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Abstract
Military Research and Development (R&D) expenditures arguably represent
one of the main innovation policy levers for US policy makers. They are
sizeable, with a clear-cut public purpose (national defense) and with the gov-
ernment being their exclusive buyer. Exploiting a longitudinal dataset linking
public R&D obligations to private R&D expenditures for US states, we inves-
tigate the impact of defense R&D on privately-financed R&D. To address po-
tential endogeneity in the allocation of funds, we use an instrumental variable
identification strategy leveraging the differential exposure of US states to na-
tional shocks in federal military R&D. We document considerable "crowding-
in" effects with elasticities in the 0.11-0.14 range. These positive effects extend
also to the labor market, when focusing on employment in selected R&D in-
tensive industries and especially for engineers.
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1 Introduction

Firms’ innovation activities play a crucial role in fostering productivity and eco-
nomic growth (Nelson and Winter, 1982; Dosi et al., 1988; Romer, 1990; Aghion
and Howitt, 1992; Dosi et al., 2010). Yet, R&D underinvestment is a well docu-
mented feature of contemporary economies, and governments are seeking new
ways to boost research in the private sector (Bloom et al., 2019). The large presence
of knowledge spillovers makes social returns to R&D considerably higher than
private ones, thus, resulting in lower R&D efforts than the socially desired level
(Nelson, 1959; Arrow, 1962; Lucking et al., 2019). This is exacerbated by financial
constraints on innovative firms, by the inherent uncertainty associated to research
investments as well as other types of barriers to innovation (Hall and Lerner, 2010;
D’Este et al., 2012; Garicano and Steinwender, 2016; Pellegrino and Savona, 2017).
Against this background, the effectiveness of public support in stimulating private
R&D expenditures is subject to large empirical and theoretical debates and shall
not be taken for granted (see e.g., David et al., 2000; Becker, 2015, for surveys on
the topic). In this work, we contribute to these debates providing empirical ev-
idence about the impact of defense-related R&D funded by the US government,
and empirically assess whether it stimulates or substitutes privately-financed and
conducted R&D.

Especially in the US, among different types of non-conventional innovation
policies, the experience of public support to military R&D appears to be particu-
larly relevant (Mowery, 2010, 2012). Historically, defense R&D has been the largest
component of federal R&D spending and promoted a wide range of civilian inno-
vations (cf. Section 2.1). However, much of the empirical evidence on the impact
of defense R&D is anecdotal and based on historical case studies (Nelson, 1982;
Mazzucato, 2015; Foray et al., 2012; Azoulay et al., 2019), while quantitative econo-
metric assessments are relatively few and rarely focused on the estimation of causal
effects.1 As a first notable exception, Moretti et al. (2019) estimate an elasticity of

1Early studies investigating the effectiveness of public R&D in promoting private R&D and
innovation lacked a causal perspective (Mansfield and Switzer, 1984; Lichtenberg, 1984, 1987).
More recently, empirical papers have identified causal effects of R&D support for selected public
agencies. Some examples include: Howell (2017), Azoulay et al. (2019) and Gross and Sampat
(2020) for the US; Santoleri et al. (2020) for Europe; Bronzini and Iachini (2014) for Italy and Moretti
et al. (2019) for a panel of OECD countries and industries. At the theoretical level, Dosi et al. (2020)
test mission-oriented policies in a macroeconomic agent-based model and find positive effects on
innovation, productivity and GDP growth.
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public R&D to private R&D in a panel of countries and industries, using defense-
related R&D as an instrumental variable for public R&D. Howell et al. (2021) focus
on a "bottom-up" reform of the Air Force SBIR programme that allowed defense
contractors to propose research ideas. Finally, Gross and Sampat (2020) analyze
the long run impact of the Office of Scientific Research and Development (OSRD), a
large mission-driven organization supporting R&D during World War II in the US.
They find long-lasting impacts in the post-war period on the direction of patenting
and on the rise of geographical technology clusters.

We contribute to the existing literature by adopting a macro-regional perspective
focusing on US states as our unit of analysis.2 To the best of our knowledge, this
is the first study estimating region-wide effects. For instance, Moretti et al. (2019)
document positive elasticities at the industry-country level, thus, incorporating
spillovers that occur within-sector and across countries. Our estimated parameter,
instead, embeds local effects, including also for R&D externalities among different
sectors and type of performers. This is an important advantage given the theoretical
relevance of agglomeration mechanisms and localized knowledge spillovers (cf.
Section 2.2). Furthermore, we are able to identify employment effects that remained
overlooked in the current literature.

In our investigation we combine different data sources to assemble a longitudi-
nal dataset that associates, at the US state-level, defense and non-defense federal
R&D obligations to non-federally funded private R&D expenditures for the period
1968-2017, as well as to high-tech employment for the period 1998-2018. We then
exploit the geographical and temporal variations in our data to estimate the elastic-
ity of non-federally funded private R&D investment to defense R&D expenditures
employing panel fixed effect regressions.

Endogeneity problems may arise in this setting primarily because military funds
for R&D are not randomly assigned geographically. Their allocation may well be
driven by characteristics that likely determine the amount of private R&D con-
ducted in a given state. To address endogeneity concerns and infer causal effects
we use a recently developed identification strategy that builds on differential state
exposures to national spending shocks (Nakamura and Steinsson, 2014; Guren
et al., 2020). More specifically, we leverage two inherent characteristic of defense
R&D funding: (i) as for general military procurement, changes in national military

2In this respect, our work links to the macroeconomic literature on regional and local effects of
public spending (Fishback and Kachanovskaya, 2015; Auerbach et al., 2020; Bernardini et al., 2020).
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R&D obligations are arguably exogenous to the business cycle and to producitivity
levels, being driven by geopolitical events (Ramey, 2011; Moretti et al., 2019); (ii)
the total R&D funds assigned to each state are differently sensitive (with respect to
other states) to changes in national R&D budget. Drawing upon these two facts,
we instrument changes in state-level defense R&D obligations using variations in
national defense R&D obligations interacted with state dummies.

The empirical results show that federally-financed military R&D crowds-in
privately-funded R&D. In particular, IV estimates are systematically higher than
OLS with elasticities in the range 0.11% - 0.14% over a 4-5 year horizon. This sug-
gests that the final impact of public defense R&D on total R&D significantly exceeds
its dollar value. Such stimulus also translates to employment in R&D-intensive in-
dustries and in particular for engineering occupations with elasticities between
0.05% - 0.1%. Our results are robust to a series of tests and alternative specifica-
tions including the presence of weak instruments; the inclusion of other innovation
policy variables; measurement errors; corrections for outliers and missing values.

The rest of the paper is organized as follows: Section 2 provides some his-
torical and theoretical backgrounds regarding defense R&D; Section 3 describes
our dataset; Section 4 presents the econometric specification and the identifica-
tion strategy while Section 5 presents and discusses the results; finally, Section 6
concludes.

2 Historical and theoretical backgrounds

In this section we first discuss the historical role played by R&D financing from
the Department of Defense (DoD) in shaping innovation in the US economy (cf.
Section 2.1). Then, we present an overview of the literature focusing on the main
theoretical mechanisms underlying crowding-in (or crowing-out) effects of public
R&D, with a specific emphasis on the characteristics of military R&D (cf. Section
2.2).

2.1 Defense R&D and innovation in the US since World War II

Defense R&D has been historically the major component of US federal R&D spend-
ing (with a share raging from 40% to 60%, cf. Figure 1). Right from the beginning,
its focus has been on the creation of an industrial base to support military innova-

4



tion and build technological superiority for the US. Several historical studies have
pointed out that public defense R&D took a central role in the US system of innova-
tion since World War II, substantially affecting technology discovery and diffusion
in various industries (see e.g., Nelson and Winter, 1982; Alic et al., 1992; Ruttan,
2006; Mowery, 2010; Block and Keller, 2015; Mazzucato, 2015).

In 1941, the Roosvelt administration created the Office of Scientific Research
and Development (OSRD) aimed at coordinating and supporting R&D efforts in
areas that were considered strategic during wartime, such as weapon development,
medicine or transport and communication. This represented an unprecedented
change in US innovation policies, both in terms of the scale of R&D spending and
in the way of supporting science through external contracts (Gross and Sampat,
2020). Research financed by the OSRD fostered major scientific discoveries that
later became of utmost societal importance, including, for instance, antibiotics,
atomic energy and electrical computing. Moreover, it fostered the creation of a
national R&D infrastructure made by federally funded labs, many of which located
in universities or private corporations (Kleinman, 1995; Westwick, 2003; Block and
Keller, 2015; Gross and Sampat, 2020).3

During the cold war, military R&D spending further expanded its influence,
acting as a de facto industrial policy (Moretti et al., 2019). More specifically, public
defense R&D has been interpreted as a particular example of "mission-oriented"
innovation policy, being concerned with the achievement of well-defined techno-
logical objectives defined by the funding entities (Mowery, 2010; Mazzucato, 2015).
Several innovations made by defense scientists during the post-war period fostered
civilian spinoffs in a wide range of fields such as commercial aircrafts, information
technologies, semiconductors and satellite communications (Nelson, 1982; Block
and Keller, 2015). It has been also argued that research funded by defense agencies
promoted the emergence and diffusion of radical innovations and general purpose
technologies (Ruttan, 2006; Mazzucato, 2015).4 Against this background, govern-
ment procurement represented a key element of the "innovation model" of defense
agencies. Often R&D financing was complemented by government purchases of
technologies and products developed by contractors. In this respect, the DoD acted

3Consistently, Gross and Sampat (2020) empirically show that OSRD-supported research con-
tributed to shaping the direction and location of US inventive activity in the postwar period.

4As an illustrative example, consider the ARPANET project led by the DARPA agency.
ARPANET is widely seen as the ancestor of the Internet (Mowery, 2010). For a recent discussion of
the DARPA model see Azoulay et al. (2019).
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as "experimental user", providing market demand that allowed firms to survive and
select the most promising product varieties, thus, curbing the uncertainties associ-
ated to the new technology (Malerba et al., 2007; Mowery, 2010).5 Despite achieving
unquestionable successes in several fields, there were also instances where the ap-
plication of military technologies to the civilian sector failed (e.g., the Concorde
supersonic aircraft) or turned out to be costly and long-delayed (e.g., the commer-
cialization of the microwave, a spin-off of radar technology, took about 20 years
Alic et al., 1992). In some specific cases – such as the focus by the Navy on light
water nuclear reactors (Cowan, 1990) or the Air Force programs for the develop-
ment of numerically controlled machine tools (Stowsky, 1992) – the effects of DoD
interventions became even detrimental, distorting R&D efforts away from the most
promising technological trajectories.

During the 90s, after the end of the cold war, the share of defense R&D declined,
albeit still accounting for a large proportion (about 40%) of total federal spending.
Between 2001 and 2010, in the aftermath of the 9/11 terrorist attacks, DoD financ-
ing of R&D experimented a new upswing, driven by the outbreak of conflicts in
Afghanistan and Iraq. In recent policy debates (Cox et al., 2014; Griffin, 2019),
concerns were raised about the innovative performances of the US defense sector
and the ability of the DoD to keep acting as major financier of breakthrough ideas.
Howell et al. (2021) show that, since 1990, defense R&D spending has become more
concentrated in few large contractors with declining innovation rates.

2.2 Crowding-in and crowding-out effects of military R&D: mech-
anisms at play

The innovation literature has emphasized different theoretical mechanisms through
which public funding may foster (or displace) R&D investments of private compa-
nies6

For a single firm, receiving a public grant could stimulate additional R&D
spending if its innovative activities are financially constrained (this is particularly

5For instance, in the early phase of the semiconductor industry, government demand offered a
niche market for transistors, supporting major technology advances (Malerba et al., 2007).

6Given the focus of our paper, the discussion in this section will centre on spillovers that affect
private R&D spending. See Sempere (2018) for a more general discussion of spillovers from defense
R&D. For a survey of empirical results on the effects of public R&D on private R&D see David et al.
(2000).

6



Figure 1: Levels of federal R&D obligations - defense vs non-defense.
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relevant for small and young companies, see Hall and Lerner, 2010 and Garicano
and Steinwender, 2016). If the firm is willing to invest but lacks financial resources,
the provision of a public subsidy could lead to the implementation of (not yet
financed) R&D projects.7 Moreover, government support may ease the access to
additional external finance and spur follow-on R&D investment by the firm (i.e.,
crowding-in effect). This could be by driven by two main channels - namely,
"certification" (the grant provides market signals about firm quality, see Lerner,
2000) and "funding" (the grant allows the demonstration of viability of an early-
stage project, see Howell, 2017). In the specific context of defense R&D, given the
dual-use characteristic of several military technologies (Cowan and Foray, 1995),
both channels may be linked to the opportunities arising from civilian spinoffs
of publicly-financed R&D projects. Nevertheless, the effectiveness of these mech-
anisms rests crucially upon: (i) the availability of R&D inputs; (ii) government
ability to target financially-constrained firms and projects with great potential for
spillovers, while discouraging rent-seeking behaviours. On this matter, Cowan
and Foray (1995) argue that the scope for generating civilian spinoffs is greater for
early-stage and process-oriented technologies.

Public R&D support may as well spill-over outside the boundaries of the firm

7The grant may be particularly effective if it helps overcome some of the fixed R&D costs,
allowing the implementation of additional plans Moretti et al. (2019).
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and generate externalities at the local level (Jaffe et al., 1993; Henderson et al., 2005).
Effects could materialize within-industry when the grant fosters additional R&D
expenditures by competitors of the awarded firm. By nurturing local industry
clusters, public funding may foster intra-sectoral flows of technical knowledge and
human capital, making companies more productive and willing to invest in R&D
(Marshall, 1890; Glaeser et al., 1992; Moretti, 2021). Spillovers may occur as well
across different sectors and type of performers. As reported in the previous section,
DoD spending had a crucial role in creating local R&D infrastructures and capabili-
ties (Mowery and Rosenberg, 1981; Mowery and Langlois, 1996; Gross and Sampat,
2020). This, in turn, may trigger agglomeration effects and the creation of new
technology hubs (see e.g., the debate on federally-funded R&D and place-based in-
novation policies in Gruber and Johnson, 2019). Agglomeration externalities may
be particularly relevant for mission-type of R&D expenditures, such as for the mil-
itary case, that target products and technologies with high degree of complexity
(Alic, 2007; Sempere, 2017). Complex activities are becoming increasingly con-
centrated in large cities as they require a diverse set of skills and complementary
services with high coordination costs (Balland et al., 2020).

Public funding may also have a negative impact on local business R&D. For
instance, Cowan and Foray (1995) point out that defense and civilian sectors use
the same R&D resources. If the supply of inputs is sufficiently rigid in the short-
run, government funding of defense R&D may displace civilian R&D. Moreover,
local firms could free-ride on R&D activities conducted by awarded companies and
reduce their R&D spending (Sempere, 2018; Moretti et al., 2019).

Whether positive effects associated to public spending will prevail (or vicecev-
ersa) remain subject to an open debate (see e.g. David et al., 2000, for an early
survey of the empirical literature). Our empirical analysis in Section 5 aims exactly
at contributing to this debate.

3 Data

Our longitudinal dataset comprises data for 50 US states and the District of Columbia
for the period 1968-2017.8 The main variables are described below. In Appendix
A, we report figures and summary statistics concerning our dataset.

8Data are available from the authors upon request.
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Public R&D expenditures. We employ data from Survey of Federal Funds for Re-
search and Development led by the National Science Foundation (NSF) to measure
defense and non-defense R&D spending. The survey provides annual data on fed-
eral R&D obligations disaggregated by funding agency and state of performance
from 1968 onwards.9 Federal R&D obligations represent the amounts committed
in a given fiscal year regardless of when the actual payment takes place.10 As such,
they should be intended as a broad measure of public support including both R&D
procurement (i.e., contracts for R&D services) and grants such as those awarded
by the Small Business Innovation Research program.11 We select only obligations
by the Department of Defense to build our defense-related R&D variable. As a
control variable, we also aggregate obligations from other agencies to get a proxy
of non-defense R&D. The series are deflated using the price indexes (with base year
2012) respectively for federal defense R&D investment and for federal non-defense
R&D investment provided by the Bureau of Economic Analysis (BEA).12

Private R&D expenditures. Data on private R&D expenditures come from the
Business R&D and Innovation Survey (BRDIS).13 BRDIS provides data on total
private R&D expenditures by state, disaggregated by funding source. To avoid
double counting and to get a reliable proxy of additional R&D investments, we only
consider the non-federally financed component of private R&D. Notice that we are

9Only 10 large agencies report data on the geographic distribution of obligations including: the
Departments of Agriculture, Commerce, Energy, Defense, Health and Human Services, the Interior,
and Transportation; the Environmental Protection Agency; NASA; and NSF. These agencies account
for roughly the 97% of total R&D obligations (Pece, 2020). Survey respondents are asked to indicate
the state where the research was performed by the primary contractor or grantee. In absence of this
information, federal agencies should assign obligations to a specific state based on the headquarters
of the performer.

10This implies that the actual outlays associated to a given obligations may be distributed through
one or more payment tranches in subsequent periods. Unfortunately, data on federal R&D outlays
are not collected at the state-level and, therefore, cannot be used for our purposes. We discuss the
issue in Section 5 and provide results using national outlays to construct our instrumental variables.

11For detailed definition of federal obligations see the Circular A-11 by the US Office of Manage-
ment and Budget which provides guidance for federal agencies on budget preparation.

12The price index for federal defense R&D is contained in Table 3.11.4 from the BEA website
“Price Indexes for National Defense Consumption Expenditures and Gross Investment by Type”.
The price index for federal non-defense R&D is contained in Table 3.9.4 from the BEA website “Price
Indexes for Government Consumption Expenditures and Gross Investment”.

13This is a stratified survey jointly run by the NSF and the Census Bureau that is representative
for the population of for-profit non-farm companies with five or more employees. The BRDIS initial
year is 2008. The predecessor of BRDIS is the Survey of Industrial Research and Development
(SIRD) which covers the period 1953-2007. According to the NSF (Wolfe, 2008), there is no evidence
suggesting that the redesign of the survey from SIRD to BRDIS introduced structural breaks in the
data. Nevertheless, in our analysis, potential changes affecting all states in 2008 are absorbed by the
specific time dummy.
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not able to discern among different private sources of funding (possibly other than
company). In Section 5 we explicitly address this issue. The private R&D series
also present a non-negligible number of missing values for two main reasons.
First, for the period 1981-1997 the survey was biannual. Second, confidentiality
issues prevent publication of data for those states with a small number of surveyed
firms. We linearly interpolate missing values between observations only when
the gap is not greater than one year in order to minimize potential biases due to
measurement errors.14 On the contrary, no forward or backward extrapolation is
performed. Private R&D data are transformed in real terms using the R&D price
index (base year 2012) from the BEA.15 Unfortunately, BRDIS data are not broken
down by industry for US states, that is why we cannot estimate more granular
regressions at the industry-state level.

Employment in R&D-intensive industries. We rely on the BEA Regional Accounts,
which provide employment figures by state and 3-digit industries.16. The change in
industry classification in 1997 from SIC to NAICS does not allow us to get consistent
time series for the whole time span. Therefore, we focus on the period 1998-2018
which follows the introduction of the NAICS system. We focus on the 5 industries
that accounts for most of the domestic R&D performance (National Science Board,
2018): chemicals manufacturing (NAICS 365); computer and electronic products
manufacturing (NAICS 334); transportation equipment manufacturing (NAICS
336); information (NAICS 51); and professional, scientific, and technical services
(NAICS 54).

R&D-related occupations. Data are obtained from the Occupational Employment
Statistics database compiled by the Bureau of Labor Statistics. We focus on STEM
occupations, in particular on those that are labeled as "Research, Development,
Design, and Practitioners". Starting from 6-digit R&D-related occupations (SOC
classification rev. 2010), we aggregate data at the 3-digit level and come up with
the following categories: Computer Occupations 15-1100; Architects, Surveyors,
and Cartographers 17-1000; Engineers 17-2000; Life scientists 19-1000 and Social

14To evaluate possible distortions arising form the interpolation we report in Section 5 results for
the period 1999-2017 which displays almost no missing values. Results appear to be robust to the
presence of missing observations.

15This is available in Table 1.2.4 “Price Indexes for Gross Domestic Product by Major Type of
Product” from the BEA website.

16For selected sectors we observe only 2-digit, whilst for other the aggregation becomes more
granular at 4-digit level
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Scientists and related workers 19-3000.17
Additional variables. We complement our dataset with data on state-level GDP

and population from the BEA Regional Accounts.18 Also, as additional control
variables, we include some state-specific measures of innovation policies. First, we
obtain data on defense non-R&D procurement from the Federal Procurement Data
SystemNext Generation (FPDS-NG), provided by the General Services Administra-
tion (GSA). FPDS reports all primary contracts from agencies subject to mandatory
reporting and for purchases above the threshold value of $2, 500 from 1980 on-
wards. Each entry is classified by funding agency and has a 4-digit Product Service
Code (PSC) which allow us to rule out contracts associated to the performance of
R&D (PSC codes starting with A). Second, we use data from Lucking (2019) on
state tax credits, corporate income taxes and user cost of R&D capital to capture
possible variations in the regional tax system.

4 Econometric specification and identification strategy

4.1 Econometric specification

To measure the effects of military R&D spending on private R&D we build a lon-
gitudinal dataset relating defense R&D obligations (i.e., our public R&D spending
proxy) to private R&D expenditure (cf. Section 3). We use the geographical and
temporal variation of our data to estimate the following model:

Δℎ𝑅𝐷𝑝𝑟𝑖𝑣𝑖,𝑡 = 𝛽Δℎ𝑅𝐷𝑑𝑒 𝑓𝑖 ,𝑡 + 𝛾′ΔℎWi,t + 𝛼𝑖 + 𝜆𝑡 + 𝜀𝑖 ,𝑡 , (1)

where Δℎ𝑅𝐷𝑝𝑟𝑖𝑣 stands for log changes of privately-financed R&D between
year 𝑡 and 𝑡 − ℎ in state 𝑖, Δℎ𝑅𝐷𝑑𝑒 𝑓 denotes ℎ-year log changes of total R&D
obligations from the Department of Defense (DoD) between year 𝑡 and 𝑡− ℎ in state
𝑖, and Δℎ𝑊 is a vector of state by year observables, measured in ℎ-year log changes,

17The 2010 SOC revision introduced some minor classification changes. In aggregating, we
considered only those occupations that allows us to keep consistency at the 3-digit level before and
after the revision. Notice that, in the 2010 classification, the group 15-1100 "Computer occupations"
coincides with the 3-digit category 15-1000. Due to the high number of missing values, we could
not retrieve reliable data for the 15-2000 category "Mathematical Science Occupations".

18GDP series are transformed in constant dollars (base year 2012) using the US GDP deflator.
Concerning population data, we also used data from the Census Bureau and find no significant
differences with respect to the BEA data.
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used as control variables.19 All regressions include state fixed effects (𝛼𝑖) to control
for state-invariant characteristics and year dummies (𝜆𝑡) to absorb US-wide shocks
over time.

Notice that this model proxies a log-level specification allowing for state-specific
linear trends. One needs to account for state-specific trends as U.S. states expe-
rienced rather heterogeneous trajectories in terms of R&D investments and inno-
vation performances (Akcigit et al., 2017), as shown by Figure A.2. Hence, our
specification may be rationalized as a first-order approximation of the steady-state
demand for R&D from a CES production function (Moretti et al., 2019)20. In this
setting, the parameter of interest (𝛽) shall be interpreted as the elasticity of non-
federally financed business R&D to defense R&D spending.

We take variables in per capita terms to normalize for the different population
size.21 Also, to account for the potential geographical correlation in the error
structure we cluster standard errors by state.

4.2 The identification strategy

Our focus is on the identification of the 𝛽 parameter associated to public defense
R&D. Our baseline regressions already take into account a large set of potentially
confounding factors including invariant country trends (e.g., geography, size), US-
wide shocks, other innovation policy tools (i.e., non-military R&D, tax credits,
non-R&D procurement), state GDP and population. Nevertheless, even after con-
trolling for these factors, different sources of endogeneity may bias our estimates.
A major concern is represented by the political nature of government R&D (Mintz,
1992). Indeed, as other forms of public spending, R&D obligations are not ran-
domly distributed across states as the criteria adopted for their allocation are often
likely correlated with unobserved state-specific characteristics that may well be
determinants of R&D investing decisions by firms. For instance, politicians may
pick winners (or losers), thus, financing states that are doing particularly well (or

19As common in the empirical literature on fiscal multipliers (see e.g., Nakamura and Steinsson,
2014) we use variations in public and private spending over a time horizon of ℎ years. For the sake
of transparency, in Section 5 we report results from separate regressions for ℎ ∈ {2, 3, 4, 5}.

20For the sake of comparison we also estimated a log-level specification without state-specific
trends and symmetrical to the baseline model in Moretti et al. (2019). Results are very similar and
reported in Table B.1 and show less conservative estimates when compared to ours.

21To check for potential biases arising from normalizing by population, we run regressions
without dividing variables by population. Results are reported in Table B.3 and do not differ
significantly from those obtained with per capita variables.
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are struggling). Similarly, variations in public R&D may be accompanied by state-
specific regulatory norms that influence private spending decisions. A second
endogeneity concern comes from the potential measurement error affecting our
spending variable. Obligations may measure imperfectly effective R&D spend-
ing as outlays occurs with some lags or because revisions and de-obligations may
correct the initially obligated amount. Finally, the dependent variable may be sub-
ject as well to measurement errors since it also includes R&D financed by private
channels other than the company. If one is interested in estimating the effect on
company-financed R&D (rather than on private R&D as a whole) this will likely
introduce bias.

To deal with endogeneity we draw upon a well-established macro identification
strategy (Nakamura and Steinsson, 2014, 2018; Guren et al., 2020; Cloyne et al.,
2020). We leverage two fundamental characteristics of public defense R&D. The
left panel in Figure 2 shows that, similarly to general defense procurement, R&D
obligations by the DoD at the national level are driven by exogenous (mainly
geopolitical) events. As discussed in Section 2.1, large variations in DoD R&D
efforts follow military buildups associated specific historical episodes. For instance,
for the time period covered by our dataset, we can easily find the increase in
military spending and R&D during the Reagan administration and following the
9/11 terrorist attacks. Second, data suggest that US states display systematically
different sensitivities to changes in national R&D spending (cf. the right panel in
Figure 2). In our example, when national defense R&D rises, obligations allocated
to California increase much more than in Michigan. These patterns are remarkably
stable over time and suggest that state-specific variations in public military R&D
display a systematic component which is arguably exogenous to current private
R&D shocks. Summarizing, our identification builds on two assumptions derived
from the institutional characteristics of US defense R&D spending: (i) national
shocks to R&D obligations are arguably exogenous to economic factors determining
private R&D spending decisions; (ii) the allocation of these shocks to US states can
be decomposed into a systematic component (arguably exogenous) and a residual
part that is likely correlated with shocks in private R&D. Following Nakamura and
Steinsson (2014), we isolate the arguably exogenous component by instrumenting
Δℎ𝑅𝐷𝑑𝑒 𝑓𝑖,𝑡 using national growth rates interacted with state dummies. Thus, our
first stage is:
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Figure 2: Characteristics of defense R&D: national patterns and geographical allo-
cation
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Notes: The left panel contrasts the evolution of military spending and military R&D obligations.
The former is the sum of prime military contracts as in Nakamura and Steinsson (2014). Data for
this series and are available only until 2006. Defense R&D obligations are taken from the National
Science Foundation. Both variables are deflated and divided by total US population. The right
panel shows the heterogeneous response of California and Michigan to variations in national R&D
obligations (normalized by GDP).

Δℎ𝑅𝐷𝑑𝑒 𝑓𝑖,𝑡 = 𝜃𝑖Δℎ𝑅𝐷𝑑𝑒 𝑓𝑈𝑆,𝑡 + 𝛾′ΔℎWi,t + 𝛼𝑖 + 𝜆𝑡 + 𝑢𝑖 ,𝑡 , (2)

where Δℎ𝑅𝐷𝑑𝑒 𝑓𝑈𝑆,𝑡 denotes log changes of US defense obligations between 𝑡

and 𝑡 − ℎ, while 𝜃𝑖 represents the idiosyncratic coefficient accounting for different
state-specific sensitivities to national shocks.22

To better clarify how our instrument works, let us consider the case of New
Mexico, a state characterized by a relevant share of the defense and aerospace
industry. In Figure B.1 we contrast actual changes in federal defense spending
(blue line) with variations isolated by our IV (red line). During the buildup in
the Reagan administration, New Mexico received a disproportionate amount of
R&D obligations. Part of such variation is likely driven by contingent factors that
plausibly affected also private R&D investment. The IV instead considers only the

22The parameter theta is estimated interacting state dummies with Δℎ𝑅𝐷𝑑𝑒 𝑓𝑈𝑆,𝑡 . To simplify
our notation we denote

∑
𝑖∈𝐼 𝜃𝑖 𝐼𝑖Δℎ𝑅𝐷𝑑𝑒 𝑓𝑈𝑆,𝑡 with 𝜃𝑖Δℎ𝑅𝐷𝑑𝑒 𝑓𝑈𝑆,𝑡 , where 𝐼𝑖 is an indicator function

for state 𝑖.
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variation due to systematic characteristics and smooths the excess of R&D funding.
Notice that the IV also removes large fluctuations in the short run since these may
as well depend on endogenous drivers.

A way to interpret this identification strategy is as an exposure research design
(Goldsmith-Pinkham et al., 2020). States are differentially exposed to common
national spending shocks. In this setting, US variation in DoD R&D obligations
over a given time horizon represents a treatment that is assigned non-randomly
to states. The key challenge to identification concerns the selection of exogenous
measures of exposure in order to retrieve the quasi-random variation in treatment
assignment (Goldsmith-Pinkham et al., 2020).23 In a simple "Bartik" setting, local
shares commonly play this role. Our design instead uses as proxies of exposures
the sensitivity parameters (𝜃𝑖) estimated in the first-stage regression (cf. Eq. 2). As
discussed, the sensitivities reflect a systematic component that – after conditioning
for state fixed effects and other time-variant and state-specific variables – is likely
uncorrelated with unobserved factors affecting private investment decisions. If
holding, this assumption entails the conditional independence of 𝜃𝑖 from 𝑅𝐷𝑑𝑒 𝑓 .
Another condition required in IV settings is monotonicity. In our case, monotonicity
requires the absence of "defiers", namely, states that respond negatively to variations
in national shocks (i.e. Δℎ𝑅𝐷𝑑𝑒 𝑓 negatively correlated with Δℎ𝑅𝐷𝑑𝑒 𝑓𝑈𝑆,𝑡). If
also monotonicity holds, the parameter 𝛽 correctly estimate an average causal
response.24

To investigate the validity of our research design, Figure B.2 contrasts the es-
timated exposure parameters from the first stage regression with the average log
changes in 𝑅𝐷𝑝𝑟𝑖𝑣. Notice, first, that the estimated sensitivity coefficients (𝜃𝑖) are
positive, show substantial heterogeneity, spanning considerable variation across
states. We consider the positive sign of the estimated responses as supportive of
the monotonicity assumption since "defiers" would likely show a negative coef-
ficient. Moreover, sensitivities are not correlated with averages of the outcome
variable (Δℎ𝑅𝐷𝑝𝑟𝑖𝑣), that is, states responding more to shocks in federal defense-
related R&D do not exhibit larger increases in private R&D spending. We take this
evidence as bearing support to the conditional independence of 𝜃𝑖 .

23Borusyak et al. (2022) propose different identifying assumption, less suited to our practical
application, relying on the exogeneity of shocks rather than of exposures.

24More specifically, it estimates a weighted average of state-year causal responses for "compliers",
namely, states that respond positively to variations in national shocks.
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Finally, notice that conditional independence is less likely to be satisfied when
(log) levels are used instead of (log) changes as the outcome variable. This possibly
stems from the fact that exposure to shocks and the outcome variable are more
likely to be co-determined when considered in levels (Goldsmith-Pinkham et al.,
2020). That is why estimating the model in log differences would likely provide
more reliable results.

5 Results

We estimate our model in Eq. 1 over different time spans (ℎ) via both OLS and
IV, employing the instrumental variables specified in Eq. 2. The estimation results
are reported in Table 1. We do find positive and statistically significant effects of
defense R&D obligations on private R&D over time horizons of 4 and 5 years. We
progressively include controls (i.e., state GDP and non-defense R&D obligations)
and show that our estimates remain remarkably stable.

A comparison between OLS and IV coefficients shows that OLS estimates are
always downward biased. This may suggest that the allocation process of defense
R&D expenditures tend to favor states that are under-investing in private R&D. At
the same time, “attenuation bias” due to measurement errors may also drive the
downward bias. Overall, IV results suggest that a 1% increase in military R&D
funding over 4-5 years crowds-in private R&D expenditures with an elasticity
between 0.11% and 0.14%. In terms of dollar values, these elasticities entails that
each dollar of government spending generates between 0.57 and 0.72 dollars of
additional R&D in the private sector.25

Over shorter time intervals, we do not find significant effects of defense-related
R&D on private one. Quite plausibly, private R&D expenditures appear to be
sticky and respond only to spending shocks occurring over sufficiently large time
horizons. This may also be related to the duration of R&D projects, as well as
the appointment of project managers, which is typically in the 3-5 years range
(Azoulay et al., 2019). On the contrary, standard macroeconomic variables such as
GDP are typically sensitive also to 2-year spending variations as found, for instance,
in Nakamura and Steinsson (2014) and Auerbach et al. (2020).

25Dollar values are obtained from elasticity measures using the average ratio 𝑅𝐷𝑝𝑟𝑖𝑣/𝑅𝐷𝑑𝑒 𝑓
observed in the sample. Notice that the dollar value may change significantly depending since the
ratio can vary across time and between states (Ramey, 2019).
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From a theoretical perspective, in Section 2.2 we described different mechanisms
that may drive these results.26 First, DoD financing could relax financial constraints
and help firms overcoming fixed costs associated to R&D, spurring additional pri-
vate expenditures. Second, a potential interpretation of our results, although not
formally tested, focuses on the local spillovers triggered by defense R&D grants.
These may take place both within and across sectors, as well as among different
types of local performers (e.g. university, firms, FFRDCs or government labs).
Historically, military R&D expenditures played a key role in creating and support-
ing local innovation capabilities, in turn, fostering agglomeration economies and
geographical clustering. Such effects could potentially be reinforced given that
military technologies, particularly in their early-stages, exhibit a large scope for
promoting civilian spinoff projects.

5.1 Robustness analysis

The foregoing results may be affected by different issues which could introduce
substantial biases in the estimates. In this section, we control for different potential
problems resulting from weak instruments, the omission of relevant variables,
measurement errors, missing values, model specification (level vs. growth rates),
outliers, the influence of key states, and population normalization. We find that
the main result of our empirical analysis is confirmed: defense-related public R&D
does crowd-in private R&D expenditures. In the following, we provide more
details about the robustness checks we performed.

The first issue is linked to our identification strategy. TSLS estimates and the
associated standard errors may not be reliable if instruments are weakly correlated
with the endogenous regressor. Under weak instruments TSLS coefficients are bi-
ased towards OLS ones and standard inference procedures may not be reliable. In
this work, a weak first-stage regression could also result from the many-instrument
problem as we have 51 instruments (i.e., 51 state dummies interacted with national
variations in defense R&D). To investigate the relevance of these concerns, Figure
3 compares the TSLS with the Limited Information Maximum Likelihood (LIML)
estimator which tends to reduce biases from many and weak instruments. Estima-
tions using LIML show higher and significant coefficients over 4-5 year variations,

26For a detailed conceptual framework on the effects of military R&D on innovation see Mowery
(2010).
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Table 1: Main estimates: elasticity of non-federally funded private R&D to defense
R&D obligations

Dependent variable:
Privately-funded R&D (Δℎ𝑅𝐷𝑝𝑟𝑖𝑣)

Military R&D
(Δℎ𝑅𝐷𝑑𝑒 𝑓 )

OLS IV
(1) (2) (3) (4) (5) (6)

(ℎ = 2) 0.018 0.017 0.017 0.093 0.098 0.095
(0.02) (0.02) (0.02) (0.08) (0.079) (0.076)

(ℎ = 3) 0.023 0.022 0.021 0.07 0.067 0.066
(0.021) (0.021) (0.021) (0.058) (0.059) (0.055)

(ℎ = 4) 0.044∗ 0.041 0.04 0.134∗ 0.137∗ 0.138∗
(0.026) (0.026) (0.025) (0.08) (0.079) (0.07)

(ℎ = 5) 0.043 0.04 0.04 0.11∗ 0.112∗∗ 0.109∗∗
(0.027) (0.027) (0.027) (0.056) (0.055) (0.053)

Non Military R&D 7 3 3 7 3 3

State GDP 7 7 3 7 7 3

Notes: the table reports OLS and TSLS estimations. The sample period is 1968-2017. We run
separate regressions for each ℎ, where the dependent variable is the ℎ-year log-change in
private R&D (privately financed, in real per capita terms). The main regressor is the ℎ-year
log-change in defense R&D obligations (in real per capita terms). Control variables include
the ℎ-year log-changes of non-military R&D obligations and state GDP (both in real per capita
terms). All regressions include state and time fixed effects. Standard errors in parenthesis
are clustered by state.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2: First-stage effective 𝐹-statistics

Effective F-statistics
ℎ = 2 ℎ = 3 ℎ = 4 ℎ = 5

F-stat 80.15 115.01 97.93 77.78

Critical values - Worst case bias 5%
TSLS 30.87 33.29 33.5 34.55
LIML 16.56 24.93 24.3 27.09

Notes: the table reports for each ℎ the effective 𝐹-statistics by Olea and Pflueger
(2013) and the associated 5% critical values for the TSLS and LIML estimators. The
null hypothesis is that of weak instruments. Rejections imply that the bias is not
large, relative to a "worst-case" benchmark. The 𝐹-statistics refer to the first stage
of the baseline model including non-military R&D obligations and state GDP as
controls.

largely confirming our baseline results. Furthermore, we report in Table 2 the val-
ues of the effective 𝐹-statistic by Olea and Pflueger (2013).27 At any time horizon
ℎ, we are able to reject at the 5% confidence level the null of a non-negligible bias
for both TSLS and LIML. Thus, also first stage pre-screening clearly hints at the
general reliability of our results.

We then consider some alternative specifications and robustness checks. Results
are reported in Table 3. First, differences in tax policies across states may influence
R&D investments and employment (Wilson, 2009; Chang, 2018; Lucking, 2019),
thus, acting as a potential confounding factor in our analysis. To control for different
taxation regimes, we include in our regressions state-specific R&D tax credits,
corporate income tax rates and the user cost of R&D capital (which combines
both).28 Results show that the estimated elasticity between military R&D and
private R&D slightly increases and remains statistically significant, as compared to
our baseline specifications.

Another possible concern comes from the omission of non-R&D procurement.
The magnitude and composition of government demand may indeed act as a de
facto innovation policy (Edler and Georghiou, 2007; Guerzoni and Raiteri, 2015;

27The use of the effective 𝐹-statistic is highly recommended in settings with heteroscedasticity
and clustering (Andrews et al., 2019), as in our case. This is a test for the null hypothesis of weak
instruments. Rejection entails that the bias of the TSLS or LIML is not large, relative to a "worst-case"
benchmark.

28Notice that, in order to be consistent with our specification, we included the variation between
𝑡 and 𝑡 + ℎ of these variables. We also run regressions using levels at time 𝑡 a find no substantial
differences. Results are available upon request from the authors.
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Figure 3: Comparison across estimators: OLS, TSLS, LIML
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Slavtchev and Wiederhold, 2016; Raiteri, 2018). This is especially relevant for
defense procurement as DoD R&D contracts have been often substantially com-
plemented by purchases of the developed product/technology (Mowery, 2010).29
Thus, we expect military R&D obligations to be correlated with non-R&D procure-
ment. To guard against this concern, we aggregated total non-R&D procurement
by state and included it as a control in our regression. Results largely confirm our
baseline estimations, albeit with a small loss in precision.

Our empirical analysis could be also biased by measurement errors due to
the fact that we do not observe the effective outlays at the state level, as we can
only use obligation measures. Luckily enough, data on defense R&D outlays
are available at the national level. Leveraging this information we constructed
our IV interacting state dummies with national variations in military R&D outlays.
Under the assumption that the timing of the mismatch between national obligations
and outlays is correlated with the one unobserved at the state level, this new IV
estimation will correct for the aforementioned measurement error. Even with this
correction, estimates appear not to change significantly, thus, suggesting that this
specific form of measurement error may not play a crucial role for our analysis.

Data on private R&D display a non-negligible number of missing values in
the first period of our sample. For this reason, we also estimated our model for
the period 1998-2017 in which we observe almost no missing values (as the SIRD
survey becomes annual). We show that even in this restricted sample our main
results hold with elasticities close to those estimated employing the whole time
period.

As anticipated in Section 4.2, our dependent variable may be affected by mea-
surement errors as well because it mixes R&D financed by both companies and
other private channels (e.g., non-profit institutions). While it is safe to read our
estimated parameter as the elasticity for privately-funded R&D, caution is needed
when extending the interpretation to company-financed R&D. Leveraging the fact
that since 2009 the data allows us to disambiguate between private R&D expen-
ditures financed by company and by other private entities, we ranked US state in
terms of average incidence of the non-company component between 2009 and 2017.
We then run the regressions selecting only the 20 states with the lowest incidence

29The independent R&D program represents an even more extreme example in this respect
(Lichtenberg, 1995). Overhead funds included in non-R&D procurement contracts were used by
the Department of Defense to finance indirectly R&D performers.

21



(among them the highest ratio is 8%).30 Results are presented in Table 4 and largely
confirm our general findings. We take this as encouraging evidence in favour of
the possibility to interpret our elasticity as related to company-financed R&D.

Finally, in the Appendix B we report some additional robustness checks. First,
we estimate a model in levels using the same specification in Moretti et al. (2019).
More specifically, we regress levels of private R&D against lagged values of defense
R&D obligations. Differently from our difference specification, in this setting state
fixed effects do not absorb state-specific trends but only allow for heterogeneous
intercepts. The model yields less conservative estimates (cf Table B.1) with higher
elasticities of defense R&D that are in line with those reported in Moretti et al.
(2019). Moreover, we assess whether our results are driven by the dynamics of
single states by dropping observations of one state at the time (cf. Figure B.3).
We show that estimates remain remarkably stable with North Dakota having the
largest (slightly negative) influence. We also investigate the potential impact of
outliers using winsorized variables and find no substantial effect (cf. Table B.2). To
conclude, we ran regressions without normalizing variables by population. Results
in Table B.3 also corroborate our general findings.

5.2 Employment effects in R&D intensive sectors and occupations

So far we robustly documented crowding-in effects of public military R&D fund-
ing on private R&D expenditures. Yet, higher expenditures may translate either
in higher R&D employment or in increasing costs (e.g., wages and intermediate
goods). Whether one of these two effects prevails may depend on the supply elastic-
ity of R&D workers and inputs, as well as on other characteristics of the innovation
system (e.g., firms organizational routines, private and public R&D networks). To
shed a light on these issues, we empirically study the impact of public military R&D
expenditures on employment. However, data on private R&D employment are not
available at the state level. Therefore, we focus on employment in R&D-intensive
industries and occupations (cf. Section 3) and we estimate the following model:31

30We repeated the same exercise using the bottom 15 states and find no substantial differences,
albeit estimates for ℎ = 4 slightly loose significance. Results are available upon request from the
authors.

31We focus on the top 5 R&D-intensive industries. We also run regressions for other R&D-
intensive industries and find no statistically significant results except for Miscellaneous manufac-
turing (NAICS 339) which shows elasticities in the 0.035 - 0.05 range. Results are available upon
request from the authors. Regarding occupations, we aggregated at the 3 digit level occupations
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Table 3: Alternative specifications and robustness checks

Dependent variable:
Privately-funded R&D (Δℎ𝑅𝐷𝑝𝑟𝑖𝑣)

Military R&D
(Δℎ𝑅𝐷𝑑𝑒 𝑓 )

Corporate
tax

R&D tax
credit

User cost of
R&D capital

ℎ = 2 0.102 0.119∗ 0.105
(0.068) (0.064) (0.068)

ℎ = 3 0.086∗ 0.104∗∗ 0.089∗
(0.05) (0.051) (0.049)

ℎ = 4 0.14∗∗ 0.153∗∗ 0.147∗∗
(0.069) (0.072) (0.068)

ℎ = 5 0.11∗∗ 0.112∗∗ 0.12∗∗
(0.052) (0.053) (0.052)

Non-R&D
procurement Outlays Restricted

sample
ℎ = 2 0.074 0.092 0.053

(0.077) (0.065) (0.073)
ℎ = 3 0.046 0.099∗ 0.061

(0.059) (0.056) (0.05)
ℎ = 4 0.117 0.11∗ 0.126∗

(0.077) (0.06) (0.064)
ℎ = 5 0.096∗ 0.085 0.102∗

(0.055) (0.051) (0.056)
Notes: the table reports TSLS estimations for different specifications and time horizons ℎ. Across all

specifications, the dependent variable is the ℎ-year log-change in private R&D (privately financed, in
real per capita terms) while the main regressor is the ℎ-year log-change in defense R&D obligations
(in real per capita terms). All regressions include the ℎ-year log-changes of non-military R&D
obligations and state GDP (both in real per capita terms) as control variables as well as state and
time fixed effects. The sample period is 1968-2017 except for the "Non-R&D procurement" case
which uses 1980-2017 and the "Restricted sample" regression which uses 1998-2017. The top three
specifications include respectively ℎ-year variations in corporate tax rates, R&D tax credits and
user costs of R&D capital as controls. The "Non-R&D procurement" regression includes ℎ-year
log-changes in total non-R&D procurement. The "Outlays" specification uses national variations in
outlays (instead of obligations) interacted with state dummies as instrumental variables. Standard
errors in parenthesis are clustered by state.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 4: Regressions to account for the incidence of R&D financed by private
institutions (other than companies)

Dependent variable:
Privately-funded R&D (Δℎ𝑅𝐷𝑝𝑟𝑖𝑣)

Military R&D
(Δℎ𝑅𝐷𝑑𝑒 𝑓 )

OLS IV
(1) (2) (3) (4) (5) (6)

(ℎ = 2) 0.007 0.002 0.002 0.151 0.153 0.146
(0.02) (0.023) (0.024) (0.09) (0.091) (0.093)

(ℎ = 3) 0.042∗ 0.044∗ 0.043∗ 0.107 0.102 0.093
(0.022) (0.021) (0.021) (0.072) (0.073) (0.072)

(ℎ = 4) 0.041 0.041 0.038 0.231∗∗ 0.23∗∗ 0.209∗∗
(0.033) (0.033) (0.033) (0.098) (0.097) (0.093)

(ℎ = 5) 0.044 0.044 0.044 0.179∗∗ 0.178∗∗ 0.148∗
(0.034) (0.034) (0.035) (0.068) (0.065) (0.073)

Non Military R&D 7 3 3 7 3 3

State GDP 7 7 3 7 7 3

Notes: the table reports results for the same regressions in Table 1 on a restricted sample. In
these regressions we only select the 20 states with the lowest ration between R&D financed
by private entities (other than the firm) over total R&D paid for by the company. Control
variables include the ℎ-year log-changes of non-military R&D obligations and state GDP
(both in real per capita terms). All regressions include state and time fixed effects. Standard
errors in parenthesis are clustered by state.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Δℎ𝑅𝐷𝑒𝑚𝑝𝑖 ,𝑘,𝑡 = 𝛽Δℎ𝑅𝐷𝑑𝑒 𝑓𝑖 ,𝑡 + 𝛾′ΔℎWi,t + 𝛼𝑖 + 𝜆𝑡 + 𝜀𝑖,𝑡 , (3)

where Δℎ𝑅𝐷𝑒𝑚𝑝𝑖 ,𝑘,𝑡 stands for log changes of employment between year 𝑡 and
𝑡 − ℎ in state 𝑖 and industry/occupation 𝑘 (this is the only difference with respect
to the previous model, cf. Eq. 1).

Table 5 displays the results for selected R&D-intensive industries. We find
positive and significant employment effects in Computer and electronic product
manufacturing (NAICS 334) and Transportation Equipment (NAICS 336). Not sur-
prisingly, effects appear to be concentrated in sectors that receive a disproportional
amount of defense R&D funds (Mowery, 2010, highlights that about 75% of de-
fense R&D is concentrated in the aircraft and electrical equipment industries). The
estimated employment elasticities are in the range of 0.08-0.1% and are lower than
those of private R&D expenditures. The timing of the response is instead similar
as also employment appears to respond mainly to spending shocks occurring in
4-5 year time horizons.

Results for different R&D-related occupational categories are provided in Table
6. We find sizeable effects only for the employment of engineers with elasticities
between 0.05 and 0.07%. Notice that in this occupational group, a large space is
occupied by jobs that are very much related to defense R&D, such as aerospace and
electrical engineers. In contrast to effects at the industry level, the employment of
engineers turns out to be stimulated also by 2-3 year spending shocks.

Also for employment regressions, we run a series of robustness checks control-
ling for confounding factors (i.e., tax policies and non-R&D procurement), mea-
surement errors stemming from the use of obligation data, and normalization by
population. Results are presented in Table B.4. They largely confirm our base-
line estimations, albeit with reduced statistical significance for employment in the
Computer and Electronic Products industry.

6 Conclusion

In this paper we study whether government-financed defense R&D is effective in
fostering privately-funded R&D investment and employment. Our interest in mili-

classified as "Research, Development, Design, and Practitioners". More details are reported in
Section 3.

25



Table 5: Employment elasticities of defense R&D obligations in high-tech industries

Dependent variable:
Employment (Δℎ𝑅𝐷𝑒𝑚𝑝)

Industry ℎ = 2 ℎ = 3 ℎ = 4 ℎ = 5
Chemicals 0.049 0.054 0.06 0.045
(NAICS 325) (0.049) (0.054) (0.054) (0.052)
Computer and electronic products 0.02 0.034 0.079∗ 0.084∗
(NAICS 334) (0.038) (0.047) (0.043) (0.044)
Transportation equipment 0.014 0.12∗∗∗ 0.099∗∗∗ 0.078∗
(NAICS 336) (0.074) (0.024) (0.025) (0.039)
Information 0.005 0.017 0.026 0.026
(NAICS 51) (0.017) (0.017) (0.016) (0.017)
Professional, scientific, and technical services -0.006 -0.006 -0.004 -0.004
(NAICS 54) (0.007) (0.008) (0.009) (0.01)

Notes: the table reports industry-by-industry TSLS estimations. The sample period is 1998-2018. We
run separate regressions for each ℎ and industry category, where the dependent variable is the ℎ-year
log-change in industry employment (normalized by state population). The main regressor is the
ℎ-year log-change in defense R&D obligations (in real per capita terms). All regression include state
and time fixed effects as well as baseline control variables, i.e., the ℎ-year log-changes of non-military
R&D obligations and state GDP (both in real per capita terms). Standard errors in parenthesis are
clustered by state.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

26



Table 6: Employment elasticities of defense R&D obligations in R&D-related occu-
pations

Dependent variable:
Employment (Δℎ𝑅𝐷𝑒𝑚𝑝)

Occupation ℎ = 2 ℎ = 3 ℎ = 4 ℎ = 5
Computer Occupations -0.061 -0.061 -0.028 -0.007
(SOC 15-1100) (0.043) (0.049) (0.046) (0.047)
Architects, Surveyors, and Cartographers 0.021 0.055 0.066 0.059
(SOC 17-1000) (0.064) (0.066) (0.063) (0.06)
Engineers 0.053∗∗∗ 0.066∗∗∗ 0.067∗∗∗ 0.067∗∗∗
(SOC 17-2000) (0.018) (0.023) (0.023) (0.023)
Life Scientists 0.084 0.1 0.11 0.083
(SOC 19-1000) (0.062) (0.067) (0.072) (0.075)
Physical Scientists -0.072∗ -0.025 0.006 0.023
(SOC 19-2000) (0.043) (0.043) (0.046) (0.051)
Social Scientists and Related Workers -0.046 -0.046 -0.035 -0.041
(SOC 19-3000) (0.059) (0.059) (0.054) (0.049)

Notes: the table reports occupation-by-occupation TSLS estimations. The sample period is 1999-
2018. We run separate regressions for each ℎ and occupation category, where the dependent
variable is the ℎ-year log-change in occupation employment (normalized by state population). The
main regressor is the ℎ-year log-change in defense R&D obligations (in real per capita terms).
All regression include state and time fixed effects as well as baseline control variables, i.e., the
ℎ-year log-changes of non-military R&D obligations and state GDP (both in real per capita terms).
Standard errors in parenthesis are clustered by state.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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tary R&D is motivated by its great relevance in the US innovation policy landscape
(Mowery, 2010, 2012; Mazzucato, 2015). To tackle the issue, we assembled a longitu-
dinal dataset for U.S. states including R&D obligations from the DoD, private R&D
expenditures, employment in R&D-intensive industries and occupations. Leverag-
ing some characteristics of defense R&D funding, we employed a state-of-the-art
IV identification strategy (Nakamura and Steinsson, 2014, 2018; Guren et al., 2020;
Cloyne et al., 2020) based on differential state exposures to national shocks in order
to isolate exogenous variations in defense R&D and provide a causal interpretation
to our estimates.

Our results shows that an increase in defense R&D over 4-5 years crowds-in
privately-funded R&D investments with an elasticity between 0.11% and 0.14%.
This implies that one dollar of federally-financed military R&D spurs between 0.57
and 0.72 dollars of additional private R&D expenditures. We also find positive
effects of defense-related R&D on employment in high-tech sectors and in engi-
neering occupations, albeit with lower elasticities (i.e., 0.05-0.1 %). Such results are
robust to a wide ensemble of robustness checks including additional controls (e.g.,
tax policies, non-R&D procurement), outliers sensitivity and alternative specifica-
tions.

From a policy perspective, the main conclusion from this work is that defense
R&D support by the US government did stimulate additional innovation efforts in
the private sector. This is of particular interest for policy makers given the large role
played by defense R&D in the US and the ongoing debates about its effectiveness
(Cox et al., 2014; Griffin, 2019). More generally, our effort lies between a recent
stream of studies aimed at informing policies with causal evidence about indus-
trial policies (Criscuolo et al., 2022). Albeit not tested formally, results appear to
hint at localized spillovers, possibly occurring also across sectors, as main drivers
of crowding-in. As such, this has also indirect implications for policies targeting
regional innovation and local clustering. Nevertheless, further research is needed
in order to deliver more comprehensive policy prescriptions. First, we plan to
investigate in a comparative fashion how to extrapolate lessons from military inter-
ventions to other mission-oriented programs focused on different societal goals.32
Second, using more granular data at the geographical level (e.g. contract-level
information on grants) we aim to delve into the mechanisms underlying crowding-

32For a broad historical comparison among different mission-oriented programs see Foray et al.
(2012).
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in, investigating the characteristics of local spillovers. Shedding more light on
mechanisms at play will allow us to better isolate the main drivers of success of
US defense innovation. A major policy uncertainty, in fact, concerns the different
performances of military R&D in the US vis-à-vis other countries.
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Appendix A Main variables and descriptives

Figure A.1: Defense R&D obligations per capita by state
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Figure A.2: Non-federally funded private R&D per capita by state
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Table A.1: Summary statistics by state (5-years log variations of defense and private
R&D)

Private R&D (Δ5𝑅𝐷𝑝𝑟𝑖𝑣) Defense R&D (Δ5𝑅𝐷𝑑𝑒 𝑓 )

mean sd min max mean sd min max
State

AK 0.08 1.10 -1.16 3.28 -0.24 1.53 -1.53 3.06
AL 0.31 0.69 -0.83 2.62 0.22 0.38 -0.55 0.98
AR -0.00 0.33 -0.56 0.69 0.53 1.19 -1.43 2.15
AZ 0.11 0.30 -0.44 0.77 0.02 0.52 -1.19 1.08
CA 0.30 0.17 -0.02 0.69 -0.13 0.49 -1.22 0.95

CO 0.09 0.28 -0.49 0.52 -0.17 0.86 -1.96 1.56
CT 0.11 0.36 -0.56 0.97 0.11 0.68 -0.91 2.03
DC 0.05 1.24 -1.69 3.23 0.06 0.71 -1.95 2.34
DE -0.03 0.34 -0.79 0.56 -0.09 0.58 -1.32 0.75
FL 0.08 0.35 -1.20 1.05 -0.20 0.33 -1.01 0.56

GA 0.20 0.14 -0.06 0.48 -0.56 0.85 -1.46 2.69
HI 0.17 0.45 -0.57 0.80 0.01 0.77 -0.99 1.34
IA 0.10 0.32 -0.71 0.43 0.56 0.89 -0.71 1.81
ID 0.04 0.32 -0.56 0.46 0.06 0.63 -1.08 1.23
IL 0.12 0.13 -0.09 0.40 0.07 0.57 -0.71 1.14

IN 0.12 0.32 -0.33 1.19 -0.18 0.57 -0.97 0.85
KS 0.12 0.27 -0.40 0.32 -1.78 1.19 -3.28 -0.39
KY 0.09 0.31 -0.43 0.58 0.28 0.99 -1.16 2.75
LA -0.04 0.40 -0.59 1.04 -0.45 1.55 -3.75 2.05
MA 0.17 0.24 -0.34 0.89 -0.04 0.42 -0.86 0.78

MD 0.04 0.45 -1.11 0.92 -0.01 0.21 -0.49 0.36
ME 0.04 0.30 -0.54 0.59 -0.60 0.75 -1.64 0.75
MI 0.13 0.49 -0.42 2.66 0.05 0.64 -1.18 1.24
MN 0.19 0.22 -0.20 0.72 -0.09 0.76 -1.43 1.06
MO 0.18 0.15 0.03 0.46 -0.30 1.20 -2.23 1.98

MS -0.02 0.29 -0.48 0.74 -0.08 0.54 -1.11 0.44
MT 0.14 0.37 -0.63 0.67 -0.18 0.88 -1.48 2.01
NC 0.14 0.23 -0.31 0.58 -0.17 0.37 -1.04 0.57
ND 0.27 0.82 -0.65 1.78 -0.51 1.94 -3.17 2.25
NE 0.09 0.22 -0.29 0.50 0.07 1.40 -2.44 2.50

NH 0.30 0.62 -0.36 1.31 -0.24 0.58 -0.82 0.49
NJ 0.12 0.24 -0.41 0.83 -0.11 0.48 -1.02 0.83
NM 0.09 0.48 -0.72 0.95 -0.11 0.29 -0.75 0.45
NV -0.06 0.35 -0.79 0.40 -0.08 1.02 -1.89 1.68
NY 0.09 0.18 -0.32 0.45 -0.11 0.58 -1.08 1.14

OH 0.11 0.25 -0.22 1.41 -0.02 0.52 -1.14 1.28
OK 0.02 0.32 -0.44 0.71 0.13 1.12 -1.96 2.20
OR 0.44 0.28 0.11 0.99 -0.02 0.81 -1.48 1.33
PA 0.12 0.18 -0.23 0.52 -0.03 0.43 -1.06 1.05
RI 0.19 0.19 -0.03 0.45 -0.23 0.22 -0.52 0.08

SC -0.06 0.21 -0.38 0.26 0.11 0.64 -0.93 1.17
SD 0.50 0.79 -0.57 2.59 0.29 1.51 -3.51 2.62
TN -0.10 0.13 -0.27 0.17 0.04 0.58 -0.92 1.58
TX 0.10 0.22 -0.49 0.58 -0.06 0.60 -1.03 1.19
US 0.16 0.10 -0.03 0.35 -0.03 0.29 -0.61 0.45

UT 0.22 0.25 -0.23 0.69 0.01 0.79 -1.17 1.83
VA 0.17 0.35 -0.58 0.89 0.10 0.38 -0.60 1.00
VT -0.06 0.46 -0.71 1.38 -0.39 1.87 -3.10 3.37
WA 0.13 0.16 -0.21 0.45 0.01 1.07 -2.24 1.30
WI 0.15 0.09 0.02 0.35 0.07 0.66 -0.80 1.35

WV -0.14 0.27 -0.46 0.26 -0.95 1.03 -3.24 0.45
WY 0.17 1.08 -2.17 2.77 0.06 1.30 -3.03 1.95
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Table A.2: Cross-correlations among main variables

Private R&D Military R&D Non Military R&D State GDP

ℎ = 5

Δℎ𝑅𝐷𝑝𝑟𝑖𝑣 1

Δℎ𝑅𝐷𝑑𝑒 𝑓 0.12 1

Δℎ𝑅𝐷𝑛𝑜𝑛 − 𝑑𝑒 𝑓 0.17 0.1 1

Δℎ𝐺𝐷𝑃 0.12 0.14 0.05 1

ℎ = 4

Δℎ𝑅𝐷𝑝𝑟𝑖𝑣 1

Δℎ𝑅𝐷𝑑𝑒 𝑓 0.08 1

Δℎ𝑅𝐷𝑛𝑜𝑛 − 𝑑𝑒 𝑓 0.18 0.08 1

Δℎ𝐺𝐷𝑃 0.06 0.1 0.01 1

ℎ = 3

Δℎ𝑅𝐷𝑝𝑟𝑖𝑣 1

Δℎ𝑅𝐷𝑑𝑒 𝑓 0.04 1

Δℎ𝑅𝐷𝑛𝑜𝑛 − 𝑑𝑒 𝑓 0.15 0.05 1

Δℎ𝐺𝐷𝑃 0.02 0.08 -0.02 1

Notes: 𝑅𝐷𝑝𝑟𝑖𝑣 stands for private, non-federally funded R&D. 𝑅𝐷𝑑𝑒 𝑓 represents total defense R&D
obligations. 𝑅𝐷𝑛𝑜𝑛 − 𝑑𝑒 𝑓 stands for total non-defense R&D obligations. 𝐺𝐷𝑃 is total state GDP. All
variables are taken in real per capita terms. Correlations are computed for log changes over different
time horizons (ℎ).
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Appendix B Additional results and robustness checks

Figure B.1: Actual variations in R&D obligations vs. first stage predictions for New
Mexico
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Figure B.2: State sensitivities to changes in national defense R&D vs. average log
changes in private R&D
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Figure B.3: Sensitivity of estimates to state inclusion
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Notes: The dashed line represents our baseline IV estimate for ℎ = 5. For each state 𝑖 we ran the IV
regression over the interval ℎ = 5 excluding observations for 𝑖. The figure shows the point estimate
and the associated 90% confidence interval (standard errors are clustered by state).
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Table B.1: Estimates from the log level specification

Dependent variable:
Privately-funded R&D (ln𝑅𝐷𝑝𝑟𝑖𝑣)

OLS IV

(𝑘 = 5) (𝑘 = 10) (𝑘 = 15)
ln𝑅𝐷𝑑𝑒 𝑓𝑡−1 0.106∗∗∗ 0.107∗∗∗ 0.247∗∗∗ 0.249∗∗∗ 0.314∗∗ 0.315∗∗ 0.427∗∗ 0.423∗∗

(0.035) (0.036) (0.089) (0.089) (0.138) (0.137) (0.195) (0.189)

Non Military R&D 3 3 3 3 3 3 3 3

Non Military R&D (lagged) 7 3 7 3 7 3 7 3

State GDP 3 3 3 3 3 3 3 3

State GDP(lagged) 7 3 7 3 7 3 7 3

Notes: OLS and TSLS estimations with state and year fixed effects. The level specification is:
ln𝑅𝐷𝑝𝑟𝑖𝑣𝑖,𝑡 = 𝛽 ln𝑅𝐷𝑑𝑒 𝑓𝑖 ,𝑡−1 + 𝛿′𝑊𝑖 ,𝑡 + 𝛼𝑖 + 𝜆𝑡 + 𝜀𝑖 ,𝑡 ,. The dependent variable is the log of non-
federally funded R&D expenditures. The main regressor is the lagged log of defense R&D obligations.
The vector of controls include the contemporaneous and lagged logs of non-defense R&D obligations
and state GDP. All variables are taken in real per capita terms. In TSLS estimations we use a simple
Bartik-type of instrument, also similar to Moretti et al. (2019): 𝐼𝑉 = 𝑠ℎ𝑎𝑟𝑒𝑖,𝑡−1𝑅𝐷𝑑𝑒 𝑓𝑈𝑆,𝑡−1. Where 𝑠ℎ𝑎𝑟𝑒

stands for a 𝑘-years moving average of the state share in public R&D and 𝑅𝐷𝑑𝑒 𝑓𝑈𝑆 is national defense
R&D. We report results for three different values for 𝑘 (i.e., 5, 10 and 15). Standard errors in parenthesis
are clustered by state.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B.2: Outliers robustness: regressions using winsorized data (at 1st and 99th
percentiles)

Military R&D
(Δℎ𝑅𝐷𝑑𝑒 𝑓 )

Dependent variable: Private R&D (Δℎ𝑅𝐷𝑝𝑟𝑖𝑣)
No correction Winsorized

ℎ = 2 No correction 0.093 0.098 0.095 0.102 0.107 0.105
(0.08) (0.079) (0.076) (0.074) (0.074) (0.071)

Winsorized 0.082 0.086 0.083 0.091 0.094 0.092
(0.081) (0.08) (0.078) (0.076) (0.076) (0.073)

ℎ = 3 No correction 0.07 0.067 0.066 0.075 0.074 0.073
(0.058) (0.059) (0.055) (0.055) (0.055) (0.052)

Winsorized 0.072 0.07 0.069 0.077 0.076 0.075
(0.058) (0.058) (0.054) (0.055) (0.055) (0.052)

ℎ = 4 No correction 0.134∗ 0.137∗ 0.138∗ 0.132∗ 0.134∗ 0.134∗
(0.08) (0.079) (0.07) (0.073) (0.073) (0.067)

Winsorized 0.139∗ 0.142∗ 0.141∗ 0.137∗ 0.138∗ 0.137∗
(0.083) (0.081) (0.073) (0.076) (0.075) (0.069)

ℎ = 5 No correction 0.11∗ 0.112∗∗ 0.109∗∗ 0.108∗∗ 0.109∗∗ 0.106∗∗
(0.056) (0.055) (0.053) (0.05) (0.049) (0.049)

Winsorized 0.113∗ 0.114∗∗ 0.111∗∗ 0.111∗∗ 0.111∗∗ 0.107∗∗
(0.057) (0.057) (0.055) (0.051) (0.051) (0.051)

Non Military R&D 7 3 3 7 3 3

State GDP 7 7 3 7 7 3

Notes: TSLS estimations with state and year fixed effects. The sample period is 1968-2017.
We run separate regressions for each ℎ, where the dependent variable is the ℎ-year log-
change in private R&D (privately financed, in real per capita terms). The main regressor is
the ℎ-year log-change in defense R&D obligations (in real per capita terms). Winsorization
occurs at the 1st and 99th percentiles. Control variables include the ℎ-year log-changes of
non-military R&D obligations and state GDP (both in real per capita terms). Standard errors
in parenthesis are clustered by state.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B.3: Regressions without normalizing by population

Dependent variable:
Privately-funded R&D (Δℎ𝑅𝐷𝑝𝑟𝑖𝑣)

Military R&D OLS IV

(Δℎ𝑅𝐷𝑑𝑒 𝑓 ) (1) (2) (3) (4) (5) (6)
ℎ = 2 0.017 0.017 0.016 0.088 0.086 0.088

(0.02) (0.02) (0.02) (0.078) (0.072) (0.069)

ℎ = 3 0.021 0.02 0.019 0.063 0.05 0.046
(0.02) (0.02) (0.02) (0.056) (0.049) (0.048)

ℎ = 4 0.041 0.041∗ 0.038 0.126 0.107 0.111∗

(0.025) (0.024) (0.024) (0.076) (0.066) (0.062)

ℎ = 5 0.041 0.041 0.038 0.102∗ 0.099∗ 0.099∗

(0.027) (0.027) (0.026) (0.054) (0.054) (0.053)

No controls 3 7 7 3 7 7

Only Population 7 3 7 7 3 7

Baseline (includ. pop) 7 7 3 7 7 3

Notes: OLS and TSLS estimations with state and year fixed effects. The sample period is
1968-2017. We run separate regressions for each ℎ, where the dependent variable is the ℎ-year
log-change in firms R&D (privately financed, in real terms). The main regressor is the ℎ-year
log-change in defense R&D obligations (in real terms). Baseline controls include ℎ-year log-
changes of state population, GDP and non-defense R&D obligations (in real terms). Standard
errors in parenthesis are clustered by state.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B.4: Employment regressions: robustness checks

Dependent variable: Employment (Δℎ𝑅𝐷𝑒𝑚𝑝)

R&D tax credit Corporate tax

Industry/Occupation (ℎ = 2) (ℎ = 3) (ℎ = 4) (ℎ = 5) (ℎ = 2) (ℎ = 3) (ℎ = 4) (ℎ = 5)
Engineers 0.048∗∗ 0.062∗∗ 0.062∗∗ 0.069∗∗ 0.042∗∗ 0.056∗∗ 0.059∗∗ 0.064∗∗

(SOC 17-2000) (0.018) (0.024) (0.025) (0.03) (0.018) (0.023) (0.024) (0.029)

Computer and electronic 0.011 0.011 0.065 0.068∗ 0.013 0.015 0.06 0.062
products (NAICS 334) (0.039) (0.048) (0.042) (0.04) (0.038) (0.046) (0.04) (0.039)

Transportation equipment -0.121 0.101∗∗∗ 0.081∗∗∗ 0.058 -0.142 0.1∗∗∗ 0.085∗∗∗ 0.068∗∗

(NAICS 336) (0.188) (0.027) (0.026) (0.036) (0.212) (0.026) (0.021) (0.033)

User cost of R&D capital Non-R&D procurement

Engineers 0.044∗∗ 0.059∗∗ 0.065∗∗ 0.07∗∗ 0.055∗∗∗ 0.068∗∗∗ 0.069∗∗∗ 0.069∗∗∗

(SOC 17-2000) (0.018) (0.023) (0.025) (0.029) (0.019) (0.023) (0.023) (0.023)

Computer and electronic 0.012 0.014 0.061 0.064 0.021 0.033 0.079∗ 0.084∗

products (NAICS 334) (0.039) (0.047) (0.042) (0.04) (0.038) (0.047) (0.043) (0.043)

Transportation equipment -0.147 0.104∗∗∗ 0.09∗∗∗ 0.071∗∗ 0.01 0.123∗∗∗ 0.102∗∗∗ 0.074∗

(NAICS 336) (0.214) (0.028) (0.022) (0.034) (0.077) (0.023) (0.024) (0.037)

Outlays No population normalization

Engineers 0.019 0.02 0.039 0.049∗ 0.06∗∗∗ 0.076∗∗∗ 0.08∗∗∗ 0.082∗∗∗

(SOC 17-2000) (0.027) (0.031) (0.031) (0.028) (0.02) (0.025) (0.024) (0.024)

Computer and electronic 0.045 0.045 0.073 0.072 0.014 0.016 0.059 0.065
products (NAICS 334) (0.041) (0.045) (0.045) (0.045) (0.036) (0.046) (0.047) (0.049)

Transportation equipment 0.055 0.067∗ 0.08∗∗ 0.066 -0.019 0.115∗∗∗ 0.091∗∗∗ 0.074∗

(NAICS 336) (0.033) (0.034) (0.033) (0.043) (0.103) (0.023) (0.025) (0.037)

Notes: the table reports TSLS estimations by industry/occupation for different specifications and time horizons ℎ. Across all
specifications, the dependent variable is the ℎ-year log-change of employment in the industry/occupation (in per capita terms)
while the main regressor is the ℎ-year log-change in defense R&D obligations (in real per capita terms). All regressions include
the ℎ-year log-changes of non-military R&D obligations and state GDP (both in real per capita terms) as control variables as
well as state and time fixed effects. The sample period is 1968-2017 except for the "Non-R&D procurement" regression which
uses 1980-2017. The first three specifications include respectively ℎ-year variations in corporate tax rates, R&D tax credits and
user costs of R&D capital as controls. The "Non-R&D procurement" regression includes ℎ-year log-changes in total non-R&D
procurement. The "Outlays" specification uses national variations in outlays (instead of obligations) interacted with state
dummies as instrumental variables. "No population normalization" refers to a regression in which both the main regressor
and the controls are not divided by population. Standard errors in parenthesis are clustered by state.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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