
LEMLEM
WORKING PAPER SERIES

The direction of technical change in AI and
the trajectory effects of government funding

      

              Martina Iori a

             Arianna Martinelli a

       Andrea Mina a,b

         a Institute of Economics & EMbeDS, Scuola Superiore Sant’Anna, Pisa, Italy. 
 b Centre for Business Research, University of Cambridge, UK.

        2021/41                                          November 2021
ISSN(ONLINE) 2284-0400



The direction of technical change in AI and the trajectory effects
of government funding

Martina Ioria, Arianna Martinellia, and Andrea Minaa,b

aScuola Superiore Sant’Anna & EMbeDS, Institute of Economics Piazza Martiri della Libertà, 33, 56127
Pisa, Italy

bCentre for Business Research, University of Cambridge, Trumpington Street, Cambridge,
CB2 1AG, UK

Abstract

Government funding of innovation can have a significant impact not only on the rate of technical change,
but also on its direction. In this paper, we examine the role that government grants and government
departments played in the development of artificial intelligence (AI), an emergent general purpose tech-
nology with the potential to revolutionize many aspects of the economy and society. We analyze all AI
patents filed at the US Patent and Trademark Office and develop network measures that capture each
patent’s influence on all possible sequences of follow-on innovation. By identifying the effect of patents on
technological trajectories, we are able to account for the long-term cumulative impact of new knowledge
that is not captured by standard patent citation measures. We show that patents funded by government
grants, but above all patents filed by federal agencies and state departments, profoundly influenced the
development of AI. These long-term effects were especially significant in early phases, and weakened over
time as private incentives took over. These results are robust to alternative specifications and controlling
for endogeneity.

Keywords: R&D; Technical change; Government subsidies; Technology policy; Gen-
eral purpose technology

JEL codes: O31; O33; O38; D85

1 Introduction

Innovation is a fundamental driver of economic growth (Aghion & Howitt, 1992; Grossman & Helpman,
1991; Nelson & Winter, 1982; Romer, 1990). Because of market failures in the production of knowledge
that underpins technical change (Arrow, 1962; Nelson, 1959), governments have played an important role
in designing appropriate incentives and in supporting R&D activities in the economy (Bloom et al., 2019).
Yet, as argued by Azoulay et al. (2019), in the literature more contributions have focused on firm R&D
investments and their spillover effects, than those that have addressed the impact of public funding. Interest
in this topic has grown considerably over the last few years. The need to address complex societal challenges,
for which uncoordinated private investments in new technologies might be insufficient, has been among the
causes of this recent scholarly interest (Mazzucato, 2015; Van Reenen, 2020).

Studies that have focused on the role of government include analyses of the rate of returns of R&D
investments (Hall et al., 2010), and policy evaluations of the effects of R&D subsidies (Akcigit et al., 2018;
Bloom et al., 2002; Dechezlepretre et al., 2016; Wilson, 2009) and of government grants (Bronzini & Iachini,
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2014; Howell, 2017; Santoleri et al., 2022) on private innovation outcomes. Despite the heterogeneity of
results found in this literature, these studies try to quantify the impact of public funding on the rate of
technical change in the economy. Systematic assessments of the role of government funding on the direction
of technical change have proved more difficult. We have historical evidence of the deep influence that
governments had in shaping science and technology efforts during times of war and crisis (Gross & Sampat,
2020; Mowery, 2010; Ruttan, 2006). We also have a stream of contributions on the specific role of government
in funding breakthrough biomedical research, recently reviewed in Azoulay et al. (2019). All in all, however,
quantitative studies of the impact of government funding on the direction of technical change are very rare.1

Behind the scarcity of systematic evidence on this issue there is also the tendency of government to intervene
early in the R&D process: public funding plays a role in the development of fundamental knowledge that is
typically quite far from having immediate applications, and we can neither detect its effect through short-
term market outcomes, nor gauge its impact in the long run, when there may be market outcomes, but these
cannot be easily connected with early public investments (Griliches, 1992). It is therefore especially difficult
to assess the impact of government investments in technologies with very long lead development times.

One salient characteristic of technical change is its cumulativeness (Dosi, 1982; 1988; Green & Scotchmer,
1995; Henderson & Cockburn, 1996; Sampat & Williams, 2019; Scotchmer, 1991). New knowledge builds
on prior knowledge, often in a recombinatory way (Kaplan & Vakili, 2015; Weitzman, 1998; Wuchty et al.,
2007), to generate new solutions to problems, which in turn open up opportunities for further development.
Knowledge accumulation in science and technology is a process that involves different individuals, organiza-
tions and institutions. In its essence it is an evolutionary process that over time should select in more useful
and valuable knowledge, on which further knowledge will be built, and select out less valuable or obsolete
knowledge. Dosi (1988) conceptualized the broad patterns of cumulative change as technological trajectories
that emerge over time and can be viewed in retrospect as the path-dependent outcome of dispersed research
efforts converging into particular ways of solving problems. In this paper, we develop the idea that the gov-
ernment can play a fundamental role in directing technical change and influencing the patterns of knowledge
accumulation.

We focus on the long-term development of Artificial Intelligence (AI). AI research encompasses knowledge
and techniques that are designed to make machines ‘intelligent’, in the sense that they can function in the
environment where they are applied also through foresight (Nilsson, 2010). The idea that human intelligence
can be ‘mechanized’ is not so recent, but it is over the last few decades, with the development of modern AI,
that computing technologies and machine learning have allowed to achieve unprecedented results and have
opened up multiple prospects of commercial application. Even though AI includes many different research
areas, it is possible to identify among its core components machine learning, deep learning, NLP (natural
language processing) platforms, predictive APIs (application programming interface), image recognition and
speech recognition.

Following a well-established tradition, we use patents as indicators of innovation activities (Hall et al.,
2001). However, we depart from the literature using patent citation counts as measures of impact (Hall
et al., 2005; Trajtenberg, 1990), and also from a standard ‘spillover’ framework of analysis (Bloom et al.,
2013; Griliches, 1992; Jaffe, 1986; Jaffe et al., 1993). Based on network theory, in this paper we measure
the long-term effect that discrete inventions have on the main technological trajectory of AI development.
We download from the US Patent and Trademark Office (USPTO) 114,670 AI patents. We identify patents

1By ‘direction’ here we do not refer to biases in technical change that favor the use of one particular factor of production
over another (Acemoglu, 2002), but rather the long-term orientation of technology development in a knowledge search space
(Dosi, 1988).
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that recognize receipt of government finance in their funding acknowledgements, as well as patents filed by
government agencies and state departments. We then put to empirical test the conjecture that government-
funded patents have an effect on the technological trajectory. We find that these patents had profound effects
on the cumulative development of AI. Patents filed by Federal and state departments and agencies had the
strongest impact. Moreover, the effects of government funding were especially significant in early phases
of technology development, and weakened over time as private incentives took over. While our empirical
settings and variables ensure a low risk of reverse causality and citation bias issues, our sample might bias
as public investments may target research areas with the most potential for follow-on innovation (Azoulay
et al., 2019). We control for this possibility using a quasi-experimental design based on both propensity-score
matching and instrumental variable, and our general results hold.

The paper aims to make three contributions. Firstly, we provide novel and original evidence on the influ-
ence of government funding on the direction of technical change. Secondly, we contribute to the development
and application of a novel way to measure the effect of innovation on follow-on technological developments.
Thirdly, we contribute to the emergent literature on the economics of artificial intelligence by providing novel
quantitative evidence of key financing patterns that have supported the development of these technologies
over the last thirty years.

The paper is organized as follows. In section 2 we briefly discuss the recent economic literature on AI.
Section 3 presents the data we use in this study. Section 4 details the methodology we apply to identify
the technological trajectory and measure the long-term cumulative patterns of technological development in
the field. Section 5 shows resulting network and indicators. Section 6 presents the empirical strategy we
use to examine the effect of government funding on the AI trajectory, then our results and finally a series
of robustness checks. The final section summarizes the findings, discusses the limitations of our work, and
draws the contribution to a close.

2 AI as general purpose technology

AI involves “[the automation of] activities that we associate with human thinking, activities such as decision-
making, problem-solving, learning. . . ”.2 It has the potential to generate broad spillovers that can go way
beyond the boundaries of information and communication technologies, and open up further scientific, tech-
nological and economic opportunities in several domains. AI is a likely candidate as the dominant general
purpose technology of the coming era (Cockburn et al., 2018). General purpose technologies (GPT) are
groups of techniques and applications associated with deep transformations in economic systems (Bresnahan
& Trajtenberg, 1995; Helpman, 1998; Jovanovic & Rousseau, 2005). Their distinctive characteristics are
pervasiveness, high dynamism, and strong complementarities. AI is beginning to display these characteris-
tics, and as a GPT, AI could indeed generate waves of radical innovations leading to widespread economic
disruption (Trajtenberg, 2019). AI, especially through the evolution of machine learning, could affect the
production of most goods, and the organization and provision of non-routine tasks and services. When
subjected to the same empirical tests Moser and Nicholas (2004) used for electricity, artificial intelligence is
indeed displaying the emergent characteristics of a general purpose technology (Martinelli et al., 2021).

Because of this transformative potential, scholars have recently developed a strong interest in AI and
the effects of its diffusion (Agrawal et al., 2019; Felten et al., 2021; Jacobides et al., 2021; Krakowski et al.,
2022). The largest share of research has focused on the effect of automation on productivity growth and

2From: Bellman, R. (1978). An introduction to artificial intelligence: can computers think?. Thomson Course Technology.
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employment. While AI will probably increase productivity in the long run (Furman & Seamans, 2018), there
is no consensus on its impact on labor. Acemoglu and Restrepo (2018) propose a conceptual framework to
evaluate AI’s implications for employment. They suggest that, while in the short-run AI will replace a large
number of tasks, the creation of new tasks will balance out this effect in the long run. However, this process
will be slow, and the pace of change will be constrained by skill mismatches. In discussing the implications
for the division of income between labor and capital, Aghion et al. (2017) emphasize that, despite the AI
work displacement effect, the labor share might remain substantial if in the future AI-adopting sectors will
contribute gradually less to aggregate growth, which is hard to improve (Baumol, 1967).

Despite these caveats, there is widespread concern about the increase in poverty and inequality that could
be due to the rapid diffusion of human-replacing innovations (Furman & Seamans, 2018), at least in the short
run. Developing countries could also suffer from the rise of capital share of GDP due to AI adoption (Korinek
& Stiglitz, 2021). To mitigate the negative consequences of AI diffusion, Korinek and Stiglitz (2019) propose
a rise in capital taxation and intellectual property rights reforms. Trajtenberg (2019), instead, highlights
the government’s role in designing innovative strategies to reform education, support personal services, and
direct technical change towards human-enhancing innovations.

Beyond the direct effect on growth and labor, AI may affect businesses in several other ways. Firstly, AI
may alter the sources of competitive advantage by changing the balance between substitution and comple-
mentation in managerial tasks (Krakowski et al., 2022). Secondly, it might change the innovation process
itself (Cockburn et al., 2018). On the one hand, the introduction of AI in technology production can foster
the growth of new ideas, enhancing innovation (Aghion et al., 2017). On the other hand, machine learning
is likely to be “an invention of a method of inventing”, as Griliches (1957) observed in the case of hybrid corn
(p. 502). It is also worth mentioning that successful application of AI requires the use of a large amount of
data, especially for predictions and decision-making. This feature raises security and privacy concerns, and
might have a profound impact on industrial structure (Varian, 2018).

All the factors and dimensions that have been highlighted in the emergent field of the economics of AI
are a clear indication of the potential for paradigmatic change (Dosi, 1982) of this technology, precisely the
kind of paradigmatic change associated with GPTs. Against this backdrop, AI is an ideal context of analysis
to explore the role played by government funding for technologies that require very long lead-development
times. It can be argued that the role of government is especially important for modern GPTs because they
are technically and commercially very risky — or more precisely characterised by fundamental uncertainty in
‘Knightian’ terms — and are therefore either very costly or simply impossible to finance by means of private
funds, given the uncertainty and time-horizons of returns. In order to explore this issue, we take a long-term
evolutionary perspective on the problem of knowledge and innovation. We build on the theoretical notion
of a technological trajectory (Dosi, 1988) to capture the impact of patents on the longitudinal network of
follow-on inventions, and investigate the effect of government funding on the direction of technical change.

3 Data

In this section, firstly, we describe our data sources and the criteria we used to identify AI patents. Secondly,
we discuss how we detected patents related to US government funding, and we provide some descriptive
statistics.
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3.1 Sample construction

Patent data are widely accepted and used as proxies for innovation activities (Griliches, 1990; Hall et al.,
2001). Over the years scholars have been very active in developing patent indicators to highlight different
characteristics of the disclosed invention, such as patent value (Lanjouw et al., 1998; Trajtenberg, 1990),
patent technological breadth (Lerner, 1994), legal scope (Kuhn & Thompson, 2019), and patent generality
and originality (Trajtenberg et al., 1997).

Our analysis uses patents granted by the USPTO from 1976 to 2019 and related to AI. We retrieved these
data from the EPO-PATSTAT database (Autumn 2019 version). We selected AI inventions by combining the
procedures suggested by theWorld Intellectual Property Organization (WIPO) report on artificial intelligence
(WIPO, 2019) and the United Kingdom Intellectual Property Office (UKIPO) report on great technologies
(UKIPO, 2014). These criteria combine the selection of specific technological classes with a text-based search
of technical keywords on patent titles and abstracts. Due to the focus on an evolving domain, the integration
of keywords, based on an extensive review of the literature, is important to refine searches and capture trends
that do not fit perfectly in a consolidated classification system of technological domains.3 We rely on the
recent and highly detailed Cooperative Patent Classification (CPC) system to select AI-related technology
classes, and we include, among others, group Y10S 706 (i.e. Data processing: artificial intelligence) and
several subclasses of the class G06 (i.e. Computing; Calculating; Counting).4 Regarding keywords, our list
includes the expected artificial intelligence and a variety of machine learning methodologies and tools for
big-data management.5

This patent selection process results in a total of 118,949 patents. We use backward citations to generate a
network of patents linked to one another. By excluding 1) components of the network that are not connected
to the core largest component, thus removing marginal or irrelevant patents (i.e. patents that are never cited
or patents accidentally included in the selection process), and 2) citations that violate the time constraints
(e.g. references whose earliest publication date follows the earliest publication date of a citing patent), we
retain 96.42% of the selected patents and obtain a final sample of 114,670 AI inventions.6

These patents span the entire period of analysis and mainly belong to computer technologies, including
audiovisual technologies and digital communication, and control systems engineering with applications in
transport and medical technologies. In particular, most patents concern pattern recognition in images and
texts, image analysis, speech recognition, position control (e.g. automatic pilot), and data processing in
general.

The leading assignees are well-known information and communication technology companies. The field
was initially characterized by a race between the largest American and Japanese technology companies. The
list includes, on the one hand, International Business Machines Corporation (IBM), AT&T Corporation (Bell
Laboratories), Boeing Company, United Technologies Corporation, and Texas Instruments Incorporated, and
on the other, Hitachi, Sharp, and Toshiba. Among these companies, AT&T and especially IBM are important
players throughout the entire period of analysis. In the 90s, we also observe the emergence of new companies,
such as Xerox and Microsoft among leading assignees. In particular, Microsoft becomes the dominant player,
together with IBM, at the beginning of the new century. The last decade is instead characterized by the

3See Baruffaldi et al. (2020) for a detailed discussion on this.
4See Appendix A for the detailed list of CPC subclasses.
5See Appendix A for the detailed list of keywords used for the sample selection.
6In directed graphs, a weakly connected component is the maximal sub-graph in which each pair of nodes is connected when

one ignores the edge direction. By considering only the largest community of connected inventions from our sample, we also
ensure the elimination of noise generated by the inclusion of patents that, although captured through the keyword searches, are
not part of the core field.
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increasing relevance of the following generation of world-leading IT companies, including Google, Amazon,
Apple, Samsung, and Intel.

Appendix B provides an overview of our data.

3.2 Government funded patents

A focus on the US is justified by the strong interests in AI developed within the US innovation system, the
active role played by the US government in this space, and the availability of information on US government
funding in the data.

Following the literature (Fleming et al., 2019), we exploit two kinds of information to detect patents
directly supported by US government funding.7 Combining the disambiguation efforts of the EPO-PATSTAT
database and the USPTO8 on assignee and applicant categories, we identify patents assigned to federal
agencies, national laboratories, and state departments. Among AI patents, we find 929 patents assigned to
one of those organizations. As shown in Table 1, the Department of Defense – with its Navy, Army, and
Air Force divisions – supported the large majority of these inventions. The other important player is the
National Aeronautics and Space Administration (NASA).

Assignee Number of patents %

Secretary of the Navy 370 39.83
National Aeronautics and Space Administration 153 16.47
Secretary of the Army 109 11.73
Secretary of the Air Force 106 11.41
Department of Energy 33 3.55
National Security Agency 29 3.12
Department of Health and Human Services 29 3.12
United States Postal Service 22 2.37
Lawrence Livermore National Security 19 2.05
Department of Commerce 10 1.08

Table 1: Most frequent US federal agencies, national laboratories, and state departments as assignees of AI
patents.

The second source of information on government funding is the Government Interest Statement in patent
texts as reported by the USPTO. Since 1980, the Bayh-Dole Act has allowed contractors to retain ownership
of inventions developed with federal funding. In return, it obligates applicants to disclose a government
interest in their patents. As reported in Table B6, the main federal contractors include both companies that
are leading assignee in the field (such as IBM) and universities.

In our sample, 3597 patents acknowledge government funding through a Government Interest Statement.
Interestingly, some of them were granted before 1980, although the statement was not yet mandatory at the
time. Even in this case, as highlighted in Table 2, the Department of Defense is, by far, the primary supporter
of AI research. Besides, a significant fraction of patents does not correctly specify the funding agency, but

7Fleming et al. (2019) identified US patents relying on federal support in three ways: patents owned by the US government,
patents acknowledging support from the US government, and patents that directly cite a patent or scientific paper that meets
one of the first two criteria. To better identify the effect of government funding, we do not include the latter category in our
definition of patents relying on government funding. However, we tested the robustness of our results to the inclusion of indirect
government funding (see Section 6.4).

8To retrieve data on government funding, we combine EPO-PATSTAT database with the Patentsview database from the
USPTO.

6



The direction of technical change in AI and the trajectory effects of government funding

refer instead to the United States Government in general. Other important sponsors are the Department of
Health and Human Services, the National Science Foundation, and the Department of Energy.

Federal agency Number of patents %

Department of Defense 1670 46.43
United States Government 703 19.54
Department of Health and Human Services 627 17.43
National Science Foundation 478 13.29
Department of Energy 462 12.84
National Aeronautics and Space Administration 166 4.61
Small Business Administration 42 1.17
Department of Transportation 36 1.00
Department of Commerce 36 1.00
Department of Homeland Security 35 0.97

Table 2: Most relevant federal agencies that provide funding for supporting the development of AI patents
by federal contractors (private companies and universities).

4 Measuring trajectory effects

We exploit the connections through citations between patents to track the development of technological tra-
jectories, and to examine the role of specific inventions in shaping these trajectories. Patent citation networks
are a meaningful analytical tool to identify technological trajectories. Each series of patents linked through
citations identifies chains of local, cumulative, and irreversible technological developments, consistently with
the definition of technological trajectories provided by the literature (Dosi, 1982; 1988). Why do we need a
network approach to identify those patents that shaped the direction of technical change? Let us take as an
example the introduction of systems based on probabilistic learning, specifically Hidden Markov Models, in
speech recognition research in the 80s. As a major advance in statistical modelling, this is unquestionably a
milestone in the development of AI because, among other things, it laid the foundations for the autonomous
speech recognition applied in current virtual assistants.9

We can identify two patents corresponding to this breakthrough: patent US4587670A filed by AT&T Bell
Laboratories and patent US4718094A by IBM. Even though these two inventions were crucial for the future
development of the field and for modern AI applications, if we looked at the number of citations to identify
their importance, with less than 200 in thirty years, they would not appear to be particularly important.
Indeed, citation counts do not capture cumulative effects on follow-on innovations and do not provide strong
signals on the direction of technical change. What we need is an indicator able to capture the influence
of each patent on the long-term development of the field, i.e. a measure of relevance in a technological
trajectory.

Below, we describe how we compute trajectory indicators from a patent citations network.
The citation network built on AI inventions and their references is a large graph with 514,599 nodes and

2,661,528 edges.10 Since citations respect the time flow, there are no loops, and the network is a Directed
9For a history of speech recognition, see Juang and Rabiner (2005), Automatic Speech Recognition – A Brief History of the

Technology Development.
10As the AI patents might be connected through citations to patents not related to AI, to better track field development,

we also include these “non AI patents”. These “non AI patents” are 399,929, and they are only included in the computation of
technological trajectories but not in the econometric exercise.
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Acyclic Graph (DAG). In this kind of graph, we can sort nodes in topological order, and it is possible
to clearly define paths from sources to sinks without encountering each node more than once. To ease
the interpretation of this citation network, we define edge direction following the knowledge flow. In this
configuration, sources include early patents in AI or prior art that do not belong to the domain, while sinks
are the most recent patents in our sample.

More formally, we can interpret the citation network as a graph N = (P,R), where P is our set of patents
and R ⊆ P×P represents the following citing relation: uRv ≡ v cites u. R is irreflexive and acyclic, and the
same applies to the inverse relation Rinv, defined as uRinvv ≡ u cites v. In this second case, the direction
of edges is from citing to cited patents. Let us, also, define a function R(p) that maps each patent p with
its set of successors in the graph based on the relation R: R(p) = {u ∈ P : pRu}.

The properties of R (and Rinv) make N a DAG with the following special features.

• Nodes can be sorted by topological order, meaning that a map between nodes and cardinal numbers
(the node order) f : P −→ 1 . . . |P|, such that uRv =⇒ f(u) < f(v), exists.

• It is possible to define sets of minimal and maximal elements as, respectively,MinR =
{
p ∈ P : Rinv(u) = ∅

}
and MaxR = {p ∈ P : R(u) = ∅}. They represent the list of sources and sinks of the network.

• By definition, every node p ∈ P and every edge (u, v) ∈ R belong to at least one path between MinR

and MaxR.

An easier representation of the network is its standard form N ′ = (P ′,R′), where all patents in MinR

cites a single source s and all nodes in MaxR are cited by a single sink t. In this case, the set of patents is
P ′ := P ∪ {s, t}, and the citation relation is R′ := R∪ {s} ×MinR ∪MaxR× {t} ∪ {t, s}.

In a graph that has these characteristics, we can measure the significance of each edge in the network
based on a connectivity indicator, such as the traversal count (Hummon & Dereian, 1989). Among the
several possible definitions of traversal counts, in our analysis we follow Batagelj (2003) and use the Search
Path Count (SPC). The SPC assigns to each edge (u, v) a weight wuv equal to the number of paths from each
s (source) to each t (target) through (u, v). In other words, it measures the number of paths in the network
through a given edge. The higher the weight, the more important the edge is for network connectivity and
the development of the entire technological domain.

Given an edge (u, v), the computation of wuv proceeds in three steps. Firstly, we compute the number of
paths w−u between the source s and the cited patent u. Secondly, we assign the number of paths between the
citing node v and the sink t to w+

v . The SPC weight wuv is then the product between the two quantities:

wuv = w−u ∗ w+
v . (1)

In a DAG, where a topological order of nodes exists, we can compute the partial weights w−u and w+
u with

a recursive procedure:

w−u =

1 u = s∑
v:vRu w

−
v otherwise

, w+
u =

1 u = t∑
v:uRv w

+
v otherwise

. (2)

Early explorations of this methodology (see for instance Martinelli, 2012; Mina et al., 2007) used traversal
counts associated with each edge of the citation network to identify the most relevant trajectories in small
technological domains. These trajectories are the paths across the network (from s to t) with the highest
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total weightWM , whereM is the set of the edges in the path andWM =
∑

(u,v)∈M wuv.11 The edge sequence
M with the maximum total weight WM , is therefore the longest path when considering the weighting wuv

of each edge. To better describe the evolution of a domain, we can also consider paths with slightly lower
weighted path length. To provide an idea of the computation-intensive nature of this exercise, it is worth
noting that the AI patent citation network has 3.2 ∗ 1019 possible paths, and the longest path is equal to
1.7 ∗ 1020. We will use this approach in Section 5 to identify the most relevant technological trajectories in
AI.

While SPC weights are commonly used to trace technical change dynamics, they can also measure
the relevance of single inventions from a trajectory perspective. Following Batagelj (2003), we extend the
standard definition of SPC weights – which usually apply to edges – to the nodes of our citation network:

w̃p = w−p ∗ w+
p . (3)

This measure indicates the number of paths from s to t through the patent p. A patent with a high weight
is a patent that “cumulates” a large knowledge flow within the network. This indicator has considerable
advantages over simple citation count. The citation count, which in this framework would correspond to
nodes’ outdegree,12 would be local in nature. On the contrary, the trajectory indicator summarizes complex
citation chains and captures the invention’s influence on the evolution of an entire field, rather than on close
patents only. Measuring the trajectory effects provides valuable information on which inventions have the
strongest influence on the direction of technical change as a whole. Therefore, we will use this measure as
a primary indicator of patent impact in our econometric analysis (see Section 6). The correlation matrix
reported in Table B5 confirms the difference between the trajectory indicator and the number of citations.

Another relevant indicator connected to the network structure is the node position in the graph. The
patent position in the citation network is a more precise indicator of timing than the patent application year
because it marks time in terms of the patent citation network and therefore in terms of the overall evolution
of the field. In particular, the timingp measures the patent p distance from network sources and is defined
in a recursive way:

timingp =

0 p ∈MinR

1 + maxn:nRp(timingn) otherwise
. (4)

In other words, the timing takes value 0 for network sources and, for all the other patents, it is equal to 1
plus the maximum timing of their cited patents. Intuitively, the timing’s low values refer to the early stages
of the technology (i.e. closer to sources), while high values indicate innovations in a mature phase (i.e. closer
to sinks).

5 Technological trajectories: the evolution of artificial intelligence

To provide an overview on AI inventions and invention chains, first of all we present the most relevant
technological trajectories in the field. We are interested in capturing the evolution of the entire field, and
for illustrative purposes we include also AI patents granted before 1976.13

11Alternative definitions of main paths – from a local perspective – produce overall similar results.
12The centrality degree is defined as the number of links incident upon a node. As this network is directed, we can distinguish

between two types of degree centrality measures. Indegree is a count of the number of ties directed to the node, and outdegree
is the number of ties that the node directs to others. As the directionality of our network follows the potential “knowledge flow”,
if a patent receives three citations it will direct three ties to three nodes.

13We obtain a citation network with 555,454 nodes – among which 122,052 AI patents – and 2,754,878 edges.
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We weigh each edge by its SPC weight, as defined in Equation 1. We then compute the total SPC weight
associated to each path. Figure 1 shows the main paths for AI inventions extracted from the patent citation
network described in the previous section. We include nodes belonging to the longest path (i.e. with the
maximum total SPC weight), which are the red nodes, and nodes belonging to paths with a total SPC weight
that is, respectively, up to 1.5% and 3% lower than the longest path. The latter are the orange and yellow
nodes, respectively. Detailed information on patents are in Appendix C. There are several ways to validate
this methodology, and, in this work, we rely mainly on two. The first one is by looking at the technologies
disclosed in the patents on the trajectories to check how they cover technological milestones in the domain.
The second one is by looking at the correspondence between known major firms, institutions, and inventors
and patent assignees and inventors on the trajectories.14

The densest part of the AI citation network captures the evolution of speech recognition from the mid-
1970s to this day. Indeed, speech recognition is one of the main fields in the AI patent sample (WIPO,
2019). It has a 70-year-long history, and its development mirrors the one of the entire AI domain. Early
techniques relied on knowledge-based systems, until, from the mid 1980s onwards, probabilistic learning
and the rediscovery of neural networks revolutionized the field. After an exploratory phase characterized
by the development of different statistical techniques, research moved on the one hand toward multimodal
and integrated systems, and on the other toward the use of big data and hardware enhancement. As far as
applications are concerned, in recent years we observe an increase in virtual assistants, search engines, and
social networks, whereas a more theoretical focus has clearly been on deep learning applications.

These different phases of research emerge when we inspect the patents included in the main path. Speech
recognition research started in the early 1950s at Bell Laboratories and is an evolution of studies on optical
character recognition. In the following twenty years, templates and keyword spotting methods were the
dominant approaches, and the leading players were Bell Laboratories and Japanese companies, especially
the Nippon Electric Corporation (NEC). The main path effectively captures all these developments. The
earliest inventions concerned word recognition and dictionaries, and involved the leading figures of the time
in speech recognition research: Hiroaki Sakoe – inventor of the continuous speech recognition at NEC –,
Stephen Levinson – head of the linguistic research at Bell Labs –, and Lawrence Richard Rabiner – also
at Bell Labs, and holder of several IEEE awards for outstanding achievements in signal processing and
speech/audio recognition –.

The subsequent phase started with a change in the underlying technique and logic, with a shift toward
probabilistic learning and more rigorous statistical models. This shift is also detected in the main path,
which includes in the mid 1980s the two breakthrough patents on Hidden Markov Models by Bell Labs
(patent US4587670A, number 49 in Figure 1) and IBM (patent US4718094A, number 66 in Figure 1), to
which we have already referred in Section 4.

In those years, IBM, led by Lalit Bahl and Fred Jelinek – awarded with the IEEE James L. Flanagan
Speech and Audio Processing Award –, becomes Bell Labs’ main competitor on speech recognition research
in the US. Other companies, such as Dragon Systems (among which patents number 88, 94, and 95 in Figure
1)– founded by James and Janet M. Baker –, helped the commercial diffusion of the first speech recognition
software programs, which, at that time, were mainly aimed to call centers. In the following years, the

14While the definition proposed in this paper tackle the main path analysis from a global perspective, one can define tech-
nological trajectory from a local point of view. In the literature on main path analysis, several procedures exist: (1) starting
from sources and moving forward by following the edges with the highest SPC weight, (2) starting from sinks and moving
backward by following the links with the highest SPC weight, and (3) starting from edges with the highest SPC weight and
moving backward and forward by following the same criterion. In our case, all approaches lead to the same main technological
trajectory, which lend robustness to our results.
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Figure 1: Main trajectories in AI patents. Red nodes belong to the longest path (with the maximum total
SPC weight). Orange and yellow nodes are part of paths with a total SPC weight that is, respectively, up to
1.5% and 3% lower than the longest path. The same holds for black, gray, and light-gray edges. The width
of each edge (u, v) is proportional to its SPC weight wuv. Detailed information on patents are in Appendix
C.
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research focused on developing incremental improvements of statistical methodologies and the use of large
vocabulary. At the same time, we see a growing interest in grammar, semantics, and translation that pushed
the field in the direction of natural language processing.

From the year 2000, we observe the convergence of the main trajectories, and the concentration of leading
technology companies such Microsoft, Amazon, Google, Apple, and Facebook, on a single path. Nuance
Communications, a major voice recognition developer that acquired IBM and Xerox speech recognition
divisions and patents, is the only outsider. This convergence started with Microsoft’s patents on Microsoft
Speech Server (patent numbers 300 – 307, among which US8229753B2), a milestone towards web-based
speech-recognition applications that integrate phones in the standard IT architecture. The R&D efforts
that followed focused on multimodal applications and integration in search engines, and were mainly carried
out by Nuance Communications, Amazon (by Alexa’s ‘father’, Igor Roditis Jablokov), and Google (Google
Voice Search app: patent US8626511B2, number 337). These inventions were the precursors of a clear
breakthrough in AI research: the development of intelligent automatic assistants. The first patents covering
this development on the main path are Apple’s patents related to Siri (numbers 339 and 343 in Figure 1,
among which the patent US9117447B2 is the continuation, concerning speech recognition, of the patent
Intelligent automatic assistant – US9318108B2 –) and developed by the former Stanford Research Institute
(SRI) International team. The following patent also covers the well-known speech recognition application
that is Amazon Echo (patent US9548066B2, number 344 in Figure 1). In the final phase of the speech
recognition trajectory, companies’ – primarily Facebook’s – efforts focused on applications in multimedia
language contexts and predictions of future translations with the support of deep learning techniques.

After sketching the main technological trajectory as revealed by this main path analysis, in what follows
we use our entire sample of patents – i.e. independently of whether they appear in the illustrative trajectory
of Figure 1 – to subject to econometric tests the relationship between our patent relevance indicator and
government funding.

6 Empirical strategy and results

First of all, we examine the trajectory effect of government funding. Secondly, we explore heterogeneity in the
timing of government-backed patents to test whether this might affect differently the technological trajectory
depending on whether inventions are made in the early phase vs. more mature phases of development.

Thus, with p referring to patents and i to indexing fields, we estimate:

Ln(trajectorypi) =β0 + β1 government fundingp
+β2 government fundingp × timingp
+β3 timingp + γp + δi + εpi,

(5)

where trajectorypi is the patent relevance indicator w̃p (SPC weight associated to graph nodes) defined
in Equation 3, government fundingp is a dummy variable indicating the presence of government funding,
timingp indicates the position of the node in the network (see Equation 4) and defines the time evolution of
the graph, the γp’s are a set of controls at the patent level, and the δi’s capture subfield fixed effects.

Following the literature, the controls in γp account for different patent characteristics. First, we include
the number of claims as an ex-ante indicator of patent quality. Second, we include the inventors’ team size
as an indicator of the disclosed invention’s complexity. Third, since a non-negligible share of government
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Table 3: Influence of government funding on the trajectory. Estimates follow the semi-logarithmic model
presented in Equation 5.

Dependent variable:

log(Trajectory)

(1) (2) (3)

Government funding 1.184∗∗∗ 1.096∗∗∗ 1.959∗∗∗
(0.132) (0.147) (0.263)

Government funding*Timing -0.064∗∗∗
(0.011)

US university 0.272 0.282∗
(0.166) (0.166)

Timing 0.503∗∗∗ 0.503∗∗∗ 0.505∗∗∗
(0.002) (0.002) (0.002)

Number of claims 0.043∗∗∗ 0.043∗∗∗ 0.043∗∗∗
(0.002) (0.002) (0.002)

Number of inventors -0.106∗∗∗ -0.106∗∗∗ -0.106∗∗∗
(0.011) (0.011) (0.011)

Intercept 8.594∗∗∗ 8.592∗∗∗ 8.562∗∗∗
(0.078) (0.078) (0.078)

3-digit CPC Yes Yes Yes

Observations 114,670 114,670 114,670
R2 0.435 0.435 0.435
Adjusted R2 0.435 0.435 0.435
Residual Std. Error 7.292 7.292 7.291
F Statistic 3078.115∗∗∗ 3008.006∗∗∗ 2951.426∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

funding goes to universities, we also consider a dummy variable that indicates patents with US universities
as assignees to assess whether the effect is driven by universities rather than government funding. Finally,
the δi’s capture subfield fixed effects and control for diverse citation behavior in different fields. We measure
subfields through the CPC classification at the 3-digit level, excluding the most common subfield (G06)
and marginal codes (those that occur in less than 0.2% of patents). All these control variables and patent
information have been retrieved from the EPO-PATSTAT Database (Version Autumn 2019), except for the
number of claims, which is drawn from the USPTO database (Patentsview).

All models are estimated using Ordinary Least Squared (OLS) with robust standard errors.

6.1 The role of government funding in the AI technological trajectory

Table 3 presents the estimates of Equation 5. Overall, we find that government exerts a positive and
significant effect on the trajectory, that is to say that government funding is associated with inventions that
have a long-term impact on future developments of the overall field. To correctly interpret the estimates of
dummy variable coefficients in semi-logarithmic equations, we follow Kennedy (1981) and we compute the
percentage impact of the dummy variable as:

g∗ = 100 ·
[
exp

(
ĉ− 1

2
V (ĉ)

)
− 1

]
, (6)

where ĉ is the estimated coefficient and V (ĉ) is its variance.
It follows that patents receiving government funding have, on average, a trajectory indicator 223.9%
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higher than the other patents (specification (1) in Table 3). This effect remains positive and significant even
when we control for the presence of US universities as assignees (specification (2)). Although the inclusion
of US universities in the picture slightly reduces the effect of government funding, the percentile impact of
this funding on the trajectory is still substantial (196%).

In specification (3) of Table 3, we also explore the role of timing effects by including an interaction term
between timing and the government funding dummy. The negative sign of the interaction term indicates
that the variable timing is less relevant for government-funded patents. For each unitary increase of the
timing, the impact of government funding on the trajectory is 6.4% less than patents without government
funds. Thus, as shown in Figure D1 in Appendix D, government-funded patents have a higher impact on
the trajectory at the early stages of technology.15

6.2 Government grants vs. government inventions

We now test whether there is any difference between the two sources of government funding and, if there is
any, which type of funding plays a more prominent role. We distinguish inventions made and patents filed
by federal agencies and state departments from patents developed by federal contractors (see Section 3.2 for
the difference). As we have already done in the previous section, we also explore the relevance of timing of
government-backed patents on technology evolution.

We estimate the following specification:

Ln(trajectorypi) =β0

+β1 government interestp + β2 government interestp × timingp
+β3 government assigneep + β4 government assigneep × timingp
+β5 timingp + γp + δi + εip,

(7)

where trajectorypi is the patent relevance indicator, government interestp is a dummy variable equal to 1 for
patents that acknowledged a government interest, government assigneep is a dummy variable that is equal
to 1 for patents with a federal agency or a state department as assignee, timingp indicates the node position
in the network, the γp’s and δi’s are, respectively, the set of controls at the patent level and subfield fixed
effects.

Table 4 shows the results. We first notice that both types of government intervention have a relevant
impact on the trajectory (specifications (1) and (2)). More precisely, patents with a government interest
statement (i.e. assigned to federal contractors) have, on average, a trajectory effect that is 164.9% stronger
than other inventions. Federal agencies or state department patents have an even stronger effect since the
percentage impact is equal to 868.4%. These effects persist even when we consider the two indicators together,
and we include a dummy for US university patents as controls (specification (3)). In this case, the percentage
impact of patents by federal contractors is reduced to 56.5%, while the impact of patents by federal agencies
or state departments is still 633.7%. We can conclude that, although all types of government funding play
a role, patents directly assigned to federal agencies or state departments have a stronger influence on the
evolution of AI over time.

Concerning the timing of government-backed patents, we observe the higher importance of both types of
15It is worth noting that the timing has a low value also for patents in short sequences of inventions that join the strongest

trajectories at different stages. This constitutes further evidence that government funding drives the direction of technological
change also at sub-trajectory levels of the evolution of the field.
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Table 4: Influence of patents with a government interest statement and patents assigned to government
assignees on the trajectory. Estimates follow the semi-logarithmic model presented in Equation 7.

Dependent variable:

log(Trajectory)

(1) (2) (3) (4) (5) (6)

Government interest 0.983∗∗∗ 0.460∗∗∗ 0.999∗∗∗ 0.481∗∗∗ 0.622∗∗
(0.134) (0.157) (0.281) (0.156) (0.288)

Government interest*Timing -0.037∗∗∗ -0.010
(0.012) (0.012)

Government assignee 2.322∗∗∗ 2.050∗∗∗ 1.959∗∗∗ 4.323∗∗∗ 4.233∗∗∗
(0.321) (0.338) (0.340) (0.537) (0.562)

Government assignee*Timing -0.230∗∗∗ -0.224∗∗∗
(0.030) (0.031)

US university 0.551∗∗∗ 0.541∗∗∗ 0.551∗∗∗ 0.548∗∗∗
(0.168) (0.168) (0.167) (0.168)

Timing 0.503∗∗∗ 0.503∗∗∗ 0.504∗∗∗ 0.505∗∗∗ 0.505∗∗∗ 0.505∗∗∗
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Number of claims 0.043∗∗∗ 0.043∗∗∗ 0.043∗∗∗ 0.043∗∗∗ 0.043∗∗∗ 0.043∗∗∗
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Number of inventors -0.106∗∗∗ -0.102∗∗∗ -0.104∗∗∗ -0.104∗∗∗ -0.105∗∗∗ -0.105∗∗∗
(0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

Intercept 8.610∗∗∗ 8.597∗∗∗ 8.574∗∗∗ 8.560∗∗∗ 8.555∗∗∗ 8.551∗∗∗
(0.078) (0.078) (0.078) (0.078) (0.078) (0.078)

3-digit CPC Yes Yes Yes Yes Yes Yes

Observations 114,670 114,670 114,670 114,670 114,670 114,670
R2 0.435 0.435 0.435 0.435 0.435 0.435
Adjusted R2 0.435 0.435 0.435 0.435 0.435 0.435
Residual Std. Error 7.294 7.293 7.291 7.291 7.289 7.289
F Statistic 3074.472∗∗∗ 3078.966∗∗∗ 2944.038∗∗∗ 2886.062∗∗∗ 2891.010∗∗∗ 2831.363∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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government intervention (via grants or via direct R&D performance by federal agencies or state departments)
for patents with a low timing (specifications (4) and (5)), as we already found for the aggregate indicator
in Section 6.1. Once again, the effect is more marked for patents with government assignees. In this second
case, the positive impact of timing on the trajectory is 23% lower than for other patents. In other words,
although the timing has a positive influence on the dependent variable, the presence of a federal agency
or state department as assignee strongly mitigates this effect. As shown also in Figure D2 in Appendix
D, government-backed inventions are especially influential at an early stage of technology development,
primarily when the government is the assignee.

Overall, these results confirm a very important role of government funding in the long-term development
of AI, and this role is especially important during early phases of the development of the field. Moreover,
the government as assignee exerts an even stronger influence than government as the sponsor of a grant,
highlighting the fundamental importance of research and development carried out in federal agencies and
state departments towards the inception phase of the AI technological trajectory.

6.3 Robustness checks: potential sources of endogeneity

In this section, we propose two quasi-experimental designs to address the possible sources of endogenity.
As Azoulay et al. (2019) observe, it is possible that public investments target research areas that have the
strongest potential for follow-on innovation because of increasing opportunities, and it is therefore important
to control for this.

Matching The first quasi-experimental design is based on propensity-score matching (Rosenbaum & Ru-
bin, 1983). We identify treated and control groups by comparing differences in pre-existing patents’ charac-
teristics and estimating a probability of receiving different sources of government funding (our treatments).
The resulting sub-samples will be, therefore, balanced in the observed covariates. Moreover, patents in
treated and control groups will have comparable distributions of the probability of being treated. Then, we
replicate estimations in Table 3 and 4 on these balanced sub-samples.

We estimate the probability of receiving the treatment (i.e., the propensity score) through a logistic re-
gression on pre-treatment confounding covariates. Following previous studies (Jaffe et al., 1993; Trajtenberg
et al., 1997), the confounding covariates used in this exercise are technology classes (3-digit CPC classes)
and time (the variable timing, in our case).16 The resulting propensity score is used as input for the 1-1
matching without replacement (based on nearest neighbor matching) of treated and control patents (see
Figure D3 for covariate balance before and after the matching).

Table 5 summarizes the estimates of the impact of government funding on the trajectory in three different
sub-samples of patents. Each sub-sample refers to and is used to test for the impact of a different source
of government funding: patents that received any kind of government funding (aggregated category) –
specifications (1) and (2) –, patents that acknowledge government interests – specifications (3) and (4) –,
and patents with a government assignee – specifications (5) and (6) –. These estimations corroborate the
results presented in Sections 6.1 and 6.2: government funding positively affects the trajectory of AI patents,
especially at the early stage of the technology. Federal agencies and government departments, even more
than government contractors, have a crucial role in the development of this technology.17 Moreover, once

16In our framework, timing is a more appropriate and consistent measure of time than application year or grant year. Timing,
indeed, captures the specific time evolution of AI’s technological trajectory.

17Estimations based on exact matching among patents or the use of propensity score as a control in the regression lead to
comparable results.
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Table 5: Influence of government funding on the trajectory – 1-1 matching without replacement (propensity
score)

Dependent variable:

log(Trajectory)

(1) (2) (3) (4) (5) (6)

Government funding 1.372∗∗∗ 4.849∗∗∗
(0.191) (0.317)

Government funding*Timing −0.259∗∗∗
(0.014)

Government interest 1.072∗∗∗ 4.433∗∗∗
(0.198) (0.332)

Government interest*Timing −0.242∗∗∗
(0.015)

Government assignee 2.977∗∗∗ 7.897∗∗∗
(0.384) (0.605)

Government assignee*Timing −0.493∗∗∗
(0.037)

US university −1.485∗∗∗ −1.424∗∗∗ −1.258∗∗∗ −1.260∗∗∗ 0.852 1.407
(0.255) (0.254) (0.258) (0.257) (1.115) (1.124)

Timing 0.573∗∗∗ 0.702∗∗∗ 0.578∗∗∗ 0.698∗∗∗ 0.535∗∗∗ 0.783∗∗∗
(0.008) (0.009) (0.008) (0.009) (0.022) (0.023)

Number of claims 0.039∗∗∗ 0.041∗∗∗ 0.045∗∗∗ 0.046∗∗∗ 0.001 0.009
(0.006) (0.006) (0.007) (0.006) (0.014) (0.013)

Number of inventors −0.162∗∗∗ −0.157∗∗∗ −0.129∗∗∗ −0.126∗∗∗ −0.231∗∗ −0.223∗∗
(0.043) (0.043) (0.044) (0.044) (0.106) (0.101)

Constant 8.083∗∗∗ 6.305∗∗∗ 7.846∗∗∗ 6.143∗∗∗ 8.567∗∗∗ 5.909∗∗∗
(0.245) (0.248) (0.251) (0.256) (0.525) (0.506)

3-digit CPC Yes Yes Yes Yes Yes Yes

Observations 7,864 7,864 7,194 7,194 1,858 1,858
R2 0.449 0.468 0.470 0.487 0.301 0.348
Adjusted R2 0.446 0.465 0.467 0.484 0.287 0.335
Residual Std. Error 7.244 7.118 7.089 6.975 8.216 7.936
F Statistic 155.571∗∗∗ 164.013∗∗∗ 154.672∗∗∗ 161.664∗∗∗ 21.185∗∗∗ 25.575∗∗∗

Note: All the models are estimated using OLS on data matched through propensity score matching (1-1)
without replacement) Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

we control for selection bias, the estimated impact of government funding not only does not disappear, but
is even stronger than in the previous OLS estimations.

Instrumental variable We also consider a quasi-experimental design based on the introduction of an
instrumental variable. Following Moretti et al. (2020) and adapting their approach to our setting, we use as
instrumental variable the predicted number of patents related to defense R&D in the different technological
classes (4-digits CPC) that are associated to each patent. While military R&D is one of the most relevant
sources of government R&D funding in the US, it is likely driven by geopolitical reasons rather than economic
ones (Mowery, 2010). The exogeneity of defense R&D to the long-term evolution of AI makes the number
of patents related to defense R&D a very good candidate to instrument the government funding indicators
of our empirical analyses. We therefore use the predicted number of patents associated to defense R&D,
i.e. the number of defense R&D patents in the year before the patent’s year of application, to rule out
endogenous components and address residual concerns of endogeneity. More details on the construction of
this instrumental variable are in Appendix D.3.

Concerning the relevance of the variable as instrument for government funding, a positive variation
of defense R&D funding might have, in principle, a positive or negative effect on the total variation of
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government funding in a given technological class since defense R&D may drive or substitute for other
sources of government R&D funding. The first stage results, presented in Table D1, show that variations in
predicted defense R&D drive general government funding, as found also in Moretti et al. (2020). Indeed, the
impact of the predicted defense-related patents on government funding, government interest, and government
assignee is positive and significant. Moreover, the F-tests performed on the first-stage regressions reject the
null hypothesis that the instruments are weak and the instruments have good statistical power.

Table 6: Influence of government funding on the trajectory - Instrumental variable

Dependent variable:

log(Trajectory)

(1) (2) (3) (4) (5) (6)

Government funding 45.915∗∗∗ 70.948∗∗∗
(3.446) (6.403)

Government funding*Timing −1.899∗∗∗
(0.211)

Government interest 53.566∗∗∗ 92.888∗∗∗
(4.318) (9.173)

Government interest*Timing −2.625∗∗∗
(0.298)

Government assignee 102.234∗∗∗ 109.005∗∗∗
(11.167) (13.467)

Government assignee*Timing −1.190
(0.866)

US university −18.951∗∗∗ −18.412∗∗∗ −22.288∗∗∗ −23.599∗∗∗ 1.072∗∗∗ 1.103∗∗∗
(1.550) (1.744) (1.932) (2.431) (0.213) (0.206)

Timing 0.521∗∗∗ 0.577∗∗∗ 0.517∗∗∗ 0.591∗∗∗ 0.539∗∗∗ 0.543∗∗∗
(0.003) (0.007) (0.003) (0.009) (0.004) (0.005)

Number of claims 0.046∗∗∗ 0.048∗∗∗ 0.044∗∗∗ 0.046∗∗∗ 0.060∗∗∗ 0.060∗∗∗
(0.003) (0.003) (0.003) (0.003) (0.004) (0.004)

Number of inventors −0.156∗∗∗ −0.145∗∗∗ −0.174∗∗∗ −0.166∗∗∗ −0.038∗∗ −0.042∗∗
(0.017) (0.017) (0.018) (0.020) (0.018) (0.018)

Intercept 7.062∗∗∗ 6.179∗∗∗ 7.207∗∗∗ 6.000∗∗∗ 6.484∗∗∗ 6.490∗∗∗
(0.144) (0.227) (0.144) (0.263) (0.238) (0.240)

3-digit CPC Yes Yes Yes Yes Yes Yes

Observations 114,670 114,670 114,670 114,670 114,670 114,670
F-test 181.6∗∗∗ 114.83∗∗∗ 154.4∗∗∗ 106.61∗∗∗ 88.16∗∗∗ 40.98∗∗∗
F-test (interaction) 91.43∗∗∗ 88.04∗∗∗ 24.65∗∗∗

Note: All the models are estimated using 2SLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In Table 6, we report 2SLS estimates. Our results are broadly confirmed: government funding positively
affects the long-run trajectory of patents. This result holds both for patents funded through grants and for
patents with the government as assignee. As far as the timing of funding is concerned, in these estimates the
interaction term between government assignee and timing is not significant, possibly due to the low share of
patents directly assigned to federal agencies and government departments, but the effect of government fund-
ing at early stages of technology development remains significant, and is consistent with the OLS regressions
results (with and without matching).

6.4 Additional robustness checks

Results are robust to a series of variations in the definition of trajectory indicators, government funding,
sample composition, and controls. In what follows, we present the key insights, while Appendix D presents
these sensitivity analyses in detail.
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Trajectory indicators Firstly, we introduce a different measure of inventions’ relevance in the trajec-
tory. Instead of considering an indicator of traversal count that detects nodes with the highest knowledge
throughput, we assign to each patent the length of the longest weighted path that goes through it.18 Since
patents with the longest weighted path length are those on the main path, this indicator approximates the
probability that the patent is on the main trajectory. Differently from the trajectory indicator defined in
Section 4, the longest path length summarizes the complex knowledge chain along the entire path and is less
reliant on the node. Even if a direct comparison of coefficients is not possible due to the different magnitude
of the indicators (see Table B4), results presented in Tables D2 and D3 are fully consistent with the ones
discussed in the previous sections. The relative proportion between different effects is also preserved, and
patents with a government assignee are, by far, those with the strongest impact on the trajectory.

Government funding Previous work (see, for instance, Fleming et al., 2019) on the role of state invest-
ments in fostering innovations use a broader definition of government funding by including in the analysis
also patents that cite government-funded inventions. Although we believe that considering only direct invest-
ments leads to a more accurate assessment, we replicate our regression analysis by including patents citing
government-funded inventions. For the sake of consistency, we also replace the control variable that detects
patents with US universities as assignees with an indicator for patents that cite US universities’ inventions.
The share of patents that is indirectly connected to government funding (27.8%) is significantly higher than
the one of patents that directly received this funding (3.1%). However, the estimations presented in Tables
D4 and D5 corroborate our main results, also in terms of coefficient magnitude. Specification (1) of the
first table shows that citing government funding increases the trajectory effect by 233.0%. Moreover, the
impact of citing government-backed patents is stronger for patents with a low timing value (specification
(3)). Unsurprisingly, the interaction term’s magnitude is slightly lower than the one in Table 3. Patents that
cite government-funded inventions have indeed high chances of following, in terms of time and trajectory,
the ones that directly received government funding. Similar considerations also apply to Table D5, where
we observe the distinct effects of citing patents that acknowledged government interest or citing patents
with government assignees. Once again, the latter indicator is the one with the strongest trajectory effects
(492.3% versus 208.6% of patents citing inventions with a government interest statement). As expected, it
is common to cite patents by federal contractors, government assignees, and US universities simultaneously.
This might lead to a reduction of the (citing) government assignee coefficient compared to the one observed
in Table 4 and to a loss of significance of the interaction term between timing and citing government interest
(the sign is always negative).

Patent relevance A widespread measure of the relevance of a patent is the number of citations it receives.
Contrary to our trajectory measure, this indicator does not take into account the patent’s indirect effects on
sequences of follow-on innovations and is silent on the direction of technical change. In our setting, the risk
of reverse causality is quite low: it is implausible that chains of future technology development impact the
funding of innovation. However, it is possible that patent applicants and examiners, exerting control over
the sources of knowledge they cite in a patent, might favor ‘signals’ related to government funding over other
signals of quality or relevance of the prior art. Whereas the long-term nature of our indicators mitigates this
risk because it is difficult to believe that citing sources make decisions across long chains of citations (e.g.
patents citing older patents that in turn cite other patents, etc.), it is still possible that there are citation

18Given a node p, we consider all the paths through p, and we select the one with the highest WM , where M is the set of
edges of the path. Then, we assign the (weighted) longest path length WM to p.
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biases within each round of citation decisions. It is therefore important to run a specific robustness test to
rule out the existence of this particular bias. In Tables D6, D7, D8, D9, D10, and D11, we present results of
matched-sample and IV estimations of the effect of government funding on the number of patent citations.
By considering a set of different citation indicators (only on patents in the network, all patents, all citations,
citations up to or in 5 years), we observe that government backing has, in general, a negative effect on the
number of citations. Analogous results are obtained when we consider separately the effect of patents with
federal contractors and the government as assignee. On the basis of these results we can also argue that
when we measure the relevance of patents through citation counts, we miss or considerably underestimate
their importance in the long run, and we fail to capture their full impact on the entire knowledge domain.
This confirms that, at least as far as long-term cumulative impact is concerned, the number of citations is
not an appropriate indicator of the direction of technical change.

Time effects Tables 3 and 4 show that the effect of government-backed patents is especially relevant at
the early stages of the trajectory. To corroborate our findings, we associate to each patent an indicator of
the number of paths originating from the invention, namely the forward trajectory indicator (w+

p defined
in Equation 2). By excluding previous paths, this indicator ranks patents according to their influence on
the following inventions, and older patents will have, on average, a higher value of the measure. Tables D12
and D13 confirm our core results, both in terms of sign and magnitude. Overall, government funding has a
forward trajectory effect of 243.6%, while government interest and government assignee alone have impacts
of, respectively, 177.1% and 1107.5%. Even if we control for the timing (which negatively affects the forward
trajectory indicator, as expected), the interaction term between government funding and timing is negative
and significant. These results confirm that early government backing of AI technology was particularly
important for future developments.

Sample composition To test the robustness of results to sampling choices, we narrow our definition
of inventions in artificial intelligence. In particular, we follow the domain definition suggested by WIPO
(2019), without adding any other patents. This mainly excludes big-data analytics patents. Estimations on
the 111,525 patents belonging to the weakly connected component of this sample are presented in Tables
D14 and D15. Results are fully consistent with those we discussed in the previous sections. We also used
the Baruffaldi et al. (2020)’s classification of AI patents, and results do not change.19 An alternative change
in the sample composition can be made by selecting only patents granted after 1980 (113,835 patents).
The rationale for this test depends on the introduction in that year of the Bayh-Dole Act, which obligated
federal contracts to disclose government interests in their patents. Even though we observe government-
funded patents (also through grants) also before 1981, there could be misreporting or under-reporting of
government interest statements in patents granted between 1976 and 1980. Tables D16 and D17 show that
there are no substantial changes in the impact of government funding on the trajectory. In this sample,
government funding is associated with an increase of 228.1% in the trajectory effect. This impact is 168.6%
and 879.1% respectively for patents with a government interest statement and patents with a government
assignee. The timing effect persists and is in line with results discussed in Tables 3 and 4.

Further controls Finally, we implement our models with different controls. In Tables D18 and D19, we
replace the US university control with a variable that takes value 1 when the patent has any university (i.e.

19These additional results are available from the authors upon request
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from anywhere in the world) as assignee and 0 otherwise. Although the university control becomes negative
and significant, our results are not affected by this change in regression controls. We propose an additional
robustness check where we add the number of backward citations. In this way, we prove that the trajectory
effect is not substantially affected by node indegrees (the number of cited patents) but captures the more
complex citation structure of the data. Moreover, since we do not observe any change in our core results, we
show that they are not driven by the presence of patents that heavily cite previous inventions (Tables D20
and D21). We also control for the weighted average of lagged growth rates of 3-digits CPC classes that are
assigned to patents. This variable captures the potential expansion of patents’ technological subdomains.
Tables D22 and D23 show that, although this control variable has a prominent impact on the trajectory,
this does not affect estimations of the effect of government funding.

7 Conclusions

Governments have several instruments at their disposal to address market failures and influence the develop-
ment of innovation (Bloom et al., 2019; Steinmueller, 2010). Extant literature has focused overwhelmingly
on the rate of technical change and the returns to publicly funded R&D. In this paper, we have addressed
the problem of the direction of technical change and investigated the role that governments can play in
influencing long-term technology development. We focused on AI because this is likely to become a major
source of technological spillovers. Even though its potential is arguably far from full realization, AI is a prime
candidate to becoming a new general purpose technology, and this makes its choice as field of study highly
relevant. By taking a ‘big data’ approach to the construction of large longitudinal networks of citations,
we have been able to quantify the impact of each patent on long-term cumulative patterns of development
in the field that cannot be captured by standard indicators such as the number of citations. We have then
demonstrated that patents backed by government grants and patents filed by federal agencies and state
departments had profound effects on AI innovation, and that their impact appears to be stronger in early
phases, while it weakened over time to leave room to privately funded research. This is especially relevant
when we consider market failures in high-risk research areas that are in their infancy, but could generate
valuable solutions for societal challenges. Naturally, further research can corroborate the external validity of
our results by exploring the long-term evolution of technologies in other contexts, or deepen the analysis of
specific patterns and effects of public vs. private funding of innovation.
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A Patents in artificial intelligence: selection procedure

To identify patents in artificial intelligence, we combine selection procedures suggested by the WIPO report
on technology trends in artificial intelligence (WIPO, 2019) and the UKIPO report on great technologies
(UKIPO, 2014).

A.1 WIPO selection procedure

WIPO (2019) defines three, non-mutually exclusive, blocks of patents, corresponding to different kinds of
criteria. The first group is selected through Cooperative Patent Classification (CPC) codes that clearly
identify AI-related inventions (Block 1). The second group is identified through specific keywords (Block 2).
We search for keywords in patents’ titles and abstracts. Finally, the third group combines more generic CPC
and International Patent Classification (IPC) codes and keywords (Block 3). To be part of this final set,
patents must belong to one of the CPC classes and, at the same time, have one of the keywords in their title
or abstract. Therefore, the final query is: (Block 1) OR (Block 2) OR (Block 3), where blocks are defined
through the following regular expressions (search patterns in strings).

Block 1 We search for patents whose CPC codes match the following regular expression:

^Y10S706 | ^G06N3 | ^G06N5/003$ | ^G06N5/006$ | ^G06N5/02$ | ^G06N5/022$ | ^G06N5/025$

| ^G06N5/027$ | ^G06N7/005$ | ^G06N7/02$ | ^G06N7/023$ | ^G06N7/026$ | ^G06N7/04$

| ^G06N7/043$ | ^G06N7/046$ | ^G06N7/06$ | ^G06N99/005$ | ^G06T2207/20081$

| ^G06T2207/20084$ | ^G06T3/4046$ | ^G06T9/002$ | ^G06F17/16$ |^G05B13/027$

| ^G05B13/0275$ | ^G05B13/028$ | ^G05B13/0285$ | ^G05B13/029$ | ^G05B13/0295$

| ^G05B2219/33002$ | ^G05D1/0088$ | ^G06K9 | ^G10L15 | ^G10L17 |^G06F17/27$

| ^G06F17/2705$ | ^G06F17/271$ | ^G06F17/2715$ | ^G06F17/272$ | ^G06F17/2725$

| ^G06F17/273$ | ^G06F17/2735$ | ^G06F17/274$ | ^G06F17/2745$ |^G06F17/275$

| ^G06F17/2755$ | ^G06F17/276$ | ^G06F17/2765$ | ^G06F17/277$ | ^G06F17/2775$

| ^G06F17/278$ | ^G06F17/2785$ | ^G06F17/279$ | ^G06F17/2795$ | ^G06F17/28$

| ^G06F17/2809$ | ^G06F17/2818$ | ^G06F17/2827$ | ^G06F17/2836$ | ^G06F17/2845$

| ^G06F17/2854$ | ^G06F17/2863$ | ^G06F17/2872$ | ^G06F17/2881$ | ^G06F17/289$

| ^G06F17/30029$ | ^G06F17/30247$ | ^G06F17/3025$ | ^G06F17/30256$ | ^G06F17/30262$

| ^A61B5/7264$ | ^A61B5/7267$ | ^B29C66/965$ | ^B25J9/161$ | ^Y10S128/924$

| ^Y10S128/925$ | ^F02D41/1405$ | ^F03D7/046$ | ^F05B2270/707$ | ^F05B2270/709$

| ^F16H2061/0081$ | ^F16H2061/0084$ | ^B60W30/06$ | ^B60W30/10$ | ^B60W30/12$

| ^B60W30/14$ | ^B60W30/143$ | ^B60W30/146$ | ^B60W30/16$ | ^B60W30/162$ | ^B60W30/165$

| ^B60W30/17$ | ^G06T2207/30248$ | ^G06T2207/30252$ | ^G06T2207/30256$ | ^G06T2207/30261$

| ^G06T2207/30264$ | ^G06T2207/30268$ | ^B62D15/0285$ | ^G06T2207/30236$ | ^A61B5/7267$

| ^F05D2270/709$ | ^G06T2207/20084$ | ^G10K2210/3038$ | ^G10L25/30$ | ^H04N21/4666$

| ^A63F13/67$ | ^G06F17/2282$ | ^G05D1

Block 2 We search for patents whose titles and abstracts match the following regular expression:

(\bartific\w*\W+(?:\w+\W+){0,1}?intelligen\w*\b) | (\bcomputation\w*\W+(?:\w+\W+){0,1}?intelligen\w

*\b) | (\bneural[\W_]+(?:\w+\W+){0,1}?network\w*\b) | (\bbayesian[\W_]+

(?:\w+\W+){0,1}?network\w*\b) | (\bchatbot\w*\b) | (\bdata\W+(?:\w+\W+){0,1}?mining\w*\b)

| (\bdecision\W+(?:\w+\W+){0,1}?model\w*\b) | (\bdeep[\W_]+(?:\w+\W+){0,1}?learn\w*\b)
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| (\bgenetic\W+(?:\w+\W+){0,1}?algorithm\w*\b) | (\binductive\W+(?:\w+\W+){0,1}?logic

\W+(?:\d+\W+){0,1}?programm\w*\b) | (\bmachine[\W_]+(?:\w+\W+){0,1}?learn\w*\b)

| (\bnatural\W+(?:\d+\W+){0,1}?language\W+(?:\w+\W+){0,1}?generation\w*\b) | (\bnatural

\W+(?:\d+\W+){0,1}?language\W+(?:\w+\W+){0,1}?process\w*\b)|(\breinforcement\W+(?:\w+\W+){0,1}?

learn\w*\b) | (\b\w*supervised[\W_]+(?:\w+\W+){0,1}?learn\w*\b) | (\b\w*supervised[\W_]+(?:\w+\W+)

{0,1}?train\w*\b) | (\bswarm[\W_]+(?:\w+\W+){0,1}?intelligen\w*\b)

| (\bconnectionis\w*\b) | (\bexpert[\W_]+(?:\w+\W+){0,1}?system\w*\b) | (\bfuzzy\W+

(?:\w+\W+){0,1}?logic\w*\b) | (\btransfer[\W_]+(?:\w+\W+){0,1}?learn\w*\b) | (\blearning

\W+(?:\w+\W+){0,3}?algorithm\w*\b) | (\blearing\W+(?:\w+\W+){0,1}?model\w*\b)

| (\bsupport[\W_]+vector[\W_]machine\w*\b) | (\brandom[\W_]forest\w*\b) | (\bdecision

[\W_]tree\w*\b) | (\bgradient[\W_]model[\W_]boosting\b) | (\bxgboost\b) | (\badaboost\b) | (\

brankboost\b) | (\blogistic[\W_]regression\w*\b) | (\bstochastic[\W_]gradient[\W_]descent\b) | (\

bmultilayer[\W_]perceptron\b) | (\blatent[\W_]semantic[\W_]analysis\b)

| (\blatent[\W_]dirichelet[\W_]allocation\b) | (\bmulti[\W_]agent[\ W_]system\w*\b)

| (\bhidden[\W_]markov[\W_]model\w*\b)

Block 3 We search for patents whose titles and abstracts match the following keywords and, at the same
time, belong to the following CPC or ICP codes.

Keywords

(\bclustering | comput\w*[\W_]creativity\b) | (\bdescriptive\Wmodel\w*\b) | (\binductive

\Wreasoning\b) | (\boverfitting\b) | (\bpredictive\W+(?:\w+\W+){0,1}?analytics\b)

| (\bpredictive\W+(?:\w+\W+){0,1}?model\w*\b) | (\btarget\W+(?:\w+\W+){0,1}?function\w*

\b) | (\btest\W+(?:\d+\W+){0,1}?data\b) | (\btraining\W+(?:\d+\W+){0,1}?data\b)

| (\bvalidation\W+(?:\d+\W+){0,1}?data\b) | (\btest\W+(?:\d+\W+){0,1}?set\w*\b)

| (\btraining\W+(?:\d+\W+){0,1}?set\w*\b) | (\bvalidation\W+(?:\d+\W+){0,1}?set\w*\b)

| (\bbackpropagation\w*\b) | (\bself[\W_]learning\b) | (\bobjective\Wfunction\w*\b)

| (\bfeature\w*\Wselection\b) | (\bembedding\w*\b) | (\bactive\Wlearning\b)

| (\bregression\Wmodel\w*\b) | (\bstochastic\W+(?:\d+\W+){0,2}?approach\w*\b)

| (\bprobabilist\w*\W+(?:\d+\W+){0,2}?approach\w*\b) | (\bstochastic\W+(?:\d+\W+){0,2}?technique\w

*\b) | (\bprobabilist\w*\W+(?:\d+\W+){0,2}?technique\w*\b) | (\bstochastic

\W+(?:\d+\W+){0,2}?method\w*\b) | (\bprobabilist\w*\W+(?:\d+\W+){0,2}?method\w*\b)

| (\bstochastic\W+(?:\d+\W+){0,2}?algorithm\w*\b) | (\bprobabilist\w*\W+(?:\d+\W+){0,2}?algorithm\w

*\b) | (\brecommend\w*\Wsystem\w*\b) | (\btext\W+(?:\d+\W+){0,1}analysis\b)

| (\btext\W+(?:\d+\W+){0,1}analytic\w*\b) | (\btext\W+(?:\d+\W+){0,1}recognition\b)

| (\bspeech\W+(?:\d+\W+){0,1}analysis\b) | (\bspeech\W+(?:\d+\W+){0,1}analytic\w*\b)

| (\bspeech\W+(?:\d+\W+){0,1}recognition\b) | (\bhand_writing\W+(?:\d+\W+){0,1}analysis

\b) | (\bhand_writing\W+(?:\d+\W+){0,1}analytic\w*\b) | (\bhand_writing\W+(?:\d+\W+){0,1}

recognition\b) | (\bfacial\W+(?:\d+\W+){0,1}analysis\b) | (\bfacial\W+(?:\d+\W+){0,1}analytic\w*\b)

| (\bfacial\W+(?:\d+\W+){0,1}recognition\b) | (\bface\w*\W+(?:\d+\W+){0,1}analysis\b) | (\bface\w

*\W+(?:\d+\W+){0,1}analytic\w*\b) | (\bface\w*\W+(?:\d+\W+){0,1}recognition\b) | (\bcharacter\w*\W

+(?:\d+\W+){0,1}analysis\b) | (\bcharacter\w*\W+(?:\d+

\W+){0,1}analytic\w*\b) | (\bcharacter\w*\W+(?:\d+\W+){0,1}recognition\b)

CPC

^G06F17/14$ | ^G06F17/141$ | ^G06F17/142$ | ^G06F17/144$ | ^G06F17/145$ | ^G06F17/147$

| ^G06F17/148$ | ^G10H2250/005$ | ^G10H2250/011$ | ^G10H2250/015$ | ^G10H2250/021$
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| ^G06Q30/02$ | ^G06Q30/0201$ | ^G06Q30/0202$ | ^G06Q30/0203$ | ^G06Q30/0204$

| ^G06Q30/0205$ | ^G06Q30/0206$ | ^G06Q30/0207$ | ^G06Q30/0208$ | ^G06Q30/0209$

| ^G06Q30/0211$ | ^G06Q30/0212$ | ^G06Q30/0213$ | ^G06Q30/0214$ | ^G06Q30/0215$

| ^G06Q30/0216$ | ^G06Q30/0217$ | ^G06Q30/0218$ | ^G06Q30/0219$ | ^G06Q30/0221$

| ^G06Q30/0222$ | ^G06Q30/0223$ | ^G06Q30/0224$ | ^G06Q30/0225$ | ^G06Q30/0226$

| ^G06Q30/0227$ | ^G06Q30/0228$ | ^G06Q30/0229$ | ^G06Q30/0231$ | ^G06Q30/0232$

| ^G06Q30/0233$ | ^G06Q30/0234$ | ^G06Q30/0235$ | ^G06Q30/0236$ | ^G06Q30/0237$

| ^G06Q30/0238$ | ^G06Q30/0239$ | ^G06Q30/0241$ | ^G06Q30/0242$ | ^G06Q30/0243$

| ^G06Q30/0244$ | ^G06Q30/0245$ | ^G06Q30/0246$ | ^G06Q30/0247$ | ^G06Q30/0248$

| ^G06Q30/0249$ | ^G06Q30/0251$ | ^G06Q30/0252$ | ^G06Q30/0253$ | ^G06Q30/0254$

| ^G06Q30/0255$ | ^G06Q30/0256$ | ^G06Q30/0257$ | ^G06Q30/0258$ | ^G06Q30/0259$

| ^G06Q30/0261$ | ^G06Q30/0262$ | ^G06Q30/0263$ | ^G06Q30/0264$ | ^G06Q30/0265$

| ^G06Q30/0266$ | ^G06Q30/0267$ | ^G06Q30/0268$ | ^G06Q30/0269$ | ^G06Q30/0271$

| ^G06Q30/0272$ | ^G06Q30/0273$ | ^G06Q30/0274$ | ^G06Q30/0275$ | ^G06Q30/0276$

| ^G06Q30/0277$ | ^G06Q30/0278$ | ^G06Q30/0279$ | ^G06Q30/0281$ | ^G06Q30/0282$

| ^G06Q30/0283$ | ^G06Q30/0284$ | ^G06T1/20$ | ^G06F17/153$ | ^G06F17/50$ | ^G06T7

| ^G10L13 | ^G10L25 | ^G10L99 | ^G07C9 | ^G06F21

IPC

^B25J9/16$ | ^B25J9/18$ | ^B25J9/20$ | ^A63F13/67$ | ^B60W30/06$ | ^A61B5 | ^B23K31

| ^B29C65 | ^B60W30/10$ | ^B60W30/12$ | ^B60W30/14$ | ^B60W30/165$ | ^B60W30/17$

| ^B62D15/02$ | ^B64G1/24$ | ^B64G1/26$ | ^B64G1/28$ | ^B64G1/32$ | ^B64G1/34$

| ^B64G1/36$ | ^B64G1/38$ | ^E21B41$ | ^F02D41/14$ | ^F02D41/16$ | ^F03D7/04$

| ^F16H61 | ^G01N29/44$ | ^G01N29/46$ | ^G01N29/48$ | ^G01N29/50$ | ^G01N29/52$

| ^G01N33 | ^G01R31/28$ | ^G01R31/30$ | ^G01R31/302$ | ^G01R31/303$ | ^G01R31/304$

| ^G01R31/305$ | ^G01R31/306$ | ^G01R31/307$ | ^G01R31/308$ | ^G01R31/309$ | ^G01R31/311$

| ^G01R31/312$ | ^G01R31/315$ | ^G01R31/316$ | ^G01R31/3161$ | ^G01R31/3163$

| ^B60W30/16$ | ^G01R31/3167$ | ^G01R31/317$ | ^G01R31/3173$ | ^G01R31/3177$

| ^G01R31/3181$ | ^G01R31/3183$ | ^G01R31/3185$ | ^G01R31/3187$ | ^G01R31/319$

| ^G01R31/3193$ | ^G01R31/36$ | ^G01R31/364$ | ^G01R31/367$ | ^G01S7/41$ | ^G05B13/02$

| ^G05B13/04$ | ^G05D1 | ^G06F9/44$ | ^G06F9/4401$ | ^G06F9/445$ | ^G06F9/448$

| ^G06F11/14$ | ^G06F11/22$ | ^G06F11/24$ | ^G06F11/25$ | ^G06F11/26$ | ^G06F11/263$

| ^G06F11/267$ | ^G06F11/27$ | ^G06F11/273$ | ^G06F11/277$ | ^G06F15/18$ | ^G06F17/14$

| ^G06F17/15$ | ^G06F17/16$ | ^G06F17/20$ | ^G06F17/27$ | ^G06F17/28$ | ^G06F19/24$

| ^G06K7/14$ | ^G06K9 | ^G06N3 | ^G06N5 | ^G06N7 | ^G06N99 | ^G06T1/20$ | ^G06T1/40$

| ^G06T3/40$ | ^G06T7 | ^G06T9 | ^G08B29/18$ | ^G08B29/20$ | ^G08B29/22$ | ^G08B29/24$

| ^G08B29/26$ | ^G08B29/28$ | ^G10L13 | ^G10L15 | ^G10L17 | ^G10L25 | ^G10L99

| ^G11B20/10$ | ^G11B20/12$ | ^G11B20/14$ | ^G11B20/16$ | ^G11B20/18$ | ^G16H50/20$

| ^H01M8/04992$ | ^H02H1 | ^H02P21 | ^H02P23 | ^H03H17/02$ | ^H03H17/04$ | ^H03H17/06$

| ^H04L12/24$ | ^H04L12/70$ | ^H04L12/701$ | ^H04L12/703$ | ^H04L12/705$ | ^H04L12/707$

| ^H04L12/709$ | ^H04L12/751$ | ^H04L25/02$ | ^H04L25/03$ | ^H04L25/04$ | ^H04L25/05$

| ^H04L25/06$ | ^H04L25/08$ | ^H04L25/10$ | ^H04L25/12$ | ^H04L25/14$ | ^H04L25/17$

| ^H04L25/18$ | ^H04L25/20$ | ^H04L25/22$ | ^H04L25/24$ | ^H04L25/26$ | ^H04L25/03$

| ^H04N21/466$ | ^H04R25 | ^G07C9 | ^G06F21
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A.2 UKIPO selection procedure

The UKIPO (2014) procedure is based on keyword searches in patents belonging to specific CPC/IPC classes
connected to data management and computation. Keywords include generic references to big data – such as
big data, open data, and business intelligence – and names of software connected to big data management.
Since the report has been published in 2014, we updated the list of software names. We also removed
keywords already included in the WIPO search procedure.

We slightly modify this selection procedure by selecting CPC codes (Block 4) and keywords (Block 5)
specific to big-data management. For this two groups we do not require the joint presence in patents. Specific
CPC codes have been identified by searching these keywords in CPC code titles. A third group of criteria,
instead, requires the joint presence of keywords and IPC/CPC codes (Block 6).

Block 4 We search for patents whose CPC codes match the following regular expression:

^G06F16/2465$ | ^G06F16/283$ | ^G06F2216/03$

Block 5 We search for patents whose titles and abstracts match the following regular expression:

((\b|^)big[\W_]+dat\w*(\b|$)) | ((\b|^)open[\W_]+data(\b|$))

| ((\b|^)data[\W_]+mining(\b|$)) | ((\b|^)data[\W_]+fusion(\b|$))

Block 6 We search for patents whose titles and abstracts match the following keywords and, at the same
time, belong to the following CPC or ICP codes.

Keywords

((\b|^)data[\W_]+warehouse\w*(\b|$)) | ((\b|^)hadoop(\b|$)) | ((\b|^)datameer(\b|$)) | ((\b|^)fico

[\W_]+blaze(\b|$)) | ((\b|^)vertica(\b|$)) | ((\b|^)platfora(\b|$)) | ((\b|^)splunk(\b|$)) | ((\b

|^)mapreduce(\b|$)) | ((\b|^)crowdsourcing(\b|$)) | ((\b|^)cluster

[\W_]+computation(\b|$)) | ((\b|^)distributed[\W_]+file[\W_]+system\w*(\b|$)) | ((\b|^)spark(\b|$))

| ((\b|^)biometrics(\b|$)) | ((\b|^)cassandra(\b|$)) | ((\b|^)nosql(\b|$))

| ((\b|^)behaviow{0,1}ral[\W_]+analytics(\b|$)) | ((\b|^)business[\W_]+intelligence

(\b|$)) | ((\b|^)hanab) | ((\b|^)hive(\b|$)) | ((\b|^)flume (\b|$)) | ((\b|^)kafka(\b|$))

| ((\b|^)elasticsearch(\b|$))

CPC

^G06F17/3 | ^G06F19/7 | ^G06F19/3 | ^G06F19/1 | ^G06Q10/063 | ^G06Q30/02 | ^G06F17/5

| ^G06N | ^G06F16/ | ^G16Z99/ | ^G16B40/ | ^G16B50/ | ^G16H50/ | ^G16C20/70$ | ^G06F30/

| ^G06F2216/03$

IPC

^G06F17/3 | ^G06F19/1 | ^G06Q30/02 | ^G06F17/5 | ^G06N

B Patents in artificial intelligence: descriptive statistics

Figure B1 shows the evolution of the number of patents in AI over time. We plot the number of patents
based both on the application year and grant year. While the application year is closer to the time of the
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invention and is usually employed in regression analysis, the grant year represents one of the criteria used
for the sample selection (we focus on USPTO granted patents (we focus on USPTO patents granted from
1976). For some early patents the difference between the two years is more than ten years.

Table B1 reports the ten most common technologies in the AI patent sample. Technology fields group
International Patent Classification (IPC) codes associated with each patent into 35 broad categories. For the
sake of simplicity, each patent has been assigned to the prevalent technology. For patents with more than one
prevalent technology, we consider a fractional count. Table B2, instead, shows the ten most common CPC
codes at the 7-digit level. Compared to technology fields, CPC codes provide a more detailed classification
of technological domains. CPC codes are not mutually exclusive, and each patent may occur in more than
one class.

Finally, Table B3 reports the ten most common assignees in the AI patent sample, as disambiguated by
the USPTO, during the different decades of analysis.

Table B4 summarizes the descriptive statistics of variables used in the econometric analysis, including
those used in the robustness checks. The top panel reports statistical information of continuous variables,
while the bottom panel shows the number and share of patents with certain characteristics (dummy variables).
Finally, Table B5 reports the correlation matrix of these variables and Table B6 summarizes the main federal
contractors.

Figure B1: Number of patents in AI per year. The blue dashed line represents the number of patents per
application year, while the orange solid line indicates the number of patents per grant year. The grant-year
series stops in July 2019 due to data availability.
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Technology name Number of patents %

Electrical engineering - Computer technology 74192 64.72
Instruments - Control 8513 7.43
Mechanical engineering - Transport 5378 4.69
Instruments - Measurement 4346 3.79
Electrical engineering - Audio-visual technology 4306 3.76
Instruments - Medical technology 3587 3.13
Electrical engineering - Digital communication 2804 2.45
Electrical engineering - Telecommunications 2110 1.84
Electrical engineering - IT methods for management 1808 1.58
Mechanical engineering - Mechanical elements 1094 0.95

Table B1: Main technologies in AI patents. Each patent has been assigned to the prevalent technology.
Patents with more than one main technology have been considered as fractional.

CPC class
symbol

CPC title Number
of

patents

%

G06K 9/00 Methods or arrangements for reading or recognising printed or
written characters or for recognising patterns, e.g. fingerprints

54355 47.39

G06T 7/00 Image analysis 15248 13.30
G06F 16/00 Information retrieval; Database structures therefor; File system

structures therefor
15000 13.08

G06F 17/00 Digital computing or data processing equipment or methods, spe-
cially adapted for specific functions

14252 12.43

G06T2207/00 Indexing scheme for image analysis or image enhancement 13299 11.60
G10L 15/00 Speech recognition 12304 10.73
G05D 1/00 Control of position, course or altitude of land, water, air, or space

vehicles, e.g. automatic pilot
11104 9.68

G06F 3/00 Input arrangements for transferring data to be processed into a
form capable of being handled by the computer; Output arrange-
ments for transferring data from processing unit to output unit,
e.g. interface arrangements

10051 8.76

H04N 5/00 Details of television systems 6268 5.47
G06K2209/00 Indexing scheme relating to methods or arrangements for read-

ing or recognising printed or written characters or for recognising
patterns, e.g. fingerprints

6198 5.40

Table B2: Most common CPC classes at 7-digits level in AI patents. CPC codes are not mutually exclusive,
and each patent may occur in more than one class.

31



The direction of technical change in AI and the trajectory effects of government funding

Assignee Nb
patents

%

Hitachi 187 4.00
IBM 166 3.55
Boeing 114 2.44
Sharp 97 2.07
United Technologies 74 1.58
Toshiba 70 1.50
AT&T 60 1.28
Texas Instruments 58 1.24
Recognition Equipment 49 1.05
NEC 47 1.00

(a) Before 1990

Assignee Nb
patents

%

IBM 812 5.73
Canon 369 2.60
Matsushita Electric Industrial 284 2.00
Hitachi 269 1.90
Ricoh 265 1.87
Xerox 253 1.78
Microsoft 249 1.76
Toshiba 223 1.57
Fujitsu 210 1.48
NEC 194 1.37

(b) 1990–2000

Assignee Nb
patents

%

Microsoft 2008 5.86
IBM 1831 5.34
Sony 678 1.98
Canon 622 1.81
AT&T 516 1.51
HP Development Company 459 1.34
Samsung Electronics Ltd. 445 1.30
Silverbrook Research 374 1.09
Toshiba 373 1.09
Xerox 372 1.09

(c) 2000–2010

Assignee Nb
patents

%

IBM 3902 6.34
Google 2796 4.54
Microsoft 1671 2.71
Samsung Electronics 1133 1.84
Amazon Technologies 1107 1.80
Canon 818 1.33
Sony 785 1.28
Apple 623 1.01
AT&T 621 1.01
Intel 612 0.99

(d) After 2010

Table B3: Leading assignees in AI patents
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Variable name Min Mean Max Std

Trajectory 1 8.25 · 1015 1.87 · 1019 2.20 · 1017
Longest path length 1 2.27 · 1019 1.73 · 1020 3.74 · 1019
Timing 0 16.17 55 11.27
Number of claims 1 18.92 522 12.35
Number of inventors 1 2.74 27 18.80
Application year 1952 2007.75 2019 8.49
Grant year 1976 2010.80 2019 8.41
Number of references 0 31.07 3951 90.61
Number of citations (network) 0 10.92 805 24.08
Number of citations (all) 0 25.07 2288 53.32
Number of citations up to 5 years (network) 0 4.55 240 8.63
Number of citations up to 5 years (all) 0 10.21 1156 18.28
Number of citations in 5 years (network) 0 5.94 240 9.50
Number of citations in 5 years (all) 0 14.16 1156 20.74

Variable name Number of patents %

Government funding 3932 3.43
Government interest 3597 3.14
Government assignee 929 0.81
US university 2947 2.57
University 4588 4.00
Citing government funding 34692 30.25
Citing government interest 31837 27.76
Citing government assignee 14075 12.27
Citing US university 31491 27.46

Table B4: Descriptive statistics of continuous (top) and dummy (bottom) variables.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1: Trajectory 1.00
2: Longest path length 0.14 1.00
3: Timing 0.03 0.32 1.00
4: Nb of claims 0.01 0.01 0.03 1.00
5: Nb of inventors 0.00 0.01 0.11 0.05 1.00
6: Application year -0.03 -0.23 0.50 0.00 0.13 1.00
7: Nb of references 0.11 0.09 0.19 0.09 0.06 0.10 1.00
8: Nb of cit (network) 0.09 0.27 -0.07 0.14 0.01 -0.31 0.03 1.00
9: Nb of cit (all) 0.05 0.18 -0.16 0.18 0.02 -0.35 0.03 0.78 1.00
10: Nb of cit up to 5 years (network) 0.12 0.16 0.08 0.14 0.06 -0.09 0.10 0.68 0.50 1.00
11: Nb of cit up to 5 years (all) 0.07 0.06 -0.03 0.20 0.06 -0.14 0.10 0.55 0.70 0.75 1.00
12: Nb of cit 5 years (network) 0.12 0.21 0.26 0.15 0.10 0.10 0.16 0.68 0.47 1.00 0.71 1.00
13: Nb of cit 5 years (all) 0.06 0.08 0.12 0.21 0.12 0.09 0.20 0.51 0.69 0.71 1.00 0.71 1.00
14: Government funding -0.01 -0.02 -0.05 0.01 0.02 -0.05 -0.02 0.02 0.02 0.01 0.01 0.01 -0.00 1.00
15: Government interest -0.00 -0.02 -0.04 0.01 0.02 -0.04 -0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.96 1.00
16: Government assignee -0.00 -0.00 -0.05 -0.03 -0.02 -0.08 -0.02 -0.00 0.00 -0.02 -0.02 -0.03 -0.04 0.48 0.32 1.00
17: US university -0.00 -0.01 -0.04 0.05 0.03 -0.02 -0.02 0.02 0.03 0.02 0.03 0.02 0.02 0.38 0.39 -0.00 1.00
18: University -0.01 -0.03 -0.03 0.02 0.05 0.01 -0.03 0.00 0.01 0.01 0.01 0.01 0.01 0.29 0.31 -0.01 0.80 1.00
19: Citing government funding 0.01 0.01 0.15 0.11 0.06 0.05 0.22 0.05 0.05 0.10 0.10 0.10 0.10 0.14 0.13 0.07 0.10 0.08 1.00
20: Citing government interest 0.01 0.01 0.16 0.10 0.06 0.07 0.22 0.05 0.04 0.10 0.09 0.10 0.10 0.14 0.14 0.05 0.09 0.08 0.94 1.00
21: Citing government assignee 0.00 0.01 0.05 0.08 0.03 -0.02 0.24 0.05 0.06 0.08 0.08 0.05 0.06 0.09 0.08 0.10 0.04 0.03 0.57 0.43 1.00
22: Citing US university 0.03 0.02 0.17 0.12 0.06 0.08 0.23 0.05 0.06 0.11 0.11 0.12 0.13 0.08 0.08 0.01 0.12 0.11 0.55 0.55 0.29 1.00

Table B5: Correlation matrix
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Assignee Number of patents %

International Business Machines Corporation 268 7.45
University of California 122 3.39
Massachusetts Institute of Technology 99 2.75
HRL Laboratories 78 2.17
SRI International 73 2.03
Honeywell International 65 1.81
California Institute of Technology 61 1.70
University of Southern California 60 1.67
The Boeing Company 57 1.58
United Technologies Corporation 49 1.36

Table B6: Main federal contractors: assignees funded by federal agencies and state departments for support-
ing the development of AI patents.
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C Main path patents

Table C1: Patents in the AI main path. Node numbers link this table to Figure 1. Patent numbers are
hyperlinks that lead to patent documents.

Node
number

Patent
number

Patent title

0 US2432123A Translation of visual symbols
1 US2615992A Apparatus for indicia recognition
2 US2897481A Apparatus for reading
3 US2932006A Symbol recognition system
4 US2889535A Recognition of recorded intelligence
5 US2928074A Method and apparatus for reading handwritten symbols, particularly numerals
6 US2964734A Method and apparatus for sensing handwriten or printed characters
7 US3105956A Character recognition system
8 US3069079A Automatic character recognition method
9 US2959769A Data consolidation systems
10 US3025495A Automatic character recognition
11 US3112468A Character recognition system
12 US3108254A Machine reading of handwritten characters
13 US3179923A Scanning system for large areas
14 US3173126A Reading machine with core matrix
15 US3234513A Character recognition apparatus
16 US3165717A Character recognition system
17 US3200373A Handwritten character reader
18 US3104369A High-speed optical identification of printed matter
19 US3289164A Character normalizing reading machine
20 US3496542A Multifont character reading machine
21 US3601802A Pattern matching character recognition system
22 US3816722A Computer for calculating the similarity between patterns and pattern recognition system compris-

ing the similarity computer
23 US4049913A System for recognizing speech continuously spoken with number of word or words preselected
24 US4092493A Speech recognition system
25 US4060694A Speech recognition method and apparatus adapted to a plurality of different speakers
26 US4156868A Syntactic word recognizer
27 US4059725A Automatic continuous speech recognition system employing dynamic programming
28 US4256924A Device for recognizing an input pattern with approximate patterns used for reference patterns on

mapping
29 US4181821A Multiple template speech recognition system
30 US4336421A Apparatus and method for recognizing spoken words
31 US4277644A Syntactic continuous speech recognizer
32 US4349700A Continuous speech recognition system
33 US4319221A Similarity calculator comprising a buffer for a single input pattern feature vector to be pattern

matched with reference patterns
34 US4504970A Training controller for pattern processing system
35 US4355302A Spelled word recognizer
36 US4384273A Time warp signal recognition processor for matching signal patterns
37 US4400788A Continuous speech pattern recognizer
38 US4286115A System for recognizing words continuously spoken according to a format
39 US4400828A Word recognizer
40 US4593367A Probabilistic learning element
41 US4618983A Speech recognition with preliminary matching

Continued on next page
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42 US4580241A Graphic word spelling correction using automated dictionary comparisons with phonetic skeletons
43 US4481593A Continuous speech recognition
44 US4852173A Design and construction of a binary-tree system for language modelling
45 US4754489A Means for resolving ambiguities in text based upon character context
46 US4670848A Artificial intelligence system
47 US4674066A Textual database system using skeletonization and phonetic replacement to retrieve words match-

ing or similar to query words
48 US4730269A Method and apparatus for generating word skeletons utilizing alpha set replacement and omission
49 US4587670A Hidden Markov model speech recognition arrangement
50 US4559604A Pattern recognition method
51 US4805225A Pattern recognition method and apparatus
52 US4796199A Neural-model, information-handling architecture and method
53 US4881178A Method of controlling a classifier system
54 US4821333A Machine learning procedures for generating image domain feature detector structuring elements
55 US4837689A Inputting and editing system in a knowledge based inquiry and answer system
56 US4931926A Inputting system and an editing system in an inquiry-and-answer system
57 US4866635A Domain independent shell for building a diagnostic expert system
58 US4815005A Semantic network machine for artificial intelligence computer
59 US4835690A Integrated expert system for medical imaging scan, set-up, and scheduling
60 US4771401A Apparatus and method for linguistic expression processing
61 US4783758A Automated word substitution using numerical rankings of structural disparity between misspelled

words & candidate substitution words
62 US4713778A Speech recognition method
63 US4713777A Speech recognition method having noise immunity
64 US4718092A Speech recognition activation and deactivation method
65 US4718093A Speech recognition method including biased principal components
66 US4718094A Speech recognition system
67 US4712242A Speaker-independent word recognizer
68 US4712243A Speech recognition apparatus
69 US4715004A Pattern recognition system
70 US4975961A Multi-layer neural network to which dynamic programming techniques are applicable
71 US4876731A Neural network model in pattern recognition using probabilistic contextual information
72 US4965725B1 Neural network based automated cytological specimen classification system and method
73 US5053974A Closeness code and method
74 US5067095A SPANN: Sequence processing artificial neural network
75 US5056037A Analog hardware for learning neural networks
76 US4897811A N-dimensional coulomb neural network which provides for cumulative learning of internal repre-

sentations
77 US4918617A Neural-model computational system with multi-directionally overlapping broadcast regions
78 US4935877A Non-linear genetic algorithms for solving problems
79 US4994967A Information retrieval system with means for analyzing undefined words in a natural language

inquiry
80 US5103498A Intelligent help system
81 US5041976A Diagnostic system using pattern recognition for electronic automotive control systems
82 US5274801A Artificial intelligence delivery system
83 US4864501A Word annotation system
84 US4887212A Parser for natural language text
85 US4849898A Method and apparatus to identify the relation of meaning between words in text expressions
86 US4759068A Constructing Markov models of words from multiple utterances
87 US5046099A Adaptation of acoustic prototype vectors in a speech recognition system
88 US4803729A Speech recognition method
89 US5058166A Method of recognizing coherently spoken words
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90 US4987596A Knowledge-guided automatic speech recognition apparatus and method
91 US4833712A Automatic generation of simple Markov model stunted baseforms for words in a vocabulary
92 US4827521A Training of Markov models used in a speech recognition system
93 US4852180A Speech recognition by acoustic/phonetic system and technique
94 US4783803A Speech recognition apparatus and method
95 US4837831A Method for creating and using multiple-word sound models in speech recognition
96 US5040215A Speech recognition apparatus using neural network and fuzzy logic
97 US5175793A Recognition apparatus using articulation positions for recognizing a voice
98 US5046019A Fuzzy data comparator with neural network postprocessor
99 US5058180A Neural network apparatus and method for pattern recognition
100 US5052043A Neural network with back propagation controlled through an output confidence measure
101 US5060278A Pattern recognition apparatus using a neural network system
102 US5048100A Self organizing neural network method and system for general classification of patterns
103 US5086479A Information processing system using neural network learning function
104 US5058184A Hierarchical information processing system
105 US5333239A Learning process system for use with a neural network structure data processing apparatus
106 US5067164A Hierarchical constrained automatic learning neural network for character recognition
107 US5170463A Neuro-computer
108 US5140530A Genetic algorithm synthesis of neural networks
109 US5390281A Method and apparatus for deducing user intent and providing computer implemented services
110 US5497319A Machine translation and telecommunications system
111 US5068789A Method and means for grammatically processing a natural language sentence
112 US5060155A Method and system for the representation of multiple analyses in dependency grammar and parser

for generating such representation
113 US5099425A Method and apparatus for analyzing the semantics and syntax of a sentence or a phrase
114 US4817156A Rapidly training a speech recognizer to a subsequent speaker given training data of a reference

speaker
115 US4829577A Speech recognition method
116 US5222147A Speech recognition LSI system including recording/reproduction device
117 US5054074A Optimized speech recognition system and method
118 US4926488A Normalization of speech by adaptive labelling
119 US4941178A Speech recognition using preclassification and spectral normalization
120 US5072452A Automatic determination of labels and Markov word models in a speech recognition system
121 US5208897A Method and apparatus for speech recognition based on subsyllable spellings
122 US5202952A Large-vocabulary continuous speech prefiltering and processing system
123 US5033087A Method and apparatus for the automatic determination of phonological rules as for a continuous

speech recognition system
124 US5018201A Speech recognition dividing words into two portions for preliminary selection
125 US5146503A Speech recognition
126 US4866778A Interactive speech recognition apparatus
127 US5278911A Speech recognition using a neural net
128 US5251286A Method for estimating formation permeability from wireline logs using neural networks
129 US5162997A Control system for automotive vehicle for controlling vehicle driving behavior with feature of

harmonization of vehicular driving condition dependent control and driver’s driving tendency
adapted control

130 US5247584A Signal processing unit for classifying objects on the basis of signals from sensors
131 US5155801A Clustered neural networks
132 US5239594A Self-organizing pattern classification neural network system
133 US5105468A Time delay neural network for printed and cursive handwritten character recognition
134 US5265224A Recognition unit and recognizing and judging apparatus employing same
135 US5179596A Analog pattern categorization system having dual weighted connectivity between nodes
136 US5220640A Neural net architecture for rate-varying inputs
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137 US5271090A Operational speed improvement for neural network
138 US5317675A Neural network pattern recognition learning method
139 US5500920A Semantic co-occurrence filtering for speech recognition and signal transcription applications
140 US5243520A Sense discrimination system and method
141 US5128865A Method for determining the semantic relatedness of lexical items in a text
142 US5148489A Method for spectral estimation to improve noise robustness for speech recognition
143 US5150449A Speech recognition apparatus of speaker adaptation type
144 US5027406A Method for interactive speech recognition and training
145 US5278942A Speech coding apparatus having speaker dependent prototypes generated from nonuser reference

data
146 US5031217A Speech recognition system using Markov models having independent label output sets
147 US5050215A Speech recognition method
148 US5220639A Mandarin speech input method for Chinese computers and a mandarin speech recognition machine
149 US5315689A Speech recognition system having word-based and phoneme-based recognition means
150 US5195167A Apparatus and method of grouping utterances of a phoneme into context-dependent categories

based on sound-similarity for automatic speech recognition
151 US5129001A Method and apparatus for modeling words with multi-arc Markov models
152 US5170432A Method of speaker adaptive speech recognition
153 US5168524A Ch-recognition circuitry employing nonlinear processing, speech element modeling and phoneme

estimation
154 US5133012A Speech recognition system utilizing both a long-term strategic and a short-term strategic scoring

operation in a transition network thereof
155 US5193142A Training module for estimating mixture Gaussian densities for speech-unit models in speech recog-

nition systems
156 US5293584A Speech recognition system for natural language translation
157 US5526463A System for processing a succession of utterances spoken in continuous or discrete form
158 US5202926A Phoneme discrimination method
159 US5526465A Methods and apparatus for verifying the originator of a sequence of operations
160 US5680509A Method and apparatus for estimating phone class probabilities a-posteriori using a decision tree
161 US4977598A Efficient pruning algorithm for hidden Markov model speech recognition
162 US4984178A Chart parser for stochastic unification grammar
163 US5199077A Wordspotting for voice editing and indexing
164 US5075896A Character and phoneme recognition based on probability clustering
165 US5007081A Speech activated telephone
166 US5136654A Vocabulary partitioned speech recognition apparatus
167 US5065431A Pattern recognition using stored N-tuple occurrence frequencies
168 US5475798A Speech-to-text translator
169 US5517667A Neural network that does not require repetitive training
170 US5285523A Apparatus for recognizing driving environment of vehicle
171 US5408588A Artificial neural network method and architecture
172 US5517597A Convolutional expert neural system (ConExNS)
173 US5461696A Decision directed adaptive neural network
174 US5276771A Rapidly converging projective neural network
175 US5541836A Word disambiguation apparatus and methods
176 US5321607A Automatic translating machine
177 US5212821A Machine-based learning system
178 US5307444A Voice analyzing system using hidden Markov model and having plural neural network predictors
179 US5329609A Recognition apparatus with function of displaying plural recognition candidates
180 US5649056A Speech recognition system and method which permits a speaker’s utterance to be recognized using

a hidden Markov model with subsequent calculation reduction
181 US5425129A Method for word spotting in continuous speech
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182 US5502791A Speech recognition by concatenating fenonic allophone hidden Markov models in parallel among
subwords

183 US5345536A Method of speech recognition
184 US5309547A Method of speech recognition
185 US5222146A Speech recognition apparatus having speech coder outputting acoustic prototype ranks
186 US5613036A Dynamic categories for a speech recognition system
187 US5390278A Phoneme based speech recognition
188 US5444617A Method and apparatus for adaptively generating field of application dependent language models

for use in intelligent systems
189 US5679001A Children’s speech training aid
190 US5233681A Context-dependent speech recognizer using estimated next word context
191 US5390280A Speech recognition apparatus
192 US5276766A Fast algorithm for deriving acoustic prototypes for automatic speech recognition
193 US5452397A Method and system for preventing entry of confusingly similar phases in a voice recognition system

vocabulary list
194 US5608841A Method and apparatus for pattern recognition employing the hidden Markov model
195 US5455889A Labelling speech using context-dependent acoustic prototypes
196 US5329608A Automatic speech recognizer
197 US5333275A System and method for time aligning speech
198 US5825978A Method and apparatus for speech recognition using optimized partial mixture tying of HMM state

functions
199 US5459815A Speech recognition method using time-frequency masking mechanism
200 US5268990A Method for recognizing speech using linguistically-motivated hidden Markov models
201 US5640490A User independent, real-time speech recognition system and method
202 US5477451A Method and system for natural language translation
203 US5418717A Multiple score language processing system
204 US5864810A Method and apparatus for speech recognition adapted to an individual speaker
205 US5440662A Keyword/non-keyword classification in isolated word speech recognition
206 US5526259A Method and apparatus for inputting text
207 US5428707A Apparatus and methods for training speech recognition systems and their users and otherwise

improving speech recognition performance
208 US5222121A Voice recognition dialing unit
209 US5386492A Speech recognition system utilizing vocabulary model preselection
210 US5510981A Language translation apparatus and method using context-based translation models
211 US5481644A Neural network speech recognition apparatus recognizing the frequency of successively input iden-

tical speech data sequences
212 US5796921A Mapping determination methods and data discrimination methods using the same
213 US5301257A Neural network
214 US5704013A Map determination method and apparatus
215 US5528491A Apparatus and method for automated natural language translation
216 US5477450A Machine translation method and apparatus
217 US5608623A Special cooccurrence processing method and apparatus
218 US5805771A Automatic language identification method and system
219 US5502774A Automatic recognition of a consistent message using multiple complimentary sources of information
220 US5737485A Method and apparatus including microphone arrays and neural networks for speech/speaker recog-

nition systems
221 US5475792A Telephony channel simulator for speech recognition application
222 US5513298A Instantaneous context switching for speech recognition systems
223 US5488652A Method and apparatus for training speech recognition algorithms for directory assistance applica-

tions
224 US5487133A Distance calculating neural network classifier chip and system
225 US5668929A Speech activated security systems and methods
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226 US5615296A Continuous speech recognition and voice response system and method to enable conversational
dialogues with microprocessors

227 US5638425A Automated directory assistance system using word recognition and phoneme processing method
228 US5566272A Automatic speech recognition (ASR) processing using confidence measures
229 US5758319A Method and system for limiting the number of words searched by a voice recognition system
230 US5794198A Pattern recognition method
231 US5825977A Word hypothesizer based on reliably detected phoneme similarity regions
232 US5684925A Speech representation by feature-based word prototypes comprising phoneme targets having reli-

able high similarity
233 US5822728A Multistage word recognizer based on reliably detected phoneme similarity regions
234 US5515475A Speech recognition method using a two-pass search
235 US5623609A Computer system and computer-implemented process for phonology-based automatic speech recog-

nition
236 US5594834A Method and system for recognizing a boundary between sounds in continuous speech
237 US5634086A Method and apparatus for voice-interactive language instruction
238 US5623578A Speech recognition system allows new vocabulary words to be added without requiring spoken

samples of the words
239 US5799279A Continuous speech recognition of text and commands
240 US5524169A Method and system for location-specific speech recognition
241 US5497447A Speech coding apparatus having acoustic prototype vectors generated by tying to elementary

models and clustering around reference vectors
242 US5590242A Signal bias removal for robust telephone speech recognition
243 US5768603A Method and system for natural language translation
244 US5581655A Method for recognizing speech using linguistically-motivated hidden Markov models
245 US5274739A Product code memory Itakura-Saito (MIS) measure for sound recognition
246 US5748841A Supervised contextual language acquisition system
247 US5649057A Speech recognition employing key word modeling and non-key word modeling
248 US5509104A Speech recognition employing key word modeling and non-key word modeling
249 US5621859A Single tree method for grammar directed, very large vocabulary speech recognizer
250 US5991721A Apparatus and method for processing natural language and apparatus and method for speech

recognition
251 US5864788A Translation machine having a function of deriving two or more syntaxes from one original sentence

and giving precedence to a selected one of the syntaxes
252 US5850627A Apparatuses and methods for training and operating speech recognition systems
253 US5450525A Vehicle accessory control with manual and voice response
254 US5983179A Speech recognition system which turns its voice response on for confirmation when it has been

turned off without confirmation
255 US5764853A Voice recognition device and method using a (GGM) Guaranteed Global minimum Mapping
256 US5867811A Method, an apparatus, a system, a storage device, and a computer readable medium using a

bilingual database including aligned corpora
257 US5907821A Method of computer-based automatic extraction of translation pairs of words from a bilingual text
258 US5752232A Voice activated device and method for providing access to remotely retrieved data
259 US5765132A Building speech models for new words in a multi-word utterance
260 US5819220A Web triggered word set boosting for speech interfaces to the world wide web
261 US5987414A Method and apparatus for selecting a vocabulary sub-set from a speech recognition dictionary for

use in real time automated directory assistance
262 US5749072A Communications device responsive to spoken commands and methods of using same
263 US5983186A Voice-activated interactive speech recognition device and method
264 US6061654A System and method of recognizing letters and numbers by either speech or touch tone recognition

utilizing constrained confusion matrices
265 US5787394A State-dependent speaker clustering for speaker adaptation
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266 US6055498A Method and apparatus for automatic text-independent grading of pronunciation for language in-
struction

267 US5774628A Speaker-independent dynamic vocabulary and grammar in speech recognition
268 US5721808A Method for the composition of noise-resistant hidden Markov models for speech recognition and

speech recognizer using the same
269 US5583965A Methods and apparatus for training and operating voice recognition systems
270 US5963892A Translation apparatus and method for facilitating speech input operation and obtaining correct

translation thereof
271 US5561722A Pattern matching method and pattern recognition apparatus
272 US6085162A Translation system and method in which words are translated by a specialized dictionary and then

a general dictionary
273 US6161083A Example-based translation method and system which calculates word similarity degrees, a priori

probability, and transformation probability to determine the best example for translation
274 US5950157A Method for establishing handset-dependent normalizing models for speaker recognition
275 US5960399A Client/server speech processor/recognizer
276 US6078886A System and method for providing remote automatic speech recognition services via a packet net-

work
277 US6195641B1 Network universal spoken language vocabulary
278 US6125341A Speech recognition system and method
279 US6070140A Speech recognizer
280 US5715367A Apparatuses and methods for developing and using models for speech recognition
281 US7020609B2 Voice activated apparatus for accessing information on the World Wide Web
282 US5860062A Speech recognition apparatus and speech recognition method
283 US5617509A Method, apparatus, and radio optimizing Hidden Markov Model speech recognition
284 US5664058A Method of training a speaker-dependent speech recognizer with automated supervision of training

sufficiency
285 US6266642B1 Method and portable apparatus for performing spoken language translation
286 US6366886B1 System and method for providing remote automatic speech recognition services via a packet net-

work
287 US6453290B1 Method and system for network-based speech recognition
288 US5799065A Call routing device employing continuous speech
289 US7099824B2 Speech recognition system, speech recognition server, speech recognition client, their control

method, and computer readable memory
290 US6463413B1 Speech recognition training for small hardware devices
291 US5970446A Selective noise/channel/coding models and recognizers for automatic speech recognition
292 US6134527A Method of testing a vocabulary word being enrolled in a speech recognition system
293 US6101472A Data processing system and method for navigating a network using a voice command
294 US6061646A Kiosk for multiple spoken languages
295 US6377922B2 Distributed recognition system having multiple prompt-specific and response-specific speech rec-

ognizers
296 US6260012B1 Mobile phone having speaker dependent voice recognition method and apparatus
297 US6192338B1 Natural language knowledge servers as network resources
298 US7203651B2 Voice control system with multiple voice recognition engines
299 US6456974B1 System and method for adding speech recognition capabilities to java
300 US7409349B2 Servers for web enabled speech recognition
301 US7610547B2 Markup language extensions for web enabled recognition
302 US7506022B2 Web enabled recognition architecture
303 US8229753B2 Web server controls for web enabled recognition and/or audible prompting
304 US7003464B2 Dialog recognition and control in a voice browser
305 US7260535B2 Web server controls for web enabled recognition and/or audible prompting for call controls
306 US8311835B2 Assisted multi-modal dialogue
307 US7552055B2 Dialog component re-use in recognition systems

Continued on next page
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308 US9083798B2 Enabling voice selection of user preferences
309 US7917365B2 Synchronizing visual and speech events in a multimodal application
310 US8090584B2 Modifying a grammar of a hierarchical multimodal menu in dependence upon speech command

frequency
311 US9208785B2 Synchronizing distributed speech recognition
312 US7848314B2 VOIP barge-in support for half-duplex DSR client on a full-duplex network
313 US7676371B2 Oral modification of an ASR lexicon of an ASR engine
314 US8145493B2 Establishing a preferred mode of interaction between a user and a multimodal application
315 US8374874B2 Establishing a multimodal personality for a multimodal application in dependence upon attributes

of user interaction
316 US8086463B2 Dynamically generating a vocal help prompt in a multimodal application
317 US7827033B2 Enabling grammars in web page frames
318 US8612230B2 Automatic speech recognition with a selection list
319 US8055504B2 Synchronizing visual and speech events in a multimodal application
320 US8069047B2 Dynamically defining a VoiceXML grammar in an X+V page of a multimodal application
321 US7840409B2 Ordering recognition results produced by an automatic speech recognition engine for a multimodal

application
322 US8938392B2 Configuring a speech engine for a multimodal application based on location
323 US8713542B2 Pausing a VoiceXML dialog of a multimodal application
324 US9208783B2 Altering behavior of a multimodal application based on location
325 US7809575B2 Enabling global grammars for a particular multimodal application
326 US7822608B2 Disambiguating a speech recognition grammar in a multimodal application
327 US8909532B2 Supporting multi-lingual user interaction with a multimodal application
328 US9973450B2 Methods and systems for dynamically updating web service profile information by parsing tran-

scribed message strings
329 US9349367B2 Records disambiguation in a multimodal application operating on a multimodal device
330 US8326636B2 Using a physical phenomenon detector to control operation of a speech recognition engine
331 US8352261B2 Use of intermediate speech transcription results in editing final speech transcription results
332 US8355914B2 Mobile terminal and method for correcting text thereof
333 US8352264B2 Corrective feedback loop for automated speech recognition
334 US8494852B2 Word-level correction of speech input
335 US8676577B2 Use of metadata to post process speech recognition output
336 US8478590B2 Word-level correction of speech input
337 US8626511B2 Multi-dimensional disambiguation of voice commands
338 US8560301B2 Apparatus and method for language expression using context and intent awareness
339 US9858925B2 Using context information to facilitate processing of commands in a virtual assistant
340 US9117447B2 Using event alert text as input to an automated assistant
341 US8799000B2 Disambiguation based on active input elicitation by intelligent automated assistant
342 US10134385B2 Systems and methods for name pronunciation
343 US10176167B2 System and method for inferring user intent from speech inputs
344 US9548066B2 Voice application architecture
345 US9767091B2 Methods for understanding incomplete natural language query
346 US9899020B2 Machine learning dialect identification
347 US10133738B2 Translation confidence scores
348 US9734143B2 Multi-media context language processing
349 US10002125B2 Language model personalization
350 US9805029B2 Predicting future translations
351 US9747283B2 Predicting future translations
352 US10002131B2 Classifying languages for objects and entities
353 US10275459B1 Source language content scoring for localizability
354 US10223356B1 Abstraction of syntax in localization through pre-rendering
355 US10229113B1 Leveraging content dimensions during the translation of human-readable languages
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356 US10261995B1 Semantic and natural language processing for content categorization and routing
357 US10289681B2 Predicting future translations
358 US10013417B2 Classifying languages for objects and entities
359 US10089299B2 Multi-media context language processing
360 US10346537B2 Universal translation
361 US10180935B2 Identifying multiple languages in a content item
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D Supplementary results

D.1 Effect of timing of government funding

Figures D1 and D2 show the effect of timing of government funding (and its division into government interest
and government assignee) on the trajectory indicator.

Figure D1: Timing of government funding. Marginal effects – with 95% confidential intervals – of government
funding on the trajectory indicator (log) at different levels of the variable timing. Patents supported by gov-
ernment funding are in orange, while all the other patents in blue. Predictions are retrieved by specification
(3) in Table 3.

(a) Government interest (b) Government assignee

Figure D2: Timing of government-backed patents. Marginal effects – with 95% confidential intervals –
of government funding on the trajectory indicator (log) at different levels of the variable timing. Patents
supported by federal contractors (government interest) are in green, those with a federal agency or state
department as assignee are in red (government assignee), while all the other patents in blue. Predictions are
retrieved by specifications (4) and (5) in Table 4.
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D.2 Propensity score matching

(a) Government funding

(b) Government interest (c) Government assignee

Figure D3: Covariate balance before (red triangles) and after (green rhombuses) the 1-1 propensity score
matching without replacement.
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D.3 Instrumental variable

To address possible selection bias in our estimations, we design a quasi experiment based on the use of an
instrumental variable. More specifically, we instrument government funding by using the predicted number
of patents connected to defense R&D.

We identify patents related to defense R&D by selecting USPTO patents that received government
funding from the US Department of Defense or have this department (or one of its divisions, such as Army,
Navy, or Air Force) as assignee. Each patent related to defense R&D is then associated to 4-digit CPC classes.
Since each patent may be associated with more than one CPC class, we introduce weights proportional to
the importance of these classes in the patent. Then, we compute the weighted number of patents related to
the US Department of Defense for each 4-digit CPC class. To obtain results that are comparable over time,
we normalized the number of patents associated to defense R&D in each CPC class by the total number of
patents in that class. The resulting indicator can be interpreted as a measure of the importance of defense
R&D in each 4-digit CPC class. Moreover, since we are interested in capturing the predicted number of
patents, we introduce a one-year lag. Therefore, for each 4-digit CPC class i at the time t, we compute:

Predicted defense patents in CPCi,t =
Number of defense-related patentsi,t−1

Number of patentsi,t−1
. (8)

Then, we define the instrumental variable Predicted defense patentsp,t for each patent p with application
year t as the weighted average of Predicted defense patents in CPC i,t over the collection CPCp of 4-digit
CPC classes related to the patent:

Predicted defense patentsp,t =
∑

i∈CPCp

sharei · Predicted defense patents in CPCi,t, (9)

where sharei is the weight of each 4-digit CPC i connected to the patent.
Table D1 reports the results of the first-stage estimations.
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Table D1: First stage - Instrumental variable

Dependent variable:

Government funding Government interest Government assignee

(1) (2) (3)

Predicted defense patents 1.359∗∗∗ 1.165∗∗∗ 0.610∗∗∗
(0.101) (0.094) (0.065)

US university 0.427∗∗∗ 0.428∗∗∗ −0.004∗∗∗
(0.009) (0.009) (0.001)

Timing −0.0003∗∗∗ −0.0002∗∗∗ −0.0003∗∗∗
(0.00004) (0.00004) (0.00002)

Number of claims −0.0001 −0.00002 −0.0002∗∗∗
(0.00004) (0.00004) (0.00002)

Number of inventors 0.001∗∗∗ 0.001∗∗∗ −0.001∗∗∗
(0.0003) (0.0002) (0.0001)

Intercept 0.015∗∗∗ 0.011∗∗∗ 0.013∗∗∗
(0.002) (0.002) (0.001)

3-digit CPC Yes Yes Yes

Observations 114,670 114,670 114,670
R2 0.160 0.170 0.016
Adjusted R2 0.159 0.169 0.016
Residual Std. Error 0.167 0.159 0.089
F Statistic 495.199∗∗∗ 532.877∗∗∗ 43.222∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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D.4 Additional robustness checks

Tables D2 and D3 present the results of econometric estimations with an alternative dependent variable: the
longest path length associate to the patent. In more detail, for each node p, we construct the sub-graph that
includes the node p and all its ancestors and descendants. In such a graph, all possible paths from sources
to sinks must be through p by construction. We then compute the longest path in the sub-graph considering
edge weight wuv, as defined in Section 4. Finally, we associate the length of this path to the node p.

Table D2: Longest path length. Impact of government funding on the longest path length through patents.

Dependent variable:

log(Longest path length)

(1) (2) (3)

Government funding 2.275∗∗∗ 2.057∗∗∗ 3.350∗∗∗
(0.191) (0.206) (0.460)

Government funding*Timing -0.096∗∗∗
(0.022)

US university 0.676∗∗∗ 0.690∗∗∗
(0.237) (0.238)

Timing 0.800∗∗∗ 0.800∗∗∗ 0.803∗∗∗
(0.004) (0.004) (0.004)

Number of claims 0.049∗∗∗ 0.049∗∗∗ 0.049∗∗∗
(0.003) (0.003) (0.003)

Number of inventors -0.261∗∗∗ -0.262∗∗∗ -0.262∗∗∗
(0.018) (0.018) (0.018)

Intercept 25.358∗∗∗ 25.353∗∗∗ 25.308∗∗∗
(0.118) (0.118) (0.119)

3-digit CPC Yes Yes Yes

Observations 114,670 114,670 114,670
R2 0.428 0.428 0.428
Adjusted R2 0.428 0.428 0.428
Residual Std. Error 11.299 11.299 11.297
F Statistic 1301.714∗∗∗ 1272.379∗∗∗ 1245.434∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D3: Longest path length. Impact of different government funding sources (through government as-
signee or grants - government interest statement) on the longest path length through patents.

Dependent variable:

log(Longest path length)

(1) (2) (3) (4) (5) (6)

Government interest 1.976∗∗∗ 0.839∗∗∗ 1.833∗∗∗ 0.848∗∗∗ 1.734∗∗∗
(0.198) (0.226) (0.503) (0.226) (0.521)

Government interest*Timing -0.069∗∗∗ -0.062∗∗
(0.023) (0.024)

Government assignee 4.933∗∗∗ 4.439∗∗∗ 4.271∗∗∗ 5.436∗∗∗ 4.872∗∗∗
(0.405) (0.429) (0.434) (0.851) (0.902)

Government assignee*Timing -0.101∗∗ -0.059
(0.050) (0.052)

US university 1.211∗∗∗ 1.194∗∗∗ 1.212∗∗∗ 1.196∗∗∗
(0.239) (0.239) (0.239) (0.239)

Timing 0.799∗∗∗ 0.800∗∗∗ 0.801∗∗∗ 0.803∗∗∗ 0.801∗∗∗ 0.803∗∗∗
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

Number of claims 0.049∗∗∗ 0.050∗∗∗ 0.049∗∗∗ 0.049∗∗∗ 0.049∗∗∗ 0.049∗∗∗
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Number of inventors -0.261∗∗∗ -0.253∗∗∗ -0.258∗∗∗ -0.258∗∗∗ -0.258∗∗∗ -0.258∗∗∗
(0.018) (0.018) (0.018) (0.018) (0.018) (0.018)

Intercept 25.386∗∗∗ 25.353∗∗∗ 25.308∗∗∗ 25.281∗∗∗ 25.299∗∗∗ 25.279∗∗∗
(0.118) (0.118) (0.118) (0.119) (0.119) (0.119)

3-digit CPC Yes Yes Yes Yes Yes Yes

Observations 114,670 114,670 114,670 114,670 114,670 114,670
R2 0.428 0.428 0.428 0.428 0.428 0.428
Adjusted R2 0.427 0.428 0.428 0.428 0.428 0.428
Residual Std. Error 11.301 11.298 11.295 11.294 11.295 11.294
F Statistic 1300.764∗∗∗ 1301.629∗∗∗ 1245.419∗∗∗ 1219.045∗∗∗ 1218.476∗∗∗ 1193.123∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Tables D4 and D5 summarize the results when we replace direct indicators of government funding with
indirect ones used in the previous literature. In particular, we include independent dummy variables that
detect patents that cite government-funded inventions. In the same vein, we replace the control US university
with the dummy variable citing US university.

Table D4: Citing government funding. Influence on the trajectory of citing government funded patents.

Dependent variable:

log(Trajectory)

(1) (2) (3)

Citing government funding 1.204∗∗∗ 0.995∗∗∗ 1.303∗∗∗
(0.046) (0.056) (0.110)

Timing:citing government funding -0.018∗∗∗
(0.004)

Citing US university 0.412∗∗∗ 0.428∗∗∗
(0.056) (0.056)

Timing 0.494∗∗∗ 0.493∗∗∗ 0.498∗∗∗
(0.002) (0.002) (0.002)

Number of claims 0.039∗∗∗ 0.038∗∗∗ 0.038∗∗∗
(0.002) (0.002) (0.002)

Number of inventors -0.113∗∗∗ -0.114∗∗∗ -0.114∗∗∗
(0.011) (0.011) (0.011)

Intercept 8.536∗∗∗ 8.529∗∗∗ 8.454∗∗∗
(0.077) (0.077) (0.081)

3-digit CPC Yes Yes Yes

Observations 114,670 114,670 114,670
R2 0.437 0.438 0.438
Adjusted R2 0.437 0.437 0.438
Residual Std. Error 7.276 7.275 7.274
F Statistic 3095.255∗∗∗ 3028.102∗∗∗ 2980.272∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D5: Citing government funding. Influence on the trajectory of patents citing inventions with a
government interest statement or government assignees.

Dependent variable:

log(Trajectory)

(1) (2) (3) (4) (5) (6)

Citing gov interest 1.128∗∗∗ 0.498∗∗∗ 0.607∗∗∗ 0.481∗∗∗ 0.260∗∗
(0.047) (0.059) (0.114) (0.059) (0.124)

Timing:citing gov interest -0.006 0.012∗∗∗
(0.004) (0.005)

Citing gov assignee 1.781∗∗∗ 1.358∗∗∗ 1.354∗∗∗ 2.209∗∗∗ 2.347∗∗∗
(0.066) (0.072) (0.072) (0.153) (0.168)

Timing:citing gov assignee -0.048∗∗∗ -0.056∗∗∗
(0.006) (0.007)

Citing US university 0.417∗∗∗ 0.422∗∗∗ 0.448∗∗∗ 0.443∗∗∗
(0.057) (0.057) (0.057) (0.057)

Timing 0.495∗∗∗ 0.499∗∗∗ 0.493∗∗∗ 0.495∗∗∗ 0.499∗∗∗ 0.496∗∗∗
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Number of claims 0.039∗∗∗ 0.039∗∗∗ 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Number of inventors -0.112∗∗∗ -0.109∗∗∗ -0.115∗∗∗ -0.114∗∗∗ -0.114∗∗∗ -0.114∗∗∗
(0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

Intercept 8.567∗∗∗ 8.617∗∗∗ 8.562∗∗∗ 8.539∗∗∗ 8.470∗∗∗ 8.503∗∗∗
(0.078) (0.077) (0.077) (0.081) (0.079) (0.081)

3-digit CPC Yes Yes Yes Yes Yes Yes

Observations 114,670 114,670 114,670 114,670 114,670 114,670
R2 0.437 0.438 0.439 0.439 0.439 0.439
Adjusted R2 0.437 0.438 0.439 0.439 0.439 0.439
Residual Std. Error 7.279 7.273 7.266 7.266 7.264 7.264
F Statistic 3092.791∗∗∗ 3102.593∗∗∗ 2980.869∗∗∗ 2949.544∗∗∗ 2919.599∗∗∗ 2889.547∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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We also estimate the effect of government-funded patents in AI on the number of citations, a widespread
measure of patent relevance. Since the estimates of the effect of government funding on the number of
citations can be affected by endogeneity issues, such as reverse causality and selection bias, we present the
results based on quasi-experimental designs: results of the 1-1 matching procedure are in Tables D6, D7,
and D8, while those resulting from an instrumental variable approach are in Tables D9, D10, and D11. We
count the number of citations in six different ways: considering only citations from patents in our network,
considering citations from all patents in our original sample (USPTO patents granted after 1976), considering
citations received up to five years after the earliest date of publication (both in the network and in the entire
sample), and considering only citations in five years by excluding patents after 2012 since we do not have
a complete record of citations for them (both in the network and in the entire sample). We remove from
controls the timing because it is not necessary for this kind of analysis, which can be agnostic of the network.
We replace this indicator of time evolution with the application year (closer to the time of invention than
the grant year).

Table D6: Number of citations. Influence of government funding on the number of citations - Matching 1-1
without replacement (PS)

Dependent variable:

log(Number of citations)

network all network up all up network all
to 5 years to 5 years 5 years 5 years

(1) (2) (3) (4) (5) (6)

Government funding −0.288∗∗∗ −0.537∗∗∗ −0.215∗∗∗ −0.483∗∗∗ 0.049 −0.110∗∗∗
(0.030) (0.029) (0.026) (0.028) (0.031) (0.031)

US university 0.203∗∗∗ 0.246∗∗∗ 0.148∗∗∗ 0.208∗∗∗ 0.143∗∗∗ 0.163∗∗∗
(0.039) (0.039) (0.035) (0.038) (0.043) (0.043)

Number of claims 0.014∗∗∗ 0.019∗∗∗ 0.011∗∗∗ 0.017∗∗∗ 0.010∗∗∗ 0.015∗∗∗
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Number of inventors 0.050∗∗∗ 0.066∗∗∗ 0.044∗∗∗ 0.062∗∗∗ 0.062∗∗∗ 0.083∗∗∗
(0.008) (0.007) (0.007) (0.007) (0.008) (0.008)

Application year −0.056∗∗∗ −0.089∗∗∗ −0.004∗∗∗ −0.020∗∗∗ 0.019∗∗∗ 0.020∗∗∗
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Constant 114.251∗∗∗ 181.023∗∗∗ 9.002∗∗∗ 42.182∗∗∗ −37.181∗∗∗ −38.520∗∗∗
(3.871) (4.308) (3.025) (3.637) (3.754) (3.859)

3-digit CPC Yes Yes Yes Yes Yes Yes

Observations 7,864 7,864 7,864 7,864 6,140 6,140
R2 0.184 0.305 0.093 0.127 0.115 0.141
Adjusted R2 0.180 0.301 0.088 0.123 0.109 0.136
Residual Std. Error 1.192 1.155 1.053 1.101 1.041 1.025
F Statistic 43.066∗∗∗ 83.676∗∗∗ 19.565∗∗∗ 27.871∗∗∗ 19.727∗∗∗ 25.123∗∗∗

Note: All the models are estimated using OLS on matched patents (1-1 propensity score matching).
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D7: Number of citations. Influence of government interest on the number of citations - Matching 1-1
without replacement (PS)

Dependent variable:

log(Number of citations)

network all network up all up network all
to 5 years to 5 years 5 years 5 years

(1) (2) (3) (4) (5) (6)

Government interest −0.270∗∗∗ −0.500∗∗∗ −0.204∗∗∗ −0.457∗∗∗ 0.060∗ −0.086∗∗∗
(0.032) (0.031) (0.028) (0.029) (0.033) (0.033)

US university 0.186∗∗∗ 0.232∗∗∗ 0.135∗∗∗ 0.201∗∗∗ 0.123∗∗∗ 0.146∗∗∗
(0.040) (0.040) (0.036) (0.039) (0.044) (0.044)

Number of claims 0.014∗∗∗ 0.018∗∗∗ 0.011∗∗∗ 0.016∗∗∗ 0.010∗∗∗ 0.015∗∗∗
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Number of inventors 0.057∗∗∗ 0.073∗∗∗ 0.049∗∗∗ 0.067∗∗∗ 0.064∗∗∗ 0.088∗∗∗
(0.008) (0.008) (0.008) (0.008) (0.009) (0.008)

Application year −0.060∗∗∗ −0.095∗∗∗ −0.006∗∗∗ −0.025∗∗∗ 0.020∗∗∗ 0.019∗∗∗
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Constant 121.321∗∗∗ 193.715∗∗∗ 12.995∗∗∗ 50.948∗∗∗ −39.505∗∗∗ −36.635∗∗∗
(4.248) (4.706) (3.284) (3.956) (4.142) (4.272)

3-digit CPC Yes Yes Yes Yes Yes Yes

Observations 7,194 7,194 7,194 7,194 5,530 5,530
R2 0.192 0.316 0.093 0.126 0.111 0.130
Adjusted R2 0.188 0.313 0.088 0.121 0.104 0.123
Residual Std. Error 1.193 1.155 1.061 1.107 1.051 1.033
F Statistic 41.492∗∗∗ 80.773∗∗∗ 17.843∗∗∗ 25.215∗∗∗ 16.713∗∗∗ 19.988∗∗∗

Note: All the models are estimated using OLS on matched patents (1-1 propensity score matching).
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table D8: Number of citations. Influence of government assignee on the number of citations - Matching 1-1
without replacement (PS)

Dependent variable:

log(Number of citations)

network all network up all up network all
to 5 years to 5 years 5 years 5 years

(1) (2) (3) (4) (5) (6)

Government assignee −0.378∗∗∗ −0.646∗∗∗ −0.264∗∗∗ −0.550∗∗∗ −0.118∗∗ −0.311∗∗∗
(0.054) (0.054) (0.046) (0.051) (0.053) (0.057)

US university 0.481∗∗∗ 0.448∗∗∗ 0.320∗∗ 0.389∗∗ 0.305∗ 0.175
(0.139) (0.153) (0.141) (0.162) (0.166) (0.184)

Number of claims 0.007∗∗∗ 0.013∗∗∗ 0.004∗ 0.011∗∗∗ 0.003 0.009∗∗∗
(0.002) (0.003) (0.002) (0.002) (0.002) (0.003)

Number of inventors 0.051∗∗∗ 0.059∗∗∗ 0.047∗∗∗ 0.057∗∗∗ 0.061∗∗∗ 0.068∗∗∗
(0.017) (0.015) (0.015) (0.015) (0.016) (0.016)

Application year −0.049∗∗∗ −0.070∗∗∗ −0.002 −0.006∗ 0.009∗∗∗ 0.016∗∗∗
(0.003) (0.004) (0.003) (0.003) (0.003) (0.004)

Constant 99.718∗∗∗ 142.174∗∗∗ 4.911 12.860∗∗ −17.129∗∗∗ −31.203∗∗∗
(6.771) (7.496) (5.225) (6.334) (6.300) (7.082)

3-digit CPC Yes Yes Yes Yes Yes Yes

Observations 1,858 1,858 1,858 1,858 1,636 1,636
R2 0.176 0.277 0.099 0.153 0.113 0.158
Adjusted R2 0.160 0.262 0.081 0.136 0.092 0.139
Residual Std. Error 1.131 1.107 0.960 1.021 0.959 0.986
F Statistic 10.533∗∗∗ 18.856∗∗∗ 5.422∗∗∗ 8.877∗∗∗ 5.494∗∗∗ 8.129∗∗∗

Note: All the models are estimated using OLS on matched patents (1-1 propensity score matching).
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D9: Number of citations. Influence of government funding on the number of citations - Instrumental
variable

Dependent variable:

log(Number of citations)

network all network up all up network all
to 5 years to 5 years 5 years 5 years

(1) (2) (3) (4) (5) (6)

Government funding −3.544∗∗∗ −6.389∗∗∗ −1.754∗∗∗ −4.668∗∗∗ −2.165∗∗∗ −5.773∗∗∗
(0.366) (0.525) (0.241) (0.397) (0.345) (0.647)

US university 1.712∗∗∗ 2.950∗∗∗ 0.916∗∗∗ 2.190∗∗∗ 1.024∗∗∗ 2.461∗∗∗
(0.163) (0.235) (0.107) (0.178) (0.144) (0.270)

Number of claims 0.015∗∗∗ 0.020∗∗∗ 0.012∗∗∗ 0.019∗∗∗ 0.010∗∗∗ 0.015∗∗∗
(0.001) (0.001) (0.0004) (0.001) (0.0005) (0.001)

Number of inventors 0.042∗∗∗ 0.056∗∗∗ 0.037∗∗∗ 0.051∗∗∗ 0.052∗∗∗ 0.071∗∗∗
(0.002) (0.003) (0.002) (0.002) (0.003) (0.003)

Application year −0.082∗∗∗ −0.118∗∗∗ −0.027∗∗∗ −0.049∗∗∗ 0.007∗∗∗ 0.009∗∗∗
(0.001) (0.001) (0.0004) (0.001) (0.001) (0.001)

Intercept 165.407∗∗∗ 237.920∗∗∗ 54.039∗∗∗ 99.267∗∗∗ −13.276∗∗∗ −15.873∗∗∗
(1.271) (1.662) (0.904) (1.337) (1.245) (1.890)

3-digit CPC Yes Yes Yes Yes Yes Yes

Observations 114,670 114,670 114,670 114,670 63,100 63,100
F-test 170.1∗∗∗ 170.1∗∗∗ 170.06∗∗∗ 170.1∗∗∗ 67.64∗∗∗ 67.64∗∗∗

Note: All the models are estimated using 2SLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table D10: Number of citations. Influence of government interest on the number of citations - Instrumental
variable

Dependent variable:

log(Number of citations)

network all network up all up network all
to 5 years to 5 years 5 years 5 years

(1) (2) (3) (4) (5) (6)

Government interest −4.064∗∗∗ −7.327∗∗∗ −2.012∗∗∗ −5.353∗∗∗ −2.752∗∗∗ −7.339∗∗∗
(0.444) (0.638) (0.288) (0.485) (0.464) (0.895)

US university 1.939∗∗∗ 3.361∗∗∗ 1.029∗∗∗ 2.490∗∗∗ 1.265∗∗∗ 3.105∗∗∗
(0.197) (0.285) (0.127) (0.216) (0.192) (0.373)

Number of claims 0.015∗∗∗ 0.021∗∗∗ 0.012∗∗∗ 0.019∗∗∗ 0.010∗∗∗ 0.015∗∗∗
(0.001) (0.001) (0.0004) (0.001) (0.0005) (0.001)

Number of inventors 0.043∗∗∗ 0.058∗∗∗ 0.038∗∗∗ 0.053∗∗∗ 0.053∗∗∗ 0.075∗∗∗
(0.002) (0.003) (0.002) (0.002) (0.003) (0.004)

Application year −0.081∗∗∗ −0.116∗∗∗ −0.026∗∗∗ −0.047∗∗∗ 0.008∗∗∗ 0.011∗∗∗
(0.001) (0.001) (0.0004) (0.001) (0.001) (0.001)

Intercept 163.351∗∗∗ 234.213∗∗∗ 53.021∗∗∗ 96.559∗∗∗ −14.764∗∗∗ −19.840∗∗∗
(1.214) (1.603) (0.861) (1.290) (1.213) (1.947)

3-digit CPC Yes Yes Yes Yes Yes Yes

Observations 114,670 114,670 114,670 114,670 63,100 63,100
F-test 148.8∗∗∗ 148.8∗∗∗ 148.77∗∗∗ 148.8∗∗∗ 54.36∗∗∗ 54.36∗∗∗

Note: All the models are estimated using 2SLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D11: Number of citations. Influence of government assignee on the number of citations - Instrumental
variable

Dependent variable:

log(Number of citations)

network all network up all up network all
to 5 years to 5 years 5 years 5 years

(1) (2) (3) (4) (5) (6)

Government assignee −8.343∗∗∗ −15.043∗∗∗ −4.130∗∗∗ −10.991∗∗∗ −3.440∗∗∗ −9.175∗∗∗
(1.095) (1.795) (0.642) (1.327) (0.603) (1.295)

US university 0.164∗∗∗ 0.161∗∗∗ 0.150∗∗∗ 0.152∗∗∗ 0.125∗∗∗ 0.064∗∗
(0.025) (0.032) (0.021) (0.027) (0.026) (0.030)

Number of claims 0.014∗∗∗ 0.018∗∗∗ 0.012∗∗∗ 0.017∗∗∗ 0.009∗∗∗ 0.014∗∗∗
(0.001) (0.001) (0.0004) (0.001) (0.0005) (0.001)

Number of inventors 0.033∗∗∗ 0.041∗∗∗ 0.033∗∗∗ 0.040∗∗∗ 0.046∗∗∗ 0.057∗∗∗
(0.002) (0.003) (0.002) (0.002) (0.003) (0.003)

Application year −0.085∗∗∗ −0.124∗∗∗ −0.028∗∗∗ −0.054∗∗∗ 0.006∗∗∗ 0.004∗∗∗
(0.001) (0.002) (0.001) (0.001) (0.001) (0.001)

Intercept 172.605∗∗∗ 250.898∗∗∗ 57.602∗∗∗ 108.749∗∗∗ −9.995∗∗∗ −7.122∗∗∗
(2.010) (3.049) (1.284) (2.316) (1.562) (2.713)

3-digit CPC Yes Yes Yes Yes Yes Yes

Observations 114,670 114,670 114,670 114,670 63,100 63,100
F-test 75.1∗∗∗ 75.1∗∗∗ 75.1∗∗∗ 75.1∗∗∗ 47.89∗∗∗ 47.89∗∗∗

Note: All the models are estimated using 2SLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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To further test the relevance of funding timing, we introduce the forward trajectory indicator w+
p , where

p is a patent, defined in Equation 2. Results are reported in Tables D12 and D13.

Table D12: Forward trajectory indicator. Influence of government funding on the forward trajectory.

Dependent variable:

log(Forward trajectory)

(1) (2) (3)

Government funding 1.243∗∗∗ 1.128∗∗∗ 2.001∗∗∗
(0.131) (0.146) (0.266)

Government funding*Timing -0.065∗∗∗
(0.011)

US university 0.356∗∗ 0.366∗∗
(0.164) (0.164)

Timing -0.204∗∗∗ -0.204∗∗∗ -0.202∗∗∗
(0.002) (0.002) (0.002)

Number of claims 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗
(0.002) (0.002) (0.002)

Number of inventors -0.131∗∗∗ -0.132∗∗∗ -0.132∗∗∗
(0.011) (0.011) (0.011)

Intercept 8.456∗∗∗ 8.454∗∗∗ 8.423∗∗∗
(0.078) (0.078) (0.078)

3-digit CPC Yes Yes Yes

Observations 114,670 114,670 114,670
R2 0.150 0.150 0.150
Adjusted R2 0.150 0.150 0.150
Residual Std. Error 7.236 7.236 7.235
F Statistic 401.026∗∗∗ 392.002∗∗∗ 384.002∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D13: Forward trajectory indicator. Influence on the forward trajectory of patents with a government
interest statement or government assignees.

Dependent variable:

log(Forward trajectory)

(1) (2) (3) (4) (5) (6)

Government interest 1.028∗∗∗ 0.428∗∗∗ 0.958∗∗∗ 0.446∗∗∗ 0.618∗∗
(0.132) (0.155) (0.283) (0.155) (0.291)

Government interest*Timing -0.037∗∗∗ -0.012
(0.011) (0.012)

Government assignee 2.542∗∗∗ 2.291∗∗∗ 2.201∗∗∗ 4.365∗∗∗ 4.255∗∗∗
(0.319) (0.336) (0.337) (0.540) (0.565)

Government assignee*Timing -0.210∗∗∗ -0.202∗∗∗
(0.029) (0.030)

US university 0.663∗∗∗ 0.654∗∗∗ 0.663∗∗∗ 0.660∗∗∗
(0.166) (0.166) (0.166) (0.166)

Timing -0.204∗∗∗ -0.204∗∗∗ -0.203∗∗∗ -0.202∗∗∗ -0.202∗∗∗ -0.202∗∗∗
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Number of claims 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Number of inventors -0.131∗∗∗ -0.127∗∗∗ -0.130∗∗∗ -0.130∗∗∗ -0.130∗∗∗ -0.130∗∗∗
(0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

Intercept 8.473∗∗∗ 8.457∗∗∗ 8.433∗∗∗ 8.418∗∗∗ 8.415∗∗∗ 8.411∗∗∗
(0.078) (0.078) (0.078) (0.078) (0.078) (0.078)

3-digit CPC Yes Yes Yes Yes Yes Yes

Observations 114,670 114,670 114,670 114,670 114,670 114,670
R2 0.150 0.150 0.150 0.150 0.151 0.151
Adjusted R2 0.149 0.150 0.150 0.150 0.150 0.150
Residual Std. Error 7.237 7.236 7.234 7.234 7.233 7.233
F Statistic 400.513∗∗∗ 400.164∗∗∗ 383.594∗∗∗ 375.723∗∗∗ 375.500∗∗∗ 367.933∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Tables D14 and D15 present results for a sub-sample of patents. We select patents using only the criteria
suggested by the WIPO (2019) report on artificial intelligence inventions. The sample includes 111,525
patents. In Tables D16 and D17, instead, we select only patents granted after 1980 (not included).

Table D14: Sample selection. Influence of government funding on the trajectory. Patents belong to a
sub-sample of AI inventions.

Dependent variable:

log(Trajectory)

(1) (2) (3)

Government funding 1.114∗∗∗ 1.040∗∗∗ 1.860∗∗∗
(0.134) (0.148) (0.265)

Government funding*Timing -0.061∗∗∗
(0.011)

US university 0.230 0.235
(0.167) (0.167)

Timing 0.500∗∗∗ 0.500∗∗∗ 0.502∗∗∗
(0.002) (0.002) (0.002)

Number of claims 0.042∗∗∗ 0.042∗∗∗ 0.042∗∗∗
(0.002) (0.002) (0.002)

Number of inventors -0.103∗∗∗ -0.103∗∗∗ -0.103∗∗∗
(0.012) (0.012) (0.012)

Intercept 8.772∗∗∗ 8.770∗∗∗ 8.741∗∗∗
(0.080) (0.079) (0.080)

3-digit CPC Yes Yes Yes

Observations 111,525 111,525 111,525
R2 0.432 0.432 0.432
Adjusted R2 0.432 0.432 0.432
Residual Std. Error 7.331 7.331 7.330
F Statistic 2984.451∗∗∗ 2916.457∗∗∗ 2861.327∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D15: Sample selection. Influence on the trajectory of patents with a government interest statement
or government assignees. Patents belong to a sub-sample of AI inventions.

Dependent variable:

log(Trajectory)

(1) (2) (3) (4) (5) (6)

Government interest 0.915∗∗∗ 0.415∗∗∗ 0.905∗∗∗ 0.436∗∗∗ 0.523∗
(0.135) (0.158) (0.282) (0.157) (0.290)

Government interest*Timing -0.034∗∗∗ -0.006
(0.012) (0.012)

Government assignee 2.257∗∗∗ 2.012∗∗∗ 1.929∗∗∗ 4.274∗∗∗ 4.218∗∗∗
(0.323) (0.341) (0.342) (0.541) (0.565)

Government assignee*Timing -0.230∗∗∗ -0.225∗∗∗
(0.030) (0.031)

US university 0.502∗∗∗ 0.491∗∗∗ 0.502∗∗∗ 0.500∗∗∗
(0.168) (0.169) (0.168) (0.169)

Timing 0.499∗∗∗ 0.500∗∗∗ 0.500∗∗∗ 0.501∗∗∗ 0.501∗∗∗ 0.501∗∗∗
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Number of claims 0.042∗∗∗ 0.043∗∗∗ 0.043∗∗∗ 0.043∗∗∗ 0.043∗∗∗ 0.043∗∗∗
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Number of inventors -0.103∗∗∗ -0.099∗∗∗ -0.101∗∗∗ -0.101∗∗∗ -0.102∗∗∗ -0.102∗∗∗
(0.012) (0.012) (0.012) (0.012) (0.012) (0.012)

Intercept 8.788∗∗∗ 8.773∗∗∗ 8.752∗∗∗ 8.739∗∗∗ 8.732∗∗∗ 8.730∗∗∗
(0.080) (0.080) (0.080) (0.080) (0.080) (0.080)

3-digit CPC Yes Yes Yes Yes Yes Yes

Observations 111,525 111,525 111,525 111,525 111,525 111,525
R2 0.432 0.432 0.432 0.432 0.432 0.432
Adjusted R2 0.431 0.432 0.432 0.432 0.432 0.432
Residual Std. Error 7.332 7.331 7.330 7.330 7.328 7.328
F Statistic 2981.144∗∗∗ 2985.782∗∗∗ 2854.623∗∗∗ 2798.106∗∗∗ 2803.314∗∗∗ 2745.277∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D16: Patents granted after 1980. Influence of government funding on the trajectory. We select only
patents granted after 1980.

Dependent variable:

log(Trajectory)

(1) (2) (3)

Government funding 1.104∗∗∗ 1.008∗∗∗ 1.707∗∗∗
(0.130) (0.144) (0.257)

Government funding*Timing -0.051∗∗∗
(0.011)

US university 0.295∗ 0.298∗
(0.162) (0.162)

Timing 0.516∗∗∗ 0.516∗∗∗ 0.517∗∗∗
(0.002) (0.002) (0.002)

Number of claims 0.046∗∗∗ 0.046∗∗∗ 0.046∗∗∗
(0.002) (0.002) (0.002)

Number of inventors -0.092∗∗∗ -0.093∗∗∗ -0.093∗∗∗
(0.011) (0.011) (0.011)

Intercept 8.168∗∗∗ 8.165∗∗∗ 8.141∗∗∗
(0.077) (0.077) (0.077)

3-digit CPC Yes Yes Yes

Observations 113,835 113,835 113,835
R2 0.453 0.453 0.453
Adjusted R2 0.452 0.452 0.452
Residual Std. Error 7.144 7.144 7.143
F Statistic 3353.781∗∗∗ 3277.453∗∗∗ 3214.805∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D17: Patents granted after 1980. Influence on the trajectory of patents with a government interest
statement or government assignees. We select only patents granted after 1980.

Dependent variable:

log(Trajectory)

Government interest 0.954∗∗∗ 0.478∗∗∗ 0.942∗∗∗ 0.489∗∗∗ 0.612∗∗
(0.132) (0.153) (0.273) (0.153) (0.280)

Government interest*Timing -0.032∗∗∗ -0.008
(0.011) (0.012)

Government assignee 2.108∗∗∗ 1.821∗∗∗ 1.743∗∗∗ 3.837∗∗∗ 3.756∗∗∗
(0.319) (0.336) (0.337) (0.541) (0.564)

Government assignee*Timing -0.197∗∗∗ -0.191∗∗∗
(0.029) (0.030)

US university 0.528∗∗∗ 0.518∗∗∗ 0.531∗∗∗ 0.528∗∗∗
(0.164) (0.164) (0.164) (0.164)

Timing 0.515∗∗∗ 0.516∗∗∗ 0.516∗∗∗ 0.517∗∗∗ 0.517∗∗∗ 0.517∗∗∗
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Number of claims 0.046∗∗∗ 0.047∗∗∗ 0.046∗∗∗ 0.046∗∗∗ 0.046∗∗∗ 0.046∗∗∗
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Number of inventors -0.092∗∗∗ -0.089∗∗∗ -0.091∗∗∗ -0.091∗∗∗ -0.091∗∗∗ -0.091∗∗∗
(0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

Intercept 8.181∗∗∗ 8.172∗∗∗ 8.149∗∗∗ 8.137∗∗∗ 8.133∗∗∗ 8.130∗∗∗
(0.077) (0.077) (0.077) (0.077) (0.077) (0.077)

3-digit CPC Yes Yes Yes Yes Yes Yes

Observations 113,835 113,835 113,835 113,835 113,835 113,835
R2 0.452 0.452 0.453 0.453 0.453 0.453
Adjusted R2 0.452 0.452 0.452 0.452 0.453 0.453
Residual Std. Error 7.145 7.144 7.143 7.143 7.142 7.142
F Statistic 3350.587∗∗∗ 3354.324∗∗∗ 3207.717∗∗∗ 3144.336∗∗∗ 3148.587∗∗∗ 3083.619∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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We also change regression controls to test the robustness of results. Tables D18 and D19 show estimates
in which we control for worldwide-university assignees instead of US-university assignees. Finally, Tables
D20 and D21 present the effect of government funding on the trajectory when we control also for the number
of patents’ backward citations.

Table D18: University. Influence of government funding on the trajectory when we control for inventions
assigned to worldwide universities.

Dependent variable:

log(Trajectory)

(1) (2) (3)

Government funding 1.184∗∗∗ 1.486∗∗∗ 2.335∗∗∗
(0.132) (0.139) (0.257)

Government funding*Timing -0.063∗∗∗
(0.011)

University -0.988∗∗∗ -0.982∗∗∗
(0.114) (0.114)

Timing 0.503∗∗∗ 0.503∗∗∗ 0.505∗∗∗
(0.002) (0.002) (0.002)

Number of claims 0.043∗∗∗ 0.043∗∗∗ 0.043∗∗∗
(0.002) (0.002) (0.002)

Number of inventors -0.106∗∗∗ -0.101∗∗∗ -0.101∗∗∗
(0.011) (0.011) (0.011)

Intercept 8.594∗∗∗ 8.620∗∗∗ 8.590∗∗∗
(0.078) (0.078) (0.078)

3-digit CPC Yes Yes Yes

Observations 114,670 114,670 114,670
R2 0.435 0.435 0.435
Adjusted R2 0.435 0.435 0.435
Residual Std. Error 7.292 7.290 7.289
F Statistic 3078.115∗∗∗ 3017.297∗∗∗ 2958.976∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D19: University. Influence on the trajectory of patents with a government interest statement or
government assignees when we control for inventions assigned to worldwide universities.

Dependent variable:

log(Trajectory)

(1) (2) (3) (4) (5) (6)

Government interest 0.983∗∗∗ 0.996∗∗∗ 1.565∗∗∗ 1.016∗∗∗ 1.192∗∗∗
(0.134) (0.146) (0.272) (0.146) (0.279)

Government interest*Timing -0.040∗∗∗ -0.012
(0.011) (0.012)

Government assignee 2.322∗∗∗ 1.699∗∗∗ 1.604∗∗∗ 3.971∗∗∗ 3.859∗∗∗
(0.321) (0.338) (0.339) (0.537) (0.561)

Government assignee*Timing -0.230∗∗∗ -0.222∗∗∗
(0.030) (0.031)

University -0.851∗∗∗ -0.857∗∗∗ -0.850∗∗∗ -0.852∗∗∗
(0.115) (0.115) (0.115) (0.115)

Timing 0.503∗∗∗ 0.503∗∗∗ 0.503∗∗∗ 0.504∗∗∗ 0.504∗∗∗ 0.505∗∗∗
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Number of claims 0.043∗∗∗ 0.043∗∗∗ 0.043∗∗∗ 0.043∗∗∗ 0.043∗∗∗ 0.043∗∗∗
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Number of inventors -0.106∗∗∗ -0.102∗∗∗ -0.100∗∗∗ -0.100∗∗∗ -0.100∗∗∗ -0.100∗∗∗
(0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

Intercept 8.610∗∗∗ 8.597∗∗∗ 8.608∗∗∗ 8.592∗∗∗ 8.588∗∗∗ 8.584∗∗∗
(0.078) (0.078) (0.078) (0.078) (0.078) (0.079)

3-digit CPC Yes Yes Yes Yes Yes Yes

Observations 114,670 114,670 114,670 114,670 114,670 114,670
R2 0.435 0.435 0.435 0.435 0.436 0.436
Adjusted R2 0.435 0.435 0.435 0.435 0.435 0.435
Residual Std. Error 7.294 7.293 7.290 7.290 7.288 7.288
F Statistic 3074.472∗∗∗ 3078.966∗∗∗ 2950.681∗∗∗ 2891.702∗∗∗ 2897.804∗∗∗ 2837.505∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D20: Number of backward citations. Influence of government funding on the trajectory when we
control for the number of backward citations.

Dependent variable:

log(Trajectory)

(1) (2) (3)

Government funding 1.197∗∗∗ 1.104∗∗∗ 1.948∗∗∗
(0.132) (0.147) (0.263)

Government funding*Timing -0.063∗∗∗
(0.011)

US university 0.291∗ 0.300∗
(0.166) (0.166)

Timing 0.499∗∗∗ 0.499∗∗∗ 0.501∗∗∗
(0.002) (0.002) (0.002)

Number of claims 0.041∗∗∗ 0.041∗∗∗ 0.041∗∗∗
(0.002) (0.002) (0.002)

Number of inventors -0.110∗∗∗ -0.110∗∗∗ -0.110∗∗∗
(0.011) (0.011) (0.011)

Number of backward citations 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗
(0.000) (0.000) (0.000)

Intercept 8.642∗∗∗ 8.640∗∗∗ 8.610∗∗∗
(0.078) (0.078) (0.078)

3-digit CPC Yes Yes Yes

Observations 114,670 114,670 114,670
R2 0.436 0.436 0.436
Adjusted R2 0.435 0.435 0.435
Residual Std. Error 7.288 7.288 7.287
F Statistic 3012.269∗∗∗ 2945.150∗∗∗ 2891.006∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D21: Number of backward citations. Influence on the trajectory of patents with a government interest
statement or government assignees when we control for the number of backward citations.

Dependent variable:

log(Trajectory)

(1) (2) (3) (4) (5) (6)

Government interest 0.997∗∗∗ 0.467∗∗∗ 0.984∗∗∗ 0.487∗∗∗ 0.611∗∗
(0.134) (0.157) (0.281) (0.156) (0.288)

Government interest*Timing -0.036∗∗∗ -0.009
(0.012) (0.012)

Government assignee 2.333∗∗∗ 2.057∗∗∗ 1.969∗∗∗ 4.303∗∗∗ 4.224∗∗∗
(0.321) (0.338) (0.340) (0.537) (0.562)

Government assignee*Timing -0.228∗∗∗ -0.222∗∗∗
(0.030) (0.031)

US university 0.570∗∗∗ 0.561∗∗∗ 0.570∗∗∗ 0.568∗∗∗
(0.167) (0.168) (0.167) (0.168)

Timing 0.499∗∗∗ 0.499∗∗∗ 0.500∗∗∗ 0.501∗∗∗ 0.501∗∗∗ 0.501∗∗∗
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Number of claims 0.041∗∗∗ 0.042∗∗∗ 0.041∗∗∗ 0.041∗∗∗ 0.041∗∗∗ 0.041∗∗∗
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Number of inventors -0.109∗∗∗ -0.106∗∗∗ -0.108∗∗∗ -0.108∗∗∗ -0.108∗∗∗ -0.108∗∗∗
(0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

Number of backward citations 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Intercept 8.658∗∗∗ 8.645∗∗∗ 8.622∗∗∗ 8.608∗∗∗ 8.603∗∗∗ 8.600∗∗∗
(0.078) (0.078) (0.078) (0.078) (0.078) (0.078)

3-digit CPC Yes Yes Yes Yes Yes Yes

Observations 114,670 114,670 114,670 114,670 114,670 114,670
R2 0.435 0.436 0.436 0.436 0.436 0.436
Adjusted R2 0.435 0.435 0.435 0.436 0.436 0.436
Residual Std. Error 7.290 7.289 7.287 7.287 7.285 7.285
F Statistic 3008.681∗∗∗ 3012.962∗∗∗ 2883.873∗∗∗ 2828.293∗∗∗ 2833.315∗∗∗ 2776.047∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D22: Weighted average of lagged 3-digit CPC growth. Influence of government funding on the trajec-
tory when we control for weighted average of one-year lagged 3-digit CPC growth over the previous three
years.

Dependent variable:

log(Trajectory)

(1) (2) (3)

Government funding 1.061∗∗∗ 1.000∗∗∗ 1.923∗∗∗
(0.130) (0.144) (0.258)

Government funding*Timing -0.068∗∗∗
(0.011)

US university 0.188 0.198
(0.161) (0.161)

Timing 0.540∗∗∗ 0.540∗∗∗ 0.542∗∗∗
(0.002) (0.002) (0.002)

Nb claims 0.038∗∗∗ 0.038∗∗∗ 0.038∗∗∗
(0.002) (0.002) (0.002)

Inventors number -0.078∗∗∗ -0.078∗∗∗ -0.078∗∗∗
(0.011) (0.011) (0.011)

Avg CPC growth ratet−1 6.676∗∗∗ 6.675∗∗∗ 6.678∗∗∗
(0.079) (0.079) (0.079)

Intercept 7.208∗∗∗ 7.207∗∗∗ 7.174∗∗∗
(0.075) (0.075) (0.076)

CPC 3d Yes Yes Yes

Observations 114,670 114,670 114,670
R2 0.461 0.461 0.461
Adjusted R2 0.460 0.460 0.461
Residual Std. Error 7.125 7.125 7.123
F Statistic 3312.803∗∗∗ 3239.197∗∗∗ 3178.929∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D23: Weighted average of lagged 3-digit CPC growth. Influence on the trajectory of patents with a
government interest statement or government assignees when we control for weighted average of one-year
lagged 3-digit CPC growth over the previous three years.

Dependent variable:

log(Trajectory)

(1) (2) (3) (4) (5) (6)

Government interest 0.887∗∗∗ 0.454∗∗∗ 1.096∗∗∗ 0.475∗∗∗ 0.707∗∗
(0.131) (0.154) (0.274) (0.153) (0.282)

Government interest*Timing -0.045∗∗∗ -0.016
(0.012) (0.012)

Government assignee 2.034∗∗∗ 1.766∗∗∗ 1.657∗∗∗ 4.155∗∗∗ 4.007∗∗∗
(0.319) (0.336) (0.337) (0.537) (0.562)

Government assignee*Timing -0.242∗∗∗ -0.231∗∗∗
(0.031) (0.032)

US university 0.428∗∗∗ 0.416∗∗ 0.428∗∗∗ 0.424∗∗∗
(0.163) (0.164) (0.163) (0.163)

Timing 0.540∗∗∗ 0.540∗∗∗ 0.540∗∗∗ 0.541∗∗∗ 0.541∗∗∗ 0.542∗∗∗
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Nb claims 0.038∗∗∗ 0.039∗∗∗ 0.038∗∗∗ 0.038∗∗∗ 0.039∗∗∗ 0.039∗∗∗
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Inventors number -0.078∗∗∗ -0.074∗∗∗ -0.077∗∗∗ -0.077∗∗∗ -0.077∗∗∗ -0.077∗∗∗
(0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

Avg CPC growth ratet−1 6.681∗∗∗ 6.675∗∗∗ 6.670∗∗∗ 6.672∗∗∗ 6.674∗∗∗ 6.675∗∗∗
(0.079) (0.079) (0.079) (0.079) (0.079) (0.079)

Intercept 7.221∗∗∗ 7.211∗∗∗ 7.193∗∗∗ 7.175∗∗∗ 7.171∗∗∗ 7.166∗∗∗
(0.075) (0.075) (0.075) (0.076) (0.075) (0.076)

CPC 3d Yes Yes Yes Yes Yes Yes

Observations 114,670 114,670 114,670 114,670 114,670 114,670
R2 0.460 0.461 0.461 0.461 0.461 0.461
Adjusted R2 0.460 0.460 0.461 0.461 0.461 0.461
Residual Std. Error 7.126 7.125 7.124 7.124 7.122 7.121
F Statistic 3309.556∗∗∗ 3313.671∗∗∗ 3171.309∗∗∗ 3109.185∗∗∗ 3117.085∗∗∗ 3053.601∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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