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Abstract

In this paper we investigate whether long run time series of income per capita are better
described by a trend-stationary model with few structural changes or by unit root processes in
which permanent stochastic shocks are responsible for the observed growth discontinuities. To
this purpose, we develop a methodology to test the null of a generic I(1) process versus a set
of stationary alternatives with structural breaks. Differently from other tests in the literature,
the number of structural breaks under the alternative hypothesis is treated as an unknown
(up to some ex ante determined maximum). Critical values are obtained via Monte Carlo
simulations and finite sample size and power properties of the test are reported. An application
is provided for a group of advanced and developing countries in the Maddison dataset, also using
bootstrapped critical values. As compared to previous findings in the literature, less evidence is
found against the unit root hypothesis. Failures to reject the I(1) null are particularly strong for
a set of developing countries considered. Finally, even less rejections are found when relaxing
the assumption of Gaussian shocks.

Keywords Long-run growth, structural breaks, unit roots
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1 Introduction

Among empirical growth economists a quite large consensus has emerged over the last years concern-
ing the unstable nature of economic growth. It is now widely recognized that the vast majority of
growth experiences, even when considering now-rich countries, do not comply with a simple steady-
growth model (Ben-David and Papell, 1995; Papell and Prodan, 2014). In aggregate income data,
it is common to observe several growth discontinuities of different kinds such as accelerations and
collapses, sudden stops or level jumps (Easterly et al., 1993; Hausmann et al., 2005; Lamperti and
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Mattei, 2018; Pritchett et al., 2000). Nevertheless, there is clearly less consensus when it comes to
characterizing growth instability with econometric models.

A major issue is whether growth paths are better described by a trend-stationary model with
relatively few structural breaks (either in growth or in levels) or by unit root processes in which
permanent stochastic shocks are responsible for continuous changes. As pointed out by Perron et al.
(2006), one should not restrict the analysis to these two limiting cases as there are several interesting
instances in between. The key question is therefore: do the data reveal frequent and large growth
discontinuities or are structural changes occurring at most occasionally? From this standpoint,
testing for unit roots, rather than discerning definitively between stationary vis-à-vis integrated
models, allows exactly to make inference on where do we stand between these two alternatives.
Addressing this question has strong empirical and theoretical implications.

In terms of economic theory, a trend-stationary specification seems to be consistent with models
from both the Neoclassical and the New Growth traditions. More precisely, the former typically
suggests a log-linear trend with level shifts in response to changes in some policy variables while
the latter also accounts for growth effects.1 In new or endogenous growth models, exogenous shocks
affecting the accumulation of physical and human capital (Lucas, 1988; Romer, 1986) or R&D ex-
penditures (Aghion and Howitt, 1992; Grossman and Helpman, 1991) cause shifts in the equilibrium
growth rate of the economy. On the contrary, evolutionary models emphasize out-of-equilibrium
dynamics and can hardly be reconciled with a trend-stationary data generating process (Dosi et al.,
2019; Nelson and Winter, 1982; Silverberg and Verspagen, 1994, 1995).2 This is the case, for in-
stance, in the so-called “K+S” family of models in which demand-driven fluctuations may affect the
long run path of the economy via their interaction with firms’ innovation patterns (Dosi et al., 2013,
2015, 2010, 2017; Lamperti et al., 2018).3 In this framework, growth is inherently stochastic as it
results from the aggregation of endogenous stochastic innovations at the microeconomic level and,
therefore, models are probably better approximated by path-dependent processes akin to random
walks. Policy shocks still play a crucial role but their effect is far from being deterministic, de-
pending on the specific realization of events associated with the arrival of innovations and to their
“disruptive” consequences on the economic system.4

From an empirical point of view, the relevance of discerning models with stochastic trends from
stationary alternatives is twofold. First, it has been shown that the interpretation and the implica-
tions of convergence tests change greatly when output series follow I(1) processes (Lee et al., 1997).
Most importantly, the standard practices adopted in order to identify growth episodes typically dis-
regard prior unit roots testing, albeit with some exceptions (Ben-David and Papell, 1995; Papell and
Prodan, 2014; Sobreira et al., 2014). The search for growth episodes is generally carried out either
by formal tests for structural breaks (Berg et al., 2012; Jones and Olken, 2008; Kerekes, 2007) or by
imposing filters based on subjective economic criteria (Aizenman and Spiegel, 2010; Bluhm et al.,

1The emergence of level effects is also a characteristic of semi-endogenous growth models (Jones, 1995, 2005). For
an empirical classification of countries’ growth paths according to the “constant trend”, “level shifts” or “trend shifts”
hypothesis see Papell and Prodan (2014) and Sobreira et al. (2014).

2For a comparative survey of evolutionary and endogenous growth theories see Castellacci (2007).
3A framework akin to the “K+S” model has been exploited in Dosi et al. (2019) to investigate long-run growth

patterns among several inter-dependent economies.
4One may argue that the evolutionary view on the role of stochastic events and path dependence in growth

trajectories is shared also by some economic historians (Abramovitz, 1986; David, 2001; Gerschenkron, 1962; Kuznets,
1971). On the contrary, theories pointing out different stages of growth (Rostow, 1960) may be more consistent with
I(0) models featuring deterministic trend shifts.
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2016; Hausmann et al., 2005, 2006).5 Nevertheless, in both cases, the choice of a level vis-à-vis first
difference specification is often not informed by prior evidence from unit root tests. Moreover, the
economic filters adopted generally reflect time-invariant and deterministic characteristics which are
not suited to capturing the stochastic nature of structural shifts observed in integrated models.

Stemming from Nelson and Plosser (1982), researchers have started to pay attention to the
possible presence of stochastic trends in the data. This interest was originally motivated by the
fact that in I(1) type processes the distinction between secular movements and business cycles
becomes blurred as the trend component itself displays fluctuations. Nevertheless, when a time
series exhibits a unit root, it is equally complicated to distinguish growth episodes occurring at
medium run frequencies from the secular stochastic trend. The focus of this paper is on this second
question, i.e. understanding whether the observed episodes are the result of segmented deterministic
trends and level shifts or of stochastic forces affecting the secular component.

Following Perron (1989), it is now a widespread practice to incorporate structural breaks in unit
root tests. It was shown that omitting dummies for structural change in Dickey-Fuller regressions
would result in a failure to reject the unit root null hypothesis (Perron, 1989). Also, drawing on
Zivot and Andrews (1992) and Christiano (1992) these tests now feature a data-dependent algorithm
to determine the location of the structural shifts under the alternative hypothesis. However, a
major drawback of such an approach concerns the assumption of a fixed number of breaks, typically
determined ex ante.6 This creates a gap with the empirical literature in which data-driven procedures
are used, not only to identify break dates, but also to select the number of relevant structural changes.
To deal with this issue, Kapetanios (2005) presents a test of the unit root hypothesis against I(0)
alternatives with an unspecified number of breaks (up to some exogenously given maximum). The
test, nevertheless, features a search algorithm based on the minimization of t-statistics which has
been shown to perform poorly in identifying the correct number of shifts and their dates (Lee and
Strazicich, 2001; Vogelsang and Perron, 1998).

Few empirical applications of unit root tests have been concerned with countries long-run growth
paths. A range of contributions investigates the presence of unit roots in historical time series of
real GDP per capita, generally for a few advanced countries.7 Ben-David and Papell (1995) apply
the test of Zivot and Andrews (1992) allowing for a break in both the trend and the constant in
a sample of OECD countries and reject the unit root hypothesis for 7 out of 16 series. In a follow
up paper, Ben-David et al. (2003) show that by incorporating an additional break it is possible to
reject the null for 12 out 16 countries. Extending the previous works, Papell and Prodan (2014)
consider various models with different break forms in a sample of 19 OECD countries and 7 Asian
economies. Their results report respectively 15 rejections for the OECD group and 6 rejections for

5A compromise between formal testing and subjective criteria is found in Kar et al. (2013) and Pritchett et al.
(2016). They propose a “fit and filter” methodology in which potential breaks are estimated looking at the best
econometric fit and, secondly, relevant ones are selected according to economic filters.

6Another shortcoming is related to the fact that structural breaks are allowed only under the alternative hypothesis.
Although we do not address directly this problem, we provide a discussion in Section 2. Recently, various tests have
been put forward which rely on a GLS detrending procedure similar to that presented by Elliott et al. (1996). These
new tests investigate unit roots in the noise function of a series and have the advantage of incorporating breaks under
both the null and the alternative hypothesis (Carrion-i Silvestre et al., 2009; Harris et al., 2009; Harvey et al., 2013;
Narayan and Popp, 2010, 2013).

7A skeptic point of view on this line of research is provided by Gaffeo et al. (2005). The authors run different
unit roots tests and find substantial heterogeneity in the results depending on the type of procedure adopted. They
interpret this evidence as questioning the possibility to characterize income per capita series with a sufficiently invariant
statistical model.
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the Asian one. An alternative framework is proposed by Kejriwal and Lopez (2013). They present
an econometric procedure that uses in a sequential manner various tests allowing for up to two
structural breaks under both the null and the alternative. With such methodological amendments,
in contrast to the results of the previous literature, their approach indicates no evidence against the
unit root hypothesis.

This paper contributes to this literature by introducing a methodology for testing the null of a
generic I(1) process versus a set of stationary alternatives (with structural breaks) and by presenting
an empirical application for long run time series of per capita GDP. Methodologically, we build upon
Kapetanios (2005) and add novel features along three dimensions: (i) we treat the number of breaks
(not only their location) as unknown; (ii) we exploit the sequential approach by Bai (1997) to extend
the number of breaks to four and, consequently, we include in the analysis also a group of developing
countries with more volatile series; (iii) we implement a robust search algorithm that resembles the
practices for the identification of growth episodes adopted in the empirical literature.

Our results suggest less support in favour of trend stationarity than in previous contributions.
In a sample of 34 countries we find 17 rejections. Interestingly, developing countries exhibit only
four rejections, thus, showing a more complex and unstable dynamics. Moreover, even less evidence
against the unit root hypothesis is found when we relax the assumption of Gaussian innovations by
using bootstrapped critical values. More generally, the evidence presented in this paper complements
the skeptical results of Kejriwal and Lopez (2013). This points to the general conclusion according to
which the dismissal of the unit root hypothesis in GDP series may be premature. In particular, more
attention should be devoted to investigating the role of the various search algorithms implemented
in unit root tests, as well as of the assumptions on the functional form of the shocks, in driving the
evidence against integrated models.

The reminder of this work proceeds as follows: Section 2 describes the methodology; Section 3
shows some Monte Carlo experiments to assess power and size properties of the test in finite samples;
Section 4 presents the empirical strategy while in Section 5 we introduce and discuss the results;
Section 6 concludes.

2 Methodology

Following Zivot and Andrews (1992) we consider the following null hypothesis:

yt = µ+ yt−1 + Ψ∗(L)vt, (1)

where: Ψ∗(L) = A∗(L)−1B(L); A∗(L) and B(L) are lag polynomials respectively of order p and
q with all the roots outside the unit circle and v is a zero-mean sequence of iid random variables.

The alternative model considered takes the form:

yt = µ+ βt+ Ψ(L)
[ m∑
i=1

θiDU(Ti)t +

m∑
i=1

γiDT (Ti)t + vt
]

(2)

where: Ψ(L) = A(L)−1B(L); A(L) = (1 − αL)A∗(L). The intercept and trend break dummies
are DU(Ti)t = 1(t > Ti) and DT (Ti)t = 1(t > Ti)(t − Ti) with 1 being the indicator function
and Ti a generic break date. Notice that, according to the so-called innovation outlier specification,
changes in the trend or in the constant evolve as any other shock. For instance, while the immediate
impact of a generic variation in the constant is θi, the corresponding long-run effect will be Ψ(1)θi.

Both the null and the alternative model can be nested in a general DF-type of regression:
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yt = µ+ βt+ αyt−1 +

m∑
i=1

θiDU(Ti)t +

m∑
i=1

γiDT (Ti)t +

k∑
j=1

cj∆yt−j + εt (3)

In our analysis, the number of breaks (m), the lag-truncation parameter (k) and the break dates
(T1, ..., Tm) are treated as unknown. Therefore, for a given number of breaks m, the null and the
alternative hypothesis are defined as:

H0 : α = 1, θi = γi = 0 ∀ i ∈ [1,m]

H1 : α < 1

Let us now focus on some methodological considerations. First, we are using the most general
model that includes for each break both the intercept and the trend shift dummy. As discussed by
Sen (2003), when the form of the breaks is unknown, the preferred strategy is to adopt a general
specification allowing for changing intercept and trend in order to minimize power distortions.8 Sec-
ond, structural breaks are allowed only under the alternative hypothesis whereas the null model is
described by an I(1) process without exogenous shifts in its deterministic components. Such asym-
metric treatment of breaks characterizes several unit root tests proposed in the literature (Banerjee
et al., 1992; Lumsdaine and Papell, 1997; Perron, 1997; Zivot and Andrews, 1992). However, Vogel-
sang and Perron (1998) and Lee and Strazicich (2001) show that size distortions arise when structural
breaks are present under the null as a result of the nuisance parameter associated witho the trend
function. Although it has been pointed out that serious distortions only emerge in the presence
of large shifts and may not be particularly relevant in practice (Perron et al., 2006; Vogelsang and
Perron, 1998), several works have directly addressed the issue (Carrion-i Silvestre et al., 2009; Har-
ris et al., 2009; Harvey et al., 2013; Lee and Strazicich, 2003; Narayan and Popp, 2010, 2013). A
common strategy is to change the specification of the Data Generating Process (DGP) to allow for
a unit root only in the noise component, thus, avoiding the problem of nuisance parameters. The
new DGP adopted is as follow:

yt = µ+ βt+

m∑
i=1

θiDU(Ti)t +

m∑
i=1

γiDT (Ti)t + et, (4)

et = αet−1 + vt (5)

where vt is an unobserved mean-zero process. A GLS detrending procedure is implemented and then
the unit root test is performed on the estimated series of the noise term e.9 Although such literature
provides interesting results, in this paper we take the original approach of Zivot and Andrews (1992)
and restrain from introducing exogenous shifts under the null model. The motivation underlying
such a methodological choice is twofold. On the one hand, we want to investigate the presence of a
unit root in y rather than in the error component, that implies models (cf. Equations 1 and 2) for
which the structural break dummies have to be estimated simultaneously with the other parameters,

8Power simulations in Section 2 corroborate the results of Sen (2003). When adopting the mixed model (including
both intercept and trend dummies) the test does not show dramatic power losses.

9The work of Narayan and Popp (2010) and Narayan and Popp (2013) start from the same DGP but follow a
different procedure. Instead of detrending the series they fit a modified version of Equation 3 that includes lagged
mean-shift dummies and impulse dummies. The break locations are then estimated by maximizing the Wald statistic
for the joint significance of impulse dummies. The test, however, does not consider the possibility of pure trend breaks.
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i.e. prior detrending is not feasible.10 On the other hand, from an economic point of view, we want to
test the radical hypothesis according to which growth episodes are generated by frequent stochastic
events rather than by few exogenous structural changes. Hence, the results from the test proposed
here have to be interpreted in a conservative way since rejections may occur when the data follows
an integrated process with breaks. As will be reported, despite the evidence in favor of I(1) models
tends to be negatively biased, our results still suggest fewer rejections than in previous works.

As for other tests in the literature, we implement a data-driven procedure to estimate the break
locations. Nevertheless, in tune with the suggestion of Lumsdaine and Papell (1997), rather than
narrowly consider a specific number of breaks we take an agnostic perspective and test for an un-
specified number of structural changes, up to some maximumM . As stressed by Kejriwal and Lopez
(2013), it is desirable to select the model with the appropriate number of breaks before proceed-
ing with the unit root test as the imposition of extraneous dummy variables leads to considerable
power losses. In this respect, the paper provides a first step in incorporating in the unit root test a
methodology for the identification of structural shifts that is broadly in tune with the one actually
used by practitioners in the field of growth empirics when looking for growth episodes (Berg et al.,
2012; Jones and Olken, 2008; Kar et al., 2013; Kerekes, 2007). Along these lines, Kejriwal and Lopez
(2013) adopt a sequential testing procedure to jointly identify the presence of structural breaks and
unit roots in the error function, allowing for a maximum of two shifts of the additive outlier type.
Their results for the historical series of GDP per capita are generally favorable to models with I(1)
noise components. In this work we provide complementary evidence by testing the unit root hy-
pothesis in the series itself, rather than in the noise function, and by introducing multiple breaks
(possibly more than two, of the innovation outlier kind) under the null. Increasing the number of
structural changes with respect to the existing literature is particularly desirable in order to include
developing countries which are typically characterized by more unstable growth paths. Indeed, as
shown by Perron (1989) for the case of one break and generalized by Ohara (1999), the omission of
one or more structural changes will result in a failure to reject the null for models that are trend
stationary in the segments between breaks.

The search algorithm used to choose m and (T1, ..., Tm) extends the approach by Kapetanios
(2005) being grounded on the sequential (one-by-one) breaks estimation proposed by Bai (1997).
As shown by simulations exercises (Lee and Strazicich, 2001; Vogelsang and Perron, 1998) the stan-
dard practice of locating breaks by minimizing the t-statistic for α generally leads to inconsistent
estimates and, therefore, approaches based on minimization of the squared sum of residuals have
to be preferred. Estimating breaks one at a time also has the advantage of being significantly
computationally less expensive as compared to the grid search scheme by Bai and Perron (2003).
However, the one-by-one procedure leads to limiting distributions of locations that tend to diverge
from the ones obtained via simultaneous estimation. To guard from such a problem we implement
in a second-step the repartition procedure suggested by Bai (1997).The algorithm can be described
by the following steps:

• Step 1. Sequential estimation: For each m ∈ [1,M ] and holding k = K fixed, where M
and K refer to exogenously determined upper bounds respectively for the number of breaks
and the truncation-lag parameter, obtain the break locations sequentially by minimizing the
sum of squared residuals from Equation 3 conditional on past breaks estimation. Thus, a

10To the best of our knowledge, there are not yet statistical tests that could allow for a break under the null in the
framework of Equation 1.
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generic break date is estimated as:

T̂m = argminTm
S(T̂1, ..., T̂m−1, Tm), (6)

where:

S(T̂1, ..., T̂m−1, Tm) =

T∑
t=k+2

(
yt − µ̂− β̂t− α̂yt−1 −

m−1∑
i=1

θ̂iDU(T̂i)t − θ̂mDU(Tm)

−
m−1∑
i=1

γ̂iDT (T̂i)t − γ̂mDT (Tm)t −
K∑
j=1

ĉj∆yt−j

)2
(7)

• Step 2. Repartition procedure: For each m ∈ [2,M ] and the associated partition
(T̂1, ..., T̂m), each break date is re-estimated by fitting a one-shift model in the data inter-
val defined by [T̂i−1; T̂i+1].11 The new estimates (T ∗

1 , ..., T
∗
m) are consistent and share the same

asymptotic distributions of those obtained by global maximization.12 Notice that the whole
search scheme is carried out imposing a trimming parameter h, expressed as a share of sample
size, to ensure a minimum length for each segment between breaks.

• Step3. Model selection: As we are left with M + 1 possible partitions (including also
the case with no breaks), the model with the appropriate number of breaks (m∗) is chosen
using the BIC criteria. The truncation-lag parameter k∗ is then selected using the general-to-
specific approach advocated by Ng and Perron (1995), i.e. starting from the upper bound (K)
we remove one lag at the time until the last lag in an autoregression of order k∗ is significant
while the last lag in an autoregression of order k∗ + 1 is not significant.

Concerning model selection, different approaches have been proposed in the econometric literature.
Kapetanios (2005) proposes to select the optimal partition by minimizing the t-statistic for α. As
for selecting breaks locations, such an approach is unlikely to deliver satisfactory results since the
imposition of more dummies will generally overestimate the true number of shifts.13 The recom-
mended strategy by Bai and Perron (2003) is to test for the presence of an additional shift in all the
segments between break dates.14 This supF (l|l + 1) test allows one to discriminate between l and
l + 1 breaks, and when used sequentially can be used to choose the model with the correct number
of structural changes. Simulation evidence in Bai and Perron (2006) shows that both the sequential
procedure and the BIC criteria perform better than other approaches. The former has the advantage
of taking into account heterogeneity across segments and of being robust when serial correlation is
present. Nevertheless, the sequential testing method presents serious power losses in small samples
as it is typically carried out with ever less observations (Antoshin et al., 2008). Therefore, for this

11Notice that for i = 1, T̂i−1 = 1 and for i = m, T̂i+1 = T .
12Although asymptotic distributions are identical, they may diverge in finite samples. As a robustness check, we

carried out simulations using also the simultaneous approach of Bai and Perron (2003) for a T equal to the average
of our sample. Results are not considerably different and, therefore, we decided to opt for the repartition procedure.
Simulation evidence on break location in finite samples is reported in Section 3.

13The reason is that I(1) can be seen as a limiting case of a I(0) process with several breaks, i.e. a I(0) process in
which both the trend and the constant change permanently at any point in time. Hence imposing additional dummies
leads to more evidence against the alternative and, accordingly, to a lower t-statistic. For a detailed discussion of the
issue see Perron (1989). Simulation evidence in Section 3 corroborates such conclusion.

14The test is equivalent to the maximization of the Wald statistic (F − test) over all the data points in a specific
segment.
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T Statistic
M = 2 M = 3 M = 4

1% 2.5% 5% 10% 1% 2.5% 5% 10% 1% 2.5% 5% 10%

h = 0.05

100 tα -7.15 -6.82 -6.51 -6.18 -8.18 -7.84 -7.50 -7.15 -8.99 -8.59 -8.27 -7.88
FT 14.13 12.19 11.02 10.00 13.35 11.96 11.01 10.06 12.83 11.81 10.96 10.15

150 tα -7.02 -6.65 -6.38 -6.09 -8.00 -7.67 -7.36 -7.03 -8.84 -8.46 -8.14 -7.81
FT 13.94 12.05 10.79 9.73 12.97 11.43 10.53 9.69 12.50 11.19 10.43 9.70

200 tα -6.91 -6.62 -6.37 -6.06 -7.91 -7.55 -7.29 -6.99 -8.74 -8.37 -8.11 -7.78
FT 13.73 11.86 10.68 9.76 12.64 11.23 10.37 9.64 12.14 11.00 10.24 9.59

h = 0.1

100 tα -7.27 -6.91 -6.59 -6.26 -8.09 -7.74 -7.41 -7.06 -8.67 -8.27 -7.98 -7.64
FT 14.53 12.44 11.32 10.30 13.54 12.23 11.30 10.36 13.43 12.19 11.29 10.38

150 tα -7.11 -6.80 -6.51 -6.19 -7.96 -7.66 -7.39 -7.05 -8.60 -8.26 -7.97 -7.61
FT 13.86 11.94 10.95 9.97 12.91 11.48 10.69 9.91 13.22 11.45 10.61 9.86

200 tα -7.06 -6.72 -6.48 -6.17 -7.91 -7.60 -7.34 -7.01 -8.59 -8.24 -7.88 -7.46
FT 13.60 12.08 10.96 9.93 13.52 11.61 10.66 9.82 12.72 11.39 10.57 9.76

Table 1: Finite sample critical values for tα and FT .

specific application, the BIC criteria appears to be more suited.15 A general issue with the BIC
criteria concerns its poor performance under the null (i.e. when breaks are not present) when serial
correlation is not accounted for. In our case, however, such a problem is addressed by directly
controlling for serial correlation via the inclusion of k lags in the regression.

Finally, having selected (T ∗
1 , ..., T

∗
m), m∗ and k∗, we fit the corresponding regression and use as

test statistics both the standard t-statistic (tα) for the null of α = 1 and the Wald statistic (FT ) for
the joint null: α = 1; θ1 = ... = θm∗ = γ1 = ... = γm∗ = 0.16

3 Finite sample size, power and break selection properties

In this section we present the critical values and explore the finite sample size and power properties
of the test.17 Table 1 reports finite sample critical values for different M , h and T .18 Following
Kapetanios (2005), critical values are obtained by approximating the distributions of tα and FT

under the null via Monte Carlo simulations of standard random walks (10,000 replications).
We then present simulation results to investigate size and power properties of the test. The

experimental design follows that of Vogelsang and Perron (1998) and Sen (2003). The simulated
15In this regard, we run some Monte Carlo exercises comparing the two approaches. Simulations results show the

superiority of the BIC criteria, given the specificities of our application. We also found that the sequential procedure
displays further power losses when, as in our case, the form of the breaks is not known a priori.

16The properties of FT (in the case of one break) are largely explored in Sen (2003). Here we generalize to the case
of multiple breaks. Thus, the statistic can be computed as: FT =

(SUR−SR)/(1+2m∗)
(1−SUR)/(T−3−2m∗−k∗) , where SUR and SR are

for the sum of squared residuals respectively of the unrestricted and the restricted model.
17Considering the specific application of this paper, in which the average sample size of the GDP series is 164, we

are only interested in the finite sample performance of the test. Accordingly, only finite sample critical values are
derived.

18In deriving critical values the upper bound (K) for the lag truncation parameter is set to 7 for h = 0.1 and to 2
for h = 0.5. Results using other values are available upon request from the authors.
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A B Break coefficients
Autoregressive coefficient (α)

= 1 = 0.9 = 0.8 = 0.7 = 0.6 = 0.5

tα FT tα FT tα FT tα FT tα FT tα FT

ρ = 0;λ = 0

0 0 - 0.054 0.050 0.108 0.188 0.173 0.419 0.247 0.609 0.329 0.709 0.480 0.778
2 0 θ=(2,2) - - 0.026 0.436 0.149 0.420 0.359 0.565 0.569 0.675 0.665 0.731
2 0 θ=(4,4) - - 0.429 0.999 0.847 0.999 0.926 0.999 0.962 1.000 0.971 1.000
4 0 θ=(2,2,2,2) - - 0.027 0.261 0.235 0.239 0.475 0.282 0.636 0.398 0.709 0.524
4 0 θ=(4,4,4,4) - - 0.277 0.998 0.946 0.998 0.992 0.998 0.997 0.998 0.997 0.999
2 2 θ=(2,2); γ=(0.025, 0.025) - - 0.025 0.787 0.133 0.768 0.335 0.850 0.544 0.899 0.667 0.918
2 2 θ=(4,4); γ=(0.05, 0.05) - - 0.235 1.000 0.796 1.000 0.923 1.000 0.962 1.000 0.975 1.000
4 4 θ=(2,2,2,2); γ=(0.025, 0.025, 0.025, 0.025) - - 0.015 0.471 0.158 0.425 0.414 0.510 0.610 0.639 0.701 0.729
4 4 θ=(4,4,4,4); γ=(0.05, 0.05, 0.05, 0.05) - - 0.115 1.000 0.892 1.000 0.978 1.000 0.995 1.000 0.996 1.000

ρ = 0.5;λ = 0

0 0 - 0.044 0.057 0.147 0.398 0.272 0.683 0.463 0.802 0.584 0.843 0.641 0.890
2 0 θ=(2,2) - - 0.179 0.455 0.549 0.676 0.713 0.773 0.778 0.818 0.795 0.816
2 0 θ=(4,4) - - 0.897 0.999 0.973 0.999 0.982 0.999 0.987 1.000 0.986 1.000
4 0 θ=(2,2,2,2) - - 0.295 0.294 0.652 0.452 0.739 0.603 0.780 0.668 0.815 0.682
4 0 θ=(4,4,4,4) - - 0.957 0.998 0.998 1.000 1.000 1.000 1.000 1.000 0.999 1.000
2 2 θ=(2,2); γ=(0.025, 0.025) - - 0.151 0.802 0.524 0.899 0.696 0.929 0.763 0.946 0.785 0.956
2 2 θ=(4,4); γ=(0.05, 0.05) - - 0.864 1.000 0.971 1.000 0.978 1.000 0.983 1.000 0.985 1.000
4 4 θ=(2,2,2,2); γ=(0.025, 0.025, 0.025, 0.025) - - 0.221 0.484 0.614 0.677 0.740 0.780 0.792 0.803 0.823 0.823
4 4 θ=(4,4,4,4); γ=(0.05, 0.05, 0.05, 0.05) - - 0.924 1.000 0.992 1.000 1.000 1.000 0.999 1.000 0.999 1.000

ρ = −0.5;λ = 0

0 0 - 0.045 0.051 0.085 0.119 0.125 0.265 0.162 0.424 0.198 0.572 0.238 0.665
2 0 θ=(2,2) - - 0.007 0.530 0.047 0.397 0.141 0.414 0.237 0.459 0.339 0.540
2 0 θ=(4,4) - - 0.093 0.998 0.613 1.000 0.828 1.000 0.899 1.000 0.936 1.000
4 0 θ=(2,2,2,2) - - 0.004 0.253 0.050 0.209 0.176 0.214 0.336 0.245 0.481 0.262
4 0 θ=(4,4,4,4) - - 0.024 0.990 0.636 0.998 0.947 0.999 0.985 0.999 0.993 0.999
2 2 θ=(2,2); γ=(0.025, 0.025) - - 0.018 0.838 0.026 0.749 0.104 0.746 0.217 0.803 0.331 0.860
2 2 θ=(4,4); γ=(0.05, 0.05) - - 0.017 1.000 0.448 1.000 0.776 1.000 0.869 1.000 0.923 1.000
4 4 θ=(2,2,2,2); γ=(0.025, 0.025, 0.025, 0.025) - - 0.009 0.458 0.033 0.432 0.129 0.418 0.272 0.429 0.421 0.500
4 4 θ=(4,4,4,4); γ=(0.05, 0.05, 0.05, 0.05) - - 0.005 0.999 0.436 1.000 0.889 1.000 0.961 1.000 0.988 1.000

ρ = 0;λ = 0.5

0 0 - 0.057 0.074 0.100 0.177 0.156 0.371 0.199 0.556 0.245 0.645 0.295 0.716
2 0 θ=(2,2) - - 0.026 0.402 0.121 0.412 0.261 0.490 0.375 0.576 0.483 0.632
2 0 θ=(4,4) - - 0.413 0.998 0.838 0.999 0.914 0.999 0.946 0.999 0.955 0.999
4 0 θ=(2,2,2,2) - - 0.026 0.224 0.200 0.260 0.387 0.272 0.505 0.334 0.587 0.401
4 0 θ=(4,4,4,4) - - 0.232 0.993 0.935 0.997 0.984 0.999 0.997 1.000 0.999 1.000
2 2 θ=(2,2); γ=(0.025, 0.025) - - 0.025 0.768 0.104 0.770 0.242 0.807 0.366 0.852 0.455 0.884
2 2 θ=(4,4); γ=(0.05, 0.05) - - 0.208 1.000 0.775 1.000 0.894 1.000 0.933 1.000 0.951 1.000
4 4 θ=(2,2,2,2); γ=(0.025, 0.025, 0.025, 0.025) - - 0.018 0.384 0.141 0.427 0.315 0.478 0.443 0.547 0.537 0.602
4 4 θ=(4,4,4,4); γ=(0.05, 0.05, 0.05, 0.05) - - 0.100 0.998 0.856 1.000 0.970 1.000 0.987 1.000 0.996 1.000

ρ = 0;λ = −0.5

0 0 - 0.204 0.205 0.276 0.408 0.396 0.648 0.497 0.757 0.596 0.841 0.656 0.888
2 0 θ=(2,2) - - 0.085 0.398 0.374 0.573 0.623 0.722 0.748 0.792 0.797 0.825
2 0 θ=(4,4) - - 0.415 0.999 0.883 0.999 0.959 0.999 0.972 0.999 0.983 0.999
4 0 θ=(2,2,2,2) - - 0.052 0.186 0.403 0.330 0.649 0.555 0.764 0.654 0.828 0.690
4 0 θ=(4,4,4,4) - - 0.364 0.998 0.982 0.998 0.997 0.998 0.997 0.999 0.999 0.999
2 2 θ=(2,2); γ=(0.025, 0.025) - - 0.089 0.771 0.341 0.867 0.644 0.921 0.748 0.939 0.803 0.965
2 2 θ=(4,4); γ=(0.05, 0.05) - - 0.244 1.000 0.855 1.000 0.958 1.000 0.982 1.000 0.985 1.000
4 4 θ=(2,2,2,2); γ=(0.025, 0.025, 0.025, 0.025) - - 0.058 0.379 0.376 0.531 0.649 0.710 0.763 0.797 0.827 0.836
4 4 θ=(4,4,4,4); γ=(0.05, 0.05, 0.05, 0.05) - - 0.204 0.999 0.947 1.000 0.994 1.000 0.997 1.000 0.997 1.000

Table 2: Size and power results under different parametrizations
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model takes the general form:

[1− (α+ ρ)L+ ρL2]yt = (1 + λL)[

A∑
i=1

θiDU(Ti)t +

B∑
i=1

γiDT (Ti)t + et], (8)

where et ∼ N (0, 1). For each experiment we run 1000 replications of length T = 200 and report
the rejection rate at the 5% level using the appropriate critical values for M = 4 and h = 0.1. The
following combinations of ρ and λ are tested: {(0, 0); (0.5, 0); (−0.5, 0); (0, 0.5); (0,−0.5)}. In the size
simulations we impose α = 1 and A = B = 0, while for the power simulations we experiment for α ∈
{0.9; 0.8; 0.7; 0.6; 0.5} introducing different number of breaks of different forms and magnitudes.19

Results are reported in Table 2. Let us now emphasize some key features emerging from simulations:

1. The size of tα and FT is reasonably close to the nominal value. A well-known exception is the
case with a negative moving average component in which both the test statistics are slightly
over-sized.

2. In the absence of breaks, FT displays uniformly higher power than tα across all the experiments.

3. When the number of structural changes increases, some loss in power has to be expected,
ceteris paribus, as a result of the introduction of additional dummies (see Kapetanios, 2005,
for a discussion of this issue).

4. Convergence to 100% power occurs fast as the magnitude of the breaks increases. As docu-
mented by Sen (2003), FT converges faster than the standard t-statistic since it incorporates
information on the presence of breaks.

5. The power generally increases monotonically as we move away from the null (i.e. as α de-
creases). Nevertheless, in the presence of a negative autoregressive term, the power of FT may
slightly decrease between α = 0.9 and α = 0.6.

6. For α = 0.9, FT has a higher power than tα in almost all the experiments, i.e. it is better
suited to investigate cases with the autoregressive parameter close to unity.

Let us now compare the power performance of tα and FT with the Kapetanios test. The latter
provides a natural benchmark for comparison as it generalizes the framework of Zivot and Andrews
(1992) to the case of an unknown number of breaks. Results are reported in Figure 1 forM ∈ {2; 3; 4}
and different parameter values of the simulated model.20 Some important aspects stand out from the
simulations. First, as pointed out by Ohara (1999), the power of all the statistics falls dramatically
when M is lower than the true number of breaks. Second, for tα and the Kapetanios test statistic
a less pronounced reduction in power also appears when increasing M , given the number of true
breaks. The performance of FT , on the contrary, remains largely unaffected by this second effect.
Most importantly, the Kapetanios test exhibits higher power than both tα and FT in only some
marginal instances when no breaks are present under the null. Generally, FT tend to outperform
the other statistics, especially when the the upper bound M increases (cf. the panels with M = 4

in Figure 1).
In Figures 2 and 3 we also report a comparison with the Kapetanios test concerning the ability to

correctly identify the number of breaks and their locations.21 Figure 2 assumes the number of breaks
19In all the experiments we assume break locations to be symmetrically distributed across the time span.
20In Figure 1, with “small breaks” we refer to (θ, γ) = (2, 0.025), while “large breaks” stands for (θ, γ) = (4, 0.05).
21In both Figures 2 and 3 we assume the size of each break to be (θ, γ) = (2, 0.025).
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Figure 1: General power comparison - FT , tα, the Kapetanios statistic (min-tα)

to be known (equal to 4) and plots the distributions of the estimated break dates under different
degrees of serial correlation. It contrasts the performance of our approach based on the minimization
of the sum of squared residuals in two steps (sequential and repartition) with the standard one based
on the minimization of the t-statistic. While in the former case the distribution of break locations
are symmetric and centered around the true dates, in the latter the distributions tend to display
long left tails, in particular for the first two breaks. Figure 3, instead, compares the outcomes of
the criteria used for selecting the number of structural shifts. Once again, the minimization of the
t-statistic performs poorly as it tend to always select a number of breaks equal to the upper bound
M , resulting in a general overestimation. In this respect, the minimization of the BIC criteria
provides substantial improvements and the probability to choose the appropriate number of breaks
increases significantly.

Overall, according to our simulation exercises, the testing procedure proposed here turns out to
yield gains in terms of both power performance and the precision of breaks estimation. In particular,
one should expect a generally higher power for FT than for tα.22 However, since the Wald statistic
may exhibit non-monotonic power in the few specific instances described above, in the empirical
application we will also report results using tα.

4 The empirical strategy

We investigate the presence of unit roots and structural breaks in income per capita series. Table 3
summarizes the results from previous studies. Data are taken from the last release of the Maddison
database (Bolt et al., 2018).23 To preserve the robustness of our analysis we focus exclusively on time
series with at least 100 consecutive observations, that is, we are left with a sample of 34 countries
(20 OECD and 14 developing).

Concerning the choice of M , as documented in Section 2, a parsimonious specification of M
22This is in tune with the evidence reported by Sen (2003) for the case of a single break suggesting generally higher

power of the Wald statistic.
23More precisely, we use the variable RGDPNApc based on a single price benchmark (1990 US dollars).
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Figure 2: Distribution of break dates - Two step minimization of SSR (left panels) vis-à-vis sequential
minimization of tα (right panels)
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Figure 3: Frequency of selected number of breaks - BIC criteria (left panels) vis-à-vis sequential
minimiziation of tα (right panels)

12



may improve the power of the test when the true number of shifts is less than or equal to the
specified maximum. However, large power losses exist when the number of breaks is greater than
the maximum allowed. Therefore, we report results for bothM = 3 andM = 4 and find no evidence
of power losses.24 Indeed, it is reassuring that the number of rejections does not fall when allowing
for an additional break. In all the tests the trimming parameter is set to h = 0.1.

Differently from previous studies which rely on asymptotic critical values (Kejriwal and Lopez,
2013; Lumsdaine and Papell, 1997; Papell and Prodan, 2014), for each country in the sample (and
each M) we derive finite-sample critical values to take into account the specific characteristic of
different time series. The key intuition is that under the null the first differences of the series can
be described by a stationary ARMA process. Following Christiano (1992) and Zivot and Andrews
(1992), for each series we take first differences and estimate a battery of ARMA(p, q) models. To
determine the appropriate number of lags p and q we use the BIC criteria. The distribution of both
tα and FT as well as the associated critical values are then approximated via Monte Carlo simulations
(with 5000 replications) of the selected model. Consistently with the power simulations reported in in
Section 3, we find a higher number of rejections when using the Wald statistic. In the simulations we
allow for two alternative assumptions regarding the nature of the stochastic disturbances: (i) Normal
shocks with zero mean and standard deviation estimated from the residuals; (ii) Randomly drawn
shocks (with replacement) from the distribution of residuals. Hence, critical values are computed
both assuming the Gaussianity of the shocks and via bootstrapping (cf. Table B.1 in the Appendix
B). The latter technique has the advantage of restraining from parametric assumptions but may
lead to spurious results in small samples, in particular when the criteria used for model selection
fail to identify serial correlation in the error term. As a consequence, results are reported for both
approaches in Table 4. Figure 4 shows the dynamics of GDP per capita and the estimated break
dates. We also performed some robustness checks. First, we ran the test assuming a fixed number of
structural changes in order to identify possible power losses arising in the selection of the appropriate
number of breaks. Results are reported in Appendix A (cf. Table A.1). Although showing general
consistency with the baseline case, they indicate even less rejections, thus, excluding the possibility
for our results to be driven by power losses due to the selection procedure adopted. As a second
robustness check, we run the test imposing a smaller trimming parameter (h = 0.5, cf. Table A.2)
in order to allow for more consecutive break dates. This results in three extra rejections for OECD
countries while the coefficient of New Zealand loses its significance. Hence, allowing for shorter
growth segments only provides little additional evidence against the unit root hypothesis.

5 Discussion of results

For OECD countries, our methodology rejects the null of the unit root in only 13 of 20 instances
under the assumption of Gaussian shocks. Although our results do not contrast strongly with the
previous literature (cf. Table 3), we find additional failures to reject the null (i.e. Canada, Denmark,
Sweden, Switzerland). These differences reflect the different break search methodology adopted and,
possibly, the use of series-specific critical values vis-à-vis asymptotic ones. Somewhat consistently
with Kejriwal and Lopez (2013), relying on the minimization of the SSR rather than the t-statistics

24In tune with the discussion in Kejriwal and Lopez (2013), allowing for a greater number of breaks is not desirable
given the available sample sizes (which range from 111 to 197 observations).
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produces less evidence against the unit root hypothesis.25

This paper also presents new evidence for developing countries. In particular, we find only 4
rejections in a sample of 14 economies. Intuitively, those countries tend to experience more erratic
growth processes with persistent and frequent (possibly more than four) shifts in both level and
trend. This is in line with several contributions emphasizing the ubiquitous presence of growth
discontinuities in poor- and middle-income countries (Hausmann et al., 2005; Lamperti and Mattei,
2018; Pritchett et al., 2000).

Another relevant contribution of our work regards the possibility of departing from the assump-
tion of Gaussian shocks by deriving bootstrapped critical values. In other terms, a key question
addressed here concerns how results from standard unit root tests may change when being agnostic
about the functional form of the innovations. Rejection levels using bootstrapped critical values
are reported in brackets in Table 4. Interestingly, this leads to considerably less evidence against
the unit root hypothesis. In Figure 5, the empirical distribution of the residuals under the null
is contrasted with the best Normal fit. Departures from Normality appear to exist in some coun-
tries in terms of skewness and, most importantly, excess kurtosis.26 This seems to suggest that the
assumption of Gaussianity, typically adopted in standard testing procedures, may bias the results
in favour of trend-stationary models. One may conjecture, instead, that GDP time series may be
well described by I(1) models with fat-tailed innovations. Such a characterization is consistent with
empirical findings which identify Laplacian distributions of aggregate growth shocks (Fagiolo et al.,
2008). Fat-tailed distributions of shocks entail a growth process driven by large and lumpy events.
They typically emerge when some of the assumptions of the central limit theorem are violated.
In particular, it has been pointed out that the presence of dynamic increasing returns and strong
correlating mechanisms (e.g. competition, network externalities) at the firm level may lead to non-
trivial aggregation of microeconomic shocks, thus, being responsible for the emergence of fat tails
in macroeconomic data (Bottazzi and Secchi, 2006; Dosi et al., 2007; Fagiolo et al., 2008). An I(1)
characterization of the GDP per capita series with non-Gaussian innovations is common to many
evolutionary growth models.27 These models generally describe the growth process as a result of
complex interactions across individuals and organizations which, in turn, lead to path dependency
and irreversibility of shocks as well as to the emergence of fat-tailed distributions at all the levels
of aggregation. The lack of evidence against I(1) processes may be interpreted as pointing towards
strong degrees of “complexity” and inter-relatedness across economic units, thus, providing support
to evolutionary models. For instance, Dosi et al. (2019) present a multi-country agent-based model
in which firms interact both domestically and in international markets following idiosyncratic learn-
ing trajectories. Simulation results show that countries endogenously differentiate and cluster into
two groups of winners and losers exhibiting extremely erratic paths with fat-tailed distributions of
growth rates.

25Zerbo and Darné (2018) apply the methodology in Kejriwal and Lopez (2013) to the GDP per capita series of 28
sub-Saharan African countries for the period 1960-2014. Although their results may suffer from small sample bias,
they also find no evidence against the unit root hypothesis.

26Investigating the precise functional form of the growth residuals goes beyond the scope of this work and would
probably require longer time series. Here it suffices to mention that visual inspection of the density seems to suggest
the presence of fat-tails in several countries. In Section 6 we sketch some future lines of research including the use of
quantile regression to dig into the extreme quantiles of the distribution.

27See for instance early evolutionary growth models Dosi et al. (1994); Nelson and Plosser (1982); Silverberg and
Verspagen (1995); Verspagen (1992). For some agent-based evolutionary models see Ciarli et al. (2010), Dosi et al.
(2010), Dawid et al. (2014), Caiani et al. (2016), Lorentz et al. (2016), Ciarli et al. (2017), Caiani et al. (2018), Dawid
et al. (2018), Dosi et al. (2019).
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Break dates are estimated under the I(0) alternative and, therefore, they have a meaningful
interpretation when the unit root null is rejected. Nevertheless, it should be kept in mind that break
locations for all countries tend to capture major historical events such as wars, booms and crisis.
In this respect, the endogenous identification of relevant episodes provides a further validation of
the search algorithm proposed here. Moreover, consistent with previous contributions, there is no
evidence of a single steady state model as each country displays at least one structural break. In
Table 5 we report estimates of break dummy coefficients for the series which appear to be stationary.
Most countries with I(0) time series tend to exhibit significant changes in both their intercepts and
trends. As an illustrative example consider the case of France whose experience is representative of
those of many OECD countries. Our break selection procedure suggests two major crashes associated
with the two world wars which are both accompanied by subsequent periods of growth acceleration.
The phase of strong catching up in the aftermath of World War two is then followed by a period of
relative stagnation (i.e. a negative trend shift) at the end of the 1970s. The presence of (relatively
few) changes in growth rates within-country, possibly associated also to level shifts, is a feature of
endogenous growth models exhibiting “strong” scale effects. Less evidence is found supporting pure
Neoclassical and semi-endogenous models which predict only level effects. This is broadly consistent
with the results of Papell and Prodan (2014), who find growth effects in the majority of the time
series considered.28

The evidence presented here has some relevant implications for applied work in the field of growth
empirics. First, the presence of unit roots in many GDP series affects significantly the identification
of specific kinds of growth episodes. Several empirical papers disregard prior unit root testing when
looking for structural changes in the data. The choice of a level vis-à-vis first-difference specification
is however crucial for the appropriate implementation of structural breaks search procedures. Our
results indicate that for most GDP time series, especially in developing countries, the first-difference
variant has to be preferred. Moreover, they call into question the widespread practice of using
simple economic filters, based on invariant criteria (e.g. a jump in growth rates of a given amount
lasting for some years), to identify growth shifts. In fact, the evidence in favour of I(1) models
hints at extremely frequent growth discontinuities which hardly obey deterministic and recurrent
characteristics.

6 Conclusion

In this paper we developed a methodology to test for the unit root hypothesis in long-run income
time series. Our approach extends the test in Kapetanios (2005) by introducing a more robust search
procedure which provides substantial improvements in terms of power and breaks identification (cf.
the evidence in Section 3).

As argued in Section 1 discerning I(1) models from stationary alternatives has relevant theoretical
and empirical implications in the field of economic growth. The tension between integrated and trend
stationary models (with breaks) can be summarized by the following question: how frequently do
countries experience structural breaks in their GDP per capita series? In the limit, unit root models
are stationary processes in which both the intercept and the trend change permanently at any point
in time. Hence, if structural breaks occur particularly often, the distinction between I(1) and I(0)

28More mixed evidence is presented by Sobreira et al. (2014). Using structural breaks tests robust to the presence
of unit roots they find that countries distribute quite uniformly across the “constant trend”, “level shifts” or “trend
shifts” hypothesis.

15



Country
Ben-David et al. (2003) Kejriwal and Lopez (2013) Papell and Prodan (2014)

Break dates Rej. lev. Break dates Rej. lev. Break dates Rej. lev

OECD
Australia 1891, 1927 10% 1891, 1929 - 1931 10%
Austria 1944, 1959 1% 1913, 1944 - 1944, 1950, 1976 1%
Belgium 1916,1939 5% 1917, 1939 - 1939, 1976 1%
Canada 1908, 1928 1% - - 1930, 1940 5%
Denmark 1939, 1975 1% 1914, 1939 - 1939, 1969 1%
Finland 1916, 1943 1% 1917 - - -
France 1939, 1974 1% 1917, 1945 - 1939, 1973 1%
Germany - - 1922, 1945 - 1944, 1950 1%
Italy - - 1918, 1944 - 1942, 1948 5%
Japan 1944, 1973 1% 1944, 1973 - 1944, 1971, 1991 1%
Netherlands - - 1918, 1945 - 1945, 1951 1%
New Zealand 1907, 1935 - - -
Norway 1917, 1939 1% 1921 - - -
Portugal 1936 - - -
Spain 1937 - 1935, 1959, 1971 5%
Sweden 1916, 1963 1% 1917 - 1915, 1970 5%
Switzerland - - 1916, 1944 - 1944 5%
UK 1918, 1945 5% 1919 - 1939, 1945 5%
USA 1929, 1945 1% 1931, 1945 - 1929, 1942 1%
Asia
India - -
Indonesia 1941 10%
Malaysia 1944 10%
Philippines 1946, 1952 5%
Taiwan 1942 1%
South Korea 1944 1%
Sri Lanka 1900, 1966 10%

Notes: Blank spaces denote countries not included in the study while ‘ - ’ indicates the failure to reject at the
10% confidence level. Papell and Prodan (2014) only report break dates obtained from structural break tests for
stationary series. The dates may not coincide with those emerging from unit root tests.

Table 3: Rejection rates and break dates from other studies using Maddison data
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Country T
M=3 M=4

Breaks tα FT Breaks tα FT

OECD
Australia 197 1851, 1891, 1928 −8.647∗∗∗(∗∗∗) 12.876∗∗(∗∗) 1851, 1891, 1928 −8.647∗∗∗(∗∗) 12.876∗∗(∗∗)
Austria 147 1913, 1944, 1959 −10.495∗∗∗ 19.158∗∗∗ 1913, 1944, 1959, 1979 −14.118∗∗∗ 29.757∗∗∗

Belgium 171 1918, 1943 1.135 16.188∗∗∗(∗) 1918, 1943 1.135 16.188∗∗∗(∗)
Canada 147 1908, 1933, 1988 −6.501 8.829 1908, 1933, 1988 −6.501 8.829

Denmark 197 1914, 1939, 1963 −5.174 7.624 1850, 1916, 1939, 1968 −7.269 7.712

Finland 157 1916, 1968 −5.586 8.697 1916, 1932, 1953, 1978 −7.103 7.676

France 197 1916, 1939, 1975 −11.503∗∗∗(∗∗∗) 20.189∗∗∗(∗∗∗) 1916, 1939, 1975 −11.503∗∗∗(∗∗∗) 20.189∗∗∗(∗∗∗)
Germany 167 1913, 1945, 1970 −11.852∗∗∗(∗) 21.63∗∗∗ 1913, 1945, 1963, 1981 −13.513∗∗∗(∗) 22.993∗∗∗

Greece 184 1912, 1939, 1978 −9.583∗∗∗(∗∗∗) 14.622∗∗∗(∗∗) 1912, 1939, 1978 −9.583∗∗∗(∗∗) 14.622∗∗∗(∗∗)
Italy 197 1945 −2.964 20.474∗∗∗(∗∗) 1945 −2.964 20.474∗∗∗(∗∗)
Japan 147 1944, 1971 −10.444∗∗∗ 35.444∗∗∗ 1944, 1971 −10.444∗∗∗ 35.444∗∗∗

Netherlands 197 1922, 1943, 1963 −8.019∗∗∗ 11.552∗∗ 1922, 1943, 1963 −8.019∗ 11.552∗∗

New Zealand 147 1885, 1907, 1935 −4.6 7.865 1895, 1910, 1935, 1976 −8.003∗ 10.068

Norway 187 1944, 1995 −3.938 9.697 1944, 1995 −3.938 9.697

Portugal 152 1934, 1973 −0.589 8.213 1934, 1973 −0.589 8.213

Spain 167 1935, 1960, 1999 −7.137∗ 10.773∗ 1935, 1960, 1999 −7.137 10.773∗∗

Sweden 197 1894, 1939, 1970 −5.236 5.685 1894, 1939, 1970 −5.236 5.685

Switzerland 166 1913, 1940, 1968 −7.31 9.186 1913, 1940, 1968 −7.31 9.186

UK 197 1918, 1944, 1996 −9.184∗∗∗(∗∗∗) 13.664∗∗(∗∗) 1875, 1918, 1944, 1996 −8.787∗∗∗(∗∗) 11.911∗∗(∗∗)
USA 197 1878, 1929, 1949 −7.82∗∗(∗∗) 10.393∗(∗) 1878, 1929, 1949, 1996 −8.872∗∗∗(∗∗) 10.315∗(∗)
Asia
India 133 1944, 1964 −0.867 7.75 1944, 1964 −0.867 7.75

Taiwan 116 1945 4.029 19.866∗∗∗ 1945 4.029 19.866∗∗∗

Sri Lanka 147 1904, 1965, 1992 −6.442 7.762 1900, 1943, 1975, 2000 −7.244 8.285

Latin America
Argentina 142 1891, 1929, 1984 −7.025 8.2 1891, 1929, 1984 −7.025 8.2

Bolivia 127 1955, 1971, 1998 −6.248 6.945 1930, 1952, 1978, 2000 −6.069 7.21

Brazil 167 1891, 1928, 1970 −6.612 9.35ì 1891, 1929, 1962, 1980 −6.788 8.509

Chile 197 1918, 1981 −7.579∗∗ 11.971∗∗(∗) 1918, 1981 −7.579 11.971∗∗(∗)
Colombia 147 1906 −3.182 8.93 1906 −3.182 8.93

Ecuador 117 1945, 1972, 1998 −6.505 7.792 1945, 1972, 1998 −6.505 7.792

Mexico 122 1930, 1981 −4.94 8.273 1915, 1930, 1942, 1981 −4.265 6.539

Panama 111 1929, 1945, 1987 −6.417 7.45 1929, 1945, 1981, 2003 −6.472 7.484

Peru 197 1876, 1987 −7.636∗∗ 13.435∗∗ 1876, 1987 −7.636∗ 13.435∗∗∗(∗∗)
Uruguay 147 1913 −4.851 8.229 1897, 1913, 1948, 1981 −6.922 6.396

Venezuela 187 1895, 1944 −5.095 10.627∗(∗) 1895, 1944 −5.095 10.627∗∗(∗)

Notes: Significance levels: ***p < 0.01, **p < 0.05, *p < 0.1. Significance levels in brackets refer to rejections using
bootstrapped critical values. The trimming parameter is set to h = 0.1 and the lag-truncation parameter to K = 7.

Table 4: Results from the unit root tests and estimated break dates for M = 3 and M = 4
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Figure 4: Time series of income per capita and estimated break dates
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Figure 5: Residuals from the selected I(1) model - empirical density (in green) vs. Normal fit
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Country DU1 . DT1 DU2 DT2 DU3 DT3 DU4 DT4

OECD
Australia 0.0965∗∗∗ −0.0177∗∗∗ −0.1761∗∗∗ −0.0046∗∗∗ −0.1039∗∗∗ 0.0059∗∗∗

(0.0301) (0.0024) (0.0286) (0.0013) (0.0223) (0.0011)

Austria −0.2826∗∗∗ −0.0027∗ −0.5855∗∗∗ 0.0566∗∗∗ −0.0166 −0.0292∗∗∗ 0.006 −0.0218∗∗∗

(0.0302) (0.0014) (0.0462) (0.0045) (0.0391) (0.0044) (0.0292) (0.0027)

Belgium 0.1154∗∗∗ −0.0052∗∗∗ 0.1237∗∗∗ 0.0049∗∗∗

(0.0163) (0.0000) (0.0173) (0.001)

France −0.0551∗∗ 0.006∗∗∗ −0.3241∗∗∗ 0.0131∗∗∗ 0.0078 −0.0175∗∗∗

(0.022) (0.0015) (0.0349) (0.0019) (0.0215) (0.0016)

Germany −0.2329∗∗∗ 0.0071∗∗∗ −0.6129∗∗∗ 0.038∗∗∗ −0.0359 −0.0318∗∗∗ −0.0067 −0.0148∗∗∗

(0.0271) (0.0012) (0.0521) (0.0035) (0.0354) (0.0039) (0.0284) (0.0027)

Greece −0.1709∗∗∗ 0.0147∗∗∗ −0.4532∗∗∗ 0.0069∗∗∗ −0.0052 −0.0179∗∗∗

(0.0403) (0.0025) (0.0577) (0.0025) (0.0397) (0.0023)

Italy 0.0975∗∗∗ 0.0000

(0.0129) (0.0000)

Japan −0.4978∗∗∗ 0.0376∗∗∗ 0.0198 −0.0394∗∗∗

(0.0435) (0.0029) (0.0343) (0.0031)

Netherlands −0.148∗∗∗ 0.0309∗∗∗ 0.0303 −0.0168∗∗∗ 0.1533∗∗∗ −0.0075∗∗∗

(0.0438) (0.0043) (0.0257) (0.0029) (0.0289) (0.0019)

Spain −0.1398∗∗∗ 0.0071∗∗∗ 0.0932∗∗∗ 0.0000 0.0299 −0.0121∗∗∗

(0.0239) (0.0013) (0.0236) (0.0015) (0.0246) (0.0025)

United Kingdom −0.0194∗ −0.0012∗∗∗ −0.118∗∗∗ 0.0058∗∗∗ −0.0757∗∗∗ −0.0000 0.036∗∗∗ −0.0047∗∗∗

(0.01) (0.0000) (0.0153) (0.0000) (0.0128) (0.0000) (0.0131) (0.001)

USA 0.0333∗∗ 0.003∗∗∗ −0.1517∗∗∗ 0.0099∗∗∗ −0.0042 −0.0067∗∗∗ 0.0252 −0.0056∗∗∗

(0.0143) (0.0000) (0.0236) (0.0018) (0.0217) (0.0017) (0.0194) (0.0015)

Asia
Taiwan 0.4096∗∗∗ −0.0071∗∗

(0.065) (0.0028)

Latin America
Chile −0.0937∗∗∗ −0.0024∗∗∗ −0.066∗∗ 0.0103∗∗∗

(0.0209) (0.0000) (0.0255) (0.0017)

Peru −0.1917∗∗∗ 0.0000 −0.1664∗∗∗ 0.0036∗∗∗

(0.0285) (0.0000) (0.0279) (0.0012)

Venezuela −0.1348∗∗∗ 0.0039∗∗∗ 0.1279∗∗∗ −0.0057∗∗∗

(0.0288) (0.0000) (0.0352) (0.0000)

Notes: Significance levels: ***p < 0.01, **p < 0.05, *p < 0.1. Only countries for which it is possible to reject the
unit root hypothesis (10% significance or lower) are included.

Table 5: Estimates of structural break dummies
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specifications becomes extremely blurred. In this perspective, testing for unit roots amounts to
testing for the frequency of structural changes. The procedure introduced in this paper has the aim
of distinguishing between models with several permanent changes in mean and trend and alternatives
with relatively few variations. Our results are more favorable to the first alternative.

Even in advanced countries we find less evidence against I(1) processes in comparison to previous
studies that tend to find a relatively large number of rejections (Ben-David et al., 2003; Papell and
Prodan, 2014), with our results being more in line with new results pointing at a resurgence of the
unit root hypothesis in GDP data (Kejriwal and Lopez, 2013; Zerbo and Darné, 2018). Another
contribution of this paper is the inclusion of developing countries in the analysis. However, even
by allowing for up to four breaks, we fail to reject the null of a unit root in most of the countries
considered. Such results suggest the presence of strong growth discontinuities in backward economies
which make their growth paths hardly distinguishable from a random walk. Finally, the number of
rejections fall when using bootstrapped critical values instead of Gaussian shocks, possibly hinting
at the presence of I(1) models with fat-tailed innovations.

In Section 5, such results have been interpreted as providing support to evolutionary growth
models which stress path dependency, nonlinearities and the non-trivial aggregation of microeco-
nomic shocks. At the macroeconomic level, these characteristics typically lead to the emergence of
series exhibiting several growth shifts, similar to I(1) models.

From the point of view of growth empirics, we emphasize the importance of unit root testing prior
to (or jointly with) structural break identification. Indeed, if countries exhibit growth trajectories
similar to random walks, the practice of fitting structural change models on the series in levels may
lead to spurious and inconsistent results.

Our results also suggest some future lines of investigation. First, it becomes crucial to move
towards testing methodologies that are robust to the presence of fat-tailed shocks. Quantile au-
toregressions (QAR) are a natural candidate in this respect, as they allow for the investigation of
persistence properties of a time series at different quantiles of the conditional distribution (Koenker
and Xiao, 2004, 2006). Recently, structural break tests have been developed in the framework of
QAR (Oka and Qu, 2011; Qu, 2008). Incorporating unit root tests in this setting would clearly be a
key achievement. Second, there is a lot to learn from the growth dynamics of developing countries.
The unstable and complex patterns shown by this group of economies call for further research efforts.
As a matter of fact, most empirical papers investigating growth episodes in less developed countries
tend to adopt a deterministic characterization of growth discontinuities, relying on constant and
recurrent criteria (e.g. 2% acceleration in growth rates for a minimum number of years) to define
episodes. The evidence presented here partially challenges this approach since we have shown that
for developing countries, growth shifts are extremely frequent and exhibit random characteristics in
terms of form and magnitude. Unfortunately, long run time series are available only for a limited
sample of economies while both unit root and structural break tests suffer from finite sample biases.
As a first attempt to address the issue, Antoshin et al. (2008) present a methodology for structural
break testing suited for short time series. More generally, improving the small sample performance
of unit root tests would allow one to perform a similar investigation using post-war data for a larger
set of economies.
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Appendix A Robustness checks

Country T
M=3 M=4

Breaks tα FT Breaks tα FT

OECD
Australia 197 1851, 1891, 1928 −8.647∗∗∗(∗∗∗) 12.876∗∗∗(∗∗∗) 1851, 1891, 1928, 1961 −8.764∗∗∗(∗∗) 10.466∗∗∗(∗∗∗)
Austria 147 1944, 1959, 1974 −9.18∗∗∗ 14.595∗∗∗ 1913, 1944, 1959, 1974 −13.742∗∗∗ 28.369∗∗∗

Belgium 171 1916, 1939, 1958 −4.364 5.886 1916, 1939, 1958, 1976 −7.094 7.777

Canada 147 1908, 1933, 1970 −6.111 8.115 1894, 1917, 1933, 1970 −6.252 6.713

Denmark 197 1914, 1939, 1963 −5.174 7.624 1850, 1916, 1939, 1963 −6.289 7.615

Finland 157 1916, 1932, 1968 −6.446 6.919 1916, 1932, 1953, 1978 −7.103 7.676

France 197 1916, 1939, 1968 −10.85∗∗∗(∗∗∗) 18.711∗∗∗(∗∗∗) 1869, 1916, 1939, 1968 −11.127∗∗∗(∗∗∗) 15.265∗∗∗(∗∗)
Germany 167 1913, 1945, 1972 −11.823∗∗∗(∗) 21.289∗∗∗ 1913, 1945, 1963, 1980 −13.535∗∗∗(∗∗) 23.066∗∗∗

Greece 184 1912, 1939, 1962 −6.712 9.787∗∗ 1862, 1910, 1939, 1962 −5.832 6.319

Italy 197 1913, 1938, 1968 −4.89 5.299 1852, 1905, 1938, 1968 −5.951 5.435

Japan 147 1944, 1959, 1990 −5.464 20.585∗∗∗ 1944, 1959, 1977, 1995 −12.407∗∗∗ 24.009∗∗∗

Netherlands 197 1943, 1963, 1996 −6.433 7.034 1922, 1943, 1963, 1990 −8.186∗∗ 9.357∗∗

New Zealand 147 1907, 1935, 1975 −4.189 4.946 1895, 1910, 1935, 1975 −6.715 8.599

Norway 187 1935, 1954, 1997 −3.284 4.594 1905, 1935, 1954, 1987 −4.957 4.263

Portugal 152 1914, 1934, 1973 −0.992 6.686 1914, 1934, 1973, 1992 −1.73 6.756

Spain 167 1935, 1960, 1999 −7.137∗ 10.773∗∗ 1935, 1960, 1980, 1999 −7.616 9.666∗∗

Sweden 197 1894, 1939, 1968 −5.302 5.496 1869, 1916, 1939, 1968 −5.9 5.845

Switzerland 166 1913, 1940, 1974 −7.021 9.038 1883, 1921, 1940, 1974 −4.094 6.753

United Kingdom 197 1918, 1944, 1996 −9.184∗∗∗(∗∗∗) 13.664∗∗∗(∗∗∗) 1875, 1918, 1944, 1996 −8.787∗∗∗(∗∗) 11.911∗∗∗(∗∗∗)
USA 197 1929, 1949, 1996 −6.549 7.519 1878, 1929, 1949, 1996 −8.872∗∗∗(∗∗) 10.315∗∗∗(∗∗)
Asia
India 133 1930, 1945, 1964 −0.952 5.98 1916, 1935, 1950, 1964 −0.621 4.788

Taiwan 116 1943, 1955, 1985 −4.179 10.327∗∗ 1943, 1955, 1985, 1997 −4.399 8.287

Sri Lanka 147 1904, 1965, 2000 −3.822 6.485 1900, 1943, 1975, 2000 −7.244 8.285

Latin America
Argentina 142 1891, 1929, 1980 −6.548 7.792 1896, 1917, 1963, 1980 −5.291 5.101

Bolivia 127 1891, 1928, 1971 −6.248 6.945 1930, 1952, 1978, 1998 −5.874 7.197

Brazil 167 1891, 1928, 1971 −6.457 9.116∗ 1891, 1929, 1962, 1986 −5.58 5.74

Chile 197 1918, 1957, 1981 −7.539∗∗ 8.572 1888, 1913, 1936, 1981 −6.901 7.096

Colombia 147 1934, 1967, 1997 −2.027 2.13 1917, 1934, 1967, 1998 −2.636 3.257

Ecuador 117 1945, 1972, 1998 −6.505 7.792 1930, 1947, 1972, 1998 −7.065 7.732

Mexico 122 1930, 1942, 1981 −5.491 7.176 1930, 1942, 1981, 2002 −5.372 5.661

Panama 111 1929, 1945, 1985 −6.444 7.382 1929, 1945, 1981, 2005 −6.317 7.18

Peru 197 1877, 1929, 1982 −8.379∗∗∗(∗∗) 14.592∗∗∗(∗∗∗) 1877, 1929, 1959, 1982 −8.622∗∗∗(∗∗) 12.347∗∗∗(∗∗)
Uruguay 147 1913, 1943, 2000 −5.806 5.695 1913, 1948, 1981, 2001 −6.843 6.013

Venezuela 187 1895, 1947, 1979 −3.969 8.364 1861, 1895, 1947, 1979 −4.274 7.624

Notes: Significance levels: ***p < 0.01, **p < 0.05, *p < 0.1. Significance levels in brackets refer to rejections using
bootstrapped critical values. The trimming parameter is set to h = 0.1 and the lag-truncation parameter to K = 7.

Table A.1: Results from unit roots tests imposing a fixed number of breaks for M = 3 and M = 4
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Country T
M=3 M=4

Breaks tα FT Breaks tα FT

OECD
Australia 197 1851, 1891, 1928 −8.647∗∗∗(∗∗∗) 12.876∗∗(∗∗) 1840, 1853, 1891, 1928 −8.778∗∗(∗∗∗) 13.42∗∗∗(∗∗)
Austria 147 1913, 1943, 1973 −9.044∗∗∗ 13.07∗∗∗ 1913, 1943, 1973 −9.044∗∗∗ 13.07∗∗∗

Belgium 171 1918, 1943 0.837 16.135∗∗∗(∗) 1918, 1943 0.837 16.135∗∗∗

Canada 147 1908, 1939, 1970 −7.87∗∗(∗∗) 9.331 1917, 1930, 1942, 1970 −6.779 11.323∗∗(∗)
Denmark 197 1939, 1950 −1.055 13.947∗∗∗(∗∗) 1939, 1950 −1.055 13.947∗∗∗(∗∗)
Finland 157 1916, 1943, 1978 −7.331 9.081 1916, 1943, 1978 −7.331 9.081

France 197 1916, 1939, 1975 −11.503∗∗∗(∗∗∗) 20.189∗∗∗(∗∗∗) 1916, 1929, 1939, 1974 −12.198∗∗∗(∗∗∗) 19.432∗∗∗(∗∗∗)
Germany 167 1913, 1944, 1953 −5.497 26.788∗∗∗ 1913, 1944, 1953 −5.497 26.788∗∗∗

Greece 184 1912, 1939, 1978 −9.583∗∗∗(∗∗∗) 14.622∗∗∗(∗∗) 1912, 1939, 1978 −9.583∗∗∗(∗∗) 14.622∗∗∗(∗∗)
Italy 197 1945 −2.964 20.474∗∗∗(∗∗) 1945 −2.964 20.474∗∗∗(∗∗)
Japan 147 1943, 1972 −8.522∗∗∗ 20.321∗∗∗ 1943, 1972 −8.522∗∗ 20.321∗∗∗

Netherlands 197 1918, 1943, 1954 −3.715 11.958∗∗ 1918, 1929, 1943, 1953 −3.736 14.913∗∗∗

New Zealand 147 1878, 1907, 1934 −4.523 8.785 1878, 1907, 1934 −4.523 8.785

Norway 187 1935, 1944, 1995 −3.29 10.734∗∗(∗) 1935, 1944, 1995 −3.29 10.734∗∗

Portugal 152 1934, 1973, 1986 −1.459 8.022 1934, 1973, 1986 −1.459 8.022

Spain 167 1935, 1960, 2002 −7.19∗ 10.835∗∗ 1935, 1960, 2002 −7.19 10.835∗∗

Sweden 197 1894, 1939, 1970 −5.236 5.685 1894, 1939, 1970 −5.236 5.685

Switzerland 166 1867, 1945 −1.702 7.895 1867, 1912, 1927, 1945 −2.472 7.161

United Kingdom 197 1918, 1943, 2006 −6.379 13.458∗∗∗(∗∗) 1918, 1943, 2006 −6.379 13.458∗∗∗(∗∗)
USA 197 1929, 1944 −3.266 15.03∗∗∗(∗∗∗) 1878, 1931, 1944, 2006 −6.777 12.038∗∗(∗∗)
Asia
India 133 1944, 1964 −1.176 10.369 1944, 1964 −1.176 10.369

Taiwan 116 1923, 1943, 1998 −8.39∗∗∗ 11.257∗∗ 1923, 1943, 1998 −8.39∗∗ 11.257∗∗

Sri Lanka 147 1907, 1972 −5.291 7.848 1907, 1972 −5.291 7.848

Latin America
Argentina 142 1882 −4.27 7.745 1899, 1913, 1929, 1980 −7.638 7.612

Bolivia 127 1929, 1952, 1981 −7.051 8.943 1929, 1952, 1981 −7.051 8.943

Brazil 167 1891, 1928, 1970 −6.612 9.35 1891, 1929, 1962, 1980 −6.788 8.509

Chile 197 1918, 1932, 1981 −5.985 8.522 1918, 1930, 1974, 1991 −9.567∗∗∗(∗∗) 11.773∗∗(∗)
Colombia 147 1906, 1939, 1997 −5.766 9.444 1906, 1939, 1997 −5.766 9.444

Ecuador 117 1945, 1972, 2003 −5.544 7.8 1945, 1972, 2003 −5.544 7.8

Mexico 122 1925, 1932, 1981 −4.899 12.139∗∗ 1925, 1932, 1981 −4.899 12.139∗∗

Panama 111 1929, 1945, 1987 −7.039∗ 8.491 1929, 1945, 1987 −7.039 8.491

Peru 197 1876, 1987 −7.636∗∗(∗) 13.435∗∗∗(∗∗) 1876, 1987 −7.636 13.435∗∗∗(∗∗)
Uruguay 147 1919, 1930, 1957 −6.459 7.647 1897, 1913, 1930, 1957 −7.093 7.286

Venezuela 187 1895, 1944, 2003 −3.979 10.436∗(∗) 1895, 1944, 2003 −3.979 10.436∗∗(∗)

Notes: Significance levels: ***p < 0.01, **p < 0.05, *p < 0.1. Significance levels in brackets refer to rejections using
bootstrapped critical values. The trimming parameter is set to h = 0.05 and the lag-truncation parameter to K = 7.

Table A.2: Results from unit roots tests imposing h = 0.05 for M = 3 and M = 4
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Appendix B Series-specific critical values

Country ARMA order Statistic
Gaussian shocks (M=3) Gaussian shocks (M=4) Bootstrapping (M=3) Bootstrapping (M=4)

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

Australia (0, 0) tα −7.98 −7.38 −7.04 −8.63 −8.00 −7.65 −8.48 −7.84 −7.47 −9.34 −8.59 −8.21

FT 13.91 10.75 9.85 13.41 10.61 9.81 13.89 11.60 10.72 13.67 11.62 10.74

Austria (0, 0) tα −7.91 −7.38 −7.00 −8.65 −7.99 −7.62 −23.72 −19.65 −17.76 −26.36 −21.76 −19.61

FT 12.83 10.79 9.92 12.38 10.72 9.92 95.65 70.27 55.72 101.90 73.63 58.58

Belgium (0, 1) tα −8.00 −7.38 −7.06 −8.76 −8.04 −7.67 −10.56 −9.44 −8.85 −11.75 −10.55 −9.92

FT 13.34 10.84 9.94 12.99 10.69 9.92 20.10 16.52 14.82 20.96 17.10 15.46

Canada (1, 0) tα −7.97 −7.36 −6.99 −8.64 −7.93 −7.56 −8.42 −7.67 −7.29 −9.13 −8.38 −7.95

FT 12.67 10.82 9.96 12.40 10.72 9.96 13.90 11.47 10.50 13.80 11.51 10.60

Denmark (0, 0) tα −7.98 −7.38 −7.04 −8.63 −8.00 −7.65 −8.94 −8.05 −7.65 −9.82 −8.94 −8.49

FT 13.91 10.75 9.85 13.41 10.61 9.81 14.96 12.39 11.17 15.00 12.46 11.37

Finland (1, 1) tα −8.10 −7.41 −7.03 −8.68 −8.00 −7.58 −8.96 −8.13 −7.64 −9.81 −8.89 −8.35

FT 13.23 10.89 10.02 12.93 10.74 10.00 15.25 12.75 11.63 15.31 12.97 11.84

France (0, 0) tα −7.98 −7.38 −7.04 −8.63 −8.00 −7.65 −9.91 −8.84 −8.29 −11.14 −9.84 −9.20

FT 13.91 10.75 9.85 13.41 10.61 9.81 17.66 14.61 13.12 18.12 14.75 13.38

Germany (0, 1) tα −8.04 −7.44 −7.08 −8.64 −8.03 −7.67 −15.53 −13.11 −11.80 −17.68 −15.00 −13.39

FT 13.84 11.02 10.08 13.21 10.86 10.01 43.20 31.17 25.78 46.30 33.58 27.67

Greece (0, 0) tα −8.00 −7.36 −7.03 −8.62 −8.01 −7.68 −9.24 −8.38 −7.92 −10.28 −9.37 −8.84

FT 13.35 10.67 9.86 12.86 10.55 9.81 15.82 13.13 12.05 15.88 13.32 12.17

Italy (0, 1) tα −8.09 −7.39 −7.07 −8.72 −8.05 −7.68 −10.92 −9.55 −8.94 −12.19 −10.62 −9.84

FT 14.12 10.95 10.01 13.53 10.85 9.95 21.21 17.15 15.06 21.78 17.30 15.45

Japan (0, 0) tα −7.91 −7.38 −7.00 −8.65 −7.99 −7.62 −18.54 −15.50 −14.14 −20.44 −17.02 −15.29

FT 12.83 10.79 9.92 12.38 10.72 9.92 59.94 43.71 36.29 61.58 44.85 37.04

Netherlands (0, 1) tα −8.00 −7.38 −7.06 −8.63 −8.02 −7.66 −14.94 −12.50 −11.55 −16.87 −14.27 −13.18

FT 14.21 10.83 9.93 13.46 10.71 9.86 38.53 28.14 24.08 41.09 29.49 25.35

New Zealand (2, 0) tα −8.61 −7.73 −7.27 −9.33 −8.36 −7.89 −9.10 −8.03 −7.51 −9.94 −8.76 −8.20

FT 14.17 11.32 10.27 13.84 11.13 10.25 14.89 12.00 10.82 14.64 11.94 10.91

Norway (0, 0) tα −7.94 −7.35 −7.02 −8.57 −7.98 −7.64 −8.39 −7.77 −7.41 −9.31 −8.50 −8.10

FT 13.47 10.72 9.83 13.11 10.58 9.76 14.07 11.54 10.55 13.81 11.56 10.60

Portugal (0, 0) tα −8.06 −7.41 −7.04 −8.66 −8.03 −7.64 −8.34 −7.65 −7.27 −9.15 −8.33 −7.93

FT 13.20 10.79 9.95 12.84 10.77 9.93 13.51 11.30 10.43 13.34 11.34 10.50

Spain (0, 0) tα −7.99 −7.41 −7.06 −8.61 −8.00 −7.64 −9.84 −8.60 −8.02 −10.67 −9.48 −8.87

FT 13.49 10.83 9.94 13.15 10.68 9.87 17.22 14.11 12.64 17.21 14.27 12.83

Sweden (0, 0) tα −7.98 −7.38 −7.04 −8.63 −8.00 −7.65 −8.19 −7.51 −7.18 −8.94 −8.25 −7.88

FT 13.91 10.75 9.85 13.41 10.61 9.81 13.72 11.05 10.14 13.01 10.92 10.13

Switzerland (0, 2) tα −9.92 −8.64 −7.99 −10.27 −9.11 −8.53 −10.33 −9.16 −8.49 −11.10 −9.87 −9.21

FT 19.11 13.74 11.94 18.68 13.25 11.61 18.13 14.27 12.70 17.60 14.02 12.56

United Kingdom (0, 1) tα −8.00 −7.37 −7.05 −8.63 −8.01 −7.66 −8.39 −7.72 −7.34 −9.22 −8.45 −8.07

FT 14.07 10.78 9.88 13.25 10.70 9.83 14.14 11.44 10.51 13.81 11.50 10.54

USA (0, 0) tα −7.98 −7.38 −7.04 −8.63 −8.00 −7.65 −8.30 −7.59 −7.24 −9.07 −8.33 −7.98

FT 13.91 10.75 9.85 13.41 10.61 9.81 13.99 11.23 10.36 13.77 11.14 10.30

India (1, 2) tα −9.65 −7.78 −6.82 −10.64 −9.07 −7.89 −10.06 −8.15 −7.04 −11.06 −9.60 −8.40

FT 17.79 13.89 12.34 17.56 13.82 12.35 17.99 14.69 13.15 17.66 14.72 13.23

Taiwan (1, 0) tα −8.11 −7.39 −7.00 −8.65 −7.89 −7.47 −13.92 −11.94 −10.82 −15.32 −13.02 −11.82

FT 13.66 11.16 10.16 13.32 11.06 10.16 38.33 28.80 24.41 39.52 29.75 25.46

Sri Lanka (0, 3) tα −8.00 −7.38 −7.00 −8.70 −7.99 −7.59 −8.20 −7.55 −7.20 −8.95 −8.20 −7.77

FT 13.23 11.01 10.15 12.85 10.88 10.14 14.04 11.51 10.57 13.95 11.54 10.62

Argentina (0, 0) tα −7.89 −7.40 −7.05 −8.60 −7.98 −7.64 −8.39 −7.69 −7.33 −9.09 −8.36 −7.93

FT 13.52 10.77 9.91 12.95 10.73 9.90 13.72 11.56 10.59 13.57 11.55 10.59

Bolivia (0, 1) tα −8.10 −7.47 −7.12 −8.76 −8.03 −7.60 −8.50 −7.72 −7.34 −9.19 −8.36 −7.91

FT 13.24 11.12 10.18 13.06 11.11 10.19 14.39 11.98 10.95 14.39 12.01 10.98

Brazil (0, 0) tα −7.99 −7.41 −7.06 −8.61 −8.00 −7.64 −8.30 −7.62 −7.25 −9.10 −8.36 −7.96

FT 13.49 10.83 9.94 13.15 10.68 9.87 14.38 11.34 10.35 14.01 11.35 10.44

Chile (0, 0) tα −7.98 −7.38 −7.04 −8.63 −8.00 −7.65 −8.74 −7.95 −7.59 −9.60 −8.80 −8.39

FT 13.91 10.75 9.85 13.41 10.61 9.81 15.16 12.19 11.18 14.86 12.24 11.25

Colombia (1, 0) tα −7.98 −7.37 −7.00 −8.65 −7.93 −7.55 −8.78 −7.94 −7.50 −9.59 −8.73 −8.21

FT 13.06 10.84 10.02 12.51 10.77 10.02 15.02 12.53 11.38 15.08 12.75 11.64

Ecuador (0, 0) tα −8.03 −7.39 −7.01 −8.65 −7.98 −7.56 −8.78 −7.92 −7.52 −9.58 −8.67 −8.18

FT 13.13 10.99 10.17 12.87 10.97 10.21 14.49 12.24 11.23 14.69 12.50 11.45

Mexico (0, 0) tα −8.11 −7.41 −7.04 −8.67 −7.94 −7.57 −9.37 −8.31 −7.79 −10.16 −9.02 −8.47

FT 12.97 11.05 10.12 12.59 10.90 10.10 17.02 13.76 12.24 17.33 13.95 12.45

Panama (2, 1) tα −8.07 −7.35 −6.97 −8.55 −7.82 −7.44 −9.24 −8.24 −7.67 −10.00 −8.83 −8.25

FT 13.58 11.24 10.35 13.58 11.29 10.41 17.76 14.34 12.83 17.98 14.55 13.20

Peru (1, 0) tα −7.97 −7.33 −7.01 −8.63 −7.99 −7.62 −8.64 −7.83 −7.46 −9.51 −8.60 −8.19

FT 13.83 10.81 9.89 13.12 10.72 9.82 14.60 11.99 10.95 14.15 12.05 10.94

Uruguay (0, 0) tα −7.91 −7.38 −7.00 −8.65 −7.99 −7.62 −8.46 −7.68 −7.31 −9.19 −8.39 −7.98

FT 12.83 10.79 9.92 12.38 10.72 9.92 14.28 11.68 10.62 14.21 11.78 10.74

Venezuela (0, 0) tα −7.94 −7.35 −7.02 −8.57 −7.98 −7.64 −8.13 −7.54 −7.19 −8.94 −8.20 −7.84

FT 13.47 10.72 9.83 13.11 10.58 9.76 13.63 11.02 10.08 13.46 10.95 10.07

Notes: Monte Carlo simulations for each time series assume h = 0.1 and K = 7.

Table B.1: Series-specific critical values for M=3 and M=4 – derived using the Monte Carlo method
under both Gaussian shocks and bootstrapping
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