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Abstract

The distinction between macro- and microinventions is at the core of recent debates on the Industrial

Revolution. Yet, the empirical testing of this notion has remained elusive. We address this issue by

introducing a new quality indicator for all patents granted in England in the period 1700-1850. Our

findings indicate that macroinventions did not exhibit any specific time-clustering, while microin-

ventions were correlated with the economic cycle. In addition, we also find that macroinventions

were characterized by a labor-saving bias and were mostly introduced by professional engineers.

These results suggest that Allen’s and Mokyr’s views of macroinventions, rather than conflicting,

should be regarded as complementary.
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1 Introduction

Technical change has traditionally occupied a central place in the historiography of the Industrial

Revolution. Not surprisingly, both contemporaries and historians have regarded technology as one

of the key-factors shaping the dramatic economic and social transformations taking place in Britain

during the XVIII and XIX centuries. This interest in technical change has resulted in a rich literature

providing vivid descriptions of technical advances both in a broad, aggregate perspective (Landes

1969; Mokyr 1990; Trinder 2013) and at a level of specific technologies such as steam power (Hills,

1989), textiles (Hills, 1970) and iron production (Hyde, 1977).

In this context, the distinction between microinventions and macroinventions originally proposed

by Joel Mokyr (1990) has established itself as a particularly useful interpretive tool for delineating

an effective characterization of the patterns of technical change during this crucial historical period.

In Mokyr’s original formulation (Mokyr 1990, p.13), microinventions are “small, incremental steps

that improve, adapt and streamline existing techniques”, whereas macroinventions are “inventions in

which a radical new idea, without a clear precedent, emerges more or less ab nihilo”1. The subsequent

literature has expanded on this intuition by sketching several conjectures on the sources and effects

of macro- and microinventions and on their interconnections (Allen 2009; Mokyr 2010; Crafts 2011).

The notions of macroinventions and microinventions are intuitively appealing and indeed resonate

well with influential qualitative accounts of the contours of technical advance during the Industrial

Revolution (Landes 1969; Mathias 1969). However, at closer inspection, the distinction between

macro- and microinventions appears of difficult empirical implementation, especially if one is interested

in reconstructions of broad patterns of technical change spanning more than a specific technology or

industry.

In economic history, an established research tradition has resorted to patents to provide quantita-

tive assessments of the rate and scope of technical change (see Sullivan 1989, 1990, and Sokoloff 1988

for some early contributions). One of the main limitations of the use of “raw” patent counts for char-

acterizing patterns of technical of change is precisely that they do not take into account the relative

importance of the underlying inventions (O’Brien et al., 1995), preventing the systematic identification

1Mokyr’s perspective on technical change based on the interplay between macro- and microinventions has many
commonalities with the application of Thomas Kuhn’s notions of paradigms and revolutions to technical change proposed
by Constant (1973) and Dosi (1982). In Constant and Dosi’s interpretation, microinventions are, by and large, the
outcome of inventive activities taking place within the boundaries of the prevailing “technological paradigm” – a cognitive
framework guiding the search for innovations jointly adhered to by a relevant community of technological practitioners.
In this perspective, a macroinvention in this sense of Mokyr is akin to the emergence of a new “technological paradigm”
in Constant and Dosi’s formulations.
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of macroinventions. In the case of modern patents, economists of innovation have addressed this issue

by designing a number of indicators of “patent quality” based on the use of patent characteristics such

as citations, jurisdictions coverage and renewals (Jaffe and Trajtenberg 2002; Van Zeebroeck 2011;

Squicciarini et al. 2013). Unfortunately, these indicators are not immediately applicable to the case

of the English patent system during the Industrial Revolution. Remarkably, when writing The Lever

of Riches, Mokyr pessimistically concluded “... patent statistics [in the Industrial Revolution period]

do not permit to distinguish between radical and minor inventions” (Mokyr 1990, p. 82).

In this paper, we introduce a new composite indicator of the quality of English patents for the

period 1700-1850. Our indicator of patent quality is a substantial refinement of the bibliographic

indicator proposed by Nuvolari and Tartari (2011) based on Bennet Woodcroft’s Reference Index

of Patents of Invention, 1617-1852. We construct our new composite indicator by complementing

Woodcroft’s Reference Index with information collected from a wide array of sources on the history of

technology and biographical dictionaries. We combine these different sources using the approach intro-

duced by Lanjouw and Schankerman (2004) for constructing composite quality indicators for modern

patents. We validate the reliability of the new index of patent quality, which we term Bigliographic

Composite Index (BCI), by means of several robustness checks.

The Bibliographic Composite Index provides the opportunity for a large-scale empirical implemen-

tation of the notions of macro- and microinventions, at least for the subset of patented inventions. In

this way, we can reappraise a number of interpretive conjectures on the sources and effects of macro-

and microinventions that have featured prominently in recent debates on the Industrial Revolution

(Allen 2009; Mokyr 2010; Crafts 2011; Allen 2018).

We find that the distinction between macro and microinventions is supported by the patent evi-

dence. In particular, the time series of macroinventions exhibits statistical properties consistent with

a major role of serendipity in determining their occurrence as originally suggested by Mokyr (1990).

Vice versa, microinventions take place after the appearance of major breakthroughs and tend to be cor-

related with the economic cycle. We also document that macroinventions were possibly characterized

by a labour-saving bias which could be consistent with the so-called “high wage interpretation” of the

Industrial Revolution proposed by Allen (2009). However, we find that macroinventions were not the

results of the activities of “outsiders”, that is of inventors with occupations unrelated with the trade

of the invention as Allen (2009) had suggested. Rather, in line with some recent contributions, we

document that engineering specialists played a significant role in the development of macroinventions

(Zeev et al. 2017; van der Beek et al. 2020; Hanlon 2020).
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The rest of the paper is organized as follows. In Section 2 we review the literature on macro-

and microinventions. In Section 3 we introduce the Bibliographic Composite Index of patent quality

(BCI) and we perform extensive robustness checks to assess its reliability. Finally, in Section 4 we

use the BCI to test a number of conjectures concerning the dynamics and impact of the two types of

inventions. Section 5 presents our conclusions.

2 Macro- and Microinventions during the Industrial Revolution

The conceptualization of macro- and microinventions has informed much of the recent historiog-

raphy on the origins of the Industrial Revolution. Notably, the acceleration of productivity growth

taking place from the early 1820s is now generally interpreted as the delayed impact of the macroin-

ventions of the second half of the XVIII century, which had to be refined and adapted by means of

streams of microinventions before manifesting their economy-wide effects (Crafts 1995; Allen 2009;

Broadberry and Gupta 2009). While this account of the connection between technical change and

productivity growth is largely accepted, there is surely less consensus on the sources and effects of

macro- and microinventions (Allen 2009; Meisenzahl and Mokyr 2012; Crafts 2011; Allen 2018).

Mokyr (1990) originally argued that macroinventions were the result of serendipitous discoveries

and as such they were not responsive to economic forces. In subsequent contributions, Mokyr (2010,

but see also Mokyr 2002, pp. 52-53) has rehearsed this theme by pointing to the connection between

the relatively autonomous expansion of the stock of useful and reliable knowledge (driven, during the

XVIII century, by the emergence and consolidation of the “culture of improvement” of the “Industrial

Enlightenment”) and technical advances (Crafts, 2011). In an analogous vein, O’Brien (1997) uses

the example of Edmund Cartwright to press a similar point: the activities of the “macroinventors” of

the Industrial Revolution cannot be subsumed as the outcomes of broader economic, social or cultural

forces. On the contrary, the history of the Industrial Revolution must remain open to the “contingent

character of technological discovery at this time” (O’Brien 1997, p. 205) and, therefore, is bound to

contain an irreducible element of biography and narrative.2 The stochastic nature of macroinventions

is also a theme developed by Crafts (1977, 1995) when pointing out that much of the literature on

the origins of industrialization in European comparative perspective may be vitiated by “post hoc,

2Relatedly, Constant (1973) argues that “technological revolutions” are instigated by “individual provocateurs” and
that the answer to the question of why one inventor develops a macroinvention while another with similar training and
background does not, may be lost “in the inaccessible personalities of individual men... no conception of paradigmatic
change that confines itself to economic factors, however sophisticated its definitions of demand and expected costs might
be, would be likely to grasp the full complexity of technological revolution. New paradigms are the progeny of beings,
somewhat less, or somewhat more than ‘economic man’ ” (Constant 1973 , p. 557, 559).
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propter hoc” fallacies. Indeed, according to Crafts, “[t]echnological history suggests that seeking for

socio-economic explanations of macroinventions is likely to be a fruitless pursuit” (Crafts 1995, p.

596).

Allen (2009) has challenged these interpretations suggesting an alternative economic deterministic

view of technological change which comprises not only microinventions, but also macroinventions.

Allen claims that the salient feature of the macroinventions of the Industrial Revolution is that they

brought about major shifts in factor proportions with respect to the technology in current use. In

particular, they substituted capital and energy for (high wage) labor. The development of inventions

that were very distant in terms of factor proportions from the existing best-practice technology required

major investments and costly experimentation. Therefore, it is highly unlikely that inventors and their

financial backers would have incurred in the developing costs necessary to move from ideas to workable

prototypes, without the prospect of substantial economic returns.

Furthermore, Allen (2009, p. 149) argues that macroinventions were typically the brainchild of

“outsiders” which could more easily steer away from current technological practices and imagine

radically alternative solutions, involving major changes in factor proportions.3 On the other hand,

microinventions were due to insiders who improved and refined the prototype macroinventions by

means of localized processes of learning-by-doing and learning-by-using. In this way, Allen maintains

that the patterns of innovation of the industrial revolution can be accounted for using Paul David’s

model of localized technical change in his influential interpretation of the “Habakkuk debate” on the

labor-saving character of American inventions during the XIX century (David, 1975).

By and large, the characterizations of macro- and microinventions of Allen, Mokyr and other his-

torians have been formulated by drawing generalizations from the history of specific inventions or

inventors’ biographies. This, once more, testifies that systematic quantitative evidence on macroin-

ventions is generally not readily available in the sources. In a seminal paper on the contours of

technological change in XIX century America, Khan and Sokoloff (1993) have shown the potential of

biographical dictionaries as a source for the study of macroinventions. Their paper contains a detailed

quantitative scrutiny of the careers and patents of 160 “great inventors” retrieved from the Dictionary

of American Biography (see also Khan 2005, chap. 7). The underlying assumption is precisely that this

sample of “great inventors” can represent a suitable vantage-point for the study of macroinventions

in the sense of Mokyr.4 Khan and Sokoloff show that the inventive activities of the “great inventors”

3Interestingly enough, the hypothesis that macroinventors will typically be “outsiders” is also entertained by O’Brien
(1997).

4Allen (2009, chap 10) adopts the “great inventors” approach to study the character of macroinventions during the
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were responsive to the economic cycle and they tended to cluster geographically in areas with low-cost

transportation networks which were more suited for the economic exploitation of their inventions. In

their interpretation, this result suggests that, at least in the American case, commercial considerations

were a major driver of macroinventive active, against the original conjecture proposed by Mokyr. In

a subsequent contribution, Khan (2018) applies the “great inventors” approach to the British case

during the period 1750-1930 using a sample of 439 inventors. In this case the main concern of the

paper is the role played by human capital in the generation of macroinventions and the conclusion is

that a scientific background or a formalized education were not critical for inventive activities until

at least the second half of the XIX century. Furthermore, Khan (2018) documents that the inventors

responsible for macroinventions had substantial knowledge of their trade accumulated by means of

apprenticeships and protracted practical experience.

This paper expands on this line of research by introducing a new quality indicator for English

patents. By means of this indicator, it will be possible to provide a complete mapping of the quality

distribution of English patents and to identify its upper tail containing the macroinventions.

3 The construction of the Bibliographic Composite Index of Patent

Quality

3.1 Sources

Our composite index combines three quality indicators for the 13,070 English patents granted dur-

ing the period 1700-1850. The first indicator captures the visibility of each patent in the contemporary

engineering and legal literature, as summarized in Bennet Woodcroft’s Reference Index.5 This quality

indicator (dubbed WRI) has been originally proposed by Nuvolari and Tartari (2011) and it counts

the number of times each patent was mentioned in the set of specialized publications scrutinized by

Industrial Revolution using a sample of 79 inventors. His main conclusion is that the connection between the “Industrial
Enlightenment” and macroinventions was weak and irregular. Meisenzahl and Mokyr (2012) construct a sample of 759
inventors active in Britain during the Industrial Revolution period. Since the focus of their paper is on the adaptation
and refinement of technological breakthroughs, rather than on the origins of macroinventions, they decide to adopt a
relatively large sample.

5The Reference Index was a component of larger set of volumes that were published following the requests of the
Patent Office Commissioners after the patent reform of 1852. Before the reform of 1852, a patent application could be
lodged in any of these public offices in London: Rolls Chapel, Petty Bag and Enrolment Office. The system did not have
an effective search catalogue, so that the consultation of patent specifications was difficult and time-consuming. The
Patent Office Commissioners addressed this issue by funding the publications of a series of indexes and abridgments for
all patents granted in the period 1617-1852. Bennet Woodcroft, professor of machinery, inventor and patent agent, was
entrusted with the publications of the indexes. Together with the Reference Index, Woodcroft and his team published an
Alphabetical Index of Patentees, a Chronological Index of Patents, a Subject Index of Patents and a series of Abridgments
of Patent Specifications (Nuvolari and Tartari, 2011).
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Woodcroft and his team of clerks.6

The second patent quality indicator is based on the relative visibility of patents in modern reference

books on the history of science and technology. This approach is based on the original intuition of

Schmookler (1966), who compiled lists of “important inventions” on the basis of the detailed scrutiny

of specialized historical and engineering sources for a selection of sectors (agriculture, railroading,

petroleum refining and paper making) as a robustness check for using patents as a proxy of inventive

activities. In our case we have considered ten reference volumes (the full list is reported in the Ap-

pendix). For each patent we count the number of times it is mentioned in this set of sources, obtaining

in this way a quality score that we call Patent Eminence (PAT EM). A similar aggregation procedure

was adopted by Kleinknecht (1990) for constructing a quality indicator based on the integration of

different lists of radical innovations in the context of the literature on “long waves”. Table A2 in the

Appendix reports the patents with the highest values of PAT EM. It is important to remark that the

set of sources that we use to construct this quality indicator has a high degree of internal consistency

(i.e., agreement in the identification of high-quality patents), with a Kuder-Richardson 20 coefficient

of 0.7792.7

The third quality indicator considers the relative visibility of the patentee in biographical dictio-

naries and similar sources. As we have already mentioned, Khan and Sokoloff (1993) were the first to

use this method for identifying the inventors responsible for the most significant innovations in XIX

century America. As in Khan (2018), instead of relying on a single source, we have collected data from

nine biographical dictionaries and analogous sources (the details are again provided in the Appendix).

This third quality indicator that we term Inventor Eminence (INV EM) is constructed in a similar

way to the previous two by counting the number of sources the mention each patentee. Table A4

in the Appendix reports the inventors with the highest scores of INV EM. Also in this case, the set

of sources used displays a high degree of internal consistency with a Kuder-Richardson 20 coefficient

equal to 0.8511.8

Table 1 summarizes the number of patents and inventors mentioned in each of the sources used

for constructing PAT EM and INV EM.

6The WRI has been used in several recent studies (Crafts and Wolf 2014; Bottomley 2014a, 2014b; Squicciarini and
Voigtländer 2015; Dowey 2017) while Hanlon (2015) has adopted a similar approach to construct a quality indicator for
patents in cotton textiles in the period 1855-1876.

7The Kuder-Richardson 20 coefficient is an indicator of internal consistency for binary variables, analogous to Cron-
bach’s alpha (Gwet, 2014).

8Table A5 in the Appendix shows that the Kuder-Richardson 20 coefficients remain substantially unchanged when
excluding one source at the time, both in the case of patents and patentees. This provides further corroboration of the
substantial homogeneity of the set of sources used for constructing the quality indicators.
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[Table 1 about here]

3.2 Properties of the Quality Indicators

Table 2 contains two examples that illustrate some interesting properties of the three quality

indicators. The first panel compares John Kay’s patent for the flying shuttle (1733), which has a

surprisingly low value of WRI, and Jonathan Hulls’ patent for a steam-boat (1736), which, although

of limited practical significance, raised a good deal of attention among contemporaries.9 Clearly,

in this case, PAT EM and INV EM provide a more sensible assessment of the relative historical

significance of the two patents than WRI. The second panel of Table 2 compares Richard Arkwright’s

famous patents for the water-frame (1769) and for the carding machine (1775). The first invention

was the fundamental breakthrough that revolutionized the cotton industry, while the second patent

was involved in a contentious legal trial and it was ultimately repealed. The controversial legal case

accounts for the higher value of WRI for this second patent, relatively to the water-frame. In this

case the PAT EM indicator seems more in tune with the established historical interpretations on

the importance of the two patents. Both examples show the potential of PAT EM and INV EM to

complement and correct some limitations of WRI, thereby increasing the signal-to-noise ratio.

[Table 2 about here]

It turns out that the three quality indicators that we have constructed are characterized by sig-

nificant positive correlations, but the size of the correlations is quite low.10 In our interpretation, this

suggests that the three indicators capture different dimensions of the quality of innovations. Figure 1

displays the behavior of INV EM and WRI* by means of a scatterplot.11 Clearly, biographical dictio-

naries highlight all the patents taken by the leading historical inventors of the Industrial Revolution.

In this way, INV EM reinstates the importance of patents such as James Heargreaves’ spinning jenny

(patent n. 962) and Henry Cort’s puddling process (patent n. 1351) that were relatively overlooked

by WRI*. Another merit of INV EM is that it can mitigate the tendency of WRI* to emphasize

patents that were renowned for reasons that were not directly connected with their technological and

economic significance. For example, John Liardet’s patent (n. 1040) was the subject of the famous

9The patent of Jonathan Hulls (1699-1758), even if sketching an awkward design, attained a certain degree of pop-
ularity and may have provided some inspiration to Symington and other pioneers of steam navigation, but there is no
recorded evidence of any practical trial of the steam tugboat described in the specification (Robinson, 2004).

10The Spearman correlation coefficients are: WRI/PAT EM =0.0710, WRI/INV EM =0.0645, INV EM/PAT EM
=0.3001. All correlations are significant at the 0.1% level. See Table A6 in the Appendix for further details.

11The index WRI* is the index WRI adjusted for time-effects. This is the favorite quality indicator based on Wood-
croft’s Reference Index proposed by Nuvolari and Tartari (2011). For the examples of Table 2 we did not use the time
adjustment because the patents involved were belonging to the same time cohort.
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ruling Liardet vs Johnson which, traditionally, has been regarded as firmly settling the issue of the

specification requirements.12 In this case, the relatively high score of WRI* is essentially due to legal

references, while the underlying invention was of rather modest technical significance (Adams and

Averley, 1986). Conversely, also INV EM is fraught by some limitations. By construction, it is not

able to discriminate the historical significance of the patents granted to the same inventor. The prob-

lem is severe for the case of prolific patentees such as Joseph Bramah. One of the most important

inventions of Bramah was the hydraulic press (patent n. 2045), while patent n. 2840 for improvements

in “paper manufacture and printing” was a relatively minor invention. As Figure 1 shows, in this case,

INV EM neglects this distinction, while WRI* is instead able to discriminate the relative importance

of the two patents of the same inventor.

[Figure 1 about here]

Similar considerations can be made for PAT EM, whose correlation with WRI* is depicted in

Figure 2. In this case, in the bottom right corner there are several patents with low values of WRI*

that are characterized by high values of PAT EM, such as John Wilkinson’s boring machine (patent

n. 1063) and Richard Arkwright’s water-frame (patent n. 931). The compilers of the Reference Index

had to examine a very large and heterogeneous set of sources without the benefit of hindsight, so

it is not surprising that a few patents covering significant technological breakthroughs have a low

number of references. It is indeed difficult to tell, in each specific case, whether the low number of

references is due to a minor impact of the patent in the literature, or to some oversight of the compilers.

Furthermore, the bulk of the literature scrutinized by the examiners was published in the early XIX

century, which can perhaps explain why some significant XVIII century inventions were short-changed

in the Reference Index. Clearly, PAT EM has the advantage of the benefit of hindsight, since the

compilers of the sources used for its construction could rely on a large historiographical literature

debating the technological and economic significance of the inventions of the period in question. On

the other hand, PAT EM is not very granular and while it is well suited for pointing to the major

breakthroughs, it tends to overlook the heterogeneity characterizing the bulk of the patent quality

distribution. For instance, both Cornelius Whitehouse’s process for manufacturing iron tubes (patent

n. 5109) and Sir William Congreve’s engine (patent n. 5461) have a score of PAT EM of 0. However,

the former was a commercial blockbuster that allowed the production of cheap gas pipes, while the

latter was a technically flawed design that wishfully hoped to create a perpetual motion by means of

12(Bottomley, 2014a) actually shows that the contractual conceptualization of the patent involving the requirement of
a sufficiently clear specification had several legal antecedents in the previous fifty years.
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waters capillary attraction.13 In this case, WRI* seems to provide a more sensible assessment of the

relative quality of the two patents.

[Figure 2 about here]

This discussion suggests that the three indicators are plausibly capturing complementary dimen-

sions of patent quality. WRI* seems better equipped to assess the quality of incremental innovations,

for which only very fragmentary information is available today, while INV EM and PAT EM are more

suited to gauge technological breakthroughs by virtue of the benefit of hindsight. In the Appendix we

further discuss the properties of these three indicators.

3.3 The Bibliographic Composite Index (BCI)

The integration of different quality indicators into a single composite index is an intuitively appeal-

ing approach to retain the common information signaling patent quality, while mitigating the noise

and idiosyncrasies of the individual sources (Van Zeebroeck, 2011). Here, we adapt the approach

introduced by Lanjouw and Schankerman (2004) for composite quality indicators in modern patents

to our sample of historical patents.

Figure 3(a) shows the average number of references per year and per decade in Woodcroft’s Refer-

ence Index, whereas Figure 3(b) shows the average scores of PAT EM and INV EM per decade. The

main point emerging from Figures 3(a) and 3(b) is that the three quality indicators may be affected

by significant time-variations and, therefore, using the “raw” scores for comparing patents granted in

different periods may lead to biased results. Note that a similar concern is present also in modern

patent data where patent citations are typically adjusted considering time and industry effects (Hall

et al., 2002).

[Figure 3 about here]

In order to take into account possible temporal and sectoral effects, we estimate the following three

regressions with robust standard errors:14

WRIi = e(α+
∑M

m=1 βmDyearm+
∑N

n=1 δnDsectorn)

PAT EMi = e(α+
∑M

m=1 βmDyearm+
∑N

n=1 δnDsectorn)

INV EMi = e(α+
∑M

m=1 βmDyearm+
∑N

n=1 δnDsectorn)

13Congreve was a prolific inventor (18 patents) and his most famous invention is probably the “Congreve rocket”. This
explains why the patents of this inventor have a relatively high score of INV EM (6). This example further shows the
potentialities of using WRI*, PAT EM and INV EM in combination.

14As a robustness check, we have also carried out negative binomial regressions obtaining nearly identical results.
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where Dyearm are the dummies for the decades from 1700 to 1850 (M = 15), Dsectorn are the

sectoral dummies (N = 21),15 and WRIi, PAT EMi, INV EMi are the raw scores of the three

quality indicators for patent i. The intuition is that the residuals of each regression will capture the

share of variance due to the intrinsic quality of the individual patent.

The final step is to extract from the residual a latent common factor using the structural equation

model (SEM) represented in Figure 4 (Lanjouw and Schankerman, 2004). This is tantamount to

estimating a multiple indicator model with one latent common factor:

yki = αk + λkqi + εki (1)

where yki indicates the value of the kth indicator for the patent i (k = 1, 2, 3 and i = 1, . . . , 13, 070)

and q is the common factor with loadings λk. From the estimation of the structural equation model we

can derive for each patent the value of the latent factor (qi). As noted by Lanjouw and Schankerman

(2004), the common factor captures all the unobserved characteristics of patents that influence the

three original quality indicators. Accordingly, we can interpret the latent common factor q as a

composite measure of patent quality that we label Bibliographic Composite Index (BCI). The factor

loadings of the common factor are reported in Table3.

[Figure 4 about here]

[Table 3 about here]

Figure 5 displays the distribution of BCI. The index is very skewed with an extremely long tail. This

result is fully in line with the distribution of patent quality found in modern patent data (Silverberg

and Verspagen, 2007). Typically, the replication of this stylized fact has been regarded as preliminary

validation for composite indicators of patent quality (De Rassenfosse and Jaffe, 2015). In this paper,

however, we prefer to use the composite quality index only as an ordinal, rather than a cardinal

indicator. Accordingly, we will consider only the ranking of patents according to the index. In this

respect, it is worth noting that the rankings we have obtained are robust to alternative aggregation

procedures (factor analysis, Borda ranking, non-linear SEM specifications). At the same time, by

constructing the BCI using the three “raw” quality scores or using the residuals of Poisson regressions

with different sets of time and industry controls, we have obtained highly overlapping sets of top

quality patents, confirming the general robustness of the procedures adopted for the construction of

the BCI (see Appendix).

15We have used the sectoral classification introduced by Nuvolari and Tartari (2011).
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[Figure 5 about here]

3.4 Validation of the Index

We carry out a number of robustness checks to assess the reliability of our composite quality in-

dicator. Prima facie, the list of top-quality patents (Table A12 in the Appendix) seems to provide

a very plausible selection of the fundamental technological breakthroughs of the Industrial Revolu-

tion, comprising Watt’s separate condenser, Hargreaves’ spinning jenny, Arkwright’s water-frame and

Wheatstone’s telegraph.

The BCI seems also effective in the assessment of the significance of some lesser known inven-

tions. Consider the case of the power-loom studied by Allen (2018). The macroinvention developed

by Cartwright was a functioning prototype, but still plagued by defects that greatly limited its appli-

cation. Thanks to the improvements introduced by Thomas Johnson and later by Richard Roberts,

the machine successfully led to major productivity improvements. The importance of these inventions

is indeed captured by the BCI that collocates the patents in question in the 95th percentile of the

quality distribution.

As a further validation, in Table 4, we study the behavior of BCI with respect with some alternative

independent measures of patent quality. We consider: i) patents whose inventors paid additional fees

in order to extend their coverage to Scotland and Ireland (Bottomley, 2014b), ii) patents that were

litigated in court (Bottomley, 2014a), iii) patents whose inventors petitioned the Parliament asking

for an extension. The logic for considering these characteristics is based on studies on modern patents

that suggest that more valuable patents tend to have larger families (Lanjouw et al., 1998), are likely

to be involved in court cases (Lanjouw and Schankerman, 2001) and are renewed for longer timespans

(Lanjouw et al., 1998). Fligner-Policello tests of stochastic equality confirms that these types of patents

are systematically characterized by higher scores of BCI.

Interestingly enough, for the case of steam engineering, there are sources that point out flawed

designs: i) the list of patents covering perpetual motion engines scorned by Dircks (1861), ii) the list

of technically unfeasible steam engines constructed by MacLeod et al. (2003). In this case, Fligner-

Policello tests of stochastic equality confirm that these “flawed” patents are systematically character-

ized by lower scores of BCI.16 All these results are also confirmed if we employ the Mann-Wilcoxon

test.

16In Appendix (Table A8) we show that WRI* (possibly because reflecting some bouts of over-enthusiasm of contem-
porary observers) is less effective in discriminate these flawed patents than the BCI.
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[Table 4 about here]

Finally, Figure 6 presents a scatterplot comparing BCI and WRI* for all patents in our sample.

BCI recognizes the major historical importance of Kay’s flying shuttle (patent n. 542), while Hull’s

invention (patent n. 556) is only in the 75th percentile of the quality distribution. Similarly, the BCI

correctly assess the relative significance of Arkwright’s patent for the water-frame (patent n. 931) and

for the carding engine (patent n. 1111). Also for other cases of patents of the same inventor, the BCI

seems to offer a sensible assessment. James Watt’s separate condenser (patent n. 913) is rated as

the most significant invention of our period, while his patent for improvements in the construction of

furnaces (patent n. 1485) is considered a fairly average invention. More examples are reported in the

Appendix (Table A7).

[Figure 6 about here]

In a nutshell, the use of quality indicators derived from modern sources substantially mitigates

some of the idiosyncrasies of Woodcroft’s Reference Index, plausibly leading to an improvement of the

signal-to-noise ratio of the BCI with respect to the WRI*.

4 Patterns of Innovation during the Industrial Revolution

Figure 7 shows the whole range of the distribution of BCI by means of percentiles. The point in the

right upper-corner is James Watt’s patent for the separate condenser (n. 913) which is the maximum

value of BCI in our sample. The absolute value of BCI declines rapidly as soon as one moves away

from the patents with the highest value. Accordingly, following the modern literature on innovation

studies, we identify as macroinventions the patents in the extreme upper tail of the patent quality

distribution (Trajtenberg 1990; Ahuja and Lampert 2001; Kelly et al. 2018). In particular, Figure 7

shows a very sharp drop-off in the value of BCI between the maximum and the 99.5% percentile. This

suggests that considering the top 0.5% patents would extract the salient segment of the upper tail of

the quality distribution. It is worth noting that our results are robust if we adopt alternative cut-off

points for the definition of macroinventions such as the top 1% or the top 100 patents.

[Figure 7 about here]

4.1 The Time Profile of Inventive Activities

Mokyr’s view is that macro- and microinventions are the outcomes of two distinct generating pro-

cesses (Mokyr 1990, p. 295). Macroinventions are generated by an essentially serendipitous search
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process. On the other hand, microinventions are the result of continuous and cumulative improvements

of the technologies in use and as such should display temporal persistence. To investigate this hypoth-

esis, we test whether the arrival process of macroinventions exhibits any degree of time-clustering.

In particular, we adopt the approach introduced by Silverberg and Verspagen (2003; see also Sahal

1974) and we assume that inventions are count data generated by a point process. Accordingly, we

can use Poisson and Negative Binomial regressions to estimate the yearly number of macro- and mi-

croinventions (Cameron and Trivedi, 1998). A time homogeneous Poisson process is characterized by

complete randomness since each event (an invention in this case) is independent from the occurrence

of other events. On the contrary, a negative binomial process is characterized by realizations that

tend to cluster in specific spells of time (overdispersion). The main thrust of our exercises consists in

fitting these distributions to the actual time series of macro- and microinventions, in order to see if

they provide a good description of the observed patterns. We also control whether the arrival rate of

the distribution follows time trends of different orders. More specifically, indicating with Yi the yearly

number of either macro- or microinventions, we estimate the following type of specifications:

Yi = Poisson(µ) with ln(µ) = c+ β1t+ β2t
2 + β3t

3 (2)

Yi = NegativeBinomial(µ) with ln(µ) = c+ β1t+ β2t
2 + β3t

3 (3)

where µ is the arrival rate parameter and t is a time trend. The Negative Binomial distribution

is characterized by a mean µ and a variance µ(1 + αµ). A test of the Poisson against the negative

binomial specification can be implemented by means of a Likelihood Ratio test of the null hypothesis

that α = 0. Finally, we also carry out a Box-Ljiung test of the residuals to further assess the possible

existence of unexplained time clustering in the arrival rate of inventions (Silverberg and Verspagen,

2003).

[Tables 5 and 6 about here]

Our results (Tables 5 and 6) show that macroinventions display neither overdispersion nor auto-

correlations in the residuals.17 This basically suggests that the occurrence of macroinventions does

not display any time clustering in the sense of time spells of low and high innovation activity. For

microinventions, instead, the hypothesis of equidispersion is rejected in favor of the Negative Binomial

17These results are robust to alternative definitions of macroinventions (eg, top 100 or top 1% patents) and to the
inclusions of sectoral dummies in the regressions. One might be afraid that the procedure through which we cleansed
the raw quality indicators might lead to the absence of time-clustering. However, this is not the case since the ranking
of the top quality inventions is extremely robust even when we construct the BCI without time controls or with the raw
indicators (Table A9 in Appendix).
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specification. Furthermore, the series of the residuals shows strong autocorrelation, suggesting that

the data generating process of microinventions is probably characterized by some mechanisms that

induce time persistence.18 In this respect, we find that microinventions are positively correlated with

the economic cycle. The Pearson’s correlation coefficient between the yearly growth rate of microin-

ventions and variation in the GDP series (Broadberry et al., 2015) is equal to 0.1715 and significant at

5% level, and it grows to 0.4313 if we only consider the period after 1800. Our result is consistent with

earlier findings of pro-cyclicality in the fluctuations of patent count (Bottomley, 2014b), but notably

this does not apply to the set of macroinventions. The different structure between the process gener-

ating macroinventions and microinventions is also impressionistically apparent from Figure 8, which

compares the number of inventions of each type per year. Overall, the dynamics of macroinventions is

described by a simple time-homogenous Poisson process, which is well in tune with a large role played

by serendipity.

[Figure 8 about here]

Some further considerations on the time profile of macro- and microinventions emerge when we

observe the cumulative distribution of inventions over time (Figure 9). The thick black line in each

figure represent the cumulative distribution of macroinventions vis-á-vis microinventions for different

set of patents (textiles, engines, machinery and all patents in the sample). In each panel of the figure,

the curve shows the cumulative share of macroinventions that have taken place in correspondence

of the cumulative share of microinventions indicated in the horizontal axis. For instance, the upper

left figure shows that by 1800, over half of the macroinventions of the period 1700-1850 had already

occurred, while the corresponding cumulative share for microinventions is only 16%. In other words,

the diagrams represent Lorenz curves of the “time inequality” in the distribution of macro- and mi-

croinventions: a perfectly equal co-occurrence in the cumulative arrival of the two type of inventions

would be depicted by a straight line with a 45 degree slope. The figure shows that most macroinven-

tions occurred in the period 1750-1800, consistently with the traditional chronology of the Industrial

Revolution (Landes 1969; Nuvolari and Tartari 2011). Figure 9 also indicates that the cumulative

distribution of macroinventions precedes the cumulative distribution of microinventions. This is again

18In their analysis of radical innovations, Silverberg and Verspagen 2003 find time clustering in the form of overdis-
persion. This result is in contrast with the one reported and may be explained, besides by the very different data used,
by the later time period they consider (second half of the XIX and first half of the XX century). An alternative way
to study the difference between the time profile of macro- and microinventions is by means of test of stationarity of the
time series. In an unreported augmented Dickey-Fuller test we find that the test strongly rejects the null hypothesis of
the presence of a unit root in the macroinvention series. In other words, macroinventions seem to follow a stable mean
reverting process, which can be interpreted in terms of a substantially stochastic (and therefore exogenous) occurrence
of macroinventions in this historical phase as suggested by Crafts (1977, 1995).
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aligned with Mokyr’s original intuition that macro- and microinventions are complementary features

of technological progress, with macroinventions prompting cumulative streams of microinventions, al-

beit with varying lags and knock-on effects (Rosenberg 1982, pp. 62-70).19 Interestingly enough, this

result is robust across sectors and technologies. If anything, this behavior is even more pronounced for

textiles and engines, two of the most dynamic industries of the Industrial Revolution, possibly indicat-

ing that some prototype macroinventions in this fields required protracted streams of microinventions

for their full exploitation.

[Figure 9 about here]

4.2 Characteristics of micro- and macroinventions

Allen (2009, p. 136) has argued that macroinventions drastically changed factor proportions by

substituting capital and energy for labor. In his account, high wages prompted the search for labor-

saving new technologies. Microinventions, on the other hand, were, by and large, the outcome of

cumulative processes of learning by doing and learning by using that increased the overall efficiency of

both capital and labor and, consequently, they were neutral with respect to factor utilization. To test

these conjectures, we exploit the short description of inventions contained in Woodcroft’s volume, Title

of Patents of Inventions Chronologically Arranged, 1617-1852 (1854). The description is essentially

a verbatim excerpt of the original patent specification. For many patents granted before 1800, it

is possible to surmise from these compact descriptions the “stated aim” of the invention (from the

inventor’s perspective).

We follow the approach of Christine Macleod (1988, pp. 158-181) in her analysis of the goals of

invention in the full corpus of patent specifications during the XVIII century: from each invention we

identify two main stated aims. If only one aim is clearly described, we count this once and mark the

second aim as “unspecified”. This ensures the comparability between our analysis of macroinventions

and MacLeod’s findings on the full patent corpus. Table 7 illustrates the application of this method

for three macroinventions.20

[Table 7 about here]

Table 8 compares the stated aims of inventions in our set of macroinventions with MacLeod’s anal-

19The point is also stressed by Constant (1973, p. 572): “... our model and its application raise questions about those
analyses that attempt to use gross patent statistics or ’leading’ macro-investment patterns as indicators of all forms
of technological progress. Neither gross investment nor number of patents in a field is an adequate guide to emerging
paradigmatic change... Both patenting and investment follow rather than lead paradigmatic change.”

20Obviously, this method does not consider product innovations (e.g. canned food). However, more than 85% of our
set of macroinventions pertains to production processes (mostly with the aim of reducing cost or improving quality).
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ysis of the whole patent sample in the period 1700-1799. The table suggests that microinventions were

mostly concerned with saving capital, raw materials and other inputs. Among macroinventions, the

share of innovations in that category is significantly smaller, while the incidence of other motivations

is very similar. At all events, the results of Table 8 must be interpreted with caution: in this historical

period, not surprisingly, inventors were still reluctant to boast the possible labor-saving impact of their

inventions (MacLeod 1988, p. 166). Hence, it is likely that the share of labor-saving inventions in

Table 8 understates their actual proportion. Following again MacLeod (1988), we repeat the analysis

using a different classification approach which seeks to discern from the patent description the actual

labor-saving effect of the invention beyond the explicit wording of the specification.21

[Table 8 about here]

Table 9 compares the labor-saving potential (using this broader classification) of macro- and mi-

croinventions. In this case, we find a considerably larger share of labor-saving inventions for macroin-

ventions (38%) than for microinventions (15% of all patents). The reason for this difference is that a

large share of macroinventions consisted of machines: they accounted for about half of the top-quality

patents, while only little more than 20% of microinventions were related to machines. In this way, Ta-

ble 9 highlights that, in this historical phase, the search for labour-saving innovation largely consisted

in the design and developments of machines. Overall, these findings are consistent with Allen (2009)’s

view of a structural difference in the factor-saving biases between macro- and microinventions, and, in

particular, with the notion that macroinventions were characterized by a stronger labor-saving bias.22

[Table 9 about here]

4.3 The Determinants of Macro- and Microinventions

Our data allow to study the determinants of macro- and microinventions by means of a simple

multivariate regression analysis. The results are reported in Table 10 . We consider three main models:

i) a logit specification with the top 1% and top 0.5% patents as dependent variables, ii) a simple OLS

21MacLeod regards as “genuine” labor-saving inventions “[. . . ] those labor-saving machines and techniques which
contemporaries identified as such, e.g. spinning, carding, threshing machines or power-looms”. However, in the labor-
saving category are not included “machines and techniques whose labor-saving potential was commonly overlooked by
contemporaries, unless a particular invention would increase its labor productivity further. Thus, wind, water, horse
and steam engines were excluded, as were e.g. handlooms, the majority of stocking-frame attachments, sugar mills, the
printing press (but not mechanical textile printing).” (MacLeod 1988, p. 257).

22It should be noted that our findings do not imply that technical change in this period was generally characterized
by a labor-saving bias, but simply that there was a higher incidence of machinery among macroinventions. At the same
time, our study does not permit to assess whether the impetus towards mechanization was actually prompted by high
wages (Allen, 2009) or by the limitations of traditional techniques and production systems with respect to a burgeoning
demand (Landes 1969; Cookson 2018) possibly reinforced by attempts of “dilution” of skilled labor using women and
children (Berg 1994; Humphries 2013). For a recent discussion of the geography of the Industrial Revolution from this
second perspective see Kelly et al. (2020).
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regression with BCI as dependent variable, iii) a quantile regression model of different percentiles of

BCI. As predictors we use a number of characteristics of patentees retrieved from Woodcroft (1854).

[Table 10 about here]

Allen (2009, p. 149) has argued that macroinventions were mostly due “outsiders” who could rely

on insights originating “outside their immediate industrial experience” and experiment with factor

configurations distant from the current best-practice. This conjecture is not confirmed by the results

of Table 10: the coefficient of the variable outsider is not statistically significant. Being resident in a

metropolitan area, co-patenting with other inventors or being a foreign inventor are also characteris-

tics that are not significant positive predictors of a macroinvention.23 The only positive predictor of

macroinventions is an engineering occupation. The role played by inventors with specialized engineer-

ing competences in the development of macroinventions resonate well with the findings of some other

recent contributions (Cookson 2018; Hanlon 2020; van der Beek et al. (2020)). This result links with

the high incidence of machinery among macroinventions pointed out in the previous section and is in

line with the notion that “mechanical engineering” was the fundamental “technological paradigm” of

the Industrial Revolution (Von Tunzelmann, 1995).

Finally, it is interesting to note that the previous experience in patenting –measured as the number

of previous patents– is in general positively correlated with higher patent quality, but this result does

not extend to the uppermost part of the quality distribution. Again, this finding is suggestive of the

essentially serendipitous nature of macroinventions.

4.4 A Tentative Interpretation

In a perceptive study of the conceptualizations of macroinventions of Mokyr (1990) and Allen

(2009), Crafts (2011) has noted that they actually focus on different phases of the innovation process.

Ideally, we can posit that the development of innovations consists of a three main stages: i) ideas, ii)

“research and development” investments, iii) incremental improvements. Mokyr considers macroin-

ventions as referring mostly to the first stage. Accordingly, he is keen to highlight the role played by

flashes of genius and serendipity (Yaqub, 2018). For Allen, macroinventions encompass both the first

and the second stage (in particular the investments and the efforts necessary to transform the idea

in a working prototype).24 If we take this perspective, economic inducements may clearly represent a

critical determinant for the occurrence of macroinventions.

23The insignificant coefficient of metropolitan areas is again in line with Mokyr’s intuition that the occurrence of
high-quality inventions is relatively insensitive from economic determinants.

24Allen (2009) cites approvingly Edison’s quip “invention is 1% inspiration and 99% perspiration”.
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In our interpretation, which is similar to that of Crafts (2011), Mokyr and Allen are emphasizing

complementary dimensions of macroinventions. More precisely, they are pointing to two necessary,

but not sufficient, conditions for the occurrence of macroinventions. On reflection, in most cases,

both favorable contingencies and investment and research efforts are simultaneously necessary for a

successful macroinvention. For example, if we consider the case of James Watt’s separate condenser,

one can easily point to the flash of inspiration during the usual Sunday walk in May 1765 and to the

more than ten years of experiments before the development of a satisfactory engine (Hills 2002, p.

53). On the other hand, it is possible to mention inventions, that notwithstanding major investments,

were technological failures. Perhaps one of the most revealing examples of this period is Brunel’s

atmospheric railway (Buchanan, 1992).

This perspective fits well with our reconstruction of the patterns of macro- and microinventive

activities. As we have seen, the occurrence of macroinventions can be accounted by means of a

time homogeneous Poisson process, which is in line with the notion of a very significant role of

serendipity. On the other hand, our scrutiny on the inventions’ aims point to economic factors as

possible determinant of the character of macroinventions. In this perspective, economic inducements

demarcate the relevant portions of the space of technological opportunities where inventors will search,

while serendipity and contingencies will affect the success of the search process within this domain.25

In this respect, the results concerning the role of engineers indicate that specialized mechanical skills

and competences were in many cases also necessary for the effective search of space of technological

opportunities.

5 Conclusions

In this paper, we have introduced a new composite indicator of the quality of English patents during

the period 1700-1850. This new Bibliographic Composite Indicator (BCI) synthesizes two different,

but complementary assessment of the quality of patents: the technical and economic significance

as perceived by the specialized contemporary literature, measured by the number of references in

Woodcroft (1862), and the historical importance as assessed by the modern historiography, informed

by the benefit of hindsight. We have carried out a thorough examination of the properties of the

BCI and tested its reliability with several robustness checks. The results are rather encouraging and it

would seem that this new indicator may represent a significant improvement over the WRI* introduced

25This perspective is reminiscent of Crafts (1977, p. 437) who regarded macroinventions as the outcome of “stochastic
search processes in which both economic inducements and scientific supply-side considerations play a part”.
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by Nuvolari and Tartari (2011).26

We have used the BCI for providing an empirical characterization of macro- and microinventions.

We have established a significant difference in the time-profile of the two type of inventions. Fur-

thermore, we have also found evidence that the sample of macroinventions was characterized by a

large share of “machines” with a likely labor-saving bias. Finally, inventors with competences in

mechanical engineering seem more effective in the generation of patents of higher quality, including

macroinventions.

Our findings resonate with Crafts’ assessment of the Allen-Mokyr debate (Crafts, 2011). Allen

and Mokyr are pointing to two distinct but complementary characteristics of inventive activities in

this period. Accordingly, their analyses rather than opposing may be more fruitfully regarded as

compatible. In this respect, as adumbrated by Crafts, an intriguing research agenda for the future

would be the development of a new synthesis which could provide a comprehensive account of the

patterns of innovation reconstructed in this paper.

The main limitation of our study is obviously that we are only considering patented innovations.

Moser (2005) has shown that in this period many innovations were not patented. However, some

shreds of evidence suggest that the patenting propensity of breakthrough inventions was probably

higher than for ordinary ones. For example Moser estimate an aggregate patenting rate of 11.1%,

while Meisenzahl and Mokyr (2012) reckon that 60% of the notable inventors of their sample took

patents, with even higher shares in sectors such as textiles, iron and metallurgy. Similarly, Khan

(2018) estimate a patenting rate of 80% in her sample of British “great inventors”.27 Accordingly, we

do not consider far-fetched to assume that the “representativeness” of our sample of macroinventions

may be somewhat more accurate than for ordinary inventions.

26For preliminary applications of BCI to the pottery industry and to the engineering trades, see Lane (2019) and
Hanlon (2020).

27These patenting rates are in line with Dutton’s view (1984, p. 112) who noticed: “Knowledgeable contemporaries
believed that almost all the important inventions were patented”. In any case, it is important to reckon that some
fundamental breakthrough such as Crompton’s spinning mule or Maudslay’s lathe were not patent and, therefore, our
empirical characterization of macroinventions should be regarded as a preliminary exercise to be complemented by further
research on non-patented inventions.
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6 Figures and Tables

Figure 1: Scatterplot of WRI* and INV EM

Note: WRI* is the time-adjusted index of patent quality proposed by Nuvolari and Tartari (2011) based on the number
of references listed in Woodcroft (1862).

Figure 2: Scatterplot of WRI* and PAT EM
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(a) Average number of references per patents in Woodcroft (1862), yearly
and by decade.

(b) Average number of references per patents by decade.

Figure 3: Average number of references per patents over time

Patent Quality

WRI PAT EM INV EM

ε1 ε2 ε3

Figure 4: Structural equation model used to extract a latent common factor from the residuals of
Poisson regressions that control for time and industry effects.

Figure 5: Empirical distribution of the Bibliographic Composite Index; the box in the top-right of the
figure reports the upper-tail of the distribution (BCI > 0.5).
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Figure 6: Scatterplot of BCI and WRI*

Figure 7: Percentile plot of BCI
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Figure 8: Number of micro- and macroinventions per year

Note: the dots plot the yearly number of macroinventions (patents in the 99.5th percentile of quality) while the line
shows the number of microinventions patented each year.

(a) All patents (b) Textile sector

(c) Engine sector (d) Machines

Figure 9: Lorenz curves of microinventions vs macroinvention shares over time.

Note: patents related to engine and textile sectors are taken from the classification of Nuvolari and Tartari (2011);
machines are identified from the title of the patent in Woodcroft (1854).29



Table 1: Patents and Inventors coverage of the sources used to construct Patent Eminence and Inventor
Eminence

Patent Eminence Inventor Eminence

Source Inventors Patents Source Inventors Patents

Baker (1976) 123 150 Oxford DNB 291 893
Carter (1978) 201 266 Allen (2009) 76 234
Desmond (1987) 128 157 Day and McNeil (1996) 240 708
Inkster (1991) 27 44 Abbott (1985) 57 246
Dudley (2012) 33 55 Murray (2003) 54 199
Challoner (2009) 41 49 De Galiana (1996) 102 333
Bridgman (2002) 33 38 Meisenzahl and Mokyr (2012) 536 1519
Bunch and Hellemans (2004) 71 93 Benson (2012) 59 206
Ochoa and Corey (1997) 23 24 Gergaud et al (2016) 179 595
Lilley (1948) 28 33

Note: This table reports the number of patents and inventors mentioned in each source. The left side pertains sources grouped into the
indicator of Patent Eminence, while on the right side there are those concerning Inventor Eminence.

Table 2: Quality indicators for selected patents

Patent N° Year Inventor Invention Woodcroft References Patent Eminence Inventor Eminence

542 1733 John Kay Flying shuttle 1 10 8
556 1736 Jonathan Hulls Steam-propelled ship 9 0 5

931 1769 Richard Arkwright Water frame 3 10 9
1111 1775 Richard Arkwright Carding machine 15 3 9

Table 3: Factor loadings of the Bibliographic Composite Index (BCI) resulting from the SEM estima-
tion

Residuals WRI Residuals PAT EM Residuals INV EM

λ 1 1.1746*** 1.8698***
- (0.1401) (0.2619)

Note: *** denotes significance at 0.1% level. λk are the factor loadings on the
common factor q, representing the BCI. Standardized root mean squared resid-
ual= 0.000; Coefficient of determination= 0.698.
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Table 4: Fligner-Policello tests of stochastic equality for BCI validation

Fligner-Policello statistics

Extended to all UK 11.072***
Time Extension 15.292***
Litigated Patents 35.430***
Perpetual Motion -5.062***
“Impossible” Engines -2.765**

Note: **,*** denote significance at 1% and 0.1% level. The Fligner-
Policello test determines whether for two random variables X and Y
it is statistically significant that Prob[X > Y ] > 0.5. In all cases,
the null hypothesis of stochastic equality is rejected at a high signifi-
cance level. Data for geographical coverage are taken from Bottomley
(2014a) (1247 patents extended to the entire United Kingdom), while
the lists of patents that were litigated (355 cases) and for which a
time extension was petitioned (95) are taken from Woodcroft (1862).
Data for perpetual motion machines are taken from Dircks (1861) (23
patents) and the lists of 83 engines that were not technically feasible
is the same employed by MacLeod et al. (2003). A negative sign of
the Fligner-Policello statistics indicates that patents in the list con-
sidered are of lower average value than the excluded remainder. All
the results hold if we employ Mann-Whitney-Wilcoxon median test.

Table 5: Regression results, Poisson and negative binomial models with arrival rate for macroinventions
as a function of time.

Model Patents c β1 β2 β3 α LR test logL Wald test Pseudo R2 Q test

Poisson Top 0.5% -0.8429*** -131.402 50.936***
(0.1319)

Neg Bin Top 0.5% -0.84292*** 0.3107 NOT reject -130.869 50.936***
(0.1321)

Poisson Top 0.5% -1.809*** 0.011*** -124.187 19.13*** 0.055 30.1501*
(0.2879) (0.0026)

Neg Bin Top 0.5% -1.8285*** 0.0114*** 0.1280 NOT reject -124.071 13.60*** 0.052 30.1211*
(0.3307) (0.0032)

Poisson Top 0.5% -3.689*** 0.064** -0.030**a -118.626 14.07*** 0.097 23.0980
(0.8409) (0.0193) (0.0104)a

Neg Bin Top 0.5% -3.689*** 0.064** -0.030**a 0.0048c NOT reject -118.626 24.49*** 0.094 23.0985
(0.8013) (0.0185) (0.0101)a

Poisson Top 0.5% -3.045* 0.0312 0.0144a -0.0178c -118.381 21.08*** 0.099 25.8504
(1.1938) (0.0505) (0.0628)a (0.0024)b

Neg Bin Top 0.5% -3.045** 0.0312 0.0143a -0.0179c 0.0001a NOT reject -118.381 24.98*** 0.095 25.8504
(1.129) (0.0485) (0.0633)a (0.0025)b

Note: *,**,*** denote significance at 5%, 1% and 0.1% level. c, β1, β2 and β3 are the coefficients on the constant and the polynomials of time (first, second and third
degree, respectively). Estimated coefficients are sometimes multiplied by the following factors: a=100, b=1000, c=10000. α is the parameter for overdispersion in the
negative binomial model for which a likelihood-ratio test (LR test) of H0 : α = 0 (i.e. no overdispersion) is carried out. The last column give the Box-Ljung Q statistics
on the standardized residuals of H0: no time autocorrelation. In this case, a significant value of the test statistics means that we reject H0. Following Silverberg and
Verspagen (2003), we set k = 20. The period considered is 1700-1850 (151 observations).
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Table 6: Regression results, Poisson and negative binomial models with arrival rate for microinventions
as a function of time.

Model Patents c β1 β2 β3 α LR test logL Wald test Pseudo R2 Q test

Poisson All -4.4608*** -10950.859 1091.1466***
(0.1211)

Neg Bin All 4.461*** 1.827 reject -803.643 1091.1466***
(0.1103)

Poisson All 0.4222*** 0.038*** -824.490 1993.45*** 0.9247 159.5699***
(0.0957) (0.0009)

Neg Bin All 0.641*** 0.036*** 0.0585 reject -572.144 463.00*** 0.2881 193.2231***
(0.0724) (0.0006)

Poisson All 1.127*** 0.023*** 0.073***b -789.415 3047.81*** 0.9279 122.4661***
(0.1468) (0.0034) (0.0018)a

Neg Bin All 0.851*** 0.030*** 0.034*b 0.0565 reject -570.130 467.03*** 0.2906 146.7201***
(0.1249) (0.0030) (0.0016)a

Poisson All 0.310 0.059*** -0.037**a 0.016**c -765.420 2777.19*** 0.9301 92.4250***
(0.2766) (0.0114) (0.0001) (0.0054)c

Neg Bin All 0.795*** 0.033*** -0.001a 0.0018c 0.0559 reject -570.047 467.19*** 0.2907 135.6694***
(0.1875) (0.0086) (0.0115)a (0.0045)c

Note: *,**,*** denote significance at 5%, 1% and 0.1% level. c, β1, β2 and β3 are the coefficients on the constant and the polynomials of time (first, second and third
degree, respectively). Estimated coefficients are sometimes multiplied by the following factors: a=100, b=1000, c=10000. α is the parameter for overdispersion in the
negative binomial model for which a likelihood-ratio test (LR test) of H0 : α = 0 (i.e. no overdispersion) is carried out. The last column give the Box-Ljung Q statistics
on the standardized residuals of H0: no time autocorrelation. In this case, a significant value of the test statistics means that we reject H0. Following Silverberg and
Verspagen (2003), we set k = 20. The period considered is 1700-1850 (151 observations).

Table 7: Examples of stated aims of invention for three macroinventions.

Patent N° Year Inventor Invention Excerpt from Woodcroft (1854) Stated aims

962 1770 James Hargreaves Spinning jenny

“[. . . ] making an engine [. . . ] to be managed
by one person only, which will spin, draw, and
twist 16 or more threads at a time by a motion
of one hand and a draw of the other”

Save labour;
save time

1420 1784 Henry Cort Puddling process

“[. . . ] manufacturing iron and steel into bars
[. . . ] of purer quality, in larger quantity, by a
more effectual application of fire and machinery,
and with greater yield”

Save capital and
raw materials;
improve quality

1645 1788 Andrew Meikle Threshing machine
“[. . . ] the corn is thereby separated from the
straw in less time, and in more effectual manner
than by threshing or any other manner”

Save time;
improve quality

Note: descriptions are taken from Woodcroft (1854) and stated aims are classified using the methodology of MacLeod (1988).
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Table 8: Patentees’ stated aims of invention, 1700-1799.

Stated aim Top 0.5% Top 1% Top 2% All patents

Create employment 0 1.7 1.2 1.9
Improve working conditions 0 0 2.3 1.4
Save labour 2.9 3.4 4.7 4.2
Save time 11.8 8.5 7 5.2
Save capital and raw materials 8.8 5.1 7 30.8
Reduce consumer price 5.9 5.1 3.5 3.7
Improve quality 32.4 27.1 25.6 29.3
Import substitution 0 1.7 1.2 3.6
Government revenue 0 0 0 1
Other government benefits 5.9 3.4 2.3 2.1

Note: Columns 2, 3 and 4 report the share of patents in that percentile of quality that mention each of the listed
aims of invention. Figures are expressed as a percentage of the 34, 59 and 86 patents respectively granted for
macroinventions in the period 1700-1799 (see text for details). The last column is taken from MacLeod (1988),
Table 9.1 p. 160, who considered 2240 patents in the period from 1660 to 1799. This means that unfortunately
the data are not strictly comparable, but given the low number of patents granted before 1700 (on average, less
than four per year) and that the only macroinvention that we excluding is Thomas Savery’s steam engine of
1698, the comparison presented remains informative.

Table 9: Patents for inventions intended to save labour, 1700-1799.

Patent aim Top 0.5% Top 1% Top 2% All patents

Labour-saving stated 2.9 3.4 4.7 3.9
Effectively labour-saving 38.2 38.9 38.4 15.3

Note: The last column is taken from MacLeod (1988), Table 9.2 p. 170. Unfortunately, the data are not
strictly comparable because MacLeod considered the entire period from 1660 to 1799 (see the note to Table
8). The methodology used to find patents covering inventions effectively labour saving is described in the
text and is the same of MacLeod (1988, pp. 170 and 257).

Table 10: Determinants of micro- and macroinventions.

Logit OLS Quantile Regression

Top 1% Top 0.5% Q(0.25) Q(0.50) Q(0.75) Q(0.95) Q(0.99) Q(0.995)

Number of inventors -0.5389* -0.1006 0.0004 0.0011 0.0002 0.0000 0.0132 0.1405* 0.0667
(0.28607) (0.30428) (0.00680) (0.00103) (0.00066) (0.00163) (0.02273) (0.08122) (0.22226)

Previous patents 0.9094*** 0.4404 0.0445*** 0.0014* 0.0058*** 0.0266*** 0.1695*** 0.2582*** 0.1437
(0.18850) (0.28354) (0.00520) (0.00075) (0.00091) (0.00227) (0.02624) (0.08002) (0.11009)

Engineer 1.0026*** 1.1294*** 0.0517*** 0.0036*** 0.0067*** 0.0268*** 0.2602*** 0.3359** 0.6839***
(0.21796) (0.30896) (0.00779) (0.00126) (0.00109) (0.00265) (0.04491) (0.13821) (0.24117)

Foreign Inventor 0.0448 -0.4461 -0.0032 -0.0023* -0.0018 -0.0019 -0.0144* -0.1153** -0.2746***
(0.53756) (1.05258) (0.00577) (0.00122) 0.00132 (0.00149) (0.00747) (0.05396) (0.09774)

Metropolitan 0.0318 -0.0440 0.0009 -0.0002 -0.0001 0.0000 0.0124* 0.0626 0.1295
(0.17808) (0.25465) (0.00477) (0.00041) (0.00037) (0.00065) (0.00732) (0.06193) (0.08767)

Outsider 0.2375 0.3403 0.0035 0.0000 -0.0001 0.0000 -0.0032 0.0144 0.1487
(0.22144) (0.30296) (0.00762) (0.00038) (0.00054) (0.00092) (0.00973) (0.12262) (0.19670)

Constant -5.7500*** -7.3290*** 0.0022 -0.0637*** -0.0437*** -0.0299*** -0.0150 -0.0474 0.3115
(0.46132) (0.75203) (0.11964) (0.00194) (0.00195) (0.00352) (0.02561) (0.16049) (0.35806)

Industry dummies YES YES YES YES YES YES YES YES YES
Time dummies YES YES YES YES YES YES YES YES YES
Log-likelihood -340.008 -623.989
(Pseudo) R2 0.1509 0.1446 0.0126 0.2462 0.1180 0.0438 0.1058 0.2232 0.2970
Observations 12690 11356 13070 13070 13070 13070 13070 13070 13070

Note: *,**,*** denote significance at 10%, 5% and 1% level. Dependent variable for the first two columns is a dummy equal to 1 for inventions in the top 1% and top 0.5% of the
quality distribution, respectively. Dependent variable for the remainder of the table is the absolute value of BCI of each patent. The variable “outsider” has been constructed in
such a way to consider only the cases in which the invention was clearly not connected with the occupation of the patentee. When this dummy variable takes a value of 0 this does
not mean that the inventor in question is an insider; this is also the case for all those inventors listed as “esquire”, “gentleman” or “baronet”. We also excluded from the count of
outsiders patent agents and inventions imported from abroad. Metropolitan is a dummy variable indicating whether any of the patentees was living in a town with more than 50,000
inhabitants at the time he was granted the patent. Logit and OLS models are estimates using robust standard errors, while standard errors for the quantile regression coefficients
are obtained using 500 bootstrap replications. We included time dummies for each decade and industry dummies from Nuvolari and Tartari (2011).
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A Appendix: The Bibliographic Composite Index (BCI) of patent

quality

This Appendix contains a description of the sources of the BCI and some further robustness checks

on the results reported in the paper.

A.1 Sources used for the construction of WRI, PAT EM and INV EM

The BCI is a composite index that integrates three different quality indicators: the Woodcroft

Reference Index (WRI), Patent Eminence (PAT EM) and Inventor Eminence (INV EM).

The WRI is computed as the number of bibliographic references listed for each patent in Woodcroft

(1862). Figure A1 and A2 shows the entries for two different patents (a technological breakthrough

and an ordinary invention) in Woodcroft’s volume.

[Figures A1 and A2 about here]

Not surprisingly Watt’s separate condenser is mentioned in a significantly higher number of refer-

ences than the William Watts’ invention for improvements in the production of small shots (making

them “solid, round and smooth”).

The Patent Eminence (PAT EM) score is computed as the number of times each patent is men-

tioned in specialized reference volumes on the history of invention and engineering. The sources used

for the construction of this variable are:

1. Baker, R. (1976): New and Improved... Inventors and Inventions that Have Changed the Modern

World, London: British Library.

2. Carter, E. F. (1969): Dictionary of Inventions and Discoveries, London: F. Muller.

3. Desmond, K. (1987): The Harwin chronology of inventions, innovations, discoveries: From pre-

history to the present day, London: Constable.

4. Inkster, I. (1991): Science and technology in history: an approach to industrialisation, London:

Macmillan.

5. Bridgman, R. (2014): 1000 inventions and discoveries, New York: Dorling Kindersley Ltd.

6. Bunch, B. H. and A. Hellemans (2004): The History of Science and Technology, New York:

Houghton Mifflin.
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7. Ochoa, G. and M. Corey (1997): The Wilson chronology of science and technology, New York:

HW Wilson.

8. Dudley, L. (2012): Mothers of innovation: How expanding social networks gave birth to the

Industrial Revolution, Newcastle upon Tyne: Cambridge Scholars Publishing.

9. Lilley, S. (1948): Men, machines and history: a short history of tools and machines in relation

to social progress, London: Cobbett Press.

10. Challoner, J. (2016): 1001 inventions that changed the world, Sydney: Pier 9.

Table A1 shows the overlap in the coverage of the patent sample between the sources used for the

construction of PAT EM.

[Table A1 about here]

Table A2 shows the patents with highest score of PAT EM.

[Table A2 about here]

The Inventor Eminence (INV EM) score is computed as the number of times each inventor is

mentioned in biographical dictionaries and other compilations of important inventors and historical

figures. All the patents of the same inventor have the same score of INV EM. The sources used for

the construction of this variable are:

1. Matthew H. and B. Harrison (2004): Oxford Dictionary of National Biography, Oxford: Oxford

University Press (www.oxforddnb.com).

2. Allen, R. (2009): The British Industrial Revolution in Global Perspective, Cambridge: Cam-

bridge University Press.

3. Day, L. and I. McNeil (1996): Biographical dictionary of the history of technology, London:

Routledge.

4. Abbott, D. (1985): The Biographical Dictionary of Scientists, Engineers and Inventors, London:

F. Muller.

5. Murray, C. (2003): Human accomplishment: The pursuit of excellence in the arts and sciences,

800 BC to 1950, London: Harper Collins.

6. Benson, A. K. (2012): Inventors and inventions. Great lives from history, Pasadena: Salem

Press.
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7. De Galiana, T. and M. Rival (1996): Dictionnaire des inventeurs et inventions, Paris: Larousse.

8. Meisenzahl, R. R. and J. Mokyr (2012): “The rate and direction of invention in the British

Industrial Revolution: Incentives and institutions,” in The rate and direction of inventive activity

revisited, ed. by J. Lerner and S. Stern, Chicago: University of Chicago Press, pp. 443-479.

9. Gergaud, O., M. Laouenan, and E. Wasmer (2016): “A Brief History of Human Time. Exploring

a database of ‘notable people’,” LIEPP Working Paper, Sciences Po.

Table A3 shows the overlap in terms of inventor coverage between the sources used for the con-

struction of INV EM.

[Table A3 about here]

Table A4 reports the inventors with the highest scores of INV EM.

[Table A4 about here]

Table A5 examines the consistency of the sources used for the construction of INV EM and

PAT EM by means of Kuder-Richardson 20 coefficients. The results are robust even when excluding

one source at the time.

[Table A5 about here]

Figure A3 displays the distributions of PAT EM and INV EM. Both distributions are very skewed,

with the large bulk of patents having a score of zero and few selected patents with high scores. Table

A10 reports the descriptive statistics by sectors of WRI, PAT EM and INV EM.

[Figure A3 about here]

[Table A10 about here]

A.2 The construction of BCI and some further robustness checks

Table A6 reports Spearman correlation coefficients among WRI, PAT EM and INV EM. The

correlations are strongly significant, but the coefficients are rather low. The highest coefficient is

between PAT EM and INV EM and is around 0.3. This suggests that the indicators provide relatively

independent assessments of patent quality. In this context, integrating these three indicators in a

composite quality index may lead to significant improvement of the signal-to-noise ratio (Lanjouw

and Schankerman, 2004).

[Table A6 about here]

In particular, some important innovations of the Industrial Revolution such as John Kay’s flying

shuttle, John Hadley’s octant, James Heargreaves’ spinning jenny, Henry Cort’s puddling process and
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John Wilkinson’s boring machine have relatively low scores of WRI*. Table A7 shows the scores of

WRI* and BCI and the percentiles in which these patents are located in the distributions of the two

indicators. Notably, all these inventions are in the top 0.5% patents when using the BCI.

[Table A7 about here]

Table A8 compares the performance of BCI and WRI* in assessing patents on flawed designs in

steam engineering (MacLeod et al. 2003; Dircks 1861). The comparison is carried out by means of

Fligner-Policello of stochastic equality. Interestingly enough, in this case patents with flawed designs

have significantly lower score of BCI, while WRI* is not able to tease them apart from the rest of the

patent corpus.

[Table A8 about here]

Figure A4 contains a scatterplot that compares BCI and INV EM. In this case, it is worth not-

ing that several patents of “great inventors” are characterized by relatively low scores of BCI. This

suggests that the BCI is correctly able to discriminate between important inventions and marginal

improvements even when they were made by same inventor.

[Figure A4 about here]

Figure A5 contains a scatterplot that compares BCI and PAT EM. The two measures are very

consistent. As noted in the text, the main limit of PAT EM is that is not very granular. The BCI

shows more variation and allows a more fine-grained evaluation of microinventions.

[Figure A5 about here]

Table A9 contains a number of robustness checks on the construction of BCI. In particular, we

experiment with different time and industry controls in the Poisson regressions for WRI, PAT EM

and INV EM and examine the resulting set of the top 0.5% patents in the upper tail of the quality

distributions (in the paper we use BCI as an ordinal variable). In all cases there is an almost complete

overlap. This finding bolsters our confidence that we are selecting the subset of macroinventions for

the period of the Industrial Revolution.

[Table A9 about here]

Figure A6 shows the frequency of macroinventions in our data-base and the prediction of the

Poisson model. The fit is remarkable, suggesting that the occurrence of macroinventions is consistent

with a data-generating process in which serendipity play a significant part.

[Figure A6 about here]

Table A12 contains a list of the top 0.5% patents in terms of BCI. Remarkably, the table shows

technological breakthroughs spanning many different sectors of economic activity.
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[Table A12 about here]
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Figure A1: Entry in Woodcroft’s Reference Index for James Watt’s patent of the separate condenser
(1769)

Note: the entry gives references to technical and legal literature where the patent is mentioned, while the last line of the
table indicates in which office the specification was lodged (in this case Rolls Chapel). The Index also notes of the Fire
Engines Patent Act (1775) that extended the patent to 1800.

Figure A2: Entry in Woodcroft’s Reference Index for William Watts’ patent for making better small
shots (1782)

Note: Not surprisingly, Watt’s separate condenser received a much higher number of citations than the incremental
improvements patented by William Watts.
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(a) Patent Eminence (b) Inventor Eminence

Figure A3: Distribution of the quality indicators Patent Eminence and Inventor Eminence.

Figure A4: Scatterplot of BCI and INV EM
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Figure A5: Scatterplot of BCI and PAT EM

Figure A6: Frequency of years characterized by a certain number of macroinventions, actual vs pre-
dicted by the Poisson model.

Note: the unit of observation is the year and the graph shows the frequency of years with zero to three macroinventions.
The Poisson model is estimated using a quadratic time trend.
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Table A1: Overlap between the sources used for Patent Eminence

Source (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(1) Baker (1976) 150
(2) Carter (1978) 48 266
(3) Desmond (1987) 45 68 157
(4) Inkster (1991) 21 29 20 44
(5) Dudley (2012) 29 37 26 27 55
(6) Challoner (2009) 31 28 29 14 20 49
(7) Bridgman (2002) 22 26 24 16 18 18 38
(8) Bunch and Hellemans (2004) 39 52 31 19 27 23 23 93
(9) Ochoa and Corey (1997) 16 15 17 12 13 10 11 15 24
(10) Lilley (1948) 21 24 17 21 21 14 15 17 12 33

Note: This table shows the number of patents cited in every sources along with the number of these that are also
mentioned in each of the other sources used. The diagonal cells contain the total number of patents in each of these
lists, while cells outside the diagonal show the number of patents mentioned simultaneously in both sources.

Table A2: Patents with the highest scores of Patent Eminence

Patent N° Year Inventor Invention Patent Eminence

542 1733 John Kay Flying shuttle 10
913 1769 James Watt Separate condenser 10
931 1769 Richard Arkwright Water frame 10
962 1770 James Hargreaves Spinning jenny 10
7390 1837 Charles Wheatstone Telegraph 10
1063 1774 John Wilkinson Boring machine 9
1351 1783 Henry Cort Rolling of metals 9
1470 1785 Edmund Cartwright Power loom 9
2599 1802 Andrew Vivian, Richard Trevithick High pressure steam engine 9
1298 1781 Jonathan Hornblower Compound steam engine 8
1565 1786 Edmund Cartwright Power loom 8
1645 1788 Andrew Meikle Threshing machine 8
2045 1795 Joseph Bramah Bramah’s lock 8
9382 1842 James Nasmyth Steam hammer 8
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Table A3: Overlap between the sources used for Inventor Eminence

Source (1) (2) (3) (4) (5) (6) (7) (8) (9)

(1) Oxford DNB 292
(2) Allen (2009) 45 77
(3) Day and McNeil (1996) 105 50 241
(4) Abbott (1985) 41 29 48 58
(5) Murray (2003) 32 29 35 28 55
(6) De Galiana (1996) 60 36 66 40 35 103
(7) Meisenzahl and Mokyr (2012) 153 55 178 45 39 75 538
(8) Benson (2012) 38 28 38 26 27 37 45 60
(9) Gergaud et al (2016) 86 22 66 29 25 45 84 36 135

Note: This table shows the number of inventors cited in every sources along with the number of these that
are also mentioned in each of the other sources used. The diagonal cells contain the total number of inventors
in each of these lists, while cells outside the diagonal show the number of inventors mentioned simultaneously
in both sources.

Table A4: Patents with the highest scores of Inventor Eminence

Inventor Inventor Eminence

Andrew Vivian 9
Edmund Cartwright 9
Henry Bessemer 9
Henry Maudslay 9
James Hargreaves 9
James Nasmyth 9
James Watt 9
John Kay 9
Richard Arkwright 9
Richard Trevithick 9
Thomas Savery 9
William Murdock 9

Table A5: Robustness of Kuder-Richardson 20 coefficients after excluding a source of Patent and
Inventor Eminence at the time.

Patent Eminence Inventor Eminence

Source Excluded KR20 Source Excluded KR20

Baker (1976) 0.7632 Oxford DNB 0.8351
Carter (1978) 0.7864 Allen (2009) 0.8369
Desmond (1987) 0.7640 Day and McNeil (1996) 0.8173
Inkster (1991) 0.7569 Abbott (1985) 0.8326
Dudley (2012) 0.7490 Murray (2003) 0.8363
Challoner (2009) 0.7562 De Galiana (1996) 0.8290
Bridgman (2002) 0.7567 Meisenzahl and Mokyr (2012) 0.8568
Bunch and Hellemans (2004) 0.7526 Benson (2012) 0.8388
Ochoa and Corey (1997) 0.7666 Gergaud et al (2016) 0.8385
Lilley (1948) 0.7583

Note: This table reports the Kuder-Richardson 20 coefficients for Patent and Inventor Eminence indicators
after each of the sources used is excluded from its computation, one at the time. The table shows great
stability of the coefficients, which when all sources are considered together are equal to 0.7792 and 0.8511
for Patent and Inventor Eminence, respectively.
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Table A6: Spearman’s rank correlation coefficients of the raw quality indicators

Woodcroft Reference Index Patent Eminence Inventor Eminence

Woodcroft Reference Index 1
Patent Eminence 0.0710*** 1
Inventor Eminence 0.0645*** 0.3001*** 1

Note: *** denotes significance at 0.1% level.

Table A7: Scores of WRI* and BCI for some technological breakthroughs of the Industrial Revolution.

Patent N° Inventor Invention N°Woodcroft Refs WRI* Percentile WRI* BCI Percentile BCI

542 John Kay Flying shuttle 1 0.578 20 5.006 99.5
550 John Hadley Octant 1 0.578 20 2.783 99.5
962 James Hargreaves Spinning jenny 2 1.140 68 5.221 99.5
1063 John Wilkinson Boring machine 2 1.165 69 4.700 99.5
1351 Henry Cort Rolling of metals 2 1.072 67 4.525 99.5
1951 Samuel Bentham Woodworking machinery 2 1.058 63 1.144 99

Table A8: Fligner-Policello tests of stochastic equality: comparison of WRI* and BCI for flawed steam
engineering patents.

Perpetual Motion “Impossible” Engines

BCI WRI* BCI WRI*

Entire sample (1700-1850)
Fligner-Policello statistics -5.062*** -0.887 -2.765** 1.822

Note: *,**,*** denote significance at 5%, 1% and 0.1% level. Data for perpetual motion
machines are taken from Dircks (1861) (23 patents), while the lists of 83 engines that were
not technically feasible is the same employed by MacLeod et al. (2003). A negative sign
of the Fligner-Policello statistics indicates that patents in the list considered are of lower
average value than the excluded remainder. All the results hold if we employ Mann-Whitney-
Wilcoxon median test.
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Table A9: Overlap between Top 0.5% patents when changing the time and industry controls used in
the Poisson regression.

(1) (2) (3) (4) (5) (6)

(1) 65
(2) 63 65
(3) 62 63 65
(4) 63 64 62 65
(5) 62 63 62 63 65
(6) 62 63 62 63 63 65

Note: This table shows the number of
top 0.5% patents (65 patents) that over-
lap when the Bibliographic Composite In-
dex is constructed using residuals of the raw
proxies coming from different sets of regres-
sions. In particular: (1) preferred specifica-
tion, controls for time decade and indus-
try (2) control for time windows of 50 years
and industry (3) control for time windows
of 25 years and industry (4) control for time
decades only (5) control for industry only
(6) no controls at all.
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Table A10: Descriptive statistics of quality indicators, detailed by sector of economic activity as defined by Nuvolari and Tartari (2011)

Industry Patents Woodcroft Reference Index Patent Eminence Inventor Eminence

Mean Median Std Dev Min Max Mean Median Std Dev Min Max Mean Median Std Dev Min Max

Agriculture 432 2.5717 2 1.3433 1 7 0.0856 0 0.5655 0 8 0.2152 0 0.8300 0 7
Carriages 812 2.8140 2 1.6593 1 15 0.0615 0 0.3384 0 4 0.3645 0 1.1752 0 9
Chemicals 1118 2.9758 3 1.6713 1 19 0.0286 0 0.2009 0 2 0.2504 0 0.9759 0 9
Clothing 322 2.3074 2 1.3814 1 13 0.0465 0 0.3879 0 6 0.2732 0 0.9952 0 6
Construction 640 2.8687 3 1.6238 1 16 0.025 0 0.2078 0 3 0.3078 0 1.1135 0 9
Engines 1637 2.7874 3 1.5135 1 21 0.0989 0 0.6136 0 10 0.5534 0 1.5464 0 9
Food 716 2.6955 2 1.6118 1 17 0.0488 0 0.3873 0 7 0.1955 0 0.8743 0 9
Furniture 659 2.4962 2 1.5021 1 18 0.0515 0 0.3313 0 4 0.1638 0 0.8124 0 9
Glass 123 2.8130 2 1.5436 1 9 0.0569 0 0.3213 0 3 0.5934 0 1.7547 0 9
Hardware 834 2.6163 2 1.5798 1 13 0.0611 0 0.3948 0 7 0.2170 0 0.8385 0 8
Instruments 598 2.5953 2 1.4642 1 13 0.1371 0 0.6833 0 10 0.5083 0 1.3815 0 8
Leather 218 2.6559 2 1.3799 1 9 0.0137 0 0.1511 0 2 0.1605 0 0.7840 0 6
Manufacturing 685 2.6087 2 1.6064 1 16 0.0701 0 0.3797 0 4 0.2919 0 1.0328 0 8
Medicines 288 2.1527 2 1.1404 1 10 0.0243 0 0.1754 0 2 0.1423 0 0.6443 0 7
Metallurgy 682 3.1568 3 1.9808 1 23 0.1114 0 0.6520 0 9 0.6436 0 1.6546 0 9
Military 252 2.4603 2 1.2944 1 11 0.1111 0 0.7221 0 9 0.4246 0 1.2264 0 7
Mining 81 2.9876 3 1.9202 1 14 0.0987 0 0.5149 0 4 0.4691 0 1.0849 0 5
Paper 480 2.9041 3 1.6648 1 14 0.1 0 0.4266 0 4 0.5812 0 1.3683 0 9
Pottery 277 2.8483 3 1.5738 1 12 0.0649 0 0.4030 0 4 0.2454 0 0.9465 0 9
Ships 590 2.8932 3 1.8280 1 17 0.0355 0 0.3302 0 7 0.3067 0 0.9935 0 9
Textiles 1626 2.5645 2 1.6636 1 19 0.0805 0 0.6451 0 10 0.5405 0 1.3496 0 9

Total sample 13070 2.7223 2 1.6161 1 23 0.0695 0 0.4797 0 10 0.3774 0 1.2031 0 9
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Table A11: Macroinventions (top 0.5%) according to the Bibliographic Composite Index.

Rank Patent number Year Patentee Invention

1 913 1769 James Watt Separate condenser
2 7390 1837 Charles Wheatstone Telegraph
3 931 1769 Richard Arkwright Water frame
4 962 1770 James Hargreaves Spinning jenny
5 542 1733 John Kay Flying shuttle
6 2599 1802 Andrew Vivian, Richard Trevithick High pressure steam engine
7 1470 1785 Edmund Cartwright Power loom
8 1063 1774 John Wilkinson Boring machine
9 1351 1783 Henry Cort Rolling of metals
10 9382 1842 James Nasmyth Steam hammer
11 2045 1795 Joseph Bramah Hydraulic press
12 1565 1786 Edmund Cartwright Power loom
13 1645 1788 Andrew Meikle Threshing machine
14 1298 1781 Jonathan Hornblower Compound steam engine
15 1876 1792 Edmund Cartwright Wool-combing machine
16 1430 1784 Joseph Bramah Bramah’s lock
17 5701 1828 James Beaumont Neilson Hot blast furnace
18 7104 1836 Francis Pettit Smith Screw propeller
19 3372 1810 Peter Durand Tin cans
20 8842 1841 William Henry Fox Talbot Calotype
21 3887 1815 George Stephenson Locomotive
22 4804 1823 Charles MacIntosh Macintosh waterproof cloth
23 1321 1782 James Watt Double acting steam engine
24 2772 1804 Arthur Woolf Improvements in steam engines
25 5990 1830 Edwin Budding Lawnmower
26 550 1734 John Hadley Octant
27 1306 1781 James Watt Rotary crank
28 4136 1817 David Brewster Kaleidoscope
29 4081 1816 Robert Stirling Stirling air engine
30 1420 1784 Henry Cort Iron puddling
31 6909 1835 Samuel Colt Revolving firearm
32 722 1758 Jedediah Strutt Stocking rib
33 380 1707 Abraham Darby Iron casting
34 4067 1816 George Stephenson Half-lap joint for railways
35 562 1738 Lewis Paul Spinning machine
36 2196 1797 Joseph Bramah Beer pump
37 6159 1831 William Bickford Safety fuse
38 5803 1829 Charles Wheatstone Concertina
39 2708 1803 John Gamble Paper making machine (Foudrinier)
40 5949 1830 Richard Roberts Self-acting mule
41 636 1748 Lewis Paul Spinning machine
42 939 1769 Josiah Wedgwood New method for decorating earthenware
43 1111 1775 Richard Arkwright Carding machine
44 6733 1834 Joseph Hansom Hansom cab
45 1105 1775 Alexander Cumming Flush toilet
46 5022 1824 Joseph Apsdin Portland cement
47 1177 1778 Joseph Bramah Watercloset
48 2202 1797 Edmund Cartwright Steam engine
49 6014 1830 Andrew Ure Thermostat
50 395 1714 Henry Mill Typewriter
51 3611 1812 Joseph Bramah High-pressure hydraulic mains
52 3105 1808 William Newberry Scroll bandsaw
53 2652 1802 Joseph Bramah Making gun stocks
54 6675 1834 Henry Shrapnel Fire-arms
55 5138 1825 Richard Roberts Self-acting mule
56 721 1758 John Dollond Lenses for telescopes
57 8447 1840 George Richards Elkington Electroplatingprocess.
58 1478 1785 Joseph Bramah Screw propeller
59 896 1768 Andrew Meikle Machine for dressing grain
60 1112 1775 Jesse Ramsden Astronomic telescope
61 734 1759 Jedediah Strutt Derby patent rib machine
62 10990 1845 Robert William Thomson Carriage wheel (pneumatic tyre)
63 3032 1807 Alexander John Forsyth Fulminate-primed gun firing mechanism
64 3041 1807 William Cubitt Self-regulating windmill sails
65 1833 1791 John Barber Gas turbine
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