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Abstract

By 2050 about 70% of the world’s population is expected to live in cities. Cities offer spatial
economic advantages that boost agglomeration forces and innovation, fostering further concen-
tration of economic activities. For historic reasons urban clustering occurs along coasts and
rivers, which are prone to climate-induced flooding. To explore trade-offs between agglomeration
economies and increasing climate-induced hazards, we develop an evolutionary agent-based
model with heterogeneous boundedly-rational agents who learn and adapt to a changing envi-
ronment. The model combines migration decision of both households and firms between safe
Inland and hazard-prone Coastal regions with endogenous technological learning and economic
growth. Flood damages affect Coastal firms hitting their labour productivity, capital stock and
inventories. We find that the model is able to replicate a rich set of micro- and macro-empirical
regularities concerning economic and spatial dynamics. Without climate-induced shocks, the
model shows how lower transport costs favour the waterfront region leading to self-reinforcing
and path-dependent agglomeration processes. We then introduce five scenarios considering flood
hazards characterized by different frequency and severity and we study their complex interplay
with agglomeration patterns and the performance of the overall economy. We find that when
shocks are mild or infrequent, they negatively affect the economic performance of the two regions.
If strong flood hazards hit frequently the Coastal region before agglomeration forces trigger high
levels of waterfront urbanization, firms and households can timely adapt and migrate landwards,
thus absorbing the adverse impacts of climate shocks on the whole economy. Conversely, in
presence of climate tipping points which suddenly increase the frequency and magnitude of flood
hazards, we find that the consolidated coastal gentrification of economic activities locks-in firms
on the waterfront, leading to a harsh downturn for the whole economy.
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1 Introduction

Rapid urbanization and climate change exacerbate natural hazard risks worldwide. With the climate
conditions which humanity has enjoyed for centuries, coastal and delta regions historically grew faster
than landward areas, with all current megacities flourishing along the coast. The richness of natural
amenities and resources coupled with transportation advantages created agglomeration forces that
have enabled this boom (Fujita and Mori, 1996). Yet, the escalation of climate-induced hazards
fundamentally reshapes the trade-offs which firms and households must consider while choosing a
location (Coronese et al., 2019). Increasingly, managed retreat becomes plausible for all types of
coasts even under low and medium sea level rise scenarios (Carey, 2020), raising a hot debate on how
to make this a positive transformation (Haasnoot et al., 2021). This is particularly relevant for areas
hit by recurrent hazards that do not leave enough time to complete the recovery, and which could
lead to economic gentrification and poverty traps (Hallegatte et al., 2007; Hallegatte and Dumas,
2009).

Understanding the location and agglomeration of productive activities has been at the core of
spatial economics for almost two centuries (von Thünen, 1826). The “new economic geography”
(Krugman, 1998) literature has proposed a coherent analytical framework grounded in general
equilibrium analysis of the spatial distribution of economic activities. Two merits of such discipline
have been to link international trade and economic geography giving rise to models that produce
emergent spatial structures without assumed agglomeration economies (Krugman, 1992). These
models traditionally assume a unique equilibrium and rational representative agents with perfect
information. Yet, heterogeneity of technologies, resources and preferences, as well as the fundamental
uncertainty necessitating dynamic expectations and adaptive behavior (Arthur, 2021), challenge
these assumptions. Furthermore, analytical tractability confined new economic geography to a largely
theoretical equilibrium analysis, with little empirical contributions and receiving critics from both
within and outside the field (Gaspar, 2018).

Agent-Based Models (ABMs) have risen as a method to accommodate heterogeneity, learning,
interactions and out-of-equilibrium dynamics (Bonabeau, 2002; Tesfatsion and Judd, 2006). In both
environmental and climate change economics (Balint et al., 2017; Lamperti et al., 2019; Mercure
et al., 2016; Ciarli and Savona, 2019) and economic geography (Fowler, 2007; Spencer, 2012). ABMs
are versatile in modeling disaster scenarios (Waldrop, 2018; Lamperti et al., 2018), and flooding in
particular (Taberna et al., 2020). Notably, taking into account interactions among heterogeneous
agents - traditionally omitted by new economic geography (Ottaviano, 2011) - demonstrates how -
in line with the evolutionary economic geography tradition (Boschma and Frenken, 2006; Martin
and Sunley, 2006; Frenken and Boschma, 2007) - stochastic knowledge exchanges in the form of
innovation create new market opportunities and trigger the agglomeration process endogenously, even
from spatially-even initial conditions. Hence, ABMs are particularly useful to capture evolutionary
inter-temporal and path-dependency phenomena such as the mutual relocation of households and
firms and feedbacks between climate and the economy.

However, while ABMs are increasingly applied to study climate change mitigation (Lamperti
et al., 2018; Monasterolo et al., 2019; Lamperti et al., 2020), multi-region economies (Mandel et al.,
2009; Wolf et al., 2013) and household-level adaptation (Filatova, 2015; de Koning and Filatova,
2019) - including farmers (Gawith et al., 2020; Coronese et al., 2021) -, ABMs studying an economy
shaped by locations of economic activities and agglomeration forces exposed to climate-induced risks
are missing. When studying climate-induced hazards, ABMs rarely focus on firms’ adaptive location
decisions, despite being the core of a resilient regional economy. To address this crucial gap, we
designed the Climate-economy Regional Agent-Based (CRAB) model to study the spatial distribution
of economic agents, - firms and households - facing of the costliest climate-induced hazard: flooding.
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Our goal is to explore how the complex trade-offs between agglomeration economies and a changing
severity of location-specific flood hazards affect the economic performance and attractiveness of
coastal and inland regions and steer their development. In particular, we aim to address three
research questions: (1) How do agglomeration forces shape economic centers in coastal areas? (2)
What are the effects of climate shocks of various severity and probability on this agglomeration
dynamics? (3) How do the complex interplay between agglomeration economies, technological change
and flood hazards affect the economic performance of the regions?

Following previous work on evolutionary macroeconomic ABMs (Dosi et al., 2010, 2013, 2017,
2018b; Lamperti et al., 2018), we use R&D investment and a “Schumpeterian” creative (innovative)
destruction process as the engine of endogenous economic growth.1 We develop a model where firms
and households are located in two spatial regions: a safe Inland region and a hazard-prone Coastal
region. Agents can migrate between the two zones, whose economic attractivity change over time due
to technological change and agglomeration economies which affect profits and wages. Furthermore,
different climate shocks can hit firms in the Coastal region impacting on their productivity, capital
stock and inventories.

The novel contribution of this article is three-fold. First, we advance economics geography
literature by introducing a theoretical out-of-equilibrium framework that employs innovation as
the cause of agglomeration and, ultimately, the uneven spatial distribution of economic activities.
Second, we go beyond the evolutionary macroeconomic ABMs tradition by introducing two regions
and endogenous migration decisions for both firms and household. Lastly, the model accounts for
climate shocks of varying probabilities and severity, revealing possible tipping points in the coupled
climate-economy dynamics that might compromise regional development. In this regard, our work
studies the importance of an anticipated retreat to avoid increasing exposure of economic activities to
climate shocks and of investments that could eventually increase sunk costs (Haasnoot et al., 2021).

Simulation results show that our ABM is able to account for a wide ensemble of micro- and
macro-empirical regularities concerning economic and spatial dynamics. In absence of floods, the
Coastal region holds the natural spatial advantage of being a transportation hub and it experiences
an inflow of economic activities from the Inland region driven by the co-evolution of agglomeration
economies and endogenous technical change. The likelihood and the speed of the agglomeration
process are contingent to the extent of such location advantage, which depends on transport costs as
well as the volume of trade that the two regions have with the rest of the world.

Finally, when climate shocks are introduced, their frequency and severity affect the final distribu-
tion of economic activities between climate-sensitive and safe regions and the economic growth of the
whole economy. More specifically, infrequent or mild shocks harm the economic performance of the
two regions with different effects on the agglomeration process. When flood hazards turn frequent and
severe from the beginning of the simulation, firms and household are able to timely adapt retreating
to the Inland region. This avoid climate gentrification and lock-ins with possible catastrophic impacts
on economic activities (Haasnoot et al., 2021). On the contrary, in the more likely occurrence of late
climate tipping points which abruptly increase both the magnitude and frequency of climate shocks,
the economic performance is considerable harmed as unfolded agglomeration economies concentrates
firms in the Coastal region without the necessary resources to relocate. In all scenarios, we find that
climate shocks can affect the economy in an heterogeneous manner, pointing to the importance of
different economic channels impacted by the adversity.

The rest of the article proceeds as follows. Section 2 describing the methodology. In Section 3,
simulation results are presented and discussed. Finally, Section 4 concludes.

1For a detailed perspective on evolutionary economics see Nelson and Winter (1985)
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Figure 1: A conceptual representation of the CRAB model.

2 The model

To analyze the effect of coastal flooding on agglomeration dynamics, we build the Climate-economy
Regional Agent-Based (CRAB) model upon the evolutionary economic engine of the well-known
‘Keynes + Schumpeter’ (“K+S”; Dosi et al., 2017) extending it by adding two different regions,
migration dynamics and climate hazards inspired by the DSK model Lamperti et al. (2018, 2019). A
schematic representation of the model is provided in Figure 1.

Our model comprises two regions (r), namely “Coastal” and “Inland”, characterized by two-sector
economies with three classes of heterogeneous interacting boundedly-rational agents. Specifically, the
economy of region r consists of F1r heterogeneous capital-good firms (denoted with the subscript
i), F2r consumption-good firms (denoted with the subscript j) and Lr households (denoted with
the subscript h) supplying work and consuming the income they receive. When a decision process
is identical for both capital- and consumption-good firms (e.g. migration, cf. Subsection 2.4), we
employ the subscript f for both types of firms. Capital-good firms produce heterogeneous machines
and invest in R&D to stochastically discover more productive technologies. Hence, technological
learning is endogenous in the model. Consumption-good firms combine labour and machines bought
from the capital sector to produce a final homogeneous consumer product. A bank lends financial
resources to all firms at a fixed interest rate. Finally, a stylized Government collects taxes from all
firms and pays unemployment subsidies to households in both regions.

The regional dimension of the model affects market interactions and migration dynamics. The two
labour markets are decentralized2 and local: firms can only hire workers residing in their own region.

2For other ABMs that feature decentralized labour markets and matching processes see Fagiolo et al. (2004);

4



Conversely, goods market are global: firms from both sectors are able to sell in the other region and
export to the rest of the world (RoW) bearing a regional and international iceberg transport cost
respectively. We assume that goods are shipped to RoW from the Coastal region, while Inland firms
have to first transport their goods to the Coastal region. Hence, Coastal firms have a comparative
advantage in trade with RoW as Inland firms pay both the regional and international transport cost
when exporting. Furthermore, all firms and households are free to migrate across the two regions
when they find it economically-efficient. Migration is costly and increases with size for firms, while it
is costless for workers.3 Climate shocks hit only the Coastal region with an average magnitude Dc.
Damages are heterogeneous at the microeconomic level and they affect households’ labor productivity,
firms’ capital stock and inventories.

In the next sub-sections, we discuss the model. Further details are spelled out in Appendix A.

2.1 The capital- and consumption-good sectors

As in the ‘K+S’ model, the capital-good sector is characterized by imperfect information and
Schumpeterian competition that drives technological learning within each region.4 To discover newer
and more productive technologies, capital-good firms invest a fraction of their past profits in R&D.
The latter are divided between the discovery of newer machine-embodied techniques and the imitation
of their competitor technologies. Notably, firms are more likely to imitate competitors located in the
same region and with similar technologies: the higher the technological distance with a specific firm
(computed using an Euclidean metric), the lower the probability to imitate its technology. Moreover,
as in Dosi et al. (2019), we augmented the technological distance of firms located in different regions
by a factor ϵ > 0 which captures geographical barriers to learning. Once the technological change
concludes, firms choose the machine to produce and set prices adding a fixed markup over unit
costs. The price and productivity of their machines is then communicated sending “brochures” to
the current customers - the consumption-good firms. Having received orders from their customers,
capital-good firms start producing employing solely labour.

Consumption-good firms combine labour and capital to produce a homogeneous good. In line
with the ‘K+S’ tradition, adaptive (myopic) demand expectations determine the desired levels of
production and capital stock through a fixed capital-output ratio. Notably, if the current capital
stock is insufficient to produce the desired output, consumption-good firms order new machines
to expand their stock of heterogeneous vintage. Moreover, they replace old and technologically
obsolete machines according to a payback period rule. Firms pay for the capital in advance with
own liquid resources. Whenever the latter are not sufficient, firms that are not credit-constrained get
access to a bank credit. Hence, the labour productivity of consumption-good firms increases over
time following the expansion and renovation in the mix of vintages embedded in their capital stock.
Consumption-good firms choose their machine-tool supplier comparing the “brochures” they are
aware of and select the one with the best quality-price ratio. Finally, they update their price, adding
a variable markup on production costs, which depends on the past evolution of their market-share.
They balance own market shares and profit margins by increasing their markup whenever the former
is expanding and vice versa5.

Dawid et al. (2008, 2012, 2014); Riccetti et al. (2015); Russo et al. (2016); Caiani et al. (2016); Dosi et al. (2018a).
Furthermore, for critical surveys on macro ABMs see Gatti et al. (2010); Fagiolo and Roventini (2017); Dawid and
Delli Gatti (2018); Dosi and Roventini (2019).

3In a future version of the model, we will provide a more detailed characterizazion of worker migration.
4For a detailed description of the capital-good and consumption-good sectors, see Appendix A.1 and Dosi et al.

(2015)
5For more information about demand expectation, capital investments and price formation in the consumption-good

sector see Appendix A.2.
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2.2 Consumption-good markets

Consumption-good firms compete in three markets, namely the Coastal (Co), the Inland (In) and
the Export (Exp). In a generic market m, firm’s competitiveness (Ej) depends on its price, which
can account for inter-regional (τ1), international (τ2) transport costs, as well as on the level of unfilled
demand (lj):

Em
j (t) = −ω1p

m
j (t)(1 + τ1 + τ2)− ω2l

m
j (t) with ω1,2 > 0,m = [Co, In,Exp]. (1)

Of course, in the Coastal (ECo
J ) and Inland (EIn

j ) market, τ2 = 0, while they pay no transport cost
to compete in the region where they are located. In line with the spatial economics literature that
indicates ports as hub for international trade (Fujita and Mori, 1996; Glaeser, 2010), we model the

competitiveness (EExp
j ) in the Export market so that firms located in the Coastal region holds a

competitive advantage in trade with the rest of the world, i.e. τ1 = 0, while Inland firms bear it.
In each market (m), the average competitiveness (E

m
) is calculated by averaging the competi-

tiveness of all firms in the corresponding region weighed by their market share in the previous time
step:

E
m
(t) =

F2∑
j=1

Em
j (t)fmj (t− 1) with m = [Co, In,Exp]. (2)

The market shares (fj) of firms in the three markets evolve according to a quasi-replicator dynamics:

fmj (t) = fmj (t− 1)

(
1 + χ

Em
j (t)− E

m
(t)

E
m
(t)

)
with m = [Co, In,Exp], (3)

with χ > 0 which measures the selective pressure of the market. In a nutshell, the market shares
of the less efficient firms shrink, while those of the most competitive ones increases (due to lower
prices and less unfilled demand). Firms’ individual demand in each market is then calculated by
multiplying their market share by the total demand. In the export market, we assume that the
demand grows at a constant rate (α):

Exp(t) = Exp(t− 1)(1 + α), α > 0. (4)

In the two regions, as households spend all their income, total demand for goods equals aggregate
regional consumption (C):

Dj(t) = CCo(t)fCo
j + CIn(t)f Inj + Exp(t)fExp

j , (5)

with CCo and CIn computed by summing up all the wages and unemployed benefits of the households
in each region.6.

2.3 Labour market dynamics

Firms in the Coastal and Inland zones offer heterogeneous wages which depends on their productivity,
as well as on regional productivity, inflation and unemployment:

wj(t) = wj(t− 1)
(
1 + ψ1

∆ABj(t)
ABj(t−1) + ψ2

∆ABr(t)

ABr(t−1)
+ ψ3

∆Ur(t)
Ur(t−1) + ψ4

∆cpir(t)
cpir(t−1)

)
, (6)

6For more detail about aggregate consumption see Appendix A.2
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With ψ1 > 0, ψ2 > 0 and ψ1 + ψ2 ≤ 1 and where r is the region where firm j is located, ABj

is its individual productivity, ABr is the regional productivity, cpir is the regional consumer price
index and Ur is the local unemployment rate.

Interactions in the local labor markets are decentralized. This process allows to take into account
unemployment as a genuine structural disequilibrium phenomenon. As we assume no commuting,
households can only work for the firms in the same region where they live. Hence. the labour supply
LS,r of region r at time t, is thus equal to the number of households living in that region. The
aggregate labour demand LD,r is given by the sum of individual firms labour demand:

LD,r(t) =

F1r∑
i=1

F2r∑
j=1

Ld
f with f = [i, j], (7)

where F1r and F2r are the populations of capital- and consumption-good firms located in region r.
The labour demand of capital-good firm i (Ld

i ) is equal to:

Ld
i =

Qori (t)

Bi(t)
, (8)

where Qoi is the quantity ordered to the firm and Bi its productivity. Similarly, the labour demand
of consumption-good firm j (Ld

j ) is computed as:

Ld
j =

Qdj(t)

Aj(t)
, (9)

where Qdi is its production and Aj its average productivity.
The labour market matching mechanism in the two regions operates as follow:

1. If Ld
f (t) > nf (t), where nf (t) is the current labour force of a generic firm f , the firm posts m

vacancies on the labour market, with m = Ld
f (t)− nf (t). Conversely, if L

d
f (t) < nf the firm

fires m employees.

2. Unemployed households have imperfect information: they are aware only of a fraction ρ ∈ (0, 1]
of all vacancies posted by the firms in their home region.

3. Unemployed households select the vacancy with highest offered wage in their sub-sample and
they are hired by the corresponding firm.

The process is completed when either all households are employed or firms have hired all the workers
they need. Note that there is no market clearing and and involuntary unemployment as well as labor
rationing are emergent properties generated by the model.

2.4 Inter-regional migration

Households and firms can endogenously decide to move to another region. To capture heterogeneous
location preferences and imperfect information about regional variables such as wage levels, we model
migration as a probabilistic two-step procedure. In the first step, agents compare selected indicators
between the two regions, to obtain an individual migration probability. Clearly, the probability is
positive only if their home region performs economically unfavourably. In the second step, the agents
with a positive migration probability perform a draw from a Bernoulli distribution, that, if successful,
makes the agent willing to migrate.This captures potential migration costs as well as preference for
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the home region. Regarding the first step, the probability to migrate depends on a switching test
(see Delli Gatti et al., 2010; Caiani et al., 2016; Rizzati et al., 2018) grounded in economic variables.
Namely, both employed and unemployed households h compare wages and levels of unemployment in
two regions, and their probability to migrate (Prm) is:

Prmh (t) =

{
1− e(φ1Wd(t)+φ2Ud(t)), if Wd(t) and Ud(t) < 0

0, otherwise
. (10)

Where φ1 + φ2 ≤ 1. Wd is the wage distance which captures the average salary difference between
the two regions:

Wd(t) =
(W r(t)−W ∗(t))

W r(t))
, (11)

where r is the region where the agent is located and ∗ is the other one. Similarly, the unemployment
distance Ud reads:

Ud(t) =
(U∗(t)− Ur(t))

Ur(t)
. (12)

Bigger and more profitable markets work as basins of attraction for firms (Krugman, 1998;
Bottazzi et al., 2008). Hence, we assume that firms’ mobility choices depend on the local regional
demands for their goods. More specifically, firms f calculate the probability to migrate according to:

Prmf (t) =

{
1− e(φ3Ddf (t)+φ4DAd(t)), if Ddf (t) and DAd(t) < 0

0, otherwise
, (13)

where φ3 + φ4 ≤ 1. Dd is the demand distance of firm f between the two regions:

Ddf (t) =
(Dr

f (t)−D∗
f (t))

Dr
f (t))

. (14)

Firms also consider the dynamics of their sales with the “Demand attractiveness” (DAd):

DAdf (t) =
(DAdrf (t)−DAd∗f (t))

DAdrf (t)
, (15)

where DAdr,∗f (t) = log(sr,∗f (t))− log(sr,∗f (t− 1)) and sf are individual firm sales.
As the empirical evidence shows that agents are reluctant to migrate (Linnenluecke et al., 2011,

2013), we assume that they consider to move only if all the economic conditions of the other region
are better, i.e higher wage and lower unemployment for households (cf. Eq. 10), and higher demand
for firms (cf. Eq. 13).

In the second step, to finalize migration, economic agents with positive probability (Prm > 0)
perform a draw from a Bernoulli distribution:

θmigr(t) = Prma (t) with a = [h, f ]. (16)

They follow a similar method to determine whether technological innovation or imitation is successful
(see Eq. 22, and Eq. 23 in Appendix A.1), with a higher probability in the first step leading to a
more likely positive outcome from the draw.
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If the drawn from the Bernoulli distribution is successful, the agent migrates to the other region.
Households leave their job (if employed) and move to the other region as unemployed. Migrant firms
fire all their employees, paying a fixed cost that is equal to the sum of their quarterly wages:

Mfcf (t) = nfwf , (17)

where nf is the number of workers currently employed by the firm and Mfcf is the total cost to fire
them. Note that such firing costs are increasing with firm’s size (in line with the empirical evidence,
see e.g. Pellenbarg et al., 2002) and they constitute an additional barrier to the mobility of firms,
which may not have enough financial resources for transferring their activity in the other region.

2.5 Climate shocks

In each time step, there is a probability (Prs), that a climate shock, which we interpret as a flood,
hits the Coastal region. More specifically, in the same fashion of both migration and technological
learning (see Subsection 2.4, and Appendix A.1), a positive draw from a Bernoulli distribution
determines whether the shock occurs:

θs(t) = Prs(t), with Prs ∈ (0, 1]. (18)

Notably, the same hazard can cause different damages to the economy depending on the evolution
of firms and households population in the Coastal zone. Moreover, since in reality location-specific
exposure is unequal, we model the shock at individual level, thus leading to heterogenous impacts
hitting firms. More precisely, each Coastal firm (fc) draws an individual damage coefficient (Dcfc(t))
from a Beta(α3, β3) distribution.

7 Once the flood occurs, we model three different damages affecting
firms (see also Lamperti et al., 2018):

• A productivity shock, which decrease firms’ labour productivity for one period: ABfc(t) =
ABfc(t− 1)(1−Dcfc(t)).

• A capital stock shock that destroys a fraction Dcfc(t) of the stock of machines of consumption-
good firms and a part of the machines produced by capital-good firms.

• An inventories shocks that causes a permanent destruction of a fraction of the inventories of
consumption-good firms, i.e. INVfc(t) = INVfc(t− 1)(1−Dcfc(t)).

2.6 Timeline of events

In each time step, agents’ action take place according to following sequence:

1. Firms in the capital-good sector perform R&D.

2. Consumption-good firms set their desired production, wages, and, if necessary, invest in new
machines.

3. Decentralized labor market opens in each region.

4. An imperfect competitive consumption-good market opens.

7The choice to employ the Beta distribution follows previous work on climate ABMs (Lamperti et al., 2018, 2019;
Lamperti and Mattei, 2018; Lamperti et al., 2021) and has two advantages. First, because it allows to account for the
pattern of damage functions (and to only the mean, see e.g. Hallegatte et al., 2007; Coronese et al., 2019). Second,
because its flexibility allows to represent a wide range of scenarios.
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5. Entry and exit occur.

6. Machines ordered are delivered.

7. Households and firms decide whether to migrate across regions.

8. A probabilistic climate shock may hit the Coastal region.

3 Results and discussions

Typical for complex adaptive systems, our model has no closed-form solutions and requires computer
simulations. To account for the inner stochasticity of the model, we implement a set of 100 Monte
Carlo runs for each experiment that addresses our research questions. Each simulation run takes 400
steps, each equivalent to a quarter of a year. Hence, the time horizon of our simulations is 100 years.

At initialization, firms and households agents are evenly distributed between the two regions,
and firms share the same level of technology and resources. Therefore, the only difference between
Coastal and Inland regions is the additional transport cost that Inland firms have to consider when
calculating their export competitiveness (Eq. 1). This implies that the inter-regional transport cost
(τ1) and the amount of export demand (Exp) are key parameters in our model as they determine
the degree of the competitive advantage of the Coastal region in trade with RoW and the volume
of such trade. In the Baseline scenario, we set international shipping cost (τ2) equal to 0.06, in
line with other works (Hummels, 2007; Irarrazabal et al., 2015; Desmet et al., 2021) and keep the
inter-regional transport costs equal to a half of it, that is 0.03. Regarding the export demand, we set
the initial value to 50, in line with the net exports/output ratio of a coastal open-economy such as
The Netherlands (OECD, 2019).8

Before addressing our main research questions, we mute climate shocks and test the ability of the
Baseline (no flood) scenario to replicate key economic empirical regularities. Next, in order to explore
how agglomeration forces shape economic centers in coastal areas in absence of climate shocks, we
analyze the emerging regional economic dynamics, focusing on the sensitivity of the agglomeration
results to inter-regional transport costs and initial export demand.9 Note that we employ the term
successful agglomeration to indicate a region that hosts 100% of the total country population by
the end of a simulation run, and refer to ongoing agglomeration otherwise. Finally, we study the
impact of climate-induced shocks of different probability and severity on the regional agglomeration
dynamics, as well as on macroeconomic indicators. The latter include: the temporal evolution of
the average output and productivity, their growth rates, and the average unemployment rate, all
measured at regional and national levels.10

3.1 Replication of empirical regularities

Following the common validation tradition for ABMs in economics and finance (Fagiolo et al., 2007,
2019), we study whether the Baseline model reproduces an ensemble of macro and micro stylized
facts (Table 1). Given the spatial dimension of the model, we focus on its ability to reproduce
empirical regularities concerning the flows of people, businesses and trade that emerge between the
two regions. Despite the even distribution of economic activities, resources and technologies in both

8See Appendix B for additional information on model calibration.
9A more extensive sensitivity analysis is carried out in Appendix C.

10The average growth rate (GR) of a generic variable X is calculated as GRX =
LogX(T )−LogX(0)

T+1
, where T = 400

is the last step of the simulation.
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Table 1: Key economic empirical stylized facts replicated by the model.
Stylized facts (SF) Empirical studies

Regional interactions aggregate-level stylized facts
SF1 Uneven spatial distribution of economic activity due to technological progress (Amin, 1994; Feldman and Kogler, 2010)
SF2 Innovation is spatially concentrated (Thomas, 2005; Feldman and Kogler, 2010)
SF3 Industry agglomeration due to natural advantages (Fujita and Mori, 1996; Ellison and Glaeser, 1999; Glaeser, 2010; Krugman, 2010)

Regional interactions firm-level stylized facts
SF4 Not all firms export (Bernard and Durlauf, 1995; Bernard et al., 2011)
SF5 Exporters are more productive and larger than non-exporters (Bernard and Durlauf, 1995; Bernard et al., 2011)

Two-region economy aggregate-level stylized facts
SF6 Endogenous self-sustained growth with persistent fluctuation (Stock and Watson, 1999; Zarnowitz, 1984; Kuznets and Murphy, 1966)
SF7 Relative volatility of GDP, consumption, investments (Napoletano et al., 2004; Stock and Watson, 1999)
SF8 Cross-correlations of macro-variables (Napoletano et al., 2004; Stock and Watson, 1999)
SF9 Pro-cyclical aggregate R&D investment (Wälde and Woitek, 2004)
SF10 Persistent unemployment (Blanchard and Summers, 1986; Blanchard and Wolfers, 2000; Ball, 2009)

Two-region economy firm-level stylized facts
SF11 Firm (log) size distribution is right-skewed (Dosi, 2007)
SF12 Productivity heterogeneity across firm (Bartelsman and Doms, 2000; Dosi, 2007; Bartelsman et al., 2005)
SF13 Persistent productivity differential across firm (Bartelsman and Doms, 2000; Dosi, 2007; Bartelsman et al., 2005)
SF14 Lumpy investment rates at firm level (Doms and Dunne, 1998)

regions at initialization, the fact that they eventually diverge into core and periphery regions is an
emergent property of the model. Notably, in our Baseline scenario with disabled climate shocks, the
Coastal region becomes the technologically advanced core region as it gradually experiences an inflow
of firms and households from the Inland region, which turns peripheral over time (Figure 2). This
stems from the lower transportation costs required to trade with RoW experienced by the Coastal
regions, which makes it attractive for businesses and workers. This result is in line with the empirical
evidence that reveals clustering of economic activities in locations that offer “natural cost advantages”
(SF3, Ellison and Glaeser, 1999; Glaeser, 2010). However, when this advantage is removed, instead of
an even development we still observe an emergence of the concentration of economic activities in
one region, with almost equal probability in either the Inland or Coastal region (see examples with
τ1 = 0 and Exp = 0 in Figure 4). This is triggered by the dynamics of technological progress in the
initial steps (SF1 in Table 1) which spread new technologies to firms in the same area (Breschi and
Lissoni, 2001), making access to innovations spatially concentrated (Feldman and Kogler, 2010, SF2,
Table 1).

Moving to firm-level regularities at the regional level, empirical evidence suggests that – due to
the market selection – only a subset of firms trades with RoW (SF4, Table 1). In our model the
majority (86%) of Coastal and the minority (7%) of the Inland firms constitute such a subset of
exporters (Table 2). This difference is due to the “natural cost advantage” that eases trade with RoW
for Coastal businesses, but creates trade barriers for the Inland ones. As a consequence, the Coastal
region becomes an international trade hub, while the Inland area focuses primarily on the domestic
market. Moreover, as observed in real data (SF5, Table 1), exporting firms are more productive and
bigger in terms of employments than their non-exporting counterparts. Importantly, this difference in
productivity between exporters and non-exporters is heterogeneous between the two regions (Table 2).
In the Coastal region, the productivity premium of exporters is less marked, because only a minority
is not exporting. Conversely, only the most productive Inland firms are able to counterbalance the
additional transport cost and penetrate the export market. The remaining stylized facts are in line
with those reproduced by “K+S” family of models and they are discussed in Appendix B.
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Table 2: Exporters shares and premia per region.
Exporters premia

Exporting firms, share (%) Productivity Size
Coastal 86.68 1.005 1.115

Inland 7.85 1.212 1.682

Note: Firm are considered exporters at t if fExp
j > 0.001. Exporters premia for a specific variable are

calculated dividing the exporters average by the regional average. Size is the average number of employees.
The numbers are the means of 100 Monte Carlo runs of the Baseline scenario.

3.2 Agglomeration dynamics in a world without shocks

In the Baseline scenario, where climate shocks are disabled, simulation results reveal a self-reinforcing
and path-dependent agglomeration process (Figure 2, squared curves). In line with the empirical
evidences (Bottazzi et al., 2008; Feldman and Kogler, 2010), the process is fuelled by endogenous
technological change, triggered by the discovery of more productive technologies by capital-good
firms which diffuse to the consumption-good sector increasing local wages in the innovating region.

Figure 2: Share of population of firms (white squared curve), households (black squared curve) and
the relative volume of R&D investment (solid curve) in the Coastal region over total in the Baseline
scenario. Panel (a) displays the average values and standard deviations (shaded areas) of firms and
households population and R&D investments in the Coastal region over the 100 Monte Carlo runs;
panels (b) and (c) show single model runs which are representative of cases of successful (i.e. reaching
100%) and ongoing agglomerations respectively.

How do such agglomeration patterns emerge? Due to inter-regional transport costs and physical
distance (ϵ), firms are more likely to adopt innovations emerging in their home regions. Hence,
local successful innovations diffuse faster in one region, creating a cluster of high-productivity firms
which further boosts the adoption of newly-discovered technologies among local businesses. The
ensuing increasing R&D investments (Figure 2, solid curves) signal the path-dependency in the
spatial formation of a cluster, as they lead to higher innovation rates, which in turn attract more
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Table 3: Comparison of different value of the transport costs (τ1) and of the initial exports to the
rest of the world (Exp) to the ones of the Baseline scenario.
Parameters Av. output growth (s.d.) Av. productivity growth (s.d.) Av. unemployment rate (s.d.) Successful agglomeration
Exp τ1 Coastal Inland Coastal Inland Coastal Inland Coastal Inland

50 0.03
0.009***
(0.003)

0.005
(0.003)

0.007***
(0.002)

0.006
(0.002)

0.061
(0.052)

0.070
(0.096)

0.13 0

0 0
0.008
(0.009)

0.008
(0.008)

0.006
(0.003)

0.006
(0.003)

0.388
(0.345)

0.425
(0.351)

0.54 0.46

0 0.03
0.008
(0.006)

0.008
(0.006)

0.007
(0.002)

0.007
(0.002)

0.113
(0.067)

0.103
(0.071)

0 0

50 0
0.009
(0.009)

0.009
(0.009)

0.007
(0.003)

0.007
(0.003)

0.320
(0.374)

0.448
(0.386)

0.56 0.44

Note: The average growth rate (GR) of a generic variable X is calculated as GRX = LogX(T )−LogX(0)
T+1 ,

where T = 400 is the last step of the simulation. Our Baseline scenario is Exp = 50 and τ1 = 0.03,
highlighted in bold. The last column displays the probability of successful agglomeration, namely
the case where one of the two regions hosts 100% the total country population. When a region hosts
no workers, the unemployment rate equals to 1, indicating no employment. The latter is the reason
behind the higher unemployment rate and standard deviations in the scenarios with τ1 = 0. All
values are averages from the 100 Monte Carlo runs under the same parameter settings. ***p <0.01
refer to P-values for a two-means t-test and indicates whether the difference between Coastal and
Inland region is significant for a specific variable.

firms accelerating the technological diffusion. Furthermore, since wages are indexed to both firm
and regional productivity (Eq. 6), they grow faster in the more innovative region, thus attracting
workers which migrate from the other region (Figure 2, black squared curves). Households’ migration
ultimately reduces local consumption pushing an increasing number of firms to move to the growing
region (Figure 2, white squared curves), typically with a time lag after workers’ migration (compare
white and black squared curves in Figure 2).

Given the initial settings of the Baseline scenario, whenever firms in the Coastal region have a
competitive advantage in trade with RoW (i.e., τ1 = 0.03 and Exp = 50), agglomeration mostly
emerges there. However, in a typical Monte Carlo experiment, only 13% of the simulation runs
exhibit a successful agglomeration process (Figure 2 and Table 3). This depends on the inter-regional
transport costs (τ1, Eq. 1) which reduce the competitiveness of firms in the other region, thus
negatively impacting on the dynamics of their market shares. This has two main implications. The
first one concerns the speed of the agglomeration process. Firms consider to migrate only if they
experience a growing demand outside their home region (Eq. 13). Yet, transport costs act like
an inter-regional trade barrier, making it harder for firms to sell outside their region. The second
implication relates to the RoW market as the inter-regional transport costs increase the competitive
advantage of Coastal firms in the export market, penalizing Inland businesses (Eq. 1). Moreover,
the larger the initial volume of trade with RoW (Exp), the higher the sales captured by Coastal
firms. This process leads to a self-reinforcing dynamics wherein the lower competitiveness of Inland
firms reduces their share of the export demand, which in turn translates in less profits, less R&D
investment and ultimately in a slower technological change.

The increasingly unfavourable conditions in the Inland region worsened by out-migration can
trigger a tipping point leading to abrupt step-changes and avalanches of relocating firms (see Figure
2.b). The emergence of tipping points is due to positive feedbacks that gradually amplify the
economic attractiveness of the Coastal region for Inland firms, further increasing the regional gap in
job opportunities, R&D investments and wages levels. As economic activities continue to concentrate
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Figure 3: Panel (a) shows the dynamic trend of the difference in the average wage between the
Coastal and Inland regions (vertical axis) as economic activities agglomerate (horizontal axis). Panels
(b) and (c) compare the distribution of regional output growth and regional wages respectively in the
Coastal and Inland regions. Note: the values refer to a Monte Carlo of size 100.

in the Coastal region, the wage difference with the Inland region increases exponentially (Figure 3.a),
followed by the continuing households’ influx (Figure 2.a, black squared curve). This path-dependent
process leads to the divergence of the two regions in terms of output growth trajectories (Figure 3.b),
productivity (Baseline, Table 3) and wage distributions (Figure 3.c). Notably, the productivity gap
is narrower than the output gap because there are two intertwined effects that steer the economic
divergence between the two regions: the population migration and the diffusion of new technologies
among firms. Specifically, the latter is less likely but still feasible for spatially-distant firms which
could still imitate the technology of competitors from another region, hence lowering the inter-regional
difference in productivity.

Notably, the accelerating technological learning and spatial spillovers driving the productivity
change in the regional economies could still prevail in the Inland region, contingent on the role that
inter-regional transport costs and exports to RoW play in this two-region economy. Our sensitivity
analysis on the size of the comparative advantage between the two regions reveals a non-ergodic
behavior characterized by two statistical equilibria: a successful agglomeration of economic activities
and population in either Coastal (Equilibrium I) or Inland (Equilibrium II), as shown in Table
3 and Figure 4. As expected, in the absence of inter-regional transport cost (τ1=0), the Coastal
region has no competitive advantage in trade with RoW and there are no idiosyncratic differences
between the two regions. In this case, the probability of full agglomeration is roughly the same
(dark red and gray in Figure 4, and Table 3). Moreover, if trade barriers are absent, firms easily
penetrate outside their regional market and the agglomeration process speeds up: most runs reach the
successful agglomeration in either region before the time step 200. As transport costs increase, trade
between the two regions stagnates, hindering the agglomeration process (light brown plots in Figure
4). This is in line with the historic evidence, where a decrease in transport costs is associated with
a concentration of economic activities (Glaeser, 2010). Furthermore, when inter-regional transport
costs are positive, the higher initial value of the export demand volume yields higher economic growth
and lower unemployment in the Coastal region vis-á-vis the Inland one (Table 3). Indeed, the higher

14



Figure 4: Sensitivity of the model dynamics to the inter-regional transport costs (τ1) and the initial
volume of the export demand (Exp). Each curve shows the dynamics of firms’ population in the
Coastal region across 100 individual Monte Carlo runs. Our Baseline scenario is Exp = 50 and
τ1 = 0.03, colored in black here.

initial volume of export demand to RoW boosts the production of Coastal firms, leading to higher
investments and increasing the chance of successful agglomeration at the shore region11 (Figure 4,
Table 3, more details and extensive sensitivity analyses are in Appendix C).

3.3 Agglomeration dynamics and climate-induced hazards

The increasing impacts of climate change can affect the economic dynamics of the two regions
and the agglomeration economies. To consider climate-induced shocks, we run the Baseline model
(Table 3) with floods of different severity and probability. More specifically, we consider five flood
scenarios: Low probability-Low severity flood (LPLS ); High probability-Low severity flood (HPLS );
Low probability-High severity flood (LPHS ); High probability-High severity flood (HPHS ) and Climate
tipping point, that is a shift from LPLS to HPHS. The high and low probability corresponds to
an average of 2:1 year and 1:25 year flood respectively. Furthermore, the low and high severity
shocks resemble the damage intensity of such events (Longenecker, 2011), which we parameterize
by varying the damage coefficient from 0.01 to 0.25. Notably, the Climate tipping point scenario
displays an abrupt increase of both probability and severity at t = 200. Hence, the shock magnitude
and probability vary among our experiments mimicking the uncertain nature of hazard variability

11The exogenous rate of export growth (g), which is set to 0.01 in the Baseline scenario, interacts with Exp and
τ1 in the dynamics of the agglomeration process. In particular, when inter-regional transport costs are positive, the
higher rate of export growth means more resources available for Coastal firms and higher probability of successful
agglomeration in the Coastal region (see Figure C.5 in Appendix C).
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with climate change.12 Despite being modeled in a stylized manner, such shocks deliver important
insights about feedbacks between climate-induced hazards and the economic dynamics through an
interplay of push and pull forces: flood damages, which increase over time in the Coastal region,
and agglomeration forces, which attract economic activities towards the core region and boost
technological innovations.

In what follows, we first examine the climate-induced disruptions to regional and national
economies and the emerging dynamics arising throughout the interactions between the push and pull
forces. We then examine for each flood scenario different impact channel — productivity, capital
stock and inventories shocks — and analyze their individual and combined impacts on the economy.

3.3.1 The impacts of climate hazards

The first set of experiments concerns the possible impacts of natural hazards on the economy. On
the one hand, the negative effects of floods are straightforward and refer to a loss of production
factors (machinery, inventories) and a temporal drop in productivity. On the other hand, hazards
may accelerate the replacement of capital with new technologically-advanced vintages leading to a
positive “productivity effect” (Hallegatte and Dumas, 2009; Leiter et al., 2009). In our model, the
latter effect is generated by two processes. The first one concerns the “forced” investments that firms
undertake following a climate-induced shock when they need to replace their destroyed old capital
with new equipment. The second process relates to the bankruptcy of some firms and the entry of
new ones, being endowed with more productive capital technologies (see Appendix A.3). Due to the
endogenous technological learning in the model, newer and more productive technologies appear over
time, and consequently the production base is possibly upgraded after each flood, boosting regional
productivity, and potentially the economic output.13

Interestingly, there are emerging non-linearities in the effects of both probability (Prs) and
intensity (the damage coefficient Dc) of the shocks on the average unemployment, output and
productivity growth of the entire economy across scenarios (Table 4).14 Surprisingly, the two extreme
scenarios - LPLS and HPHS - deliver better economic performance than Baseline, mainly because
of the “productivity effect” (LPLS ), which in HPHS is amplified by a timely coastal retreat, as
we discuss in details below. Conversely, the mixed scenarios - HPLS and LPHS - perform worse
than Baseline due to the lock-in effects of ongoing agglomeration, enabled by reducing either flood
frequency and intensity. This increases the sunk costs of clustering production and population in the
increasingly hazard-prone Coastal region.

As long as shocks are mild and infrequent (LPLS ), their positive and negative effects are negligible
over the simulation time span (compare LPLS to Baseline in Table 4). However, in the second half
of the simulation, the growth-stimulus of the capital renewal slightly outweigh the detrimental effects
caused by flood shocks (compare the average output growth in Baseline and LPLS between time
steps 200-400 in Figure 5.c). This trend explains the additional labor demand required to replace
the destroyed capital that decreases the unemployment rate in both regions (compare Baseline and
LPLS in Table 4).

When either the probability (HPLS) or the severity (LPHS ) of the climate impacts increases,
the economy performs significantly worse than in absence of shocks. Specifically, the high fraction
of capital destroyed in the the LPHS scenario and the frequent capital disruption in the HPLS

12In future work, we plan to shift the stylized model of regional economies to more realistic settings and to include
the worsening of the conditions following the standard IPCC RCP scenarios.

13For a theoretical explanation of this impact of natural disasters on the economy, see Hallegatte and Przyluski
(2010).

14Appendix C provides more information about it, including the sensitivity analysis of the economic growth and the
agglomeration process on the severity and probability of the shock.
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Table 4: Comparison of different flood scenarios to the Baseline scenario with no shocks.
Scenario Parameters

Number of
shocks,

Relative average
output growth,

Relative average
productivity growth,

Relative average
unemployment,

Coastal successful
agglomeration,

Prs. E[Dc] Mean (s.d.) Ratio Ratio Ratio Probability

Baseline 0 0
0

(0.0)
1 1 1 0.13

Low probability
Low severity (LPLS )

0.01 0.01
4.1
(2.2)

1 1 0.97* 0.1

Low probability
High severity (LPHS )

0.01 0.25
3.7
(1.8)

0.86*** 0.93*** 1.98*** 0.07

High probability
Low severity (HPLS )

0.50 0.01
200.0
(10.2)

0.92*** 0.94*** 1.33*** 0.01

High probability
High severity (HPHS )

0.50 0.25
202.1
(10.6)

1.01** 1.01* 1.43*** 0.00

Climate tipping
t ≤ 200 0.01 0.01 101.8

(7.6)
0.68*** 0.79** 3.42*** 0.00

t > 200 0.50 0.25

Note: The average growth rate (GR) of a generic variable X is calculated as GRX = LogX(T )−LogX(0)
T+1 ,

where T = 400 is the last step of the simulation. Here Prs. and E[Dc] denote probability and
severity (the average damage coefficient Dc) of flooding in each scenario. We compare scenarios in
terms of the output and productivity growth, the unemployment rate of the two-region economy, and
the probability of successful agglomeration in the Coastal region (statistical equilibrium I, namely
the case where such region hosts 100% the total country population). All values are averages from
100 Monte Carlo runs of each scenario. The relative average unemployment, output and productivity
growth ratios are calculated by dividing the corresponding value in each scenario by that of Baseline.
*p <0.1, **p <0.05, ***p <0.01 refer to P-values for a two-means t-test.

scenario hinder firms from fully recovering their equipment due to scarcity of financial resources.
Hence, they cannot fully satisfy their demand, undermining firms’ long-term competitiveness and
profitability. Moreover, the lack of machines forces firms to downscale production and fire workers.
The ensuing growth in unemployment in the Coastal region coupled with the drop in wages due
to productivity losses, creates a natural push that triggers households’ migration landwards. If
households’ migration is considerable, firms start moving to the Inland region driven by agglomeration
forces: i.e. following the shift of workforce and regional market shares these consumers represent.
This bottom-up economically-driven relocation to the Inland region can revert, or at least slow down,
the agglomeration process in the Coastal region. However, the few infrequent shocks in the LPHS
scenario are typically insufficient to counter-balance the agglomeration force stemming from the
advantages that the Coastal region has in trade with RoW and in the technological leverage that the
pre-shock agglomeration offers. Hence, when the coast is firmly protected (LPHS but still not 100%
safe), the economic activities in the Coastal region are comparable to the scenario with no floods
(LPHS vs. Baseline in Figure 5.b). Such lock-in of economic activities in the Coastal region implies
more assets and population exposed to floods. Consequently, when the shocks do hit, they harm the
majority of the country firms and households and the whole economy is more affected and exhibits
a negative “hysteresis” characterized by a statistically significant lower output growth (LPHS vs.
Baseline in Figure 5.c and in Table 4). In contrast, when the economy is exposed to frequent but
mild coastal floods (HPLS scenario), there are economic forces that gradually drive the population
toward the Inland region, which in addition to being safe becomes an economically attractive center
of technological innovation. As a result, there are fewer economic activities in the Coastal region as
compared to Baseline (compare HPLS vs. Baseline in Figure 5.b), but significantly higher output
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compared to the LPHS scenario (compare HPLS vs. LPHS in Figure 5.f).
If both flood probability and severity are high from the start (HPHS ), the economic agents

quickly adapt to frequent and significant losses by migrating to the safe Inland region (compare
HPHS and Baseline in Figure 5.a and 5.b). This abrupt retreat is driven by purely bottom-up
economic adaptation and agglomeration forces that now gravitate to the Inland region. The global
economy temporarily contracts but recovers fast (see the negative growth rate in HPHS between
time steps 0-50 vs. increasing growth rate in steps 100-150, Figure 5.c). The firms that escaped to
the Inland region avoid any further exposure to the shocks. Moreover, they also need to rebuild their
capital stock choosing the most productive technologies of the time. Importantly, many firms in such
extreme conditions go bankrupt early in the simulation and are then replaced by more technology
advanced newcomers. In the long-term, these major renovations of capital boost the productivity of
the Inland region and the aggregate output of the entire two-region economy (compare Baseline and
HPHS curves in Figure 5.c and 5.f and in Table 4). Our results are in line with the climate adaptation
literature (Moss et al., 2021; Desai et al., 2021) discussing the importance of a timely coastal retreat
in case of catastrophic impacts. Nonetheless, the benefits from the swift coastal retreats are subjects
to a number of caveats: i) relocating abruptly an entire regional economy requires a well prepared
and anticipated planning uncommon in the current political agenda; ii) the cost of moving businesses
can increase non-linearly with their number, especially for locations where space is a scarce resource;
iii) there are high social costs in relocating households and firms. To sum up, the results of the HPHS
scenario appears to be realistic only for a limited area rather than for a major cluster of economic
activities.

Finally, we consider the more likely Climate tipping point scenario where the frequency and
severity of shocks abruptly increase in the middle of the simulation. Such a scenario show the worst
economic performance due to negative spatial lock-in effects (Figure 5.b and Table 4). The stable
climate that the economy experiences in the first 200 steps, allows economic activities to agglomerate
in the Coastal region. However, after the climate tipping point, impacts suddenly become more
frequent and severe, thus destroying Coastal firms’ capital stocks, reducing their productivity and
hence their competitiveness. As a consequence, the region experiences a skyrocketing unemployment
rate and a depression of wages that push households Inland (compare Climate tipping and Baseline
scenario in Figure 5.a and Table 4). However, as climate conditions become extreme, Coastal firms
continuously face natural hazards and they rarely manage to migrate or gain market shares in the
Inland region (compare Climate tipping and Baseline scenario in Figure 5.b). By the time firms
learn the new climate conditions, it is too late to move. Adaptation by relocation needs time and
resources, which the Coastal economy lacks by this point. Thus, differently from the HPHS scenario,
the majority of economic activities remains trapped at the coast and the global economy almost
collapses (compare Climate tipping and Baseline scenario in Figure 5.c, 5.f and Table 4). Although
the inability of Coastal firms to compete with the Inland one, and the time lag and resources needed
to relocated in the safe region are the main reasons of lock-ins, there are two additional factors to be
considered. The first is that, in this version of the model, migration is costless for households but
increases with size for firms. Migration costs constitutes an additional barrier for firms whose liquid
resources are already invested in rebuilding production capacity at the coast.15 The second factor
depend on the assumption that the population of firms is fixed and bankrupted firms are replaced
with new in the same region (see Appendix A.3). Note that a variable number of firms could even
worsen the economic performance as firm population in the Coastal region may collapse.

15In presence of migration cost for households, the social and economic cost of the Climate tipping point scenario
would be even higher.
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Figure 5: Evolution of the households (a) and firms (b) population in the Coastal region, average
output growth of the two-region economy by time slices (c), units of output produced in the Coastal
(d) and Inland regions (e), and in the entire two-region economy (f) over time in the Baseline and
the five flood scenarios (LPLS, HPLS, LPHS, HPHS and Climate tipping). All values are averages
from 100 Monte Carlo runs of each scenario; the standard deviations for each scenario are available
from the authors upon request.
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3.3.2 Dissecting the impact channels of climate hazards

The previous analysis shows how climate hazards affect the economy by compounding damages, i.e.
without differentiating how shocks propagate in the economy via multiple channels. Yet, each shock
hits the Coastal firms in an heterogeneous manner by decreasing their productivity, destroying a
fraction of their machinery and inventories (more details in Section 2.5). Furthermore, depending on
the hazard frequency and severity, each of these individual shocks might have a different impact on
the distribution of economic activities across regions and the macroeconomic performance. Figure 6
illustrates the individual effects of each shock on the evolution of the economy.16

The productivity shock increases firms’ production costs, by decreasing the production of their
workers. Hence, it reduces firm competitiveness and profitability, which propagates throughout the
economy leading to lower output growth and real wages. A substantial shock, possible occurring in
the LPHS, HPHS and Climate tipping scenarios, shrinks real wages, triggers households migration
and lowers aggregate demand, generating a negative vicious cycle. As a consequence, in line with
other climate ABMs (Lamperti et al., 2018, 2020), the productivity shocks delivers the largest harm
to the two-region economy when the damage coefficient is high (such as in the LPHS and Climate
tipping, see circled and black lines in Figure 6.c and 6.n). Conversely, the adverse impact of the
productivity shock is negligible for a low value of the damage coefficient (such as in the HPLS,
compare black and circled line in Figure 6.f) since these effects are counterbalanced with productivity
gains that the firms obtain through the process of technical change.17 An exception is the HPHS
scenario: such shocks lead to intensified economic growth (see black and circled lines in Figure 6.i).
The reason is linked to the process of entry and exit. As in other models rooted in K+S family (Dosi
et al., 2010, 2013, 2017; Lamperti et al., 2018), new entrant consumption-good firms select amongst
the most productive machines. Hence, in the HPHS scenario the severe and frequent productivity
shocks initially bankrupt many firms that are then replaced with more technologically advanced
entrants.

In a different manner, the capital-stock shocks immediately constrain firms’ production. Conse-
quently, firms try to reconstruct their capital stock by ordering new machines. As mentioned before,
in the HPHS scenario the replacement of the destroyed capital with newer and more productive
machines, coupled with the migration to the safe inland region, boosts the total units of output
produced in the two-region economy (see black and squared lines in Figure 6.i). However, in all the
other scenarios where the majority of firms is exposed to climate hazards during the whole simulation
(LPHS, HPLS and Climate tipping point), the economy lacks resources to sustain the substitution of
capital at such accelerated rate. Hence firms have to undergone production, slowing down economic
growth (see black and squared lines in Figure 6.c, 6.f, 6.n). The capital stock shocks also generate an
increase in the demand of capital by Coastal firms that pushes capital-good firms towards the coast
(see black and squared lines in Figure 6.b) or, at least slows down its abandonment (see black and
squared lines in Figure 6.h).

Finally, the inventories shock has the smallest impact on both the distribution of population and
economic growth in the LPHS, HPLS and Climate tipping point scenarios, suggesting that supply
side bottle-necks are mostly relevant in the very short run (Otto et al., 2017; Willner et al., 2018, see
also). Yet, damages to inventories are particularly relevant in the HPHS case, as they reinforces
our previous argument about Coastal retreat. Indeed, by exerting a relatively mild impact, the
inventories shock triggers less migration of both households and firms towards the Inland region

16Here we present only the graphs for the HPLS, LPHS, HPHS and Climate tipping point scenarios. We exclude
LPLS to keep the figure readable because of the similarity of this scenario with Baseline. The LPLS results are
available from authors upon requests.

17Indeed, a negative shock to labour productivity facilitates the adoption of novel and more productive production
techniques and machines.
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Figure 6: The impact of each individual shock channel on the distribution of population, economic
activities and output of the two-region economy over time in the Baseline, HPLS, LPHS, HPHS and
Climate tipping scenarios. All values are averages from 100 Monte Carlo runs of each scenario.
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(see black and triangle lines in Figure 6.g, 6.h). Thus, more firms deal with the hazard for a longer
time compared to the other shocks with negative consequence for the economy (compare black and
triangle lines in 6.n).

4 Conclusions

In presence of longstanding urbanization processes, population and economic activities are increasingly
exposed to the risks of climate change. Strong economic agglomeration forces have attracted
development towards waterfront regions for centuries. Yet, the new climate reality of projected sea
level rise and increasing probability and severity of coastal flooding, threatens to revert this trend,
making coastal retreat a realistic policy option if proper mitigation strategies are not timely deployed
(Haasnoot et al., 2021; Moss et al., 2021).

To explore the trade-offs between agglomeration economies and the changing face of hazards as
well as the macroeconomic and spatial consequences of diverse climate shocks, we have developed the
Climate-economy Regional Agent-Based (CRAB) model with heterogeneous boundedly-rational inter-
acting agents designed in the evolutionary macroeconomics tradition. The model explicitly captures
the endogenous technological learning, that is reinforced by geographical proximity. Specifically, when
firms cluster together newly discovered technologies circulate more easily within the cluster creating
“localised knowledge spillovers” (Breschi and Lissoni, 2001) that act as Marshallian externalities and
trigger agglomeration forces. We study such dynamics in an economy with two regions — Coastal
and Inland — in which capital-good firms, consumption-good firms and households agents interact in
the local goods and labour markets. Agents choose in which region to reside and whether to relocate
driven purely by economic self-interests. Agents are boundedly-rational, but they continuously learn
about prices, wages as well as the evolving economic attractiveness of regions and the intensity of
climate-induced hazards as the simulation unfolds.

First, we assess the ability of the model to reproduce empirical regularities. Specifically, in line
with other macroeconomic evolutionary ABMs (Dosi et al., 2010, 2013, 2015, 2017; Lamperti et al.,
2018), we validate model’s output against economic stylized facts at both aggregate and firm-level.
We then asses how agglomeration forces shape economic centers in coastal areas in the absence of
climate shocks. We find that the model is able to reproduce a self-reinforcing and path-dependent
agglomeration process driven by innovation and endogenous technological learning. Such processes
are triggered by the additional resources that Coastal firms obtain though the competitive advantage
of their strategic location (Glaeser, 2010). These results reinforce previous empirical findings about
the correlation between productivity and agglomeration forces (Bottazzi et al., 2008; Feldman and
Kogler, 2010; Kogler, 2015). In the absence of the location specific competitive advantage, the
model displays a non-ergodic behavior characterized by two possible final statistical equilibria: full
agglomeration of economic activities and population in either Coastal or Inland region. This offers an
important methodological innovation permitting to integrate the spatial dimension, both in terms of
travel costs and location (dis)advantages, into the evolutionary economic models with heterogeneous
adaptive agents. It responds to the need for adding the complex adaptive perspective to the economic
geography toolkit (Fowler, 2007; Commendatore, 2015) and to the economic analysis of climate
change impacts (Safarzyńska et al., 2013; Stern, 2016).

We then explore how the complex interplay between agglomeration forces and climate shocks
unfolds the spatial distribution of economic activities as well as the development of regional economies,
considering scenarios with climate hazards of various intensity and probability. We find a non-linear
responses of the model economic performance to both the intensity and probability of the shocks.
Such non-linearity emerges from the complex interplay between the negative consequences of climate
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damages, and their positive effects in terms of technological renewal of the production capital base
and a timely incentive to relocate economic activities from the coast. In general, frequent shocks push
economic activities towards the safe Inland region, with the speed of coastal retreat increasing with the
size of the shocks, thus reducing the concentration of economic activities in the Coastal area. When
the shocks are infrequent or mild the aggregate economic performance worsen due to the prevailing
negative impacts of hazards. In particular, when floods are rare but more intense, the low probability
shocks generally permit an initial concentration of economic activities in the Coastal region. Yet, the
shocks are more likely to hit the economy later in the simulation, affecting a critically high share of
firms and households, slowing the economic recovery and its further development. This has direct
links to adaptation policies, such as construction of flood defences which while preventing milder
floods do fuel the agglomeration forces and endanger the increasing sunk costs due to accelerating
urbanization in climate-sensitive hotspots. Our results suggest that while adaptation measures
such as dykes and levees are indispensable, one must account for the inter-temporal side-effects in
terms of provoked ’levee effect’/ ’safe development paradox’ (Di Baldassarre et al., 2015) driven
by agglomeration forces. Relatedly, in the special case when shocks are both severe and frequent,
adaptive firms swiftly retreat to the safe Inland region where they replace their destroyed machines
with newer and more productive equipment without any government intervention. This capital
renovation coupled with the replacement of bankrupting firms with better-technology competitors
permits the entire economy to experience a long-run growth trajectory comparable to the baseline
scenario with no floods. This has important policy implications for designing coastal retreat strategies,
that seem increasingly necessary, but face unacceptability and are costly to realize (Moss et al.,
2021; Wible, 2021). However, in the most likely scenario with climate tipping points, which abruptly
increase both the frequency and impact of shocks in the middle of the simulated time period, the
most productive firms located in the Coastal area are increasingly exposed to flood hazards severely
disrupting their capital and competitiveness. As a consequence, firms lack resources to relocate to
safety and remain trapped by the coast, locking in the entire economy into a trajectory of climate
non-resilient stagnation.

The model can be expanded along different lines. First, the model would benefit from adding
behaviorally-rich households choices, firms belonging to economic sectors impacted differently by
hazards, floods maps and hazard patterns corresponding to different Representative Concentration
Pathway scenarios. Furthermore, governments, households and firms could take actions to reduce
adverse impacts of hazards, hence private and public climate change adaptation could be jointly
considered. All these could be important future research directions. Nevertheless, the model makes
an important contribution to the economic geography literature by exploring spatial distribution
of economic activities in a out-of equilibrium fashion. Moreover, in terms of policy implications it
assesses the trade-off between natural hazards and agglomeration economies and the possible policy
implications in a framework characterized by non-linear dynamics, lock-in effects, and climate tipping
points.
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6 Appendices

A Model Complements

A.1 The capital-good sector and technological learning

The technology of each firm i is captured by two labor productivity coefficients, AT
i and BT

i . The
former coefficient indicates the productivity of the machines in the consumption-good sector, while the
latter stands for the productivity of the manufacturing technique required to produce the machines.

Capital-good firms determine their price pi applying a fixed markup (µ1 > 0) to their unit cost ci:

pi(t) = (1 + µ1)ci(t). (19)

The unit cost ci is the ratio between individual nominal wage wi and its productivity coefficient:

ci(t) =
wi(t)

BT
i

. (20)

Capital firms aim to improve their productivity coefficients (AT , BT ) via technological learning.
To do so, they actively invest in R&D a fraction ν1 of their past sales:

R&Di(t) = ν1Si(t− 1) with 0 < ν1 < 1. (21)

Furthermore, firms split their R&D between innovation (IN) and imitation (IM) according to the
parameter ξ ∈ [0, 1]. Both innovation and imitation are modeled employing a two-step procedure. In
both cases, the first step determines whether innovation or imitation is successful through a draw
from a Bernoulli distribution:

θini (t) = 1− e−ζ1INi(t), (22)

θimi (t) = 1− e−ζ2IMi(t), (23)

where 0 ≤ ζ1,2 ≤ 1 capture the search capabilities of firms. The probability of a positive outcome
depends on the amount of resources invested.

Successful firms get access to the second step. If the innovation draw (Eq. 22) is successful, the
firm discovers a new technology, (Aim

i , Bim
i ), according to:

Ain
i (t) = Ai(t)(1 + xAi (t)), (24)

Bin
i (t) = Bi(t)(1 + xBi (t)), (25)

where xA,B(t) are independent draws form a Beta(α1, β1), over the support [x1, x2], with x1 ∈ [−1, 0]
and x2 ∈ [0, 1]. The supports of the Beta distribution determine the probability of “succesfull” over
“failed” innovations, and hence shape the landscape of technological opportunities.

Furthermore, firms passing the imitation draw (Eq. 23) get access to the technology of one
competitor (Aim

i , Bim
i ). Notably, firms are more likely to imitate competitors with similar technology

and we calculate the technological distance between every pair of firms using a Euclidean metric.
Moreover, in tune with empirical evidence (Dosi, 1990; Fagerberg and Godinho, 2006), firms in the
other region are more difficult to imitate than domestic ones, hence technological distance between
foreign Fims is augmented by a factor ϵ > 1. The physical distance plays an important role within
the agglomeration process because it makes innovation spatially concentrated (Feldman and Kogler,
2010).
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Once both processes are completed, all the firms succeeding in either imitation or innovation
select the most efficient production technique they can master according to the following payback
period rule (see Subsection A.2):

min[phi (t) + bchi (A
h
i , t)] h = T, in, im, (26)

where b is a positive payback period parameter (see Eq. 29). Finally, capital-good firms send
a “brochure” containing price and productivity of their machines to a random samples of potential
new clients (NCi) as well as its historical customers (HCi). The capital-good market is indeed
characterized by imperfect information and (Phelps and Winter, 1982).

A.2 The consumption-good sector

Consumption-good firms combine labour and capital with constant returns to scale to produce a
homogeneous good. In line with K+S tradition (Dosi et al., 2010, 2013, 2017), adaptive demand
expectations (De

j = f [Dj(t− 1), Dj(t− 2), ..., Dj(t− h)]),18 desired inventories (Nd
j ), and the actual

stock of inventories (Nj) form the desired level of production:

Qd
j (t) = De

j (t) +Nd
j −Nj(t). (27)

The latter is constrained by firms’ capital stock Kj , with a desired capital stock Kd
j required to

produce Qd
j . In case Kd

j (t) > Kj(t), the firm calls for a desired expansionary investment such that:

EIdj (t) = Kd
j (t)−Kj(t). (28)

Furthermore, firms undertake replacement investment RI, scrapping machines with age above η > 0
and those that satisfy the following payback rule:

RIj(t) =

{
Aτ

fc ∈ Ξj(t) :
p∗(t)

c(Afc,τ , t)− c∗(t)
≤ b

}
, (29)

where p∗ and c∗ are the price and unit cost of production upon the new machines and b > 0 is
the payback period parameter. The total replacement investment is then calculated summing up
all the old vintages that satisfy Eq. 29. Furthermore, firms compare the “brochures” received by
capital-good firms and order the machines with the best ratio between price and quality.

Notably, consumption-good firms have to pay in advance both their investments and the worker
wages. This implies that, in line with empirical literature (Stiglitz and Weiss, 1981; Greenwald and
Stiglitz, 1993; Hubbard, 1997) capital markets are imperfect. As a consequence, external funds are
more expensive than internal ones and firms may be credit rationed. More specifically, consumption-
good firms finance their investment first by using their stock of liquid assets (NWj). When the latter
does not fully cover investment costs, firms that are not credit-constrained can borrow the remaining
part paying an interest rate r up to a maximum debt/sales ratio of Λ > 1.

Each firm is characterized by heterogenous vintages of capital-goods with different average
productivity (Aj) which reflects in it unit cost of production (cj):

cj(t) =
wj(t)

Aj
, (30)

18Heuristic expectations may be the best and more “rational” response in a complex and changing macroeconomic
environment. For more information about the impacts and robustness of heterogeneous expectations within an
evolutionary economics agent-based model see Dosi et al. (2020)
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where wj is the average wage paid by firm j. The prices in the consumption-good sector are computed
applying a mark-up (µ2,j) on unit cost:

pj(t) = (1 + µ2,j)cj(t). (31)

The evolution of firm’s market share (fj), determines the variation of its markup (µ2,j):

µ2,j(t) = µ2,j(t− 1)(1 + ν
fj(t− 1)− fj(t− 2)

fj(t− 2)
) with 0 ≤ ν ≤ 1. (32)

The profits of consumption firms are given by:

Πj(t) = (Sj(t)− cj(j)Qj(t)− rDebj(t), (33)

where Sj(t) are the sales of the firm, Qj is the quantity produced, Deb is the stock of debt and r is
the interest rate. Finally, firm liquid assets NWj(t) are updated according to:

NWj(t) = NWj(t− 1) + Πj(t) + cIj(t), (34)

where cIj is the investment cost of the firm.

A.3 Firms entry and exit

At the end of each period consumption firms with (quasi) zero market shares and capital good
firms with negative net assets are replaced by a new breed of firms. The entrants are located in
the same region of the bankrupting incumbents, hence keeping constant the regional population.
We are aware that entry and exit rates might be independent processes and that spillovers play
an important role in agglomeration dynamics (Bischi et al., 2003; Frenken and Boschma, 2007).
However, we tried to keep the model as simple as possible, given the numerous dynamics already in
play and leave that for further research. In line with the empirical findings on firm entry (Caves,
1998; Bartelsman et al., 2005), we assume that entrants are on average smaller than incumbents. In
particular, the stock of capital of new consumption-good firms is equal to a draw from a Uniform
distribution with support [ϕ1, ϕ2], with 0 < ϕ1, < ϕ2 ≤ 1, multiplied by the average stocks of the
incumbents. Similarly, the stock of liquid assets of entrants in both sectors is obtained by multiplying
the average stock in the market by a draw from a Uniform distribution with support [ϕ3, ϕ4], with
0 < ϕ3, < ϕ4 ≤ 1. Concerning the technology of entrants, new consumption-good firms select amongst
the most productive machines. Conversely, the technological frontier of new capital-good firms is
drawn from a Beta distribution Beta(α2, β2). The parameters of the latter determine whether
entrants enjoy an advantage or a disadvantage with respect to the incumbents.

A.4 Consumption, taxes, and public expenditures

Each region has a government that taxes profits of firms at fixed rate and pays subsidies (Wu,r) to
unemployed households. The latter is a fraction of the regional average wage:

Wu,r(t) = δW
r
(t), with δ ∈ [0, 1], (35)

with δ ∈ [0, 1]. Workers spend all their income, hence aggregate regional consumption (Cr) is equal
to the sum of individual wages and unemployment subsidies:

Cr(t) =

Lr∑
h=1

wr
h(t) +Wu,r(Lr(t)− Le,r(t)), (36)
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where Le,r(t) is the population of employed households at time t in region r.
The model respects the national account identity:

F1∑
i=1

Qi(t) +

F2∑
j=1

Qj(t) = Y (t) = C(t) + I(t) + ∆N(t) + EXP (t)− IMP (t). (37)

Since there are no intermediate goods and no imports, the sum of values added of both production
sectors (Y), equals their aggregate production which respectively matches the sum of aggregate
consumption (C), investment (I), exports (EXP), imports (IMP) and variations of inventories (∆N).

B Model calibration and validation against stylized facts

In line with the computational economics agent-based modelling literature, we tuned the parameters
of the model following the indirect calibration approach (Windrum et al., 2007; Fagiolo et al., 2007).

34



Table A1: Main parameters and initial conditions in the economic system.
Description Symbol Value
Number of firms in capital-good industry F1 50
Number of firms in consumption-good industry F2 250
Number of households H 3500
R&D investment propensity ν 0.04
R&D allocation to innovative search ξ 0.5
Firm search capabilities parameters ζ1,2 0.3
Beta distribution parameters (innovation process) (α1, β1) (3, 3)
Beta distribution support (innovation process) [x1, x2] [−0.1, 0.1]
Physical distance ϵ 5
New-customer sample parameter γ 0.5
New-customer from the same region ι 0.75
Capital-good firm mark-up rule µ1 0.04
Desired inventories l 0.1
Payback period b 3
“Physical” scrapping age η 20
Mark-up coefficient υ 0.04
Competitiveness weights ω1,2 1
Inter-regional iceberg transport cost τ1 0.03
International iceberg transport cost τ2 2τ1
Replicator dynamics coefficient χ 1
Maximum debt/sales ratio Λ 2
Interest rate r 0.01
Uniform distribution supports
(consumption-good entrant capital)

[ϕ1, ϕ2] [0.10, 0.90]

Uniform distribution supports
(entrant stock of liquid assets)

[ϕ3, ϕ4] [0.10, 0.90]

Beta distribution parameters
(capital-good entrants technology)

(α1, β2) (2, 4)

Wage setting ∆AB weight ψ1 0.2
Wage setting ∆ABi weight ψ2 0.8
Wage setting ∆cpir weight ψ3 0
Wage setting ∆Ur weight ψ4 0
Household labour search sample parameter ρ 0.3
Migration setting Wd weight φ1 1
Migration setting Ud weight φ2 0
Migration setting Dd weight φ3 0.5
Migration setting DAd weight φ4 0.5
Tax rate tr 0.3
Unemployment subsidy rate u 0.4
Export demand initial value Exp 50
Export growth rate g 0.01

In particular, we selected a set of relevant empirical features - economic stylized facts - that the
model is ought to reproduce, and subsequently search the parameter space to find the values that
match such results. Furthermore, we tested the robustness of the chosen values in two ways. First, by
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exploring consistency in the neighbourhood of the selected point. Second, to control for randomness,
we changed the seed of the pseudo-random number generator via Monte Carlo simulation exercise.
For the present work, we select the following empirical stylized facts to reproduce in our model:

• Pattern of self-sustained growth with persistent fluctuations.

• Average growth rate for output around 1%.

• Average unemployment rate between 5% and 15%.

• Output is less volatile than investment and more than consumption.

• Innovation is spatially concentrated.

• Spatial distribution of economic activities does not converge over time.

Once the model is calibrated (Table A1), we validate simulation results against their ability to
replicate both micro- and macro- economic stylized facts observed in the empirical literature (Table
1).

Figure B.1: Bandpass-filtered output, investment, and consumption. Note: results present the
behavior of selected bandpass-filtered (6, 32, 12) series for a randomly chosen Monte Carlo run.

A more extensive discussion about the empirical regularities reproduced by the “K+S” model
can be found in Dosi et al. (2017). Regarding this specific model, Figure B.1 shows the continuous
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fluctuations and volatility of output, consumption and investment which is well tuned with real
world data. In addition, Figure B.2 displays the cross-correlation among the main macro-economic
variables. The results fairly represent empirical data with pro-cyclical consumption and investment
and counter-cyclical unemployment rate. Inflation is slightly pro-cyclical and prices which are
counter-cyclical, in particular with investments.

Figure B.2: Correlation structure emerging from filtered series. Note: the values refer to a Monte
Carlo of size 100. Average values are reported.

Regarding micro-economic regularities, due to regional transport cost that act as a trade barrier,
not all firms are able to gain market share in the other region. in particular, those that do, are on
average more productive and bigger than firms selling only in the domestic market.
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C Sensitivity analysis

In this section we use one-factor-at-a-time (OFAT) sensitivity analysis (SA), namely varying one
parameter at a time while keeping all the other parameters constant to analyze output uncertainty
(Schervish et al., 1983). We opted for OFAT SA because it is less computationally intense than
global SA methods such as variance decomposition (Saltelli et al., 2008). Moreover, as argued in
ten Broeke et al. (2016), global SA methods often fail to capture nonlinear dynamics, feedbacks and
emergent properties, which are typical in ABMs. For clarity, we measure the effect of such changes
in parameters on the main output we use throughout the results: economic growth and spatial
distribution of economic activities, which we measure as the probability of statistical equilibrium I.
Importantly, we also kept the same experiment settings by first analyzing change in export (Exp) and
regional transport cost (τ1) without climate shocks and subsequently we use the Baseline scenario
(Exp = 50 and τ1 = 0.03) to analyze different probabilities and severity of flooding. Nonetheless,
as in the results section, to wash away randomness we performed a Monte Carlo exercise of size 100
on the seed of the pseudo number generator, for each change in parameter value.

C.1 Sensitivity analysis on export and regional transport cost

The SA output on export and regional transport cost is consistent with our previous analysis on
output growth and probability of statistical equilibrium I.
Specifically, if we look at the two-region economy, as export increases also economic growth does.
Conversely, there is not a clear trend between the increase of transport cost and the average output
of the two-region economy (Figure C.1). Furthermore, if we look at the two regions individually we
see that as the comparative advantage in trade with the rest of the world increases (i.e. more export
and transport cost) also the output growth in the Coastal region is reinforced (Figure C.3), while the
output in the inland region is reduced (Figure C.3). Notably, the two regions share similar output
growth as well as probability of agglomeration whenever the competitive advantage is removed (either
Exp = 0 or τ1 = 0 in Figure C.2, Figure C.3 and Figure C.4)
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Figure C.1: Sensitivity analysis of the average output growth of the two-region economy to different
values of export (Exp) and transport cost (τ1). Note: the values refer to a Monte Carlo of size 100.
Average values are reported.
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Figure C.2: Sensitivity analysis of the average output growth in the Coastal region to different values
of export (Exp) and transport cost (τ1). Note: the values refer to a Monte Carlo of size 100. Average
values are reported.
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Figure C.3: Sensitivity analysis of the average output growth in the Inland region to different values
of export (Exp) and transport cost (τ1). Note: the values refer to a Monte Carlo of size 100. Average
values are reported.

Nonetheless, SA results confirm that as long as τ1 > 0, an increase of export means more
demand for Coastal firms and hence more investment resulting in an higher probability of statistical
equilibrium I. Importantly, other things being equal, an higher concentration of economic activities in
the Coastal region can be obtained by either increasing the initial amount of export demand (Figure
C.4) or its rate of growth (Figure C.5)

Similarly, an increase of regional transport cost increases the degree of the competitive advantage
that the Coastal region has in trade with the rest of the world. On the one hand, the increase of
transport cost allows Coastal firms to get an higher share of export demand, increasing the probability
of statistical equilibrium I. On the other hand, an increase of τ1 also raises trade barriers between the
two regions, making the agglomeration process slower. In general, the first effect seems to prevail,
but the interplay between these two forces generates some non-linearity in the final likelihood of
statistical equilibrium I (Figure C.4 and Figure C.5).
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Figure C.4: Sensitivity analysis of the distribution of economic activities under different values for
export (Exp) and transport cost (τ1). The values indicates the probability of statistical equilibrium I
in the 400th step of each simulation. Note: the values refer to a Monte Carlo of size 100. Average
values are reported.
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Figure C.5: Sensitivity analysis of the distribution of economic activities under different values
for export growth (g) and transport cost (τ1). The values indicates the probability of statistical
equilibrium I in the 400th step of each simulation. Note: the values refer to a Monte Carlo of size
100. Average values are reported.

C.2 Sensitivity analysis on shock probability and severity

The results appear to be robust also when analyzing a wider range of shocks probabilities and severity.
In particular, the output growth of the two-region economy is the lowest around to the top right
corner of Figure C.2, where floods are intense but not frequent. The reason is that rare events
generate the lock-in of economic activities in Coastal region and that once they do happen, the
majority of the firms is heavily damaged. Furthermore, the higher output growth of the two-region
economy is on the top-left and bottom-right of Figure C.2. On the one hand, in the top-left, the
higher economic growth is stemming from the “productivity effect” (Hallegatte and Dumas, 2009).
On the other hand, in the bottom-right corner is the combination of “productivity effect” and coastal
retreat that offset the damages from the climate shocks.

Interestingly, departing from the lowest probability and severity (LPLS, top-right corner in
Figure C.4), and keeping one parameter constant while increasing the other, the model displays
some non-linearities in the probability of statistical equilibrium I (see Prs = 0.01 and E[Dc] = 0.01
columns in Figure C.4). The reason is linked to the additional labor demand generated by the
shocks, which for some combinations of both low probability and severity increases job opportunities
and hence households migration in the Coastal region. Notably, the lower but higher than zero
probabilities of statistical equilibrium I in the right-bottom of Figure C.4 (such as the 0.01 with
E[Dc] = 0.15 and Prs = 0.25) are rare -and unrealistic- cases of full gentrification. In the latter,
initial rebuilding opportunities lock in all households and firms in the Coastal region, with devastating
consequences for the economy.
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Figure C.6: Sensitivity analysis of the average output growth of the two-region economy to different
values of shock probability (Pr) and expected damages (E[Dc]). Note: the values refer to a Monte
Carlo of size 100. Average values are reported.
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Figure C.7: Sensitivity analysis of the distribution of economic activities to different values of shock
probability (Pr) and expected damages (E[Dc]). The values indicates the probability of statistical
equilibrium I in the 400th time step of each simulation. Note: the values refer to a Monte Carlo of
size 100. Average values are reported.
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