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Abstract

The possibility to measure the contribution of agents and exchanges to the price
formation process in financial markets acquired increasing importance in the litera-
ture. In this paper I propose to exploit a data-driven approach to identify structural
vector error correction models (SVECM) typically used for price discovery. Exploit-
ing the non-Normal distributions of the variables under consideration, I propose a
variant of the widespread Information Share measure, which I will refer to as the
Directed Acyclic Graph based-Information Shares(DAG-IS), which can identify the
leaders and the followers in the price formation process through the exploitation of
a causal discovery algorithm well established in the area of machine learning. The
approach will be illustrated from a semi-parametric perspective, solving the identifi-
cation problem with no need to increase the computational complexity which usually
arises when working at incredibly short time scales. Finally, an empirical application
on IBM intraday data will be provided.
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1 Introduction

The past decades have been characterized by dramatic changes in financial markets, where

the proliferation of algorithmic trading strategies put aside the intervention of human agents

in the price formation process. These algorithms execute orders at incredibly short time

scales and there is no doubt anymore they account for most of the trading volumes in

developed markets. In addition, processes of market fragmentation have been carried out

jointly with the rising of high-frequency trading. This doubly increased the complexity

of financial markets, since quotes and trades might be dispersed across different listing

venues and at heterogeneous time scales which mix the slower dynamic of humans with

the faster dynamic of machines. The possible benefits of fragmented versus consolidated

markets have been object of debates for both economists and regulators also in recent

times (O’Hara and Ye, 2011; Kwan et al., 2015; Hatheway et al., 2017). As a consequence,

the possibility to measure the relative contribution of each exchange in which the asset

is listed, to the price formation process, acquired increasing importance in the research

environment. In this article I propose to adopt a completely data driven strategy based on

Independent Component Analysis (ICA) to identify the SVECM widely adopted in the price

discovery context, proposing a solution for the identification problem of the Information

Share measures (Hasbrouck, 1995). The proposed methodology exploits the non-Normal

distributions of the variables to identify the transitory shocks, and the associated mixing

matrix according to which the observed model residuals correlate across markets.

Another popular measure widely adopted in price discovery analyses that worth to be

mentioned is the Component Share (CS) based on the permanent-transitory (PT) decom-

position introduced in Gonzalo and Granger (1995) (Harris et al., 1995; Booth et al., 1999;

Hansen and Lunde, 2006). Both the IS and CS measures build their fundamentals upon

the modeling of price changes through VECMs, with the substantial difference that while

the CS is defined only in terms of speeds of adjustment toward the common trend (i.e.

markets with lower cointegration loadings rapidly adjust and are thus more informative),

the IS measure is more concerned with variations in the prices and seeks to measure the

amount of information generated by each market. Both approaches have their merits and

limits which have been documented by comprehensive discussions in the literature (Baillie

2



et al., 2002; De Jong, 2002; Harris et al., 2002a,b; Hasbrouck, 2002b; Lehmann, 2002). The

IS approach, compared to the CS one, has a richer specification since it considers the speed

of adjustment together with the relative share of variance of the efficient price process

accounted by each market.

Still, from a microstructural modeling point of view, the IS can be uniquely determined

only when the VECM residuals are uncorrelated given that the presence of substantial con-

temporaneous correlations hampers the correct identification of the shocks occurred in each

market. Hasbrouck’s suggested solution was, in absence of an established theory providing

the causal chain to correctly order the variables in the model, to identify the SVECM using

the Choleski decomposition and going through all the possible permutations of the vari-

ables so to get upper and lower bounds for the IS of each market. In empirical applications

upper and lower bounds are often very wide giving rise to interpretative ambiguities about

the real allocation of information between the analyzed variables, making impossible to

distinguish between the exchanges which lead the price formation process and exchanges

that follow it.

From a recent data-driven perspective instead, Hasbrouck (2019) proposed to exploit

the high frequency at which quotes and trades occur, modeling thus in natural time to

drastically reduce the range obtained by permuting the variables. Sampling prices at very

short time scales, even from microseconds to nanoseconds precision, heavily reduces con-

temporaneous cross correlations between the listing venues indeed, which by construction

leads to narrower IS bounds and allow to discard any interpretive ambiguity. To deal with

the enormous amount of coefficients to be estimated in such a natural time framework,

the author handled the problem by adopting the heterogeneous autoregressive approach

(HAR) proposed by Corsi (2009). Nevertheless, this modeling approach raised interesting

and useful comments and discussions in the literature, in some cases controversial, directly

related to the econometric model specification, treatment of the high level of data sparsity

in natural time, and subsequent identification of where price discovery occurs (Brugler and

Comerton-Forde, 2019; Buccheri et al., 2019; De Jong, 2019; Ghysels, 2020). Despite the

identification issue above mentioned and even if other measures of price discovery have

been proposed in the literature (see Lien and Shrestha, 2009; De Jong and Schotman,
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2010; Yan and Zivot, 2010; Putniņs̆, 2013), the IS is still one of the most widely used mea-

sures for price discovery as documented by its adoption in recent works as well (Chen and

Tsai, 2017; Kryzanowski et al., 2017; Lin et al., 2018; Ahn et al., 2019; Baur and Dimpfl,

2019; Brogaard et al., 2019; Hagströmer and Menkveld, 2019; Entrop et al., 2020). The

idea to exploit the non-Normal distribution of financial returns to identify the IS measure

via machine-learning based causal search algorithms, directly arises from the possibility

of introducing a purely data-driven technique in a research field in which is very hard to

provide general and robust theory-driven identification strategies. This will lead to the

introduction of the Directed Acyclic Graph based-Information Shares(DAG-IS).

The idea of identifying the IS by means of the distributional properties of the variables

was firstly introduced by Grammig and Peter (2013). The authors exploited the concept

of tail dependence through the adoption in the modeling procedure of different variance

regimes, inspired by Rigobon (2003), to identify the contribution of each market to the

price discovery process. The intuition was that differences between tail and center correla-

tions, caused by the occurrence of extreme price changes, could be exploited to reach full

identification. In particular, following Lanne and Lütkepohl (2010), they assume price in-

novations to emerge as a mixture of two serially uncorrelated Normal random vectors with

different covariance matrices, where one is the identity and the other is a diagonal matrix

associated to different variance regimes. Still providing a solution based on the exploitation

of the statistical properties of the variables of interest, the methodology proposed in this

article differs under many aspects. First, the methodology which I am going to propose can

work in principle under any non-Normal distribution, with no need of introducing differ-

ent volatility regimes to identify the model. Second, keeping Hasbrouck (2019) as a clear

benchmark, the strategy proposed in this article is found to provide coherent empirical

results under different time specifications when identifying the leaders and the followers in

the price formation process. For all of these reasons the solution proposed in this article can

be appealing, at the cost of introducing the assumption of independent structural shocks

in place of uncorrelated ones. Together with the assumption of the presence of an acyclic

contemporaneous causal structure (Shimizu et al., 2006; Hyvärinen, 2013), I show we can

consistently identify the causal chain in the system and thus the correct permutation of
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the variable in the VECM with subsequent unique identification of the IS measures.

Recent developments about the ICA approach can be found particularly in macroe-

conometrics where the identification issue of structural VAR (SVAR) models is pervasive

(Moneta et al., 2013; Gouriéroux et al., 2017; Lanne et al., 2017) but applications can be

found also in financial econometric and forecasting studies (Audrino et al., 2005; Garćıa-

Ferrer et al., 2012; Fabozzi et al., 2016; Hafner et al., 2020) as well as in the empirical

validation of simulated models (Guerini and Moneta, 2017). Here its potential effective-

ness in the identification of SVECM models for price discovery purposes will be addressed.

The article is organized as follows. In section 2 the general setting is provided, showing the

baseline model with its identification issues for price discovery. In section 3, the model and

assumptions are illustrated explaining the identification scheme and a simulation exercise

is provided to clarify the methodology. Section 4 provides an empirical application on IBM

3 October 2016 intraday data, in order to have the results of Hasbrouck (2019) as a clear

benchmark to compare with. Conclusion and discussions are provided in section 5.

2 General setting

In this section I briefly go back to the microstructure setting introduced in Hasbrouck

(1995), which exploits the vector error correction representation of Engle and Granger

(1987), and repeated in Hasbrouck (2019). The starting point is to consider a vector of

time series log-prices pt ={p1t, p2t, ... , pnt} observed in n different exchanges but pertaining

the same security, thus all arbitrage linked and whose dynamic are modeled by VECM:

∆pt = αβ′pt−1 +
k∑
i=1

Φi∆pt−k + εt (1)

where the matrix β ∈ Rn×n−1 contains the n− 1 cointegrating vectors specified as p1 − p2,

p1 − p3, p1 − pn since all price series naturally cointegrate each other, and α ∈ Rn×n−1 is a

loading matrix. The system in equation 1 is covariance stationary, with Cov(εt) = Ω, and

thus admits a VMA(∞) representation

∆pt = Ψ(L)εt (2)
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with

Ψ(L) =
∞∑
i=0

ΨiL
i, (3)

and also possess, as implied by the Granger representation theorem, a common trend

representation given by

pt = p0 + Ψ(1)
t∑
i=1

εi + Ψ∗(L)εt (4)

where holds the decomposition Ψ(L) = Ψ(1)+(1−L)Ψ∗(L), which can be seen as the mul-

tivariate generalization of the decomposition introduced in Beveridge and Nelson (1981).

The second term on the right hand side of equation 4 is the random walk component driv-

ing all prices in the system, and thus can be identified as the latent efficient price process,

while the last term is the transitory component admitting the VMA(∞). The matrix Ψ(1)

can be computed as (Johansen, 1991):

Ψ(1) = β⊥

[
α
′

⊥

(
I −

k∑
i=1

Φi

)
β⊥

]−1
α
′

⊥ (5)

and has rank equal to one which is the dimension of the efficient price process behind the

observed series, thus all rows of Ψ(1) are identical. The information share measure for

market j is the share of variance of the common component which is induced by the jth

market, which means

ISj =
ψ2
jΩjj

ψΩψ′
(6)

with ψ being the common row of Ψ(1) and ψj denoting the j-th element of ψ corresponding

to market j. The above definition uniquely allocate the total variance across markets only

if the covariance matrix of the innovations Ω is diagonal, while an identification issue arises

when price innovations are correlated. To deal with a non-diagonal Ω two practical solutions

have been proposed. The first is to rewrite εt in terms of orthogonal innovations ut as

εt = Cut (7)

where C is the Choleski decomposition of Ω. The IS thus can be computed in terms of the

new orthogonal innovations ut, that is

ISj =

(
[ψC]j

)2
ψΩψ′

. (8)
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This allocation mechanism defined through the causal chain implied by the lower triangular

structure of C depends on the particular order in which the variables are inserted in the

VECM, thus the heuristic solution was to consider upper and lower bounds for the IS of

each market by considering all the possible variable permutations.

The second practical solution consists in drastically reducing the gap between upper

and lower bounds, in order to eliminate interpretative ambiguities, estimating the model

in natural time at very high resolutions. Non zero cross correlations in Ω naturally arise

as the sampling interval increases indeed (Hasbrouck, 2019; Dias et al., 2020), thus they

can be minimized by sampling at higher frequencies. This clearly comes at costs, including

both the computational aspect of dealing with such a number of observations characterized

by high level of sparsity and a suitable model specification to estimate the coefficients still

considering a sufficiently long lag-structure in the data.

As explained also in Hasbrouck (2003), the upper and lower bounds of the IS measures

cannot be interpreted as confidence interval but rather as an identification problem. In the

next section I will propose a methodology to uniquely identify, under few assumptions, the

permutation of the variables in the system to recover the exchanges which lead the price

discovery and the following ones.

3 Model and assumptions

Consider the n-dimensional vector of price innovations εt = [ε1t, ε2t, ..., εnt] characterized

by the non-diagonal covariance matrix Ω. Assume these observed signals to be a linear

mixture of hidden components ηt, which can be modeled as

εt = A0ηt, (9)

where A0 is a n×n mixing matrix through which the latent structural shocks ηt are revealed

in each market. The equation 9 can be estimated up to permutation, sign, and scaling under

some assumptions (Comon, 1994).

Assumption 3.1. The sequence of hidden sources, with finite and non-zero variance, of

market microstructure noise ηt possess at most one Normal marginal distribution;
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Assumption 3.2. Independence of the latent shocks: p(η1, η2, ..., ηn) =
∏n

i p(ηi).

Market microstructure noises embed a variety of frictions in the trading process, inherent

not only to investment scheme strategies but also to market and asset specific factors and

fundamentals. As evidenced by Aı̈t-Sahalia and Yu (2009) market liquidity risk can lead

to further adjustments, not explainable by asset specific fundamentals, in the asset bid-ask

spread of the assets. Then, from a price discovery perspective the independence assumption

in 3.2 would imply market microstructure noise to be market specific and independent

from the efficient price process of the asset. Still, observed price innovations are allowed to

correlate each other by means of the mixing matrix A0 (for example as a consequence of the

time aggregation in the sampling process previously mentioned). However, since we directly

observe only the mixtures, the independence of the hidden sources cannot be tested and has

to be assumed. Concerning the non-normality assumption of financial returns it is more

a stylized fact rather than assumption. The independence of the non-Normal structural

shocks ηt is a stronger concept than uncorrelatedness which is not sufficient alone to get

rid of all the dependence information in the data. This additional information is what will

allow to reach full identification of the model if there exists a contemporaneous causal chain

between the variables in the system, leading to the third and last assumption.

Assumption 3.3. The observed price innovations εt can be arranged in a causal chain,

meaning that their data generating process possesses a directed acyclic graph structure

(DAG) (Spirtes et al., 2000).

Under assumption 3.3 we can model the system in equation 9 as the following structural

model,

εt = B0εt + ηt (10)

where A0 = (I −B0)
−1 and the assumption of acyclical contemporaneous causal structure

implies there exists an appropriate ordering of the variables according to which B0 is

strictly lower triangular. We refer to this model as the Linear Non-Gaussian Acyclic Model

(LiNGAM) firstly introduced by Shimizu et al. (2006) in the research field of non-Normal

Bayesian networks.

To understand why non-normality is fundamental in the above specified model, con-

sider for simplicity the two-dimensional case with ε1 and ε2. The structural model should
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identify one variable as the exogenous and the other as the dependent one, which trivially

means we should be able to choose between ε1 = b2ε2 + η1 and ε2 = b1ε1 + η2. In the

gaussian case independence and uncorrelatedness coincide and there would be no way to

understand whether ε1 → ε2, or vice versa, relying on the covariance matrix of η. This

because the spherical symmetry of the joint normal distribution of the random vector ηt

makes impossible to uniquely identify the matrix A0, which could be estimated only up

to an arbitrary orthogonal transformation as usually done with the PCA approach in the

Gaussian case (Hyvärinen, 2013; Moneta et al., 2013). This directly relates on the necessity

to rely on a suitable economic theory which allow us to decide what the causal structure

and subsequent shock propagation would be. However, under non-normal distributions of

the structural shocks in η, the structural models will not be perfectly symmetric anymore

and can be in principle distinguished and reformulated either as

ε1
ε2

 =

 1 0

a1 1

η1
η2


or ε1

ε2

 =

a2 1

1 0

η1
η2

 ,

which means the model selection simply reduce to the choice of one of the two models

above which will be now theoretically distinguishable.

The LiNGAM procedure exactly aims at inferring the underlying causal network struc-

ture which is more consistent with the statistical dependencies observed in the data, and

the assumption 3.3 of an acyclical causal structure is introduced exactly to identify the

model. In the Normal case the identification of the ISs would come through the imposition

of particular Choleski ordering restrictions which in turn imply both independence and an

acyclical causal structure among the variables (either one variable causes the other or vicev-

ersa according to the economic theory we rely on). Thus, in this context, the value added of

assuming independence and acyclical causal relations arises indeed by taking them jointly

with the assumption of non-Normality. In what follows, the estimation steps necessary

to achieve the structural identification of the VECM with associated information shares
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are illustrated. The first step is the estimation of the hidden non-normal and independent

components ηt.

3.1 Quantifying non-normality and recovering the independent

components

The first step necessary for the identification process is to recover the non-Normal and

statistically independent sources ηt from the observed price innovations εt. This requires

the adoption of suitable measures which quantify the non-normality of a random variable.

The estimation can thus proceed by estimating the mixing matrix A0 such that the non-

normality of ηt is maximized. There are many approaches to estimate the model in 9

based for instance on the maximization of the kurtosis, negentropy, or minimization of the

mutual information between the random variables. All methodologies are closely related

and exploit the central limit theorem. The additive mixture εt of independent and non-

normal components ηt, is always closer to a Normal distribution than the latter. Thus,

maximizing the non-normality of ηt directly relates to finding a direction of the space

through the inverse of A0 such that their mutual dependence is minimized. Going to

the optimization schemes implemented so far in the literature, in this work the FastICA

algorithm of Hyvärinen and Oja (2000) is adopted being one of the most popular algorithm

whose performances have been assessed theoretically and empirically, and for which efficient

variants of the algorithm have been also provided (Reyhani et al., 2012; Koldovsky et al.,

2006; Miettinen et al., 2017). The optimization problem is solved quantifying the non-

normality in terms of approximated negentropy. The entropy (amount of information) for

a continuous random variables x is defined as

H(x) = −
∫
f(x) log f(x) dx. (11)

Given that a normal variable has the largest entropy among random variables of equal

variance (Cover and Thomas, 1991), one could optimally quantify, at least theoretically,

the non-normality of a random variable by looking at the difference between its entropy

and the one of a normal variable with the same variance. The so called negentropy is thus
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defined as

J(x) = H(N )−H(x). (12)

However, this would require in practice the knowledge of the probability density function

from which the data are generated. For this reason the algorithm deals with an useful

approximation of the negentropy of a random variable which takes the form

J(x) ≈ [E (g(x))− E (g(Z))]2 , (13)

where Z is a standardized normal and g(·) is any suitable non-quadratic function used to ap-

proximate the negentropy given the data (Hyvärinen and Oja, 1998), here g(x) = −e−x2/2.

What is important is to choose g(·) in a way that important regularity conditions, here

briefly discussed, are satisfied to guarantee the convergence of the algorithm and related

asymptotic properties. First, the mixtures are centered to be zero mean and whitened (i.e.

uncorrelated and with their variances equal to one) which means I work with the quantities

z = PD−1/2ε as done also by Fernandes and Scherrer (2018), where PDP t is the spectral

decomposition of the covariance matrix of the mixtures Ω. The algorithm searches for a

vector w which maximizes the non-normality of wtz measured as shown by equation 13,

that is

ŵ = argmaxwE(J(wtz)). (14)

Proposition 3.1. Suppose that assumptions 3.1 and 3.2 hold true and that the following

regularity conditions are satisfied:

i E(z) = 0;

ii All moments of z up to the fourth exist;

iii Both g′(·) and g′′(·) are Lipschitz continuous. That is, there exist δ1, δ2 < ∞ such

that ||g′(x1)− g′(x2)|| ≤ δ1||x1 − x2|| and ||g′′(x1)− g′′(x2)|| ≤ δ2||x1 − x2|| ;

iv g′′(·) is bounded;

Then, being E(zg(wtz) = 0 the first order optimality condition of the maximization problem

in (14), the estimator ŵ = {w : E(zg
′
(wtz) = 0))} is consistent and asymptotically normal,

that is
√
n(ŵ − w)

d−→ N (0,Ω).
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Proposition 3.1 summarizes the regularity conditions needed to establish the asymp-

totical properties of the estimates. The asymptotic normality of the ICA estimates have

been already proven for a variety of different optimization procedures. A comprehensive

theoretical discussion on the statistical properties of the FastICA estimator can be found in

Reyhani et al. (2012). It should be mentioned that also other studied proposed to use non-

Normal distributions to identify structural shocks in SVAR models (Lanne and Lütkepohl,

2010; Lanne et al., 2017; Gouriéroux et al., 2017) by assuming specific density functions

for the structural shocks.

3.2 Identifying the acyclical causal structure

Until now I made use only of assumptions 3.1 and 3.2 to estimate ηt and the mixing matrix

A0 up to permutation, sign, and scaling. The permutation indeterminacy in particular

prevent the possibility to determine an appropriate order for the variables. I thus introduce

at this point assumption 3.3 to identify the structural model by adapting to our context

an heuristic causal search algorithm, well established in the machine learning research area

(Shimizu et al., 2006; Hyvärinen et al., 2010), in which the acyclicity assumption makes

possible to exploit statistical dependencies to recover a unique causal chain between price

innovations in the SVECM. As a consequence I will be able to impose a specific order of the

variables in the Choleski decomposition. In algorithm 1, the whole procedure to finally get

the IS measure for each market without permutation indeterminacy is illustrated. While

step 3 deals with the scaling indeterminacy of the ICA estimation, steps 2 and 4 deal with

the sign and permutation indeterminacy which is the crucial problem we have when we

want to identify the IS measures for each market, leading to proposition 3.1.

Proposition 3.2. Suppose that assumptions 3.1, 3.2 and 3.3 hold true. Then the Infor-

mation Shares computed by following algorithm 1 are uniquely identified.

Proof. See Appendix A.

The identification scheme proposed ensures the uniqueness of the permutation according

to which the price innovations in εt are mapped in a one-to-one correspondence with the

shocks ηt. Assuming a causal chain among the variables, searching for the implied DAG
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Algorithm 1 VECM-LiNGAM algorithm for IS measures

1: Estimate the VECM equation by equation given the known cointegrating relationships,

and perform the ICA estimation on the model residuals (any suitable ICA estimator)

to recover A0 and ηt.

2: Given the unmixing matrix W = A−10 , find the permutation of the rows of W such that

the permuted version W ∗ minimize
∑n

i 1/|W ∗
ii|. The objective function to minimize in

this steps can be derived from maximum likelihood approach assuming a generalized

normal distribution for the errors (see Shimizu et al., 2006) .

3: Divide each row of W ∗ by its diagonal element so to get a matrix W̃ with ones in the

main diagonal.

4: Let B̃0 = I− W̃ be the estimate of B0. Find a permutation matrix Z such that ZB̃0Z
′

as close as possible to be strictly lower triangular. Set the upper triangular elements to

zero and permute back to get the matrix B̂0 containing the directed acyclical graphical

structure (DAG). A non zero element bij in matrix B̂0 indicates the variable in position

j to cause the variable in position i.

5: Thus, order the variable in the VECM according to the DAG structure obtained and

perform Choleski on the estimated price innovations. Compute the IS measures.

It is useful to note that a test of statistical significance for the non zero elements of B̃0 can

be performed following if a sufficiently long time series is available, which is the case for

high-frequency data. Code implementation of the pruning edges method publicly in the

online LiNGAM code repository.
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structure through the algorithm, clearly comes at cost. In principle the matrix ZB̃0Z
′
might

be such that no lower triangular matrix can be obtained by permutation. In that case the

assumption of a recursive structure would not be adequate, and forcing the algorithm to

find the permutation such that ZB̃0Z
′

is as closest as possible to lower triangular would

lead to biased results.

Rejecting the assumption of a recursive structure would have much severe consequences

that go beyond the identification of the IS through the DAG structure. When no recursive

structure is detected in the data the Choleski decomposition itself would not be reliable

consequently, intrinsically hampering the validity of the IS approach whenever the assump-

tion of a diagonal covariance matrix of the error is violated. A first heuristic check for

the matrix to be close to a lower triangular one is to fulfill the condition
∑

i≤j b̂ij
2
< 0.2,

however the null hypothesis for the coefficients to be zero can be statistically tested by

bootstrap (Shimizu et al., 2006).

In the next section, a simulation exercise is provided to clarify the methodology. An

empirical application will follow afterward.

3.2.1 An illustrative simulation exercise

Here I present the proposed identification mechanism on simulated data. In light of as-

sumptions 3.1 and 3.2 I generate samples of T=5000 observations of independent sources

ηt from an Exponential Power Distribution (EPD) whose density function is defined as

f(η | p, µ, σp) =
p

2σpp1/pΓ(1 + 1/p)
exp

(
−1

p

∣∣∣∣η − µσp

∣∣∣∣p) (15)

where

Γ(1 + 1/p) =

∫ ∞
0

η1/pe−ηdx

= (1/p)!

(16)

is the gamma function. The variances are governed through the scale parameter σp accord-

ing to

σ2 =
σ2
pΓ(3/p)

Γ(1/p)
(17)

Since we need ηt to be non-Normal, I choose to simulate from the EPD density (see Nardon

and Pianca, 2009; Kalke and Richter, 2013, for extensive discussions about simulation
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methodologies) to have flexibility in modeling through the additional shape parameter p.

The EPD become a normal when p = 2 and allows for fat tails by setting p < 2 (DiCiccio

and Monti, 2004; Nadarajah, 2005), which is useful in the present setting to simulate data

displaying excess kurtosis as financial price changes do. When p = 1 the distribution

converges to a Laplace, I start with a shape parameter p = 1.2 which implies an excess

kurtosis of 1.8 according to

k =
Γ(1/p)Γ(5/p)

Γ(3/p)2
− 3. (18)

Typically, intraday financial returns display higher levels of volatility both at the beginning

and at the end of the trading day, and lower levels of volatility in the middle. For this reason

I let the variance of the distributions from which I simulate ηt vary over time, modelling it

through the diurnal U-shape pattern (Hasbrouck, 2002a; Andersen et al., 2012; Bollerslev

et al., 2016).

σηt = C + Ae−at +Be−b(1−t) (19)

where parameters are set as in Andersen et al. (2012), that is C = 0.88929198, A = 0.75,

B = 0.25, a = 10, and b = 10. In the light of the empirical application provided in the

next section, in which no more than 4-variables will be contemporaneously considered, I

simulate a 4-dimensional VECM process driven by only one common stochastic trend. The

signals εt are obtained by mixing the simulated non-Normal and independent shocks ηt

through the matrix

A0 =


0.9 0 0 0

0.4 0.6 0 0

0.5 0.2 0.7 0

0.3 0.5 0.3 0.1

 , (20)

whose lower triangular structure implies a causal chain from the first to the forth variables

passing through the second and the third ones. The shocks in ηt are set to be independent

and such that Cov(ηt) = Σt is diagonal with equal variances, the information shares of

the two markets are affected by the speed of adjustments in α as well. Details about

the simulation setting and parameters can be found in Appendix B. With the specified

parameters, the true IS measures are IS1 = 0.58, IS2 = 0.01, IS3 = 0.39, and IS4 = 0.02.
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The identification procedure yields the following acyclic structure.

B̂0 =


0 0 0 0

0.44 0 0 0

0.42 0.43 0 0

0.2 0.68 0.43 0

 , (21)

which means the estimated DAG structure consistently recover the causal chain from the

first variable to the fourth, passing before through the second and third variables. Figure

1 shows the scatter plots for the residuals εt, clearly correlated as imposed in the data

generating process (DGP), and the recovered independent structural sources ηt. Note that

the estimated mixing matrix, upon which the causal search algorithm 1 is performed, closely

resemble the true A0 up to sign indeterminacy as shown below

Â0 =


−1 0.01 0.03 0.004

−0.43 0.69 0.04 0.01

−0.59 0.26 −0.75 0.005

−0.34 0.58 −0.3 0.1

 . (22)

The computation of the ISs going through all the possible permutations would provide

us with IS1 = [0.1, 0.58], IS2 = [0.01, 0.32], IS3 = [0.1, 0.6], and IS4 = [0.01, 0.31], which

make impossible to correctly disentangle the contribution of each market to the variance

of the efficient price process. However, recovering the correct causal chain by means of the

proposed identification strategy we are able to correctly permute the variables to get the

true IS measures. In the next section, an empirical application based on IBM data keeping

previous results in the literature as a benchmark will be provided.

4 Empirical application

4.1 Benchmarking the model

Bringing the procedure on high-frequency data exposes to several caveats, mostly related to

the sparsity of the data and to model specification issues. To have a benchmark to compare

with, I empirically test the proposed methodologies on the same IBM data adopted by Has-

brouck (2019), for the day 3 October 2016, which have been shared under the authorization
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of the NYSE making this analysis possible. I thus try to disentangle the relative contri-

bution to the price discovery process of primary listing and non-primary listing exchanges,

participant-based and SIP-based quotes, trades and quotes. As previously illustrated, the

main power of the approaches relies in the exploitation of the non-Normal distributions

to separate the sources of noise in each variable. In this respect it becomes interesting to

test the model stability both in natural and event time, adopting a relatively low level of

resolution (i.e. second precision) in the data for the natural time specification. This to

eventually check the consistency of the obtained results in both time specifications without

increasing the computational complexity and data sparsity introduced when working at

very high frequencies.

4.2 IBM, 3 October 2016

The empirical application focuses on some detailed analyses already conducted in the lit-

erature in order to have a direct comparison which makes clearer the interpretation of the

obtained results. The econometric analysis is performed on IBM’s quotes and trades for

the day 3 October 2016, with each record reporting both participant-based and SIP-based

timestamps. The final whole sample for the day consists of around 30.000 observations.

VECM models are thus estimated both in natural-time and event-time with a maximum

lag k = 10, and then the data-driven identification strategies for the IS measures are im-

plemented. The first study disentangles the impact of time reporting differentials on the

quantification of price discovery measures, through the estimation of a 4-variables VECM

including national best bids (NBBs) and offers (NBOs) constructed from both participant

and Securities Information Processor (SIP) timestamps. The purpose of the SIP is to es-

tablish a consolidated and transparent way to view the market activity for all US equities.

Starting from the participant trades and quotes, the Security Information Processor com-

pute and publicly disseminate national best bids and offers at which broker are required

to trade, by the regulation, when acting in the interest of their customers. Given that the

SIP timestamps are by construction delayed signals of the participant ones, one expects to

attribute the price discovery to the participant-based data. I then proceed with the second

analysis which consists in quantifying the price discovery in both the primary listing and
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other exchanges. The VECM will include bids and offers placed on the primary listing,

plus best bids and offers taken from all the exchanges except the primary one. Finally, the

third study is aimed at determining the relative contributions of trades and quotes. I thus

insert in the model trades occurred on lit and dark pools separately, plus NBBs and NBOs

quotes from participant timestamps. Dark pools are private trading venues, alternative to

public accessible exchanges which are defined here as lit pools (examples are the NYSE,

NASDAQ, or LSE among others), with no regulatory transparency requirements. This

allows institutional investors to trade large securities volume without making their hands

visible, thus avoiding possible adverse price effects for their trades when huge volumes are

involved since there is no order book visible to the public. To schematically summarize

the empirical application, three separate VECMs will be estimated and identified by the

proposed methodology containing respectively:

1. pModel1
t =

[
NBBParticipants

t ,NBOParticipants
t ,NBBSIP

t ,NBOSIP
t

]
;

2. pModel2
t =

[
NBBOtherExchanges

t ,NBOOtherExchanges
t ,BidPrimary

t ,AskPrimary
t

]
;

3. pModel3
t =

[
NBBParticipants

t ,NBOParticipants
t ,TradeLitPoolst ,TradeDarkPools

t

]
.

In figure 2, the quantile-quantile plots for the VECM residuals are displayed. It can be

noticed they are visibly leptokurtic as expected (the normality hypothesis was soundly re-

jected at the 1% by different tests usually adopted as the Jarque-Bera and the Shapiro-Wilk

tests). The residuals of the models estimated for the participant versus SIP timestamps

are not reported in the quantile-quantile plots to avoid useless redundancies, given that

the variables would be again NBBs and NBOs with just the time-delays differentials in

reporting them. For each model related to a given price discovery analysis, the identifi-

cation procedure leading to the DAG-IS measures is performed and compared with the

approach in which upper and lower bounds are computed by going through all the possible

permutations and applying the Choleski decomposition. While table 1 shows the estimated

coefficients of the structural matrix A0 for each analysis, table 2 summarizes the informa-

tion shares estimated for each variable. The autoregressive and loading coefficients, for

each estimated VECM, are not reported here for the sake of brevity and can be found in
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the supplemental online appendix. However, as also reported in Hasbrouck (2019), esti-

mates are mostly insignificant at the 1-second resolution while they are very significant in

the event-time specification. As illustrated in the previous section the underlying acyclical

causal structure is encoded in the instantaneous effect matrix A0, where non-zero elements

represent the links among the variables involved. Given the estimated results, the following

acyclical structures have been recovered

1. NBBparticipants −→ NBBSIP −→ NBOparticipants −→ NBOSIP in natural time (1

second);

2. NBOparticipants −→ NBBSIP −→ NBOSIP −→ NBOparticipants in event time

3. Bidprimary −→ Askprimary −→ NBBothers  NBOothers;

4. NBBparticipants −→ TradesLit −→ TradesDark −→ NBOparticipants.

For the participant versus SIP timestamps the recovered acyclical structure changes with

the time framework adopted, but most importantly participants are always placed in the

first position and this is the reason why the DAG-IS is able to identify them as the leaders in

both cases. Surprisingly, the DAG structures recovered in the primary versus non-primary

listing exchanges analysis and quotes versus trades analysis is stable and consistent across

the natural and event time settings. When the  is present in place of the straight arrow

→ it simply means that the recovered coefficient associated to the causal relations is not

statistically significant, meaning that the causal chain is interrupted in that specific point.

This is the case for the primary versus non-primary listing exchange analysis for example,

where no statistically significant relation is detected among shocks in different exchanges

other than the primary one and the shocks propagate only from the primary listing to

the others. While the DAG-IS measure is able to identify the participant timestamps as

the dominating ones, suggesting the correct variable’s order in the system even in the low

resolution case (1-second precision), the permutation approach would not solve the identi-

fication issue given the very wide upper and lower bounds. There is no doubt in the event

time specification instead, where also the approach based on all the possible permutations

identify the participant timestamps as the variables leading the price formation process.

Also in the price discovery across exchange analysis, the DAG-IS consistently identify the
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primary listing exchange as the leader both in natural and event-time. This would not be

possible using the heuristic solution with upper and lower bounds. It has to be noticed,

however, that the DAG-IS works by finding a permutation respecting the most the statis-

tical dependencies of the data but does not solve the temporal aggregation issue we have

when using low levels of resolution. This means that if we discard price variations in each

market by aggregating over seconds, the measurement will be obviously overestimated or

viceversa but we will still be able to correctly identify the leaders (primary listing) and the

followers (other exchanges). Finally, no sound difference has been detected, surprisingly,

when measuring the informational content of quotes and trades in the natural and event

time settings. Quotes are more informative than trades and the finding is consistently

reported by the DAG-IS measure. Since the contribution of dark trades turns out to be

negligible, their shares have been put together with the ones of lit trades differentiating

only between trades and quotes. Overall, the results obtained in the empirical applica-

tion just illustrated are coherent in choosing the leaders in the price formation process,

and in line with the results of Hasbrouck (2019) but without increasing the modeling and

computational complexity introduced by working at incredibly short time-scales.

5 Conclusion

Measuring the informational content of fragmented financial markets acquired increasing

importance over time for both academics and practitioners. This article proposes a data-

driven methodology with the roots in the machine learning research field, exploiting the

typical non-Normal distributions of financial returns, to uniquely identify one of the most

widely adopted measures for price discovery and for which no identification solutions had

been proposed for almost twenty years until the first approach proposed by Grammig and

Peter (2013). Differently from the cited approach, with this article I put forward an iden-

tification procedure in which the Information Shares measures can be always determined,

under some statistical and structural assumptions, with no need of exploiting the possible

presence of different volatility regimes caused by extreme price changes, thus providing a

general identification framework for price discovery analyses. To this purpose, the DAG-IS

measure is introduced. The new estimation procedure has been discussed both theoretically
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and empirically, with an illustrative simulation exercise. Keeping the empirical analysis of

Hasbrouck (2019) as a direct benchmark to compare with, the proposed procedure is found

to yield coherent results even across different time specifications, being able to correctly

identify the leaders in the price formation process. Given the flexibility of the modeling

strategy which can be assessed from a semiparametric perspective, future applications in

the field might benefit from the revisited Information Share measures here introduced,

when the assumption of a causal structure among the data is plausible to exist but no

sound theory is provided to decide the direction of causality a-priori.

Appendix A

Proof of Proposition 2.2. Let σ = {σ1, ..., σn!}, with

σi =

 1 2 . . . n

σi(1) σi(2) . . . σi(n)


and σi(·) : {1, ..., n} → {1, ..., n}, be the set of all possible permutations of the n variables in

the model. Consider the set of the Cholesky factors, of the covariance matrices, associated

to each permutation of the variables C(σ) = {C(σ1), ..., C(σn!)}. The uniqueness of the

Information Share follows directly from the fact that given the estimates of the independent

components, there is only one permutation, among the possible ones, yielding a strictly

lower triangular matrix B̂0 representing the DAG structure of the variables in the model

(result proven in Shimizu et al., 2006). Then, being σ∗i and C(σ∗i )
unique solutions, the

identified Information Shares given the estimated DAG structure and computed as

DAG− ISj =

([
ψC(σ∗i )

]
j

)2
ψΩψ′

(23)

are unique.

Appendix B

Data for the illustrative exercise are simulated from the equivalent VAR representation of

the VECM adopted in the paper as follows
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Π(L)pt = εt (24)

where

Π(L) ≡ In −
k∑
i

ΠiL
i (25)

αβ′ = (
k∑
i

Πi − In) (26)

φs = −(Πs+1 + Πs+2 + ...+ Πk) (27)

for s = 1, 2, ..., k − 1, and such that |In − Π1z − Π2z
2 − ... − Πkz

k| = 0 has only one

unit root since the system is driven by only one common stochastic trend. Consequently,

the matrix β contains the known cointegrating vectors and has rank equal to n-1. In the

two-dimensional case the parameters are

α =

0.1

0.5

 , Ω =

 1 0.45

0.45 0.32

 , φ1 =

 0.6 0.3

−0.7 −0.9



β′ =

 1

−1

 , Π2 =

−0.6 −0.3

0.7 0.9

 Π1 =

 1.7 0.2

−0.2 −0.4

 ,

while in the four-dimensional case are

α =


0.025 0.05 0.03

0.08 0.07 0.06

0.1 0.01 0.04

0.09 0.06 0.09

 , Ω =


1 0.45 0.57 0.34

0.45 0.67 0.4 0.54

0.57 0.4 0.98 0.58

0.34 0.54 0.58 0.56

 ,

φ1 =


0.2 −0.2 −0.7 0.4

0.1 0.35 0.6 0.1

0.6 0.35 0.55 −0.1

0.4 −0.9 −0.25 0.3

 , Π1 =


1.305 −0.225 −0.75 0.37

0.31 1.270 0.53 0.04

0.75 0.25 1.54 −0.14

0.64 −0.99 0− .31 1.21

 ,
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Π2 =


−0.2 0.2 0.7 −0.4

−0.1 −0.35 −0.6 −0.1

−0.6 −0.35 −0.55 0.1

−0.4 0.9 0.25 −0.3

 , β′ =


1
... −In−1

1

 .
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Table 1: Estimated instantaneous effect matrices A0.

Participant VS SIP timestamps

natural-time

1 0 0 0

event-time

1 -0.038 -0.05 -0.046

0.34 1 -0.36 0 0 1 0 0

-0.99 0 1 0 0 0.063 1 0

0.016 -1.001 -0.016 1 0 0.13 -0.12 1

Non-primary VS Primary

natural-time

1 0.026 -0.45 -0.22

event-time

1 0 -0.33 -0.012

0 1 -0.23 -0.45 0.08 1 -0.015 -0.034

0 0 1 0 0 0 1 0

0 0 -0.35 1 0 0 -002 1

Quotes VS Trades

natural-time

1 0 -0.0013 0

event-time

1 0 0 0

0.012 1 0 0.039 -0.011 1 -0.0083 0.019

-0.062 0 1 0 -0.032 0 1 0

-0.051 0 0.071 1 -0.033 0 -0.028 1

Notes : Coefficients in bold are significants at the 1% level in both LiNGAM and MLE t-student

approaches. For the LiNGAM approach, statistical significance has been tested using standard

errors from 1000 bootstrap samples.
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Table 2: Information shares: Summary results.

.

DAG-IS All permutations

participants SIP participants SIP

Min Max Min Max

1-sec 0.999 0.001 0.002 0.999 0.001 0.998

Event time 0.962 0.038 0.943 0.999 0.001 0.057

primary non-primary primary non-primary

Min Max Min Max

1-sec 0.994 0.006 0.12 0.994 0.006 0.88

Event time 0.56 0.44 0.46 0.56 0.44 0.54

Quotes Trades Quotes Trades

Min Max Min Max

1-sec 0.67 0.33 0.39 0.979 0.021 0.61

Event time 0.64 0.36 0.61 0.67 0.33 0.39

Notes: Information shares measures obtained for each identification procedure

and for each price discovery analysis across participants and SIP timestamps,

trades and quotes, and exchanges. In the natural-time(1-sec) setting the most

recent price observed in a given second interval is taken. In the event time

specification, the time counter is incremented whenever there is an update to

any variable in the system instead. Trades comprises both lit and dark trades,

given that the contribution of the latter to the IS measure is negligible.
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Figure 1: Scatter plots for the simulated residuals (top half) and estimated latent structural

shocks (bottom half).
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Figure 2: Quantile-quantile plots of the VECM residuals. In Panel (a) are displayed the model residuals

related to the price discovery analysis across trades and quotes, while in panel (b) the one across exchanges

using quotes.
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