recent classification scheme from the USPTO that enables

us to clearly assign patents to two distinct trajectories regarding LEVs technologies. We then compute

for each firm two variables that allow us to map different positions and degree of leaderships in the

emerging green trajectories, namely firm’s patent share and firm’s degree of specialization in each of the

two trajectories. These variables define the technological landscape on which we perform a data-driven

clustering analysis.

The k-means algorithm suggests the presence of three different types of firm, in both trajectories,

namely Leader, those firms presenting higher patenting share and specialization, Jumping ahead firms,

those firms with lower SI and PS, finally Laggard as those firms poorly performing both in the share of

patents and in specialization. Such taxonomy of firm-types outlines a variety of eco-innovation strate-

gies among firms. The identification of three different clusters in the technological landscape opened up

the investigation of the firm-level determinants behind such positioning, focusing on two dimensions

of firm knowledge and underlying capabilities. Exploiting the co-occurences of patents’ CPC codes,

we find evidence of distinct brown-knowledge domains underlying the incremental and radical trajec-

tory, the former being closer to the established internal combustion engine and the latter to the electric

power-train. Therefore, our main independent variables focus on two dimensions of firm knowledge

and underlying capabilities. In particular, we test the role of technological diversification and brown-

relatedness in affecting the position of the firm in the technological landscape of each trajectory.

Which are the firm-level attributes in terms of knowledge and mastered technology, as proxy in CPC

codes, which determine the position of firms? According to our results, knowing brown is essential for

inventing green for all types of firms, but particularly for those firms potentially in a transition toward

more intense technological efforts in LEVs trajectories. In addition, highly diversified firms, able to

invent in many distinct technological fields, are more likely to be Leader in the automotive industry in

both LEVs trajectories. However, technological leadership might be exerted both with diversification

strategies in the incremental and the radical trajectories, or alternatively specializing in one of the two.

The variety of directions of technical change pursued by firms are explained in terms of the spe-

cific learning processes, techno-organizational capabilities and accumulated stock of knowledge. The

breadth of firm’s knowledge and its relatedness with established technologies are found to be crucial to

achieve success in emerging trajectories. Our findings document a substantial continuity in the knowl-

edge domain between established brown technologies and emerging green technologies in the automo-

tive sector.

Further research might look at the role and relevance of suppliers in both trajectories, at the oc-

cupational impacts of LEVs development along the productive chain, but also at the impact of recent
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emission scandals on firm’s eco-innovation strategies. Important policy implications might arise when

looking at those firms transiting from one cluster to another, therefore able to improve along the inno-

vation ladder. Such type of analysis might be of relevance to comparatively study cases of successes

and failures, useful to nurture and support the transition of firm-level innovative efforts toward more

effective technological solutions able to mitigate global warming.
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Appendix

A Cluster analysis

We perform a variety of tests to identify the most suitable number of clusters for our analysis. As shown

in Figures 9 and 10, both the Elbow method and the Silhouette method suggest three as the most likely

optimal number of clusters. While in the paper our analysis is carried out using three clusters, in Figures

11 and 12 we show the results using either 4 or 5 clusters.

Figure 9: Clustering tests, ICEG
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Figure 10: Clustering tests, HEF

Figure 11: k-mean clustering, 4 clusters
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Figure 12: k-mean clustering, 5 clusters
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A.1 Robustness checks: alternative clustering techniques

In order to test the robustness of our results, we test in this section alternative clustering techniques. We

start by using the Partitioning Around Medoids (PAM) (Kaufman and Rousseeuw, 1990), which is less

sensible to outlier values compared to the k-means algorithm (Kassambara, 2017). In a second attempt

we employ the Hierarchical K-Means Clustering, which enhance k-means using a hierarchical approach

to select the initial centers of each cluster. Results are displayed in Figure 13 and 14.

Figure 13: PAM clustering

Figure 14: Hierarchical K-Means Clustering

Both clustering techniques generate robust results with respect to baseline ones. In Table 14 and

Table 15 we show that the results of our regression analysis are also confirmed once using alternative

data-driven techniques to cluster firms.
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Table 14: Multinomial logistic model, ICEG. PAM clustering technique.

Cluster Variables (1) (2) (3) (4) (5)
Leader brown relatedness ICEG 14.06*** 16.52*** 16.62*** 14.56*** 14.68***

(1.317) (1.486) (1.500) (2.091) (1.573)
green propensity -2.569*** -2.736*** -2.766*** -1.771***

(0.414) (0.426) (0.442) (0.449)
tech diversification 0.114*** 0.0450 0.142***

(0.040) (0.051) (0.039)
tech diversification#brown relatedness ICEG 0.587

(0.380)
patent portfolio 0.0866*** 0.0658*** -0.0173 -0.000112 -0.0324

(0.017) (0.015) (0.030) (0.035) (0.026)
car maker 2.719*** 2.672*** 2.434*** 2.509*** 2.809***

(0.476) (0.503) (0.520) (0.539) (0.556)
supplier 1.418*** 1.151*** 0.986** 1.108*** 0.796*

(0.384) (0.395) (0.405) (0.414) (0.417)
brown relatedness HEF -5.761***

(1.573)

Jumping ahead brown relatedness ICEG 13.47*** 15.41*** 15.25*** 14.70*** 13.57***
(1.248) (1.384) (1.385) (1.989) (1.454)

green propensity -2.038*** -2.082*** -2.072*** -1.239***
(0.276) (0.279) (0.278) (0.299)

tech diversification 0.0371 0.0511 0.0621*
(0.037) (0.044) (0.037)

tech diversification#brown relatedness ICEG 0.0778
(0.373)

patent portfolio 0.0392** 0.0179 -0.00931 -0.0146 -0.0239
(0.017) (0.016) (0.029) (0.030) (0.027)

car maker 0.669 0.613 0.535 0.581 0.800*
(0.436) (0.461) (0.467) (0.464) (0.485)

supplier 0.638** 0.373 0.301 0.292 0.144
(0.278) (0.288) (0.295) (0.296) (0.307)

brown relatedness HEF -4.126***
(0.772)

Observations 853 853 853 853 853
LogLikelihood -504.988 -466.712 -462.450 -453.761 -441.411
DoF 22 24 26 28 28
Chi2 405.783 362.584 357.864 352.875 332.660
Continent dummies YES YES YES YES YES
Period dummies YES YES YES YES YES

Note: Laggard firms represent the baseline cluster. Time periods: 2001-2009 and 2010-2018.
Standard errors are reported in parenthesis. Legend: *** p<0.01, ** p<0.05, * p<0.1

35



Table 15: Multinomial logistic model, HEF. PAM clustering technique.

EQUATION VARIABLES (1) (2) (3) (4) (5)

Leader brown relatedness HEF 12.71*** 13.66*** 13.75*** 9.076*** 9.115***
(1.420) (1.391) (1.406) (2.048) (1.386)

green propensity -1.812*** -1.870*** -1.941*** -0.483
(0.327) (0.332) (0.335) (0.381)

tech diversification 0.0643 -0.0675 0.0973*
(0.046) (0.063) (0.053)

tech diversification#brown relatedness HEF 1.474**
(0.593)

patent portfolio 0.109*** 0.0800*** 0.0305 0.0445 0.0148
(0.024) (0.022) (0.041) (0.043) (0.048)

car maker 0.987* 0.787 0.643 0.577 0.992
(0.527) (0.544) (0.553) (0.566) (0.652)

supplier 0.239 0.106 -0.00849 -0.00303 0.246
(0.337) (0.347) (0.355) (0.361) (0.391)

brown relatedness ICEG -7.987***
(1.368)

Jumping ahead brown relatedness HEF 12.46*** 12.62*** 12.67*** 9.314*** 8.198***
(1.378) (1.322) (1.335) (1.965) (1.313)

green propensity -0.954*** -0.937*** -0.941*** 0.370
(0.226) (0.226) (0.226) (0.289)

tech diversification -0.0313 -0.0861 -0.00448
(0.043) (0.058) (0.050)

tech diversification#brown relatedness HEF 1.093*
(0.586)

patent portfolio 0.0377 0.0127 0.0360 0.0275 0.0240
(0.024) (0.022) (0.040) (0.041) (0.046)

car maker -0.238 -0.387 -0.335 -0.301 -0.0168
(0.510) (0.530) (0.531) (0.536) (0.634)

supplier -0.0995 -0.168 -0.121 -0.0855 0.133
(0.273) (0.281) (0.285) (0.289) (0.323)

brown relatedness ICEG -5.971***
(0.664)

Observations 853 853 853 853 853
LogLikelihood -617,616 -600,134 -596,134 -588,595 -523,967
DoF 22 24 26 28 28
Chi2 305,865 316,095 318,351 317,096 343,228
Continent dummies YES YES YES YES YES
Period dummies YES YES YES YES YES

Note: Laggard firms represent the baseline cluster. Time periods: 2001-2009 and 2010-2018.
Standard errors are reported in parenthesis. Legend: *** p<0.01, ** p<0.05, * p<0.1
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B Robustness check: financial variables

In this section we test alternative proxies for firm’s size, using financial variables retrieved from ORBIS-

IP for each holding firm in our datatset. In particular, we add normalized sales (sales over number

of workers), number of workers and assets to our baseline specification. Due to the lack of annual

information for all firms and variables, we compute the average of these variables over the period. The

results are displayed in Table 16 and Table 17. In the ICEG trajectory, Jumping ahead and Leader firms

are characterized by higher number of workers and higher assets compared to Laggard firms. In the

HEF trajectory, these two financial variables are able to discriminate Leader firms only.
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Table 16: ICEG, financial controls

Cluster Variables (1) (2) (3)

Leader tech diversification 0.0944* 0.0983** 0.0605
(0.053) (0.049) (0.050)

patent portfolio -0.000624 -0.00844 0.00919
(0.040) (0.036) (0.038)

green propensity -3.206*** -2.920*** -2.552***
(0.790) (0.695) (0.732)

brown relatedness ICEG 19.16*** 22.43*** 19.20***
(2.810) (2.667) (2.517)

car maker 2.719*** 2.108*** 2.240***
(0.764) (0.733) (0.716)

supplier 1.505** 0.939 1.449**
(0.639) (0.572) (0.564)

ln sales norm 0.501*
(0.301)

ln avg workers 0.266***
(0.079)

ln avg assets 0.349***
(0.093)

Jumping ahead tech diversification 0.0734 0.0607 0.0294
(0.049) (0.044) (0.044)

patent portfolio -0.0283 -0.0274 -0.0118
(0.038) (0.033) (0.035)

green propensity -2.605*** -2.261*** -2.146***
(0.537) (0.436) (0.461)

brown relatedness ICEG 16.84*** 20.10*** 16.60***
(2.596) (2.470) (2.294)

car maker 0.829 0.670 0.927*
(0.588) (0.587) (0.558)

supplier 0.208 0.0675 0.630*
(0.432) (0.394) (0.370)

ln sales norm 0.183
(0.185)

ln avg workers 0.137***
(0.053)

ln avg assets 0.174***
(0.058)

Observations 322 496 400
LogLikelihood -186,780 -234,695 -225,367
DoF 24 24 24
Chi2 117,405 191,254 150,986
Continent dummies YES YES YES
Period dummies YES YES YES

Note: Laggard firms represent the baseline cluster.
Time periods: 2001-2009 and 2010-2018.

Standard errors are reported in parenthesis.
Legend: *** p<0.01, ** p<0.05, * p<0.1
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Table 17: HEF, financial controls

Cluster Variables (1) (2) (3)

Leader brown relatedness HEF 21.90*** 18.33*** 23.03***
(4.401) (2.689) (3.975)

green propensity -2.560*** -2.477*** -1.605***
(0.661) (0.607) (0.593)

tech diversification 0.0837 0.116** 0.00935
(0.065) (0.056) (0.059)

patent portfolio 0.0127 -0.0133 0.0523
(0.056) (0.042) (0.054)

car maker 0.159 -0.0280 0.126
(0.741) (0.718) (0.702)

supplier 0.130 0.0309 0.309
(0.558) (0.511) (0.504)

ln sales norm 0.115
(0.244)

ln avg workers 0.165**
(0.068)

ln avg assets 0.280***
(0.084)

Jumping ahead brown relatedness HEF 20.61*** 16.89*** 21.48***
(4.298) (2.547) (3.876)

green propensity -2.032*** -1.590*** -1.657***
(0.443) (0.356) (0.393)

tech diversification -0.0467 -0.00243 -0.0906
(0.062) (0.053) (0.057)

patent portfolio 0.0379 0.00895 0.0709
(0.055) (0.041) (0.053)

car maker -0.733 -0.786 -0.672
(0.669) (0.654) (0.648)

supplier 0.00369 -0.0663 -0.125
(0.433) (0.384) (0.379)

ln sales norm 0.0747
(0.195)

ln avg workers 0.0170
(0.047)

ln avg assets 0.0257
(0.054)

Observations 322 496 400
LogLikelihood -208,586 -283,102 -253,568
DoF 24 24 24
Chi2 124,759 203,686 148,600
Continent dummies YES YES YES
Period dummies YES YES YES

Note: Laggard firms represent the baseline cluster.
Time periods: 2001-2009 and 2010-2018.

Standard errors are reported in parenthesis.
Legend: *** p<0.01, ** p<0.05, * p<0.1
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C Multi ROC curves

In the Figures below we show the result of the package “mlogitroc” (Peterson, 2010). The multinomial

logistic regression is performed 100 time using bootstrapped records with original labels. The results are

then compared with a similar procedure where the labels are randomly shuffled and thus they present

null accuracy. Smoothed probability distributions are obtained from the two bootstrap exercises, using

kernel function. For each model, the third graph allows a graphical comparison between the smooth

pdfs derived from the Kernel Density Estimations (the more are detached, the stronger is the model

accuracy) while the fourth graph plots the ROC curve.

The following models are tested:

• Model A: baseline model (model 3 of regression exercises) without brown-relatedness

• Model B: baseline model (model 3 of regression exercises) without technological diversification

• Model C: baseline model

• Model D: baseline model (model 3 of regression exercises) without technological diversification

and green propensity

Brown-relatedness appears to be the most relevant factor in correctly classifying firms in each cluster.

In fact, results suggest a good level of performance with AUC close to 1 and a neat distinction between

the null distributions and those identified by the classifier models, for all specifications which included

brown-relatedness.
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(a) ICEG, model A (b) ICEG, model B

(c) ICEG, model C (d) ICEG, model D

Figure 15: ROC curves, ICEG
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(a) HEF, model A (b) HEF, model B

(c) HEF, model C (d) HEF, model D

Figure 16: ROC curves, HEF
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