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Abstract

Independent Component Analysis (ICA) is a statistical method that linearly trans-
forms a random vector. Under the assumption that the observed data are mixtures
of non-Gaussian and independent processes, ICA is able to recover the underlying
components, but at scale and order indeterminacy. Its application to structural vector
autoregressive (SVAR)models allows the researcher to recover the impact of indepen-
dent structural shocks on the observed series from estimated residuals. We analyze
different ICA estimators, recently proposed within the field of SVAR analysis, and
compare their performance in recovering structural coefficients. Moreover, we assess
the size distortions of the estimators in hypothesis testing. We conduct our analysis
by focusing on non-Gaussian distributional scenarios that get gradually close to the
Gaussian case. The latter is the case where ICA methods fail to recover the indepen-
dent components. Although the ICA estimators that we analyse show similar pattern
of performance, two of them— the fastICA algorithm and the pseudo-maximum like-
lihood estimator — tend to perform relatively better in terms of variability, stability
across sub- and super-Gaussian settings, and size distortion. We finally present an
empirical illustration using US data to identify the effects of government spending
and tax cuts on economic activity, thus providing an example where ICA techniques
can be used for hypothesis testing.
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1 Introduction

The aim of this paper is to evaluate a set of methods that have been recently proposed to

achieve statistical identification of structural autoregressive (SVAR)models based on non-

Gaussianity. One of the most important and pursued objectives in macroeconomics is to

estimate the dynamic effect of an unexpected change in one variable, usually called shock,

on other variables. Since the seminal work of Sims (1980), the study of the joint dynamics

of the main macroeconomic aggregates has been conducted in the framework of vector

autoregressive (VAR)models. Thesemodels have been proposed as an alternative to large

simultaneous equation models (Klein and Goldberger, 1955), which were criticized for

their large number of identifying and arbitrary restrictions. However, while in forecasting

(reduced-form) VAR models have been proven to be powerful tools, for policy analysis

one needs to deal with a structural model.

It is indeed necessary to distinguish correlation from causation (Stock and Watson,

2017) if the goal of the analysis is measuring the effects of exogenous interventions on

the system. Specifically, the residuals of an estimated (reduced-form) VAR model typ-

ically display cross-correlations, induced by contemporaneous causal relationships that

cannot be detected in the regression estimates. There are infinite possibilities of linearly

transforming the VAR model in order to get uncorrelated error terms, corresponding to

infinite observational equivalent structural models. Researchers aim at finding the linear

transformation that yields both uncorrelated (in some cases, independent) and econom-

ically meaningful disturbances, whose effects can be studied through impulse response

analysis.

In the empirical macroeconomic literature, several identification criteria have been

proposed. Following Sims (1980) and Sims (1986), many empirical works have exploited

the Choleski decomposition of the covariance matrix of the VAR forecast errors. This

procedure provides an orthogonalization of the residuals by imposing a recursive scheme

on the contemporaneous causal structure, implicit in the ordering of the endogenous

variables. The decision on the sequence of the variables is of crucial importance but

sometimes loosely motivated. Economic theory or background knowledge may help

achieve identification by imposing (typically zero) restrictions on the contemporaneous

causal impact of one variable on another (Bernanke, 1986; Bernanke and Mihov, 1998;

Blanchard and Perotti, 2002). The reliability of the implied causal structure, however, can
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be hardly justified on the basis of mere a priori knowledge (Stock and Watson, 2001).

Alternative identification strategies are based on long-run restrictions, use of external

instruments (extraneous data in general), sign restrictions, and heteroskedasticity (seeKil-

ian and Lütkepohl, 2017; Stock andWatson, 2016, for an overview). External instruments

have been used, for example, by Gertler and Karadi (2015), who identify the unexpected

change in policy interest rate taking as instrument movements of futures prices around

policy announcements. Romer and Romer (2010) adopt a similar identification procedure

building a narrative series based on tax change announcements. Another popular iden-

tification approach is based on sign restrictions (see Uhlig, 2005; Mountford and Uhlig,

2009). A specific feature of this approach is that the structural coefficients are set identi-

fied, rather thanpoint identified. It is also typical to rely onBayesianmethods of inference,

which in sign-identified models may introduce the problem of priors that influence the

posteriors of the structural coefficients (Kilian and Lütkepohl, 2017). Identification of

SVAR models by heteroskedasticity is achieved by relying on the assumption that the

contemporaneous causal structure does not vary over time, but their covariances change

across regimes (Rigobon, 2003). The emerging of some of these identification strategies

have made SVAR identification based less on restrictions guided by theory and more on

statistical properties of the data.

In this respect, a recent stream of literature exploits directly specific statistical prop-

erties of the data — non-Gaussianity — for identification (see, among others, Lanne and

Lütkepohl, 2010; Lanne et al., 2017; Gouriéroux et al., 2020; Lanne and Luoto, 2021; Fioren-

tini and Sentana, 2020; Guay, 2021). The idea of some of these studies is to recover the

SVAR shocks as linear combinations of reduced-form VAR residuals disturbances, under

the assumption that they are not just uncorrelated, but mutually statistical independent.

This is possible by means of a purely data-driven set of statistical techniques, called In-

dependent Component Analysis (ICA, see Comon, 1994; Hyvärinen, 1999; Eriksson and

Koivunen, 2004). Under the assumptions of non-Gaussianity and independence of the

shocks, the SVAR model is identified up to a re-scaling and re-ordering of the shocks.

Empirical applications of SVAR analysis with ICA identification are flourishing (see, e.g.,

Moneta et al., 2013; Herwartz and Plödt, 2016; Capasso and Moneta, 2016; Gouriéroux

et al., 2017; Herwartz, 2019; Maxand, 2020; Zema, 2021). Several different algorithms

for learning independent components from data have been proposed and applied, espe-
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cially in the fields of blind signal separation, neural networks, feature extraction (see, e.g.,

Hyvärinen and Oja, 2000), finance (see, e.g., Back and Weigend, 1997), causal inference

and structural modeling (see, e.g., Shimizu et al., 2006).

In this paper we evaluate four methods of ICA. Notwithstanding the conspicuous

number of ICA estimators emerged in the literature (see Acharya and Panda, 2008),

we selectively focus on those that have been proposed or applied within the field of

SVAR analysis, namely (1) the fastICA algorithm developed by Hyvärinen (1999) and

employed by Moneta et al. (2013) and Guerini et al. (2020); (2) the minimization of

the distance covariance proposed by Matteson and Tsay (2017); (3) the minimization

of the Cramer-von-Mises statistics proposed by Herwartz and Plödt (2016); and (4) the

pseudo-maximum likelihood estimator derived by Gouriéroux et al. (2017). Matteson

and Tsay (2017), in fact, show how the distance-covariance method outperforms several

ICA techniques under several distributional scenarios. Herwartz (2018) also undertakes

a performance evaluation analysis, with a focus, however, on the discriminatory power

of several identification schemes in detecting structural shocks embedded in a simple

DSGE model for the Euro Area. Herwartz et al. (2021) compares different ICA methods

with identification by heteroskedasticity. Our paper extends and completes the studies

recently emerged in the literature by focusing on the statistical performance of the four

methods mentioned above. Specifically, we study how these methods perform when

the distribution of the structural disturbances gets gradually closer to the Gaussian case,

which corresponds to the case in which the SVAR model cannot be identified through

ICA.

We motivate the importance of analysing these settings with three considerations.

Many macroeconomic time series, widely analyzed by means of VAR models, tend to

display fat-tailed exponential distributions. However, their departure from normality

is not always statistically significant as regards, for instance, OECD economies (Fagiolo

et al., 2008). Secondly, it is often the case that different theoretical characterizations of firm

dynamics and sectoral linkages move the distribution of economic activity away from the

full-Gaussian case (Gabaix, 2011; Baqaee and Farhi, 2019). Finally, the log-transformation,

widely implemented when estimating linearized multiplicative models or to stabilize the

variance of a time series, is not enough to ensure a Gaussian approximation of the data

generating process (Box and Cox, 1982; Nelson and Granger, 1979; Lütkepohl and Xu,
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2012). We examine the different distributional scenarios through a p-generalized normal

distribution. We are also able to analyze the distribution of the estimates of the parameters

that are derived under the four different methods. Finally, we study the size distortions

that arisewhen performing statistical inference on the coefficients of the impactmultiplier

matrix.

The paper is organized as follows: Section 2 presents the framework of our study,

introducing the ICA-based SVAR model and the simulation exercise. Section 3 presents

and discusses the results of our assessment. Section 4 discusses an empirical investigation

in which the ICA-identified SVAR model is applied to study the effects of fiscal policy

(government spending and tax cuts), using the data by Blanchard and Perotti (2002).

Section 5 concludes.

2 The framework

2.1 SVAR and ICA

The SVAR model we study has the general form

A0 yt � ct +

q∑
l�1

Al yt−l + εt , (1)

in which q is the lag length, y is a k × 1 vector of endogenous variables, εt is a k × 1

vector of exogenous structural shocks (ε1t , . . . , εkt)′, Al is a k × k matrix of parameters

for 0 ≤ l ≤ q, ct is a k × 1 vector of constants, which may also include a deterministic

trend. (The model can also be easily extended to include exogenous variables.) We

assume the ε1t , . . . , εkt to be non-normally distributed (with at most one exception) and

to be mutually independent, i.e. f (ε1t , . . . , εkt) � f (ε1t) · . . . · f (εkt), where f (·) is the

probability density function. We also assume A0 to be invertible. The model is structural

because it is able to track the effect of statistically independent shocks on the endogenous

variables, a crucial feature that makes the researcher able to identify, for example, the

effect of a monetary or fiscal policy intervention.

The reduced-form representation implied by the structural model (1) is

yt � dt +

q∑
l�1

Bl yt−l + ut , (2)
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where Bl � A−1
0 Al for 1 ≤ l ≤ q, dt � A−1

0 ct , ut � A−1
0 εt . Thus, we have that the

reduced-form residuals ut � (u1t , . . . , ukt) are linear mixture of the structural shocks εt ,

namely:

ut � B0εt ⇐⇒ εt � A0ut , (3)

where B0 � A−1
0 . Equation (3) is the model commonly studied in ICA, so that we refer

to it as the ICA model. Using the ICA jargon, we call B0 the mixing matrix, since it

linearly mixes the statistically independent components (i.e. shocks) ε1t , . . . , εkt , and A0

the unmixing matrix.

Let us denote with a′1 , . . . , a
′
k the rows of the matrix A0. Any ICA procedure aims

at estimating the k-length weight vectors a′i for 1 ≤ i ≤ k, which yield ε1t , . . . , εkt as

least dependent as possible. As proved by Comon (1994, Th. 11) and Eriksson and

Koivunen (2004, Th. 3) (see also Gouriéroux et al., 2017), the independent components

(shocks) are identifiable up to changes in scale (including sign) and ordering. More

precisely, the matrix A0 in the ICA model (3) is identifiable up to the left multiplication

by PD, where P is a permutation matrix and D a diagonal matrix with non-zero diagonal

elements. Equivalently, B0 is identifiable up to the right multiplication by D−1P′ (P′ is

also a permutation matrix and D−1 a diagonal matrix).

ICA algorithms usually consist of two stages: a preliminary whitening and the actual

ICA estimation. Whitening the data means to transform them so that they become

uncorrelated and with unit variance. Suppose that we have estimated ut and its non-

diagonal covariance matrix Σu . Whitening can be obtained through the spectral (also

called eigenvalue) decomposition or, as is popular in VAR analysis, via the Choleski

factorization ofΣu . Thewhitening transformation via the spectral decomposition consists

of left multiplying ut by (VΛ1/2)−1, where V is the matrix containing the eigenvectors of

Σu , andΛ is a diagonalmatrixwith the eigenvalues ofΣu on themaindiagonal. Whitening

through the Choleski decomposition consists of left multiplying ut by C, where C is the

Cholesky factor of Σu (this can be done for any ordering of the variables). Without loss

of generality, in this presentation of the ICA methods, we can directly assume that ut is

a vector of uncorrelated random variables (i.e., ut has already been whitened), so that

the matrix B0 in equation (3) is orthogonal. Thus, the second stage of ICA estimation

reduces to the problem of finding the rotation (orthogonal transformation) of the data ut

that delivers least dependent components εt .
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We briefly review here four methods for ICA estimation, which we want to compara-

tively assess. Although further algorithms have been proposed in the literature (see, e.g.,

Cardoso, 1989; Hyvärinen, 2013), the approaches described below are good representative

of the ICA methods discussed and applied in the econometric literature.

1. FastICA. A set of fast and fixed-point algorithms were proposed by Hyvärinen

and Oja (1997, 2000) and Hyvärinen (1999). The fastICA approach is based on a fixed-

point iteration scheme for finding a maximum of the non-Gaussianity of a′i ut (for i �

1, . . . , k). It is called “fast” because it finds the maximally non-Gaussian components

with a cubic convergence speed. As a measure of non-Gaussianity fastICA adopts an

approximation of negentropy J(x), a notion grounded on information theory. For a

continuous random variable (or vector) x with density f (x), negentropy is defined as

J(x) � H(xgauss) − H(x), where xgauss is a Gaussian random variable (or vector) of the

same variance (covariance matrix) of x, and H(·) is the differential entropy, i.e. H(x) �

−
∫

f (x) log f (x)dx. Such measure relies on the fact that a Gaussian random variable

entails the largest entropy among all random variables of equal variance (Shannon, 1949).

Hyvärinen and Oja (2000) also show that finding the most non-Gaussian directions a′i ut

(for i � 1, . . . , k) is equivalent to minimize the Kullback-Leibler divergence between the

joint density f (a′1ut , . . . , a′k ut) and the product of the marginal densities f (a′1ut) · . . . ·

f (a′k ut), which is a measure of mutual statistical dependence among the a′i ut ’s and is also

referred to as mutual information.

2. Distance Covariance. Matteson and Tsay (2017) propose to estimate the ICA

model by finding a matrix of loadings A0 such that the distance covariance among the

a′i ut ’s is minimized. Distance covariance as measure of statistical dependence between

random vectors was introduced by Székely et al. (2007).1 Matteson and Tsay (2017) define

an objective function to be minimized in function of θ, which is the vector of angles

defining a rotation matrix G(θ). Thus, the problem consists in finding θ̂ such that the

dependence (measured in terms of distance covariance) among the ε1t , . . . , εkt that results

from G(θ̂)−1ut is minimized. Finally, the mixing matrix B0 is simply set to be equal to

G(θ̂). In this approach, it is convenient to write G(θ) as the product of k(k − 1)/2 distinct

1Let x(1) and x(2) be a d1- and a d2-dimensional random vectors. Let | · | denote the Euclidean distance and
let ( .x(1) , .x(2)) and ( ..x(1) , ..x(2)) be iid copies of (x(1) , x(2)). Székely et al. (2007) define the distance covariance
between x(1) and x(2) asI(x(1) , x(2)) � E |x(1)− .

x(1) | |x(2)− .
x(2) |+E |x(1)− .

x(1) |E |x(2)− .
x(2) | −E |x(1)− .

x(1) | |x(2)−
..
x(2) | − E |x(1) − ..x(1) | |x(2) − .

x(2) |. I(x(1) , x(2)) � 0 if and only if x(1) and x(2) are independent.
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forms of Givens rotation matrices. In the 2-dimensional case we have only one angle to

estimate:

G(θ) �

cos θ − sin θ

sin θ cos θ

 (4)

In the three dimensional case we have 3 angles

G(θ) �


cos θ1 − sin θ1 0

sin θ1 cos θ1 0

0 0 0



cos θ2 0 − sin θ2

0 1 0

sin θ2 0 cos θ2



1 0 0

0 cos θ3 − sin θ3

0 sin θ3 cos θ3


(5)

For any k × k matrix we have then k(k − 1)/2 rotation angles to estimate.

3. Cramer-von-Mises distance. Herwartz and Plödt (2016) and Herwartz (2018),

similarly to Matteson and Tsay (2017), define an objective function to be minimized in

function of θ and exploits the same decomposition of G(θ) in Givens matrices. But the

minimization criterion is different. The selected vector of angles θ̂, which implies least

dependent shocks, is the one that minimizes the value of the Cramer-von-Mises (CvM)

statistics, developed by Genest et al. (2007). Specifically, this test statistics quantifies the

distance between the empirical copula of the shocks vector εt � G(θ)−1ut and the implied

copula under mutual independence.

4. Pseudo-maximum likelihood estimator. This semi-parametric estimation method

was proposed by Gouriéroux et al. (2017). It consists of a pseudo maximum likelihood

(PML) estimator of the mixing matrix B0, which maximizes the pseudo log-likelihood

function, i.e. LT(B0) �
∑T

t�1
∑k

i�1 log gi(a′i ut), where gi(·)’s are probability density func-

tions, exploiting the condition that B0 is an orthogonalmatrix. Gouriéroux et al. (2017) de-

rive the asymptotic properties of the estimator, under possible specifications of log gi(εt),

but also assuming that some parts of the density functions may be misspecified.

2.2 Monte Carlo assessment

We study the performance of the just described ICA methods in estimating the model in

equation (3) with k � {2, 3} and T � {100, 200, 400}, where k is the number of variables

and T the sample size. The chosen set for k and T is due to the fact that we want to

replicate a VAR model that is as close as possible to those commonly found in applied

macroeconomics, where very long time series are seldom available to researchers. We
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have in any case to restrict the analysis of the CvM method to relatively small sample

sizes (T > 500 is unfeasible, as Herwartz and Plödt (2016) point out), because the compu-

tational burden increases by an order of magnitude of O(T2kn), where n is the number

of iterations implemented to generate the distribution of the statistics under the null of

independence. We want to evaluate the performances of the ICA methods introduced

above when the shocks/independent components in εt , and consequently (a fortiori) their

linear combinations (ut), get gradually close to be normally distributed. In fact, it is

often the case in empirical applications that the reduced-form residuals of an estimated

VAR model turn out to be correlated and non-normal. But it may also be the case that

normality of some of the residuals is not fully and clearly rejected, so that the researcher

remains doubtful whether an ICA model can be legitimately applied for identification.

We perform the analysis by exploiting the properties of a class of exponential dis-

tributions, namely the p-generalized normal distribution (Box and Tiao, 1962; Goodman

and Kotz, 1973): we let the underlying processes gradually approach to or diverge from

a Gaussian distribution. In this manner we can analyze how the ICA procedures behave

when the independent components diverge from normality both in the direction of a

super-Gaussian (leptokurtic) and a sub-Gaussian (platykutic) distribution. Often used

for robustness studies (Subbotin, 1923; Box and Tiao, 1962; Tiao and Lund, 1970), this

family of distributions has also been widely adopted in studies from different fields (e.g.

signal processing, audio/video encoding, face recognition, finance), in which data often

display non-Gaussian behavior (see Yu et al., 2012, for a review). Following the speci-

fication of Kalke and Richter (2013), a p-generalized normal distribution has a density

function f of the form:

g.norm � f (x , p) �
p1−1/p

2Γ(1/p) exp
[
− |x |

p

p

]
x ∈ R, p > 0, (6)

where Γ denotes the gamma function and p is a shape parameter that is informative

about the rate of decay of the density function. With p � 2, f (x , p) is a normal density

function. Given this value, as p decreases, the distribution becomesmore super-Gaussian,

as p increases it becomes more sub-Gaussian. Specifically, with p � 0.5, equation (6) is

the probability density function of a random variable with a Laplace distribution (a

super-Gaussian distribution), with p � 100 it corresponds to the case of a sub-Gaussian

distribution, i.e. the uniform distribution. The two limiting cases, p � 0 and p � +∞

correspond to a unit impulse function and to a real line, respectively.
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Figure 1: Kernel density estimates on data generated from the p-generalized normal
distribution for different values of the shape parameter p (0.05, 1, 2, 4,100): with p � 0.5
super-Gaussian (Laplace), p � 2 Gaussian, p � 100 sub-Gaussian (uniform).

In our Monte Carlo experiment, we let the parameter p vary over a range of 20 values,

15 points uniformly located on the interval {0.5, 3.5} and 5 on {4, 100}: for each of these

values we simulate k independent components.2 As Figure 1 shows, for 0.5 < p < 3.5 the

shape of the distribution changes substantially, while for p ≥ 4 the sub-Gaussian nature

of the distribution is already pretty evident.

We split our Monte Carlo experiment into two different designs: a general assessment

and a specific assessment. The general assessment, inspired byMatteson andTsay (2017), aims

at measuring the average performance of the four ICA methods in estimating the mixing

matrix B0, across random entries of the same matrix. Each Monte Carlo replication m

generates a random ICA model u(m)t � B(m)0 ε(m)t , where the components ε(m)t follow the p-

generalized normal distribution (equation 6) with covariance matrix equal to the identity

matrix, and B(m)0 is a random k× k mixingmatrix with condition number 1 ≤ K(B(m)0 ) ≤ 2,

simulated with the R-package ProDenICA (Hastie and Tibshirani, 2010).3. Given the

2We use the R-package rpgnorm (Kalke, 2015).
3The condition number of a matrix B, K(B), measures the “well-behavior” of B, namely the extent to

which the solution x of the linear system Bx � c changes with the respect to changes in c (see e.g. Horn and
Johnson, 2012, ch. 5.8) IfK(B) � 1 the matrix B is said to be perfectly conditioned.
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indeterminacy of the ICA model, namely its identification only up to column scale/sign

and permutation of B0 (as mentioned in the previous sub-section), Matteson and Tsay

(2017) suggest to measure the performance of the ICA methods with a metric, proposed

by Ilmonen et al. (2010), that is invariant to this indeterminacy. Such measure is defined

as follows:

D(B(m)0 , B̂(m)0 ) �
1√

k − 1
inf | | C B̂(m)0

−1
B(m)0 − Ik | |F (7)

where B(m)0 is the randommatrix generated at replication m, B̂(m)0 is its estimate, C � P±D+,

where P± is any k × k signed permutation matrix and D+ is any k × k diagonal matrix

with strictly positive diagonal element, and | |.| |F is the Frobenius norm.4 The lower the

index, the closer the estimate B̂(m)0 to the true value B(m)0 . We refer to this measure as the

Minimum Distance Index (MDI).

The specific assessment aims at evaluating how well the ICA methods perform in iden-

tifying the structural impulse responses of a SVAR model, using different realizations of

the same data generating process (dgp), for a given mixing matrix B0. This also allows

us to also compare, among each other, the Monte Carlo distributions of the parameter

estimates derived by the four ICAmethods and to analyze their statistical properties. The

chosen mixing matrices for k � {2, 3} are, respectively:

B0 �


1.14 −0.38

0 1.26

 , B0 �


0.9 0.15 0.65

−0.75 1.13 0.22

0.21 −0.53 1.5


. (8)

Thus, in the case of two variables, we have an essentially triangular mixing matrix, while

for k � 3 we have a full matrix (all non-zero entries). This allows us to cover both a

recursive and non-recursive mechanism of shocks’ transmission. As mentioned in the

previous sub-section, an ICA algorithm, which delivers a mixing (or unmixing) matrix,

is not sufficient for full identification, since the mixing matrix is identified up to the right

multiplication of DP (D is any diagonal matrix with all non-zero in the main diagonal

and P is any permutation matrix).

While the matrix D can be appropriately chosen so that the each of the shocks/com-

ponents εit in εt have variance one and impact positively on a specific variable y jt in yt

4A signed permutation matrix is like a permutation matrix, with exactly one non-zero element for each
row and column, but its non-zero elements are +1 or -1.
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(for i and j in 1, . . . , k), there is not a general and unique method to choose P. Having

estimated with an ICA algorithm the matrix B̂0, there are different options:

1. One option is to apply the LiNGAM (Linear Non-Gaussian Acyclic Model) algo-

rithm, as proposed by Shimizu et al. (2006), Hyvärinen et al. (2010) and Moneta et al.

(2013). The permutation matrix P is found by assuming that the underlying contem-

poraneous causal structure is recursive (acyclic). This implies that B̂0 contains at least

k(k − 1)/2 entries equal to 0 (but measurement errors) and that there exists only one P

such that the main diagonal of B0DP has all entries significantly different from 0.5 The

LiNGAM algorithm searches in the space spanned by all the possible permutation ma-

trices the matrix P̃ which minimizes a cost function that penalizes small absolute values

in the main diagonal of P̃DB̂0
−1
. Furthermore, it searches for a permutation matrix ˜̃P

such that ˜̃PP̃DB̂0
−1 ˜̃P′ is maximally close to a lower triangular matrix and sets its upper

diagonal elements equal to zero.

2. The LiNG algorithm was formulated by Lacerda et al. (2008) (see Ciarli et al., 2019,

for an application) as a variant of LiNGAM algorithm which relaxes the recursiveness

(acyclicity) assumption, but still exploits the possibility that some entries of the unmixing

matrix are equal to zero. Having tested (e.g., by bootstrap sampling) that some entries

are vanishing, LiNG finds the set of permutation matrices C, such that for each P̃ ∈ C,

P̃DB̂0
−1

does not contain zeros in themain diagonal. The permutationmatrices satisfying

this property, however, are, in general, not unique, so that the indeterminacy problem of

ICA is not uniquely solved.

3. Having estimated B̂0, and having re-scaled its columns by D, such that the shocks

D−1B̂0
−1

ut have unit variance, another option is to apply what we call the Maxfinder

criterion. This corresponds to find the permutation matrix P̃ such that each column of

B̂0DP̃ has off-diagonal elements that are smaller than the diagonal element. This criterion

is guaranteed to give a (unique) result only under the assumption that the endogenous

variable y jt responds (within the sample period) more to ε jt than to any εit i , j in

1, . . . , k. This fact would justify labelling the shock ε jt as the y jt-shock (e.g. the shock to

tax revenue as the tax shock). In other terms, the Maxfinder criterion delivers a (unique)

result only if each row of B̂0D has exactly one maximum of any column of B̂0D. If this is

5Equivalently, for any diagonal matrix D, there exists only one P such that the main diagonal of PDB̂0
−1

has all entries significantly different from 0 .
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not the case, for instance when a row contains the maximum entry of column 1 and 2, an

option to solve this problem is to apply the Maxfinder criterion in a hierarchical manner,6

as suggested by Bruns et al. (2021).

4. As mentioned in Berner et al. (2022), one can label the shocks identified by ICA

using a criterion derived by the estimation of the forecast error variance decomposition.

Following this approach, one finds a permutation matrix P such that the shocks εt �

PD−1B̂0
−1

ut have the following characteristics: the predictionmean squared error (MSPE)

of variable y1,t+h is maximally accounted by shock ε1t , the MSPE of y2,t+h is maximally

accounted by ε2t , etc. This can be done for a specific time horizon h or summing up the

contributions of the same shock across different time horizons (until a specific value of h).

The list proposed above does not certainly exhaust the class of possible criteria for

choosing the permutation matrix P.7 It is also conceivable to apply a mixture of different

criteria: for example one can apply the MaxFinder criterion and check whether it is

consistent with the forecast error variance decomposition criterion (see Berner et al.,

2022).

In our specific assessment we choose P according to the MaxFinder criterion, avoiding

the recursiveness assumption and, at the same time, exploiting the fact that the mixing

matrix in the underlying dgp (see equation 8) does not contain column maxima on the

same row. This allows us to focus on the identification of the single coefficients. In the

empirical application (Section 4), the assumption of column maxima on the same row is

not guaranteed, so that in case of its failure, which is easily verifiable, we apply the step

of LiNGAM (step 2 in the original algorithm by Shimizu et al., 2006), in which it is found

a permutation matrix P that minimize the quantity 1/∑i |wii | (penalizing small absolute

values in the main diagonal), where wii is the (i , i) entry of the matrix W � PDB̂0
−1
.

6This hierarchical application of Maxfinder delivers a unique solution: (i) If the maximum entry of B̂0D
lies in position (row, column) (i , j), then the jth column becomes the ith column in B̂0DP, for a permutation
matrix P. (ii) Repeat the same procedure starting from the output of the previous step, B̂0DP, but compute
the maximum entry neglecting all the entries lying in the ith row and column of B̂0DP until the kth column
has been permuted.

7Another criterion proposed in the literature is the sequence of transformations considered by Lanne et al.
(2017), which imposes the entries of C � (ci j) � B̂0DP to satisfy |cii | > |c ji | for all i < j, where D is here a
diagonal matrix that makes each column of B̂0 have Euclidean norm one.
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3 Results

3.1 General assessment

Results about the performance of the four ICA estimators in the general assessment are

shown in Figure 2. For each estimator, this figure displays the MDI, as specified in

equation (7), across two different values of k (k � 2 and k � 3) and 20 values of p, fixing

the sample size T � 400.8 The thick lines in the plots trace the average MDI, calculated

across 1000 distinct data generating processes, while the shadow areas display its (one

standard deviation) variability. The performance of the four ICAmethods is shown as the

full Gaussianity (p � 2) of the independent structural shocks is approached. As expected,

when the εt ’s are close to being normally distributed, all the methodologies score bad. To

establish a negative benchmark, we calculatedMDIs between a fixed B0 and 1000 random

matrices of the same dimension (respecting the condition number as specified above).

The 90% of these MDIs are above the dashed lines in each plot in Figure 2, which can

therefore be considered as negative benchmark. For values of p close to Gaussianity,

MDI averages are above (i.e. score worst) than this benchmark and the volatility of index

increases.

On average, whatever the dimension of the system, fastICA and PML score relatively

equal with the former slightly outperforming the latter when the ε’s are super-Guassian.

On the other hand, the opposite is true when the independent components (herafter,

ICs) are close from being normally distributed and sub-Gaussian. In such distributional

scenario,DCov loses precision and scoreworse than any othermethod. CvM is dominated

in almost all scenarios, performing better only when compared toDCov in the highly sub-

Gaussian scenario (p > 4). The results are compatible with and complementary to those

in Matteson and Tsay (2017), where the ICs follow different families of distributions,

both symmetric and asymmetric. Here instead we are interested in understanding the

performances of ICA as we get closer to the full-Gaussian case. However, the exercise

highlights that when the ICs are sub-Gaussian, DCov tends to have a lower performance.

8Results do not change qualitatively changing the sample size to T � {100, 200}. As expected though, the
precision decreases as the sample size gets smaller (see Figure 9 in Appendix 5).
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Figure 2: Each plot shows the MDI (thick lines with marks: averages across 1000 dgps),
as specified in equation (7), for each of the four ICA estimators, across 20 values of p. The
p-generalized normal distribution is super-Gaussian with p < 2, Gaussian with p � 2,
sub-Gaussian with p > 2. Plots in the upper part of the figure correspond to the case
k � 2, in the lower part to k � 3. Sample size T � 400. Shadow areas show one-standard
deviation above and below the mean. Dashed lines constitute the negative benchmark:
90% of random estimates yield MDIs above this line.

3.2 Specific assessment

Having analysed the average performance of the four ICA methods, we turn now to

study how well they perform when they are applied to recover the impact multiplier

(mixing) matrix of a SVAR model. As mentioned in section 2.2, we focus on a specific

data generating process. We artificially generate data ut from the ICA model in equation

(3) with shocks’ covariance matrix Σε � I, ct � 0k , and A0 � B−1
0 , where B0 is specified in

equation (8) for k � 2, 3. Both specifications of B0 satisfy the condition that the maximum

entry (in absolute value) of each column never appears on the same row. Asmentioned in

section 2.2, this assumption captures a feature that is often found in SVARanalysis, namely

the fact that each structural shock tends to bemostly (contemporaneously) correlatedwith

the variable in the system that is referring to and for which is labelled.
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We apply the four ICA methods on the artificial ut . We then apply the MaxFinder

identification algorithm described in section 2.2, so to solve the indeterminacy that affects

the ICAmodel. We then assess the performance of the ICAmodel in this specific exercise

by using a variation ofMDI: differently from equation (7), the indexwe use heremeasures

the error between B̂0 and the knownmatrix B0 (this time fixed overMonte Carlo iterations,

as specified in equation 8). Note that B̂0 is here column-permuted and scaled according

the MaxFinder criterion. Hence, the distance index is now defined as

D(B0 , B̂0) �
1√

k − 1
| |B̂0

−1
B0 − Ik | |F (9)

Figure 3 shows the MDI, as specified in equation (9), averaged across Monte Carlo

replications, for different values of the parameter p, which determines the degree of

“Gaussianity” of the ICs εt . To some extent, the results resemble those shown for the

General Assessment. The performances of f astICA and PML are almost equivalent, with

the difference that f astICA performs slightly better when the ICs are super-Gaussian and

PML performs slightly better when the ICs are sub-Gaussian. One striking result is that

the average value of the MDI for DCov is remarkably lower than for other estimators, but

only for the two-dimensional case. Indeed, when k � 3, the behavior of the performance

is very similar to the general assessment: MDI is highly volatile and its average does not

improve significantly when the distribution of the ICs becomes sub-gaussian. The esti-

mates of the mixing matrix under CvM display the largest variance among the estimators

under analysis in most of the distributional scenarios that we have explored.

Although there are several measures of ICA performance proposed in the literature

(see Nordhausen et al., 2011, for a review), those measures, like the one proposed in

equations (7) and (9), are not informative about the distributional properties of the pa-

rameters’ estimates. As for any estimator, such properties are relevant when performing

statistical inference: in our specific design, they are informative about the distribution of

the entries of the mixing matrix B0. Ultimately, these distributional properties may shed

light on the contemporaneous causal relationships among the endogenous variables of

the VAR system. Therefore, we study the Monte Carlo distribution of the errors between

the entries b̂i j of the estimated mixing matrix B̂0 and the entries bi j of the known matrix

B0 (for i , j � 1, . . . , k).
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Table 1 reports mean and standard deviation (across Monte Carlo runs) of b̂i j − bi j ,

in four representative scenarios: (i) when the independent components εt have a strong

super-Gaussian behavior (p � 0.5); (ii) whenGaussianity is closer but the εt are still either

super-Gaussian (p � 1.5) or (iii) sub-Gaussian (p � 2.5); (iv) when the εt follow an almost

uniform distribution (p � 100). We consider both k � 2 (columns 1-8) and k � 3 (columns

9-16). For k � 3, only the upper left block’s parameters are considered. In almost all cases,

the estimates are negatively biased (a result compatible with those of Gouriéroux et al.,

2017). As expected, in those scenarios where full Gaussianity is closer, the bias is slightly

more negative and the uncertainty of the estimates gets larger; the same holds when the

dimension of the system (k � 3) increases. For almost all parameters’ estimates, in the

extreme distributional scenarios (p � 0.5, 100), all the methods score relatively equal;

fastICA tends to have the smallest bias and, together withDCoV, the smallest variance. In

those cases close to the full-Gaussianity scenario, DCov performs relatively better when

the dimension of the system is smaller, whilst fastICA seems to deliver better results when

dimension of the system increases; CvM scores better in very few cases.

Finally, we evaluate the performance of the four ICA methods when statistical in-

ference is conducted on the basis of a bootstrap procedure. Specifically, we compare

bootstrap-based inference with the results derived from the pseudo-maximum likelihood

approach. We expect that the PML estimator, derived by Gouriéroux et al. (2017) and

drawn on asymptotic approximations, outperforms the bootstrap procedure, which we

adopt since we do not know the asymptotic distribution of the estimate of B0’s entries

under fastICA, DCov and CvM. This should at least happen for large sample sizes. A

small number of observations, however, may favour inference not based on asymptotic

properties. Moreover, the comparison is interesting because it allows us to assess, from

an another perspective, which method is more robust when the full-Gaussianity case is

approached, in which, as stressed throughout the paper, ICA methods fail to recover the

independent components.

The exercise is conducted in the following way. Again, we run a Monte Carlo exercise

where we generate data from a ICA model with mixing matrix as specified in equation

(8) and with shocks εt p-generalized-normally distributed, for different values of p and

sample size T � 400. For each Monte Carlo replication m � 1, . . . , 1000 we estimate B̂0

using one of the four ICA methods with theMaxFinder criterion.
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For the PML method we derive σ̂i j , i.e the estimate of the standard deviation of b̂i j

(for i , j � 1, . . . , k), from the asymptotic covariance matrix of the mixing matrix found in

Gouriéroux et al. (2017). On the basis of this, we build the (1 − α)-confidence interval

Cm(α) � [b̂i j − φα/2σ̂i j , bi j + φα/2σ̂i j], (10)

with φα/2 being the α/2-quantile of the standard normal distribution. We do this for each

Monte Carlo replication m, to which it corresponds a specific estimate B̂0, with specific

entries b̂i j (which we do not to index here with m just for simplicity) and corresponding

confidence intervals Cm(α), and for each i , j in 1, . . . , k. Finally, we calculate the frequency

at which the true value bi j (entries of the matrices specified in equation 8) falls in Cm(α)

across Monte Carlo replications. We should expect that the frequency of observing the

true value bi j in the confidence interval is equal to 1 − α.

As mentioned above, for the other three ICAmethods we do not know the asymptotic

distribution and therefore a bootstrap approach is necessary. Given the computational

constraints of the exercise, we implement the warp-bootstrap, proposed by Giacomini

et al. (2013), where it is shown that it is sufficient to have one bootstrap replication for

each Monte Carlo run to obtain a reliable approximation of the statistics under analysis.

The confidence interval is then built, for each i , j in 1, . . . , k, in the following way:

Cm(α) � [b̂(m)i j − q̂i j(α/2), b̂(m)i j − q̂i j(1 − α/2)], (11)

in which q̂i j(α) is the α-quantile of the empirical distribution (across Monte Carlo

runs) of b̂(m)∗i j − b̂(m)i j , where b̂(m)∗i j is the estimate of the (i , j) entry of B0 obtained at the

(unique) bootstrap draw corresponding to theMonte Carlo run m, and b̂(m)i j is the estimate

of the (i , j) entry of the mixing matrix B0 at the Monte Carlo run m. We then compute the

frequency atwhichCm(α) contains the truevalue bi j across theMonteCarlo replications. If

the bootstrap procedure is consistent, we should then expect that the frequency at which

the bootstrap-based confidence interval contains the true value (i.e. its the empirical

coverage 1 − α̂) to be exactly equal to 1 − α, the nominal coverage.

Pooling all the entries of the mixing matrices’ estimates of Equation 8, Figure 4 shows

the distribution of the size distortions, measured by the ratio between the empirical

coverage 1 − α̂ and its nominal counterpart 1 − α, of each estimator for values of (1 −

α) � {0.99, 0.95, 0.90, 0.75, 0.50}. The first result is that bootstrap-based confidence
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intervals built under fastICA display the smallest size distortion, notwithstanding the

dimension k of the system. Surprisingly, this is true even when compared with PML-

based inference, especially in the case in which the independent components follow

sub-Gaussian distributions (p � {2.43, 100}). However, as stated in Gouriéroux et al.

(2017), the choice of the pseudo-likelihood does indeedmatter for the asymptotic accuracy

of the PML estimator. Furthermore, all estimators but CvM, which also display the

worst performance, tend to contain much more often than expected the true value of the

parameter (α̂ < α): this distortion decreases as the nominal size α increases.
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Figure 3: Each plot shows the MDI (thick lines with marks: averages across 1000 Monte
Carlo replications), as specified in equation (9), for each of the four ICA estimators, across
20 values of p. The mixing matrix in the dgp is fixed as in equation (8). The p-generalized
normal distribution is super-Gaussian with p < 2, Gaussian with p � 2, sub-Gaussian
with p > 2. Plots in the upper part of the figure correspond to the case k � 2, in the lower
part to k � 3. Sample size T � 400. Shadow areas show one-standard deviation above
and below the mean.

4 Empirical application

In this sectionwe discuss amacroeconomic application of the ICA approach to SVAR anal-

ysis with the aim of showing its potentials and challenges, having taken into account the
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Table 1: Summary statistics of the errors between entries of B̂0 and of B0 (the latter as
specified in equation 8). Sample size T � 400.

k � 2 k � 3

p � 0.5 p � 1.57 p � 2.47 p � 100 p � 0.5 p � 1.57 p � 2.47 p � 100

mean sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd

PML ˆb11 − b11 -0.002 0.007 -0.045 0.077 -0.039 0.068 -0.001 0.002 -0.005 0.042 -0.032 0.145 -0.025 0.147 -0.004 0.032
f astICA -0.001 0.001 -0.032 0.067 -0.049 0.081 -0.001 0.001 -0.002 0.027 -0.020 0.144 -0.007 0.165 -0.003 0.031
DCov -0.001 0.006 -0.015 0.034 -0.018 0.037 -0.001 0.002 0.032 0.138 0.116 0.160 0.135 0.149 0.066 0.146
CvM -0.003 0.018 -0.076 0.106 -0.093 0.112 -0.001 0.002 -0.001 0.044 -0.014 0.177 -0.005 0.177 -0.007 0.064

PML ˆb12 − b12 -0.002 0.065 -0.029 0.308 -0.035 0.287 0.001 0.051 -0.002 0.063 -0.067 0.310 -0.102 0.330 0.000 0.052
f astICA 0.000 0.038 -0.016 0.261 -0.044 0.317 0.001 0.046 0.000 0.041 -0.087 0.329 -0.144 0.384 0.000 0.047
DCov 0.001 0.051 -0.009 0.179 -0.017 0.200 0.001 0.052 -0.057 0.234 -0.179 0.306 -0.169 0.282 -0.127 0.314
CvM 0.001 0.079 -0.080 0.386 -0.112 0.421 0.001 0.052 -0.002 0.073 -0.186 0.433 -0.199 0.421 -0.013 0.108

PML ˆb21 − b21 0.002 0.068 0.048 0.349 0.054 0.327 0.001 0.054 0.002 0.061 0.165 0.393 0.220 0.429 0.002 0.051
f astICA -0.001 0.046 0.030 0.296 0.067 0.364 0.001 0.049 0.000 0.043 0.214 0.426 0.352 0.484 0.002 0.046
DCov -0.002 0.077 0.015 0.205 0.028 0.231 0.002 0.054 0.164 0.329 0.458 0.371 0.458 0.344 0.388 0.361
CvM -0.001 0.094 0.115 0.445 0.156 0.485 0.002 0.056 0.005 0.075 0.457 0.523 0.510 0.503 0.014 0.114

PML ˆb22 − b22 -0.001 0.021 -0.041 0.110 -0.032 0.097 -0.002 0.017 -0.002 0.041 -0.025 0.142 -0.022 0.148 -0.003 0.035
f astICA -0.001 0.013 -0.030 0.091 -0.040 0.106 -0.001 0.016 -0.002 0.026 -0.025 0.144 -0.017 0.157 -0.003 0.031
DCov -0.003 0.022 -0.014 0.062 -0.016 0.074 -0.001 0.017 0.011 0.090 0.105 0.134 0.115 0.130 0.039 0.103
CvM -0.004 0.033 -0.056 0.119 -0.065 0.131 -0.001 0.018 -0.003 0.045 -0.023 0.164 -0.011 0.174 -0.008 0.066
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Figure 4: Distribution of size distortions (measured on the x− axis by the ratio between
the empirical coverage 1 − α̂ and its nominal counterpart 1 − α) in drawing confidence
intervals for the estimates of the mixing matrix entries, for different estimators (row-wise
ordered panels), different distributional scenarios (column-wise ordered panels), when
the dimension of the system k changes. Confidence intervals are constructed at nominal α
significance level. For PML, we use the asymptotic approximation derived by Gouriéroux
et al. (2017), while for fastICA,DCov andCvMwe implement thewarp-bootstrap procedure
described in text.
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results of the previous section. ICA offers the opportunity to statistically test identifying

restrictions (not limited to those that are over-identifying) on the coefficients of the impact

(mixing) matrix. We consider here the very influential work on fiscal policy by Blanchard

and Perotti (2002), BP henceforth. Given the recent reappraisal of fiscal policy, the ques-

tion on the size of multipliers continues to be highly disputed (see e.g. Mountford and

Uhlig, 2009; Ramey, 2011). BP estimate a three-variable VAR model of public spending,

tax revenues and aggregate output. The SVAR model is identified through assumptions

based on institutional knowledge: public spending does not respond to output in the

quarter, while tax revenues do. Moreover, BP set the contemporaneous response of taxes

to output on the basis of an outside estimate of the cyclical sensitivity of net taxes. Finally,

they impose two alternative restrictions on the contemporaneous relationship between

tax revenues and public spending, corresponding to two different models: in the first

model a tax shock has an immediate effect on spending, but a spending shock does not

have an immediate effect on tax revenues (except an indirect one through GDP), in the

second model the other way around.

Despite the plausibility of the identification strategy, it is important to test such restric-

tions, at least for two reasons: (i) as Caldara and Kamps (2017) show, the use of plausible

range of estimated elasticities may lead to dynamical responses and fiscal shocks that

significantly differ in size and persistence; (ii) the authors are not able to distinguish

the contemporaneous relationship between government spending and tax revenues and,

consequently, whether a tax shock has an immediate effect on spending. Our empirical

exercise is similar to the recent study by Karamysheva and Skrobotov (2022), who exploit

the non-Gaussianity of the underlying reduced-form residuals to estimate and identify

the same VAR as BP, using the GMM estimator derived in Lanne and Luoto (2021). Dif-

ferently from this study, however, our exercise tests whether the identifying restrictions

proposed by BP are rejected through our inference procedure. Moreover, we study to

what extents results change when we use different ICA estimators, whose performance

has been evaluated in the previous sections.

Table 2 shows the impact coefficients, derived in BP, under the unit normalization of

the direct contemporaneous effects, i.e. the impact (mixing) matrix has been normalized

so that it displays only ones on the main diagonal. Since, as mentioned, BP use two

different models in function of the different contemporaneous impacts between spending

21



and taxes, we display both of them in the table. Note that, in terms of zero-entries, the

only difference between the two models is the (1,2) entry. In the second model (right

panel) the tax shock has a non-zero effect on spending but the spending shock has still a

non-zero effect on tax because of the causal chain from G to Tax via GDP.

Table 2: Impact coefficients in Blanchard and Perotti (2002)

G ordered first Tax ordered first

εg εtax εgdp ε
g
t εtax

t εgdp

G 1.00 0.00 0.00 1 -0.05 0.00
Tax 0.16 1.00 2.18 0.33 1.00 2.18
GDP 0.18 -0.15 1.00 0.15 -0.16 1

We estimate a three-variables VAR model using the same data as in BP (quarterly

US data 1960-1997). The objective of the exercise is two-fold: (i) using our Maxfinder

algorithm, to globally identify via the ICA model an independent shock in government

spending and tax increase and estimate their dynamic responses on economic activity;

(ii) to test the validity of restrictions proposed by BP, relying on the results on statistical

inference obtained in Section 3.2.

For the analysis, we estimate a reduced-form VAR model analogous to equation (2),

namely

yt � CtΓ +

q∑
l�1

Bl yt−l + BQ
l (Q1 + Q2 + Q3)yt−l + ut , (12)

where yt is the k × 1 vector of endogenous variables, Ct is k × p vector of deterministic

terms with coefficients Γ (p × 1), Q1, Q2, Q3 are quarter dummies, Bl and BQ
l are k × k

coefficient matrices, and ut is k-dimensional vector of reduced-form residuals. In our case

k � 3 and q � 4, as in BP9. In line with the setting of the ICA model, we assume that the

reduced-form residuals are a linear combination of statistically independent components,

as specified in equation (3). As in BP, we have

yt � (Gt , TAXt ,GDPt)′ (13)

where yt is a vector that contains the logarithm of real per capita values of government

spending, taxes and GDP, observed in U.S. from 1960:Q1 to 1997:Q4. After estimation,

9The series of p deterministic terms include a constant, linear and quadratic time trend, quarter dummies
plus a current and four-period lagged dummy for 1974:Q2 (when a large tax cut has been observed). When
estimating the IRFs instead, closely following BP,we drop from the specification the non-linear terms Q• yt−l .
The purpose of this exercise is to drop any serial correlation from the residuals, upon which the structural
analysis is conducted.
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the VAR is stable with no-serial autocorrelation. Moreover, as Figure 5 suggests, only

for the spending’s reduced-form residual, uG
t , the Jarque-Bera test does not reject the

null hypothesis of normality, so that ICA can be applied, since a single exception to

non-Gaussianity is allowed in the ICA model.

Table 3 reports the estimates b̃i j of the entries bi j of the mixing matrix B0, estimated

with the four ICA methods and identified by applying our MaxFinder scheme. The

estimates b̃i j are the median of 500 estimates obtained by 500 bootstrap replications of the

equation (12) model (through replications of ut), with confidence intervals derived as in

Hall (1992):

CI(α) �
[
b̃i j − q∗(1−α/2) , b̃i j − q∗α/2

]
(14)

where q∗(1−α/2) and q∗
α/2 are the (1−α/2) and α/2-quantiles of empirical distribution of the

root (b̂∗i j − b̃i j), with (b̂∗i j being the estimate of bi j from the bootstrap replication). For sake

of comparison, we normalize all the coefficients so that each structural innovation has a

unit contemporaneous impact on the log of the variable that refers to.

For all estimators, the entries of the resultingmixingmatrix do not satisfy the property

for which the greatest value of each column lies in a distinct row. Therefore theMaxfinder

is not able to deliver a permuted mixing matrix such that the off-diagonal elements are

greater thanmain diagonal entries. However, the column permutation that penalizes low

absolute values on the main diagonal (according to the LiNGAM criterion10 described

in Section 2.2) delivers an interesting result: we have identified two independent shocks

that increase mostly taxes and government spending, and a third shock that increases

substantially output and taxes. Moreover, this configuration is compatible with Table 2,

which reports BP’s findings and their shocks’ labeling. Therefore, we can label the first

(ε1) and the second (ε2) shock as a spending and tax shock, respectively. All the methods

deliver a positive and significant impact coefficients of spending on GDP. Moreover, we

get an estimate of a positive and statistically significant contemporaneous response of the

third shock on tax revenues, but which is lower than BP’s estimate of the GDP shock on

tax revenues (except for PML that delivers a higher value). Finally, with the exception

of PML, we get a non-significant impact of ε3 on G, which is consistent with one of the

BP’s zero restriction if ε3 is interpreted as the GDP shock. Overall, the ICA-estimated tax

10The application of the mere criterion of penalisation of small values (second step of the LiNGAM
algorithmby Shimizu et al. (2006)) on themain diagonal does not involve the causal recursiveness assumption
on which LiNGAM is based.
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Table 3: Estimates of the contemporaneous impacts coefficients from ICA models. The
entries of the mixing matrices are calculated using the bootstrap-median with the corre-
sponding confidence intervals and are normalized so that each structural innovation has
a unit contemporaneous impact on the log of the variable that refers to.

PML f astICA DCov CvM

ε1 ε2 ε3 ε1 ε2 ε3 ε1 ε2 ε3 ε1 ε2 ε3
Gt 1 -0.036*** -0.197*** 1 0.006 -0.061 1 0.011 0.05 1 0.013 -0.745
Taxt 0.955*** 1 3.908*** 0.642* 1 1.122*** 0.442 1 1.146** 0.839* 1 1.393*
GDPt 0.287*** -0.165*** 1 0.31* -0.018 1 0.227* -0.019 1 0.574* -0.01 1

shock (ε2) seems not to have a significant impact on both spending and GDP (except for

the PML estimate). This result about spending is in tune with the zero-restriction of the

model 1 in BP (zero impact from tax shock to G). Given the results of our assessments in

the previous section, we tend to relymore on the higher precision and the better empirical

coverage of PML and fastICA estimators.

Having estimated the structural shocks and having identified the impact coefficients

via ICA, we can now compute the impulse response functions and compare them with

those implied by the BP model, shown in Figure 6. We first comment the impulse

responses of a positive public spending shock, shown in Figure 7. The response of output

is clearly positive and statistically significant, both at impact and within the first year.

Figure 8 instead, shows the responses to an independent positive shock in tax revenues.

All methods show that the effects of independent tax shocks are negative in the long

run, which is a finding consistent with BP. However, all ICA-methods (except PML) show

non-significant effect on the impact and in the short run, which is at odds with the finding

by BP.

This illustrative exercise has shown that a purely data-driven identification procedure

of VAR models is possible and, with careful modeling decisions, can lead to convinc-

ing conclusions based exclusively on statistical properties of the data. BP’s identifying

restrictions are plausible not only because of institutional knowledge and insights from

economic theory: they are also present in the data and the ICA model supports them,

at least as regards the zero restrictions of the BP’s first model (G ordered first). On the

contemporaneous relation between tax revenues and public spending, our results suggest

that public spending is the first mover and its immediate impact on taxes is positive. In

partial contrast to BP’s results, our estimated impulse response functions suggest that a

fiscal policy guided by public spending has a clearer effect on economic activity than a
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Figure 5: Distribution (upper panels) and q-q plots (bottom panels) of reduced-form
residuals, where also p-values of the Jarque-Bera (JB) test are reported.

fiscal policy guided by tax revenues.

25



Spending Tax GDP

5 10 15 20 5 10 15 20 5 10 15 20

−0.5

0.0

0.5

1.0

1.5

Tax Spending GDP

5 10 15 20 5 10 15 20 5 10 15 20

−0.5

0.0

0.5

1.0

1.5

Figure 6: Impulse response functions estimated by Blanchard and Perotti (2002). The
upper panel shows the responses of the three variables to a spending shock (on G). The
bottom panel shows the responses to a tax-revenue shock (on Tax). Dashed lines denote
an equal-tailed 68% confidence interval
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Figure 7: Impulse response functions of a positive public spending shock from different
ICA estimation methods. The upper and the lower dashed lines represent respectively
the 84% quantile and the 16% quantile of the bootstrap estimates.
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Figure 8: Impulse response functions of a positive tax shock fromdifferent ICA estimation
methods. The upper and the lower dashed lines represent respectively the 84% quantile
and the 16% quantile of the bootstrap estimates.
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5 Conclusions

In this paper we assess, through Monte Carlo experiments, the performance of four ICA

techniques (fastICA, DCov, CvM , PML), which have been recently used in SVAR analysis.

We study the cases of structural disturbances that followdistributionswhich are both sub-

and super-Gaussian but also approaching normality, that is the case in which the ICA

model cannot recover the shocks by construction. The fastICA and the PML estimators

result to be the ones showing a relatively lower variability and a more stable performance

across both sub- and super-Gaussian settings, in comparison to the other estimators. In

specific cases (e.g., number of variables k � 2), the DCov estimator performs on average

better than other estimators when the shocks’ distributions are in the neighbourhood of

Gaussianity. The variability of the DCov estimates, however, is relatively high and it is

shared with the CvM estimator.

We also consider the distributions of the mixing matrix coefficients, which is the

matrix that identifies a SVAR model and contains the simultaneous interactions of the

variable of the system. Our Monte Carlo studies show that, as the dimensionality of the

system increases, uncertainty in the estimates increases, as well as their negative bias.

We also analyze the ICA methods’ performance in statistical inference. Specifically, we

have considered size distortions when testing the significance of the coefficients of the

mixing matrix, comparing the performances of maximum likelihood versus bootstrap

based inference. The DCov method, despite being relatively accurate on average, shows

concerning variability. In the statistical inference exercise, on the other hand, the method

basedon thePML and fastICA estimators show lower sizedistortions andabetter empirical

coverage in almost all distributional scenarios. The fastICA estimator, more specifically,

is the one which displays the lowest size distortion. Finally, an empirical application

on fiscal policy highlights that a purely data-driven procedure such as ICA may help

the researcher to test the significance of identifying restrictions or to suggest where to

insert the latter. In particular, our exercise shows that the ICA model cannot reject the

identification scheme implemented in Blanchard and Perotti (2002).
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Appendix A. Other Figures
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Figure 9: Each plot shows the MDI (thick lines with marks: averages across 1000 dgps),
as specified in equation (7), for each of the four ICA estimators, across 20 values of p
(general assessment). The p-generalized normal distribution is super-Gaussian with p < 2,
Gaussian with p � 2, sub-Gaussian with p > 2. Plots in the upper part of the figure
correspond to the case k � 2, in the lower part to k � 3. Sample size T � 400. Shadow
areas show one-standard deviation above and below the mean. Dashed lines constitute
the negative benchmark: 90% of random estimates yield MDIs above this line.
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Figure 10: Each plot shows the MDI (thick lines with marks: averages across 1000 Monte
Carlo replications), as specified in equation (9) (specific assessment), for each of the four
ICA estimators, across 20 values of p. The mixing matrix in the dgp is fixed as in equation
(8). The p-generalized normal distribution is super-Gaussian with p < 2, Gaussian with
p � 2, sub-Gaussian with p > 2. Plots in the upper part of the figure correspond to
the case k � 2, in the lower part to k � 3. Sample size T � 400. Shadow areas show
one-standard deviation above and below the mean.

Appendix B. R Codes and Data

The R codes and data to replicate the results reported in this article are available at the

following GitHub repository:

https://github.com/gianlucapallante/ica-svars-comparative-analysis
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