


Validation of Agent-Based Models

in Economics and Finance∗

Giorgio Fagiolo†1, Mattia Guerini‡2,1, Francesco Lamperti§1,3, Alessio Moneta¶1, and

Andrea Roventini∥1,2

1Istituto di Economia, Scuola Superiore Sant’Anna, Pisa, Italy

2OFCE - Sciences Po, Paris, France

3FEEM, Milano, Italy

November 11, 2017

Abstract
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of existing validation techniques. We sketch a simple theoretical framework that conceptualizes exist-

ing validation approaches, which we discuss along three di�erent dimensions: (i) comparison between

arti�cial and real-world data; (ii) calibration and estimation of model parameters; and (iii) parameter
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1 Introduction

Modeling economies as complex systems using agent-based models (ABMs) is a relatively recent approach

in economics (LeBaron and Tesfatsion, 2008; Farmer and Foley, 2009; Battiston et al., 2016; Turrell, 2016),

which, since the eighties of the last century, has increasingly been attracting many scholars belonging to

several sub-�elds, becoming both a complement and a substitute for more traditional economic-modeling

methodologies (Schelling, 1969, 1971; Epstein and Axtell, 1996; Axelrod, 1997). For example, ABMs are

nowadays considered as a valid and e�ective competitor of standard Dynamic Stochastic General Equilib-

rium (DSGE) models in macroeconomics (see e.g. Dosi et al., 2010, Assenza et al., 2015, Hommes, 2013, and

the survey Fagiolo and Roventini, 2017). Likewise, ABMs of �nancial markets are often considered better

than traditional models based on the e�cient-market hypothesis in explaining the statistical properties of

buy-and-sell high-frequency dynamics (cf. e.g. Franke and Westerho�, 2012; Leal et al., 2016).

Existing literature agrees that ABMs in economics provide two main added values, as compared to

their orthodox counterparts. First, ABMs allow for more descriptive richness, as they describe ecologies

of agents, locally interacting through non-obvious network structures, learning using incomplete infor-

mation, and competing within imperfect markets. Second, the modeler developing an ABM has typically

more �exibility in both input and output validation of its model.

This second feature of ABMs has always attracted a lot of attention and has generated, especially in the

last years, a booming number of contributions. Back in 2007, the in�uential article byWindrum et al. (2007)

attempted to survey ABMs validation methods, concluding that a lot of work would have been needed in

order to fully develop a satisfactory set of techniques that consistently take ABMs to the data. In fact, many

developments have occurred in the last ten years, which this Chapter tries to review. We go along such

developments distinguishing between three di�erent dimensions: (i) calibration and estimation of model

parameters; (ii) comparison between arti�cial and real-world data; and (iii) parameter space exploration.

The chapter is organized as follows. First, we o�er an introduction to the most-di�used practices in

building and running agent-based models in economics (Section 2). In Section 3 we also sketch a simple

theoretical framework that conceptualizes existing validation approaches. Section 4 provides a critical

review of the literature, whereas in Section 5we describe themost recent trends as to validation techniques

in ABMs. Finally, Section 6 concludes with some critical considerations on future work.

2 Agent-Based Computational Economics: Common Practices

Notwithstanding the existence of di�erent types of agent-based models, which have been developed by

various sub-�elds within economics, such as macroeconomics, industrial dynamics, �nance, asset pric-
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ing, etc., one can identify some general patterns and common practices in the building process, under a

common umbrella that we refer to as Agent-Based Computational Economics (ACE).

2.1 The Development of a Typical Agent-Based Model

Researchers typically do not know the true data generating process of phenomena under study, which

we refer to as the real-world DGP (rwDGP ). This can be seen as a very complicated, multi-parameter,

stochastic process that governs the generation of a unique realisation of some time series and stylized fact

that we can empirically observe and estimate. The goal of the modeller is therefore to provide a su�-

ciently good approximation of the rwDGP by using an ABM. Naturally, the model releases a simpli�ed

DGP, which we refer to as the model-DGP (mDGP ) and which should provide a meaningful explanation

of the causal mechanisms generating the set of observed stylized facts, and, more generally, a good repre-

sentation of the data. The empirical validation of an ABM is then the process by which one evaluates the

extent to which themDGP is a good representation of the rwDGP .

The most adopted procedure for the development of an ABM is the indirect calibration approach (see

Windrum et al., 2007).1 This procedure is composed of four separate steps. The �rst consists in the iden-

ti�cation of some real-world stylized facts of interest that the modeller wants to explain. In the second,

one specify the model, the time-line of the events, the micro level dynamic equations which embody the

individual agents’ behaviour, the set of parameters, and the set of random disturbances. Validation and the

hypothesis testing are performed in the third step in order to compare model’s output with the observa-

tions obtained from real world datasets. Finally, there could be a fourth step, where the ABM is employed

for policy analysis exercises, implemented by changing some of the behavioural equations (e.g. capital

requirements for macroprudential policy, as in Popoyan et al., 2017) or some of the parameters (e.g. tax

rates for �scal policies, as in Dosi et al., 2010). In what follows, we will explore these four steps in more

details.

Stylized facts identi�cation. The starting point of most ABMs is the identi�cation of a set of

micro and macro stylized facts and empirical regularities (e.g. static or dynamic correlations, empirically

observed distributions, etc.). For the sake of generality, let us de�ne as a stylized fact any possible type

of measurable unconditional object that can be investigated by means of some econometric exercises or

more generally by statistical techniques. In such unconditional objects (see Brock, 1999), the causal gener-

ating mechanism, or data generating process (DGP), is unclear or too complex to be explained by a simple,

low-dimensional system of dynamic equations. Examples of micro and macro stylized facts that have been

1However, also other viable strategies are available: see for example the calibration approach proposed by Werker and
Brenner (2004); Brenner and Werker (2007) and the history friendly models developed by Malerba et al. (1999).
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empirically identi�ed and replicated by means of ABMs in di�erent �elds encompass fat-tailed distribu-

tions of returns, endogenous emergence of �ash crashes, long-run coexistence of heterogeneous investing

rules in �nance; fat-tailed distributions of �rm growth rates, Zipf distribution of �rm size, negative cor-

relations between prices and market shares in monopolistic competitive markets in industrial dynamics;

investment lumpiness, Okun and Beveridge curve, cyclical co-movements of variables inmacroeconomics.

Model speci�cation. After having singled out a set of possibly-interlinked stylized facts, one can

try to �nd an explanation of the underlying causal forces, i.e. learning and describing the exact form of the

real-world DGP, or at least a su�ciently accurate approximation of it. This is the ultimate objective of any

ABM. The great advantage of ABMs vis-á-vis traditional ones commonly employed in economics and �-

nance derives from its generative bottom-up approach genuinely rooted in evolutionary, complex-system

theories (more on that in Lane, 1993; Tesfatsion, 2006; Fagiolo and Roventini, 2012, 2017). This indeed

allows the researcher to keep into account the complex dynamics of a system that is populated by hetero-

geneous and boundedly-rational agents possessing a partial and possibly biased amount of information

about the global system in which they live. However, agents are adaptive and learn in order to survive

and prosper in such an uncertain framework following some forms of “Simonesque” (see Simon, 1991)

satisfying principle.2 Obviously, also when ABMs are developed to approximate the rwDGP , the number

of degrees of freedom is high and di�erent researchers can follow alternative routes according to their

di�erent expertise, backgrounds and theoretical hypothesis about the underlying generating process.3

Output validation. After the modeller has speci�ed the behavioural equations of the actors populat-

ing the system, the ABM takes the form of a high dimensional, discrete-time stochastic process. Indeed, a

part of the ACE community (especially in �nancial and asset pricingmodels) has strongly relied onMarkov

processes theory and on statistical physics tools in order to reduce the dimensionality of the model and

eventually – under speci�c circumstances – to analytically solve the simplest model. But in general, as

their complexity is high, ABMs are usually simulated by means of extensive Monte Carlo (MC) exercises

in which the random seed is modi�ed along the MC dimension.4 Once such MC exercises are performed

and the synthetic data collected, the researcher can verify whether the model is able to generate uncondi-

tional objects which are not statistically signi�cantly di�erent from the ones previously observed in real

2In that there is a major departure with respect to neoclassical models, where the (representative) agent has axiomatic
preferences and maximize some smooth objective function with an easily computable bliss point.

3This is also one of the critique that is usually addressed to ACE. Since ABMs do not stick to some generally accepted
axiomatic rule of behaviour, they introduces discretionary choices that the modeller shall take. We will see how practitioners
have coped with this issue in section 4.2.1.

4As stated in Turrell (2016), the �rst agent-based model was developed in the thirties by the physicist Enrico Fermi in order
to study the transport of neutrons through matter. Fermi’s agent-based techniques was lately called Monte Carlo method
(Metropolis and Ulam, 1949).
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world datasets.5 Naturally, all these unconditional objects can be related to micro and macro variables.

Policy analysis. Once the model has been validated and proved to be able to account for the micro

and macro empirical regularities under study, it can then be employed as a policy laboratory. Indeed,

the impact of di�erent economic policies in alternative scenarios can be studies by (i) varying some pa-

rameters, in particular those related to policy-maker interventions or to some broad institutional setting

(e.g. tax rates); (ii) modifying initial conditions related to agents’ state variables (e.g. income distribution,

�rms’ technology); (iii) changing some agents’ behavioural rules and interaction patterns (accounting

e.g. for di�erent market set-ups); (iv) introducing macro and/or micro heterogenous shocks (e.g. inno-

vation or climate-damages shocks). These can be interpreted as exogenous policy changes, which allow

a researcher to evaluate their e�ects in a fully controllable environment, where treatment e�ects can be

easily identi�ed, and endogeneity issues are almost absent.

In what follows, we will focus mostly on validation, discussing more in depth what is the relationship

between an ABM, its inputs and outputs. In particular, the interpretation of the ABM as a process that

transforms a set of inputs into outputs, poses two relevant questions: (i) how a ceteribus paribus variation

of one input a�ects the output (a detailed discussion will be presented in Section 4.2.1), and (ii) to which

extent the generated output is a good approximation of the real world phenomenon that the modeller

aims to explain (discussion in Section 4.2).

2.2 Inputs of Agent-Based Models

In ABMs we can characterise two broad categories of inputs: initial conditions and parameters.

Initial conditions. They determine the values of macro and agents’ state variables at the beginning

of the simulation. In small scale ABMs, which are typically characterized by a deterministic skeleton

and may posses at least one computable deterministic �xed point, initial conditions can be set at the

equilibrium or in some contour of it (see Brock and Hommes, 1997; Westerho� and Dieci, 2006; Guerini,

2013; Guerini et al., 2017) and then the ABM can be used to locally study the dynamics of the system.6

However, in complex stochastic models, characterized by high levels of dimensionality, �xed points or

statistical equilibria may not exist or not being know to the modeler. In such a framework, the selection

of initial conditions can become a not-trivial issue, a�ecting the ergodicity and dynamics of the system,

its output and more generally the very validity of the model. Di�erent solutions are proposed in the ACE

literature. The �rst one initializes the model in a homogeneity situation, where all the state variables

of the agents are set equal to some economically meaningful values (see Dosi et al., 2010, 2013, 2015).

5In section 4.2 we will discuss the tools available for the veri�cation and validation of ABMs.
6One can also study the basins of attraction of the dynamical system to study the robustnesswith respect to initial conditions.
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The second solution instead draws initial conditions of a category of agents from a speci�c distribution,

possibly grounded on some empirical regularity (e.g. fat-tailed �rm size distribution as in e.g. Bianchi

et al., 2007, 2008a). Finally, if rich enough datasets are available, one can employ them to directly impute

initial conditions values (Hassan et al., 2008).

Parameters. They can �x some macro conditions, determine the size of agents’ reactions to events,

or they characterize the distributions from which stochastic decisions are taken by agents or shocks are

drawn. In many economic and �nance ABMs, parameters are of particular interest because they might

drive the dynamic of the system to di�erent statistical equilibria, they characterize some speci�c policy

relations or some particular institutional arrangement that the modeller want to investigate. Parameters

are usually calibrated or they can be estimated if appropriate data are available (see Section 4.1). Moreover,

several methods allow to perform sensitivity analysis exercises in order to map the model responses to

parameter variations (see Lee et al., 2015; Dosi et al., 2017c). These techniques will be discussed in more

detail in section 5.

2.3 Outputs of Agent-Based Models

ABMs can generate both micro-level and aggregate outputs.

Micro-level output. The output of an ABM is composed of MC (the number of Monte-Carlo sim-

ulations) panel datasets containing di�erent micro variables for a set I of agents over a speci�ed time

window T . Therefore the data can be collected in the form:

Zm,k ∈ R
K×MC , Zm,k = {zm,k,i,t; i = 1, . . . , I; t = t0, ..., T} , ∀k ∈ K, (1)

where m denotes a speci�c Monte Carlo run, k indicates a micro-variable, i represents the agent cross-

section dimension, and t capture the time dimension. As an example, in a macroeconomic ABMs these

variables can represent households income or consumption levels, �rm prices, capital, pro�ts, etc.

Aggregate output The output of each Monte-Carlo simulation m contains also some time-series

variables which emerge from the aggregation along the agent cross-section dimension. These aggregate

series (denoted by an upper bar) take the form:

Z̄m,h ∈ R
H×MC , Z̄m,h = {z̄m,h,t; t = t0, ..., T} , ∀h ∈ H, (2)

where h denotes the macro variable observed at di�erent time steps t. For example, in an macroeconomic

ABM, one can aggregate the micro variables concerning households, �rms to compute GDP, price indexes,
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or the unemployment level.

2.4 Relation between Input and Output

For micro and for aggregate variables, the simulated synthetic datasets can generate a number of stylised

facts or statistical properties that the modeller can compare with those obtained from the empirical analy-

sis of the corresponding real-world dataset. This is the core of the indirect calibration approach presented

above and the �rst validation test that an ABM must satisfy. The similarity between model-generated

and real-world datas constitute the essence of the validation problem for ABMs, and it will be extensively

discussed in sections 4 and 5. For the moment, let us only anticipates that in the last decade, di�erent

strategies have emerged tackling a set of related, but slightly di�erent issues.

For any validation method, one should consider that in ABMs, the set of generated micro and macro

variables
{

Zm,k, Z̄m,h

}

are not intrinsic features of the model itself, but are emerging properties com-

ing from the complex interaction between model institutional arrangements and model inputs. There-

fore, the statistical properties of the output might exist only conditional on the selected initial conditions,

parametrization, the chosen random seed, the selected institutional arrangement. This means that a styl-

ized fact that has been obtained under a speci�c set of inputs, might not necessarily hold true under dif-

ferent arrangements, and robustness analyses must be performed before using ABMs for policy analysis

exercises.

3 Agent-Based Model Validation: Theoretical Framework

Validation of computer simulation models encompasses a variety of inter-related issues and concepts.

Manson (2002) distinguishes between output validation and structural validation. The latter asks how

well the simulation model represents the (prior) conceptual model of the real-world system, while the

former assess how successfully the simulations’ output exhibits the historical behaviours of the real-world

target system. Further, output validation can be directly related to what Leombruni et al. (2006) de�ne as

empirical validity of a model, i.e. validity of the empirically occurring true value relative to its indicator.

Following Rosen (1985), let us consider two parallel unfolding: the evolution of the system (an economy,

a market, etc.) and the evolution of the model of the system. If the model is correct, properly calibrated

and initial conditions have been �xed according to the initial status of the real system, the simulation

should mirror the historical evolution of the real-world system with respect to the variables of interest.

This is exactly the assessment of the relationship between simulated and empirical data that constitutes

the focus of this chapter. However, there are many other validity issues that we do not explicitly address.
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For example, Leombruni et al. (2006) discuss theoretical validity (the validity of the theory relative to the

simulation),model validity (the validity of the model relative to the theory), program validity (the validity

of the simulating program relative to the model), and operational validity (the validity of the theoretical

concept to its indicator or measurement).

Using �gure 1, let us consider the procedure for studying the output of an agent-based model already

introduced in Windrum et al. (2007). Assume that the modeller knows (from a preliminary simulation

study, or from some ex ante knowledge about the model under scrutiny) that the real-world system is

ergodic, and that the rwDGP displays a su�ciently stationary behaviour for a time period after T ∗.

Further, let us assume that for a particular set of initial conditions, micro and macro parameters, the

mDGP runs until it reaches some form of stable behaviour, which can be further summarized by a set

of statistics S = {s1, s2, ...}. If the model is stochastic, as it is typically the case in ACE, each run will

produce di�erent values of the summary statistics sj . Then, one must perform a su�ciently high number

of independent Monte Carlo runs to estimate the distributions of those statistics, from which moments

can be computed.7 Suchmoments will depend on the initial choices that were made in terms of parameters

and initial conditions. However, by exploring a su�ciently large number of points in the space of initial

conditions and parameter values, and by computing, at least, the �rst two moments (E(sj) and V (sj)) at

each point, one could gain a deep understanding of the behaviour of the model, test the robustness of the

results, and identify the set(s) of parameters providing the most relevant dynamics. Finally, modellers and

practitioners can make use of the uniquely observable real-world micro and macro time series and, under

the assumptions outlined above, compute their longitudinal moments, which can be then compared to the

simulated counterparts. The last step of such a procedure is nothing but an empirical validation exercise.

Starting from such a relatively general framework, a variety of approaches might be undertaken on

the basis of how

• parameters and initial conditions are chosen;

• summary statistics are selected and combined to characterize model’s behaviour;

• the �t between rwDGP andmDGP is measured;

• the space of initial conditions and parameter values is explored.

In what follows we provide a critical review of the most recent literature addressing the empirical vali-

dation of ABMs. In doing so, we highlight how the di�erent contributions tackle one or more of the four

issues above and we focus, in particular, on a set of approaches that are under development in the Institute

of Economics at Scuola Superiore Sant’Anna.

7See also Secchi and Seri (2017) on the issue of selecting the number of times a computational model should be run.
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Figure 1: A procedure to study the output of ABMs.

4 Agent-Based Model Validation: Literature Review

The most general classi�cation scheme for agent-based models (ABM) according to their level of empirical

validity has been proposed by Axtell and Epstein (1994) and Barde and van der Hoog (2017) and consists

of four levels:

• Level 0: the model is a caricature of reality, as established through the use of simple graphical

devices (e.g., allowing visualization of agent motions).

• Level 1: the model is in qualitative agreement with empirical macro structures, as established by

plotting e.g. the distributional properties of agent population. This is easiest way to matching

stylized facts.

• Level 2: themodel produces quantitative agreement with empirical macro-structures, as established

through on-board statistical estimation routines.

• Level 3: the model exhibits quantitative agreement with empirical micro-structures, as determined

from cross-sectional and longitudinal analysis of the agent population.

Publishing standards for economic and �nance ABMs require at least that satisfaction of Level 1.8

Under the Level 1 approach, an agent-based model gets validated through a statistical comparison of

8Level 0 models can be somehow accepted if their aim is merely exploratory rather than descriptive.
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unconditional objects: stylized fact observed in real world data and emergent properties derived from

the simulation environment. This amounts therefore at replicating a large number of possible micro and

macro stylized facts characterizing the phenomena of interest.9

Current developments in empirical validation of ABMs shows a progression from Level-1 to to Level-2

models, as the mere replication of empirical regularities and other unconditional objects is increasingly

replaced or supplemented by quantitative estimation. Such a fresh stream of research requires the models

to generate series that exhibit the same dynamics (Marks, 2007; Lamperti, 2017), the same conditional

probabilistic structure (Barde, 2016b), or the same causal structures (Guerini and Moneta, 2017) as those

observed in the real world data. Furthermore, new methods to estimate and calibrate the parameters of

ABMs have been developed with the aim of minimizing the distance between some distributional proper-

ties of the real simulation outcomes.

We claim that such new contributions will bring agent-based models on the same ground of advance-

ment of the DSGE literature. Indeed the emerging literature on validation and estimation of ABMs rep-

resents the ACE counterpart of the progresses occurred in the estimation of DSGE models and well rep-

resented by the works of Del Negro and Schorfheide (2006); Canova and Sala (2009); Paccagnini (2010);

Fernández-Villaverde et al. (2016).

Notwithstanding the possible overlaps between calibration, estimation and validation strategies, in

what follows we propose a classi�cation based on the central aim of each procedure. We therefore present

in section 4.1 calibration and estimation procedures, which are essentially exercises for tuning model

parameters or understanding the likelihood that a parameter is responsible for simulation results. We then

discuss in section 4.2 the validation procedures, which evaluate how the inputs or outputs of simulated

models resemble some well de�ned real world statistical properties.

4.1 Calibration and Estimation

Notwithstanding the fuzzy di�erence between calibration and esitmation, in what follow we discuss the

two approaches as both aim at solving the same class of problems (in line with Hansen and Heckman,

1996). Calibration and estimation exercises have peculiar di�culties in Agent-Based modelling: the com-

plex microeconomic interactions and the presence of ubiquitous nonlinearities (even in the simplest mod-

els) do not allow one to obtain a closed-form solution of the likelihood function and of the moments

conditions. Therefore, one must resort to indirect inference or other simulation methods.

9See for examples Dosi et al. (2010, 2013, 2015, 2016a) for replication of business cycle and growth stylized facts; Dosi et al.
(2017a) for accounting of labour-market micro and macro regularities; Popoyan et al. (2017) for the reproduction of many credit
and interbank markets properties; Lamperti et al. (2017a) for capturing co-evolution of economic fundamentals with energy
and emission quantities; Pellizzari and Dal Forno (2007); Leal et al. (2016) for simulating �nancial markets booms and busts.
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4.1.1 Indirect Inference

Indirect inference (Gourieroux et al., 1993) is the standard approach that has been developed for the esti-

mation of small-scale agent-based models, characterized by relatively few parameters and short compu-

tational time.10 Indirect inference allows one to estimate or to make inferences about the parameters of

a model by means of simulation methods. It has been considered the preferred estimation choice since

the very �rsts ABM estimation attempts (see e.g. Winker and Gilli, 2001, 2004).11 Also in the ABM frame-

work, one could try to employ the Generalized Method of Moments approach (GMM), as in the very

stylized models by Alfarano et al. (2005, 2006). However, in most of �nancial and economic Agent-Based

Models, the moment function is completely unknown and one has to approximate it via Monte Carlo

simulation exercises. In such a framework, the consistency and e�ciency of the parameters estimates

strongly depend on how well approximated is the moment generating function.

Following Chen et al. (2012), the procedure of the Method of Simulated Moments (MSM) can be sum-

marized as follows:

We �rst choose a vector of parameter values to generate the simulated time series by running

the agent-based model with this chosen set of parameter values. We then compare some

statistics (moments) of this simulated time series, the simulated moments, with those using

real data, the sample moments. The di�erence between the two is used to form a distance

function (the objective function). TheMSM is purported tominimize the distance by searching

over the entire parameter space.

Formally, one must estimate the vector of parameters θ∗ that solves the following minimization problem:

argmin L(XRW , XAB; θ) (3)

where XRW and XAB represent respectively the set of chosen moments observed in the real-world data

and their counterpart derived from the ABM simulation.

This procedure is su�ciently general and in principle it is applicable to any type of ABM, but three

drawbacks make it unfeasible in practice when the model complexity increases and the simulation time

becomes a relevant constrain. First, an analytical solution for the problem of minimization of the approx-

imated distance function is rarely available, forcing one to rely on numerical approximations. Second,

moment selection is arbitrary and di�erent choices may lead to di�ering estimation results. Third, the

10Benchmark models are for example the Brock and Hommes (1998) asset pricing model and the Kirman (1991) speculative
bubbles model.

11See also Boswijk et al. (2007); Bianchi et al. (2008b); Goldbaum and Mizrach (2008); Franke (2009); de Jong et al. (2010);
Franke and Westerho� (2012); Chiarella et al. (2014); Platt and Gebbie (2016).

11



procedure is computationally intensive as one needs to run a su�cient number of Monte Carlo simula-

tions of the model for each instance of the parameter space, and then evaluate the distance between the

generated moments and those observed in sampled real-world data.

Very close alternatives to the MSM for estimating an agent-based model are the Simulated Minimum

Distance (SMD) approach, which have been adopted by Fabretti (2013) and by Grazzini and Richiardi

(2015) and the Simulated Maximum Likelihood (SML) by Kukacka and Barunik (2016).

4.1.2 Bayesian Approaches

As documented in the previous section, most of estimation and calibration works have been following a

frequentist approach. However, after the popularization of Bayesian methods for the estimation of DSGE

models (see Fernández-Villaverde and Rubio-Ramírez, 2007; Fernández-Villaverde et al., 2016), Bayesian

inference techniques for estimating ABMs have been introduced in Grazzini et al. (2017). In general, the

adoption of Bayesian strategies should reduce the discretionary choices involved in the somehow ad-

hoc selection of the moments to be taken into consideration, the auxiliary model, or in any other metric

that allows to evaluate the distance between the real and the simulated time series. Moreover, Bayesian

approach could be more asymptotically e�cient as it exploits the information provided by the whole

distribution of the data and not only those of some speci�c moments.

However Bayesian methods are not exempt of issues. First, as documented by Canova and Sala (2009)

and Fagiolo and Roventini (2012, 2017), the selection of the prior distribution can possibly generate an

arti�cial curvature to the posterior distribution, when the likelihood tend to be �at, thus ending up in

a interval calibration exercise. Second, the computational cost of Bayesian techniques is especially high

when they are applied to ABMs for estimating the likelihood function. Such computational costs can be

reduced by adopting e�cient sampling schemes or likelihood function approximations, whose appropri-

ateness should be evaluated on a case-by-case basis. However, as ABMs do not typically have a closed

form solutions, a large number of Monte Carlo instances still need to be simulated (see Lamperti et al.,

2017b).

4.2 Validation

4.2.1 Input Validation

The main focus of input validation has been (i) testing some of the behavioural assumptions typically

included in Agent-Based models; (ii) selecting the initial conditions of the model under investigation; and

(iii) exploring the parameter space. Let us now consider each of them.
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Selection of behavioural rules. Well in line with behavioural economics (see e.g. the seminal contribution

of Kahneman and Tversky, 1979), the very �rst input validation exercises of ABMs has resorted to labora-

tory experiments, which allow the researcher to directly verify how an individual behaves in a controlled

environment. Typically these experiments have been used to test speci�c assumptions on agents’ be-

haviour embedded in small scale ABMs (see Hommes, 2011, 2013; Anufriev et al., 2016). Later, controlled

laboratory experiments have been employed to estimate heuristic switching models (as in Anufriev and

Hommes, 2012; Assenza et al., 2013).

Instead, in more complex ABMs, speci�c behavioural assumptions cannot be directly tested and other

approaches have been adopted. We present here three of them that have allowed researchers to reduce

the problem known in the literature as the “wilderness of bounded rationality” (see Sims, 1980). In the

adjustment heuristics approach (Ga�eo et al., 2008; Assenza et al., 2015; Guerini et al., 2017), economic

agents follow very basic economic principles in order to set some of their state variables. For instance,

in these models, prices are �xed by the principle of excess demand.In the management science approach

(Dawid et al., 2016, see), the decisions of agents are modelled starting from the researches carried out

in the management literature. More speci�cally, consumers and �rm behaviours are modelled following

respectively the indications provided by the marketing and �rm strategy literatures. Finally, the empirical

microeconomics approach attempts to model the behaviour of agents relying on microeconomic empirical

evidence. This is the case, for example, in the “Schumpeter meeting Keynes” stream of models (Dosi et al.,

2010, 2013, 2015).

Selection of initial conditions. Input validation can concern the selection of initial conditions of the model.

Even simple and deterministic ABMs can display chaotic dynamics wherein small deviations between

two con�gurations may generate extremely di�erent time series (see Brock and Hommes, 1997, 1998;

Hommes, 2013). However, if themodel is ergodic, it explores thewhole state space and reaches a stationary

distribution. The problem of sensitive dependence on initial conditions can be tackled in small scale

models, which are typically analytically solvable and where boundaries conditions and basins of attraction

can be easily studied. On the contrary, it is still an open issue in more complex models, where the large

support from which initial-condition values can be drawn implies huge computational costs.

Exploration of the parameter space. Apart from parameter estimation and calibration, which have been

thoroughly discussed in the previous section, in Agent-Based models one may need to explore the pa-

rameter space in order to assess the impact of di�erent parameters on the dynamics of the model and to

perform policy analysis exercises. An increasing number of works have started to investigate the robust-
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ness12 of a model by running Monte Carlo simulations under di�erent parameter settings (Ciarli, 2012;

Salle and Yıldızoğlu, 2014; Bargigli et al., 2016; Dosi et al., 2016b, 2017b,c). More on that in section 5.3.

4.2.2 Output Validation

As introduced in section 3, output validation is the process of evaluating the extent to which the outcome

of a simulated model is a good representation of real world observations. The baseline evaluation process

focussing on the replication of stylized facts has been naturally embedded in most of Agent-Based models,

which are often designed to account for phenomena unexplained by analytically tractable models.

Recently, more sophisticated statistical techniques have been developed to satisfy more stringent out-

put validation requirements. In particular, they try to account for the “unconditional object” critique in

Brock (1999) and to better discriminate among di�erent ABMs reproducing the same set of stylized facts.

For instance, Marks (2013) employs three similarity measures — the Kullback-Leibler, the State Simi-

larity Measure and the Generalized Hartley Metric — to analyse and validate an ABM of brand rivalry

in the general validation framework developed in Marks (2007). Barde (2016b,a) and Lamperti (2017,

2016) develop two new similarity measures based on information theoretic criteria. Guerini and Mon-

eta (2017) instead measure similarity by comparing the causal relations entailed in a Structural Vector

Auto-Regression model estimated on both real and simulated data. The approaches of Lamperti (2017)

and Guerini and Moneta (2017) will be discussed in more details in sections 5.1 and 5.2.

Note that all these recently developed validation techniques focus only on aggregate time series, while

most of ABMs have been been able to replicate both micro and macro stylized facts. We believe that the

next challenge is to further extend the new approaches to validate ABMs also in terms of microeconomic

behaviours.

5 A NewWave of Validation Approaches

As discussed in the previous section, the debate on ABM validation is still very open and a novel wave

of approaches has recently blossomed, o�ering to modellers and policy makers additional tools for the

analysis of their models. A reasonable share of such new developments has been carried out within the

Institute of Economics of Scuola Superiore Sant’Anna in Pisa, which has historically been at the fore-

front of Agent-Based modelling in economics and �nance.13 This section outlines and discusses these

12For robustness of the model, we here mean the stability of the results to small variations of the parameters.
13Of course, many other institutions are contributing to the area, including but not limiting to the Catholic University

of Milan (Italy), Polytechnic University of Marche (Italy), University of Bielefeld (Germany), University of Kiel (Germany),
University of Turin (Italy), University of Kent (UK).
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contributions in relation to existing gaps in the literature.

5.1 Validation as Replication of Time Series Dynamics

Output validation concerns the assessment of how successfully simulations from a model mirror the his-

torical behaviour of the real-world target system (cf. section 3). In practice, this amounts at evaluating the

degree of similarity between two or more time series. In most applications, as the method of simulated

moments and simulated minimum distance presented earlier, such a step is performed by computing vec-

tors of summary statistics (moments) from the synthetic and real series, which are then compared using

an objective function. As previously mentioned these approaches may su�er, on one side, from the arbi-

trary choice of moments and, on the other, from the poor representation that such statistics might o�er

about the behaviour of complex time series.

In order to overcome such shortcomings, Lamperti (2017) has recently proposed a novel information

theoretic criterion, called Generalized Subtracted L-divergence (GSL-div), that measures the degree of

similarity between the dynamics observed in real data and those produced by the numerical simulation of

a model. Contrary to simple summary statistics, the GSL-div has been constructed to compare time series

on the basis of their patterns. Validation is achieved capturing the ability of a givenmodel to reproduce the

distributions of time changes (that is, changes in the process’ values from one point in time to another)

observed in the real-world series, without the need to resort to any likelihood function or to impose

requirements of stationarity. The GSL-div provides a precise quanti�cation of the distance between the

model and data with respect to their dynamics in the time domain.14

The GSL-div can be estimated numerically following a simple, four-steps procedure.

1. Time series (both real and simulated) are symbolized.

2. Patterns of symbols are observed through rolling windows of di�erent length l = 1, .., L.

3. Distributions of patterns, fl, are estimated for each windows’ length.

4. The distance between distributions from real and simulated data are evaluated through an informa-

tion theoretic criterion and, �nally, aggregated.

Symbolization constrains a real-valued process to assume a �nite set of ordered values (1, 2, 3, ..., b), which

are called symbols. Each observation is mapped to a symbol such that data are transformed into sequences

of symbols having the same length as the original series. The precision of the symbolization, b, is controlled

by the user.15 The second step consists in the use of rolling windows of increasing length (l) to observe

14An interesting similar criterion has been developed in Barde (2016b) for the class of Markov models.
15The default value is �ve. See Lamperti (2017) for robustness tests.
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words of symbols in the synthetic and real series. For example, when l = 2, the word 12 indicates that

the corresponding process has faced an up-ward movement. The choice of the symbolization precision

allows the modeller to remove noise from the observations. For each l = 1, ..., L, one can obtain the

distribution of words observed in the real and simulated data and to measure the discrepancy between

the two. In particular, Lamperti (2017) uses a symmetric variant (Lin, 1991) of the Kullback and Leibler

(1951)’s divergence. Finally, discrepancies can be aggregated over lengths of the words. Repeating these

steps for multiple model runs (under the same parameter con�guration), averaging and correcting for a

systematic bias, one obtains a good approximation of the distance between the true probabilistic structure

of the model and the data, as measured by the GSL-div.

The GSL-div has been tested to discriminate amongst di�erent classes of stochastic processes, going

from simple Auto Regressive Moving Average (ARMA) models to random walks with drifts and structural

breaks. Systematic comparisons with alternative measures of �t commonly used for calibrating ABMs in

economics and �nance (e.g. mean squared error (MSE), distance between moments, etc.) has revealed that

the GSL-div provides much more satisfactory performances (see table 1). Such results point the adequacy

of the GSL-div to quantify the degree a simulation model mirrors real-world data.

Table 1: Comparison of model behaviour through di�erent criteria.

Class of models Models in the contest % of times true model identi�ed

GSL MSE Dist. in Mean Dist. in Variance

ARMA 9 88% 55% 44% 22%

Random Walks with Drift 12 92% 67% 58% 17%

Random Walks - break in Drift 12 100% 67% 50% 25%

Random Walks - break in Volatility 12 67% 58% 25% 33%

Note: the table reports the results of an exercise where each model has been used as a pseudo-real data generating process
and compared with all the others in the same class. The number of models in each contest is reported in the second column.
Di�erent criteria have been employed to run the comparison and identify the closest to the pseudo-real data. GSL stands
for Generalized Subtracted L-divergence. MSE stands for Mean Squared Error. Distance in mean consists in the di�erence
between the sample mean in simulated and real data. The same apply for variance. Additional details in Lamperti (2017).

Lamperti (2016) applies the described approach to the analysis of a widely used �nancial market model

with heterogeneous traders. He �nds that the GSL-div can further improve the validation of the model

with respect to criterion grounded on the minimization of the mean squared error as in Recchioni et al.

(2015).

5.2 Validation as Matching of Causation

Since the foundation of the Econometric Society economists have been largely concerned with the iden-

ti�cation of causal relationships among the variables characterizing our economic system. Discovering
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causal structures is a relevant task for at least two interconnected reasons: (i) it allows understanding and

explaining the origin and propagation of phenomena that are observed at some point in time; (ii) it pro-

vides information on available policy channels to be used for impacting the system. Given such premises,

Guerini and Moneta (2017) claim that models employed to provide policy prescriptions should match the

causal relationships observed in the real systems they represent. They propose a procedure to validate

a simulation model by estimating and comparing the causal structures incorporated in the model with

those obtained from real-world data. In this manner, the procedure provides a possible solution to both

the issues of confronting an ABM to empirical data and to compare di�erent simulation models. Once a

good matching between model-generated and real-world causal structures is achieved, the policy state-

ments drawn from an ABMwould get a more rigorous empirical support than those provided by the mere

replication of stylized facts.

The causation matching approach proposed by Guerini and Moneta (2017) follows a sequential proce-

dure that can be divided in �ve steps.

1. Data harmonization and preparation.

2. Analysis of ABM properties.

3. Estimation of Vector Auto Regressive (VAR) models.

4. Identi�cation of the Structural Vector Autoregressive (SVAR) models.

5. Validation assessment.

In the �rst step, some simple transformations are performed to allow the comparison of empirical and

arti�cial data (e.g. cutting simulated series to make them equally long as their real-world counterpart,

removing trend, etc.). In the second step, the emergent properties of the series produced by the simulated

model are analyses (e.g stationarity and ergodicity tests). In the third step, the reduced-form VAR model

is estimated via ordinary least squares or accounting for co-integrated variables via the Johansen and

Juselius (1990) procedure. In the fourth step, the structural form of the model is identi�ed by means of

the so-called PC (in case of Gaussian residuals, Spirtes et al., 2000) or VAR-LiNGAM (if residuals are non-

Gaussian, Shimizu et al., 2006 and Hyvarinen et al., 2010) causal search algorithms.16. Finally, in the last

step, the two estimated causal structures are compared according to simple distance measures.

The crucial part of such a procedure lies in the causal search step. In particular, residuals from the

estimated VAR are collected and serve as input in the search for causal relationships, for both the PC and

16VAR-LiGAM stands for Vector Auto Regressive Linear Non-Gaussian Acyclic Model.
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Table 2: The table presents the performance of the K+Smodel (Dosi et al., 2015) to replicate causal links es-
timated from US macroeconomic data. The exercise has been repeated using di�erent estimation methods
(see �rst column). Mean (µ) and standard deviation (σ) of the three similarity measures (share of correctly
replicated signs, share of correctly replicated magnitude, both) are reported.

Estimation Method Similarity Type µ σ

VAR-OLS (all parameters) sign-based 0.7892 0.0517
VECM-ML (all parameters) sign-based 0.7385 0.0628
VAR-OLS (signi�cant parameters) sign-based 0.6490 0.1030
VECM-ML (signi�cant parameters) sign-based 0.7989 0.0689

VAR-OLS (all parameters) size-based 0.7879 0.1073
VECM-ML (all parameters) size-based 0.8111 0.0756
VAR-OLS (signi�cant parameters) size-based 0.7768 0.2783
VECM-ML (signi�cant parameters) size-based 0.8857 0.1535

VAR-OLS (all parameters) conjunction 0.6748 0.0702
VECM-ML (all parameters) conjunction 0.6323 0.1317
VAR-OLS (signi�cant parameters) conjunction 0.5928 0.2123
VECM-ML (signi�cant parameters) conjunction 0.7261 0.1881

VAR-LiNGAM algorithms. When the PC is applied, feedbacks in the contemporaneous causal structure

are excluded (dynamics feedbacks are of course conceivable). The PC algorithm also assumes causal su�-

ciency, i.e. there is no unmeasured variable which simultaneously a�ect two or more observed variables.

The information obtained through the PC approach are generally not su�cient to provide full identi�ca-

tion of the SVAR model, thereby requiring still a certain level of a priori theoretical knowledge. However,

the VAR-LiINGAM algorithm solves the problem and provides a unique parameter set for the SVARmodel

simply requiring that residuals can be represented as a Linear Non-Gaussian Acyclic Model (LiNGAM),

so that the contemporaneous causal structure can be thought as a set of directed relationships without

cycles (further details in Guerini and Moneta, 2017 and Moneta et al., 2013). Once the causal structures are

identi�ed, a simple counter recording the percentage of the signs (positive or negative) of the causal rela-

tionships matched by the model is used for validation assessment. Alternatively, one can employ counters

that account for the magnitude (size) of the relationships or both sign and magnitude.

Guerini and Moneta (2017) apply their approach to the well known K+S macroeconomic agent-based

model developed in Dosi et al. (2015). Causal structures from model simulations are compared to those

obtained from U.S. data for the period 1959-2014. Results show that the model is able to capture between

65% and 80% of the causal relations entailed by a SVAR estimated on real-world data (see table 2). Such

a positive �ndings could be then compared to the results obtained when the procedure is also applied to

di�erent agent-based and DSGE models. In that, the causality-matching validation test is highly comple-

mentary to GSL-div employed to assess the replication of time series dynamics (cf. section 5.1 above).
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5.3 Global Sensitivity Analysis via Kriging Meta-Modelling

Sensitivity analysis constitutes an open challenge for ABMs in economics and �nance. The understanding

of model’s response to (possibly joint) changes in some parameter values or initial conditions is pivotal to

assess the robustness of models’ output as well as to draw robust implications from policy exercises. How-

ever, sensitivity analysis in ABM can often involve high computational costs stemming from simulating

the model for many vectors of parameters, initial conditions and, possibly, seeds of the pseudo-random

number generating process. Salle and Yıldızoğlu (2014) have been the �rst to propose the combination of

design of experiments (DoE) and kriging meta-modelling to address the issue within the economics liter-

ature. The strategy they propose is straightforward. DoE allows to minimize the sample size of parameter

con�gurations under the constraint on their representativeness. Based on the data collected through that

sample, the original model is approximated with a meta-model, which is then employed to connect the

parameters to the variables of interest at virtually zero computational costs.

Building on such an approach, Dosi et al. (2017c) provide a global sensitivity analysis for a relatively

simple model of industry dynamics. Their procedure runs as follow:

1. employ nearly orthogonal latin hypercubes (NOLH) to sample the parameter space;

2. develop a Kriging meta-model (KMM) to approximate the original ABM;

3. perform Sobol variance decomposition to analyse the meta-model sensitivity to parameters;

4. draw three dimensional surfaces to represent the response of the variable of interest in the meta-

model to changes in parameters.

TheNOLH is a statistical technique for the generation of plausible sets of points frommultidimensional

parameter distributions exhibiting good space-�lling properties (Cioppa and Lucas, 2007). It signi�cantly

improves the e�ciency of the sampling process in comparison to traditional Monte Carlo approaches,

requiring smaller samples andmuch less computation time to get an estimation of meta-model coe�cients

(Iooss et al., 2010). Despite being superior to Monte Carlo sampling, NOLH exhibit problems when the

dimensionality of the parameter space is higher than forty.

The meta-model is a simpli�ed version of the original model that can be more parsimoniously run to

evaluate the e�ect of inputs (parameters) on model’s output. Kriging (or Gaussian process regression) is

a simple and e�cient method for investigating the behavior of simulation models (Krige, 1951; Van Beers

and Kleijnen, 2004). The intuition behind it is that the original model’s response to unknown points in

the parameter space can be predicted by a linear combination of those observed in the closest points. As a

consequence, the response function obtained through the KMM approach are a smooth approximation of
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the model output around the evaluation (known) points. Kriging meta-modeling provide the best linear

unbiased prediction for such points (see ch. B.6 in Fischer and Getis, 2009). Coupling NOLH with KMM

has been frequently used to approximate the output of computer simulation models (see e.g. McKay et al.,

1979; Salle and Yıldızoğlu, 2014; Bargigli et al., 2016; Dosi et al., 2017b).

Sensitivity analysis has the objective of studying how uncertainty in the output of a model can be

apportioned to di�erent sources in its input (Saltelli et al., 2008). Given the constraints imposed by expen-

sive simulations of a computational model, sensitivity analysis can be performed substituting the original

model with its conveniently estimated meta-model (Kleijnen and Sargent, 2000; Wang and Shan, 2007).

Following Saltelli et al. (2000), a Sobol decomposition form of variance-based global sensitivity analysis

is selected. It decomposes the variance of a given output variable of the model in terms of the contribu-

tions of each input (parameter) variance (both in isolation and interacting it with every other input) by

means of Fourier transformations. Sobol decomposition is attractive because it evaluates sensitivity across

the whole parametric space and it allows for independent analyses of multiple output models (including

non-linear and non-additive ones, see Saltelli and Annoni, 2010).

Finally, one can rank the importance of each parameter in explaining the variance of the output, and

obtain response surfaces representing how the model (approximately) behave when input parameters are

changed.

For example, Dosi et al. (2017c) study amodel of industrial dynamics investigating how the distribution

of �rms’ growth rates changes in response to di�erent input variations ranging from the relevance of

learning mechanisms to the strength of the selection process among competing �rms. Figure 2 shows the

response surface of the degree of skewness of �rms’ growth rates distribution (q) to the number of �rm

in the market (N ) and the minimum market share (sMin) entailing the survival of a �rm (right panel),

and the relative importance of all model’s parameter in a�ecting the selected output variable (left panel).

Kriging and Sobol decompositions have also been successfully employed to the more complex K+S model

agent-based model to study the impact of structural reforms in the labor market (Dosi et al., 2016b) and

the emergence of hysteresis (Dosi et al., 2017b).

5.4 Parameter Space Exploration and Calibration via Machine Learning Sur-

rogates

Kriging constitutes a valuable meta-modelling technique to approximate the behaviour of an ABM in a

given region of the parameter space, usually selected by the modeller because of some reasonable property

or by economic intuition. However, one may need to extensively explore the parameter space to detect
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Figure 2: Sensitivity analysis and response surface from a Kriging meta-model. Source: Dosi et al. (2017c).

Figure 3: Surrogate modelling algorithm. Source: Lamperti et al. (2017b).

possible abrupt changes in the aggregate properties of the model or simply to have a general and precise

overview of its behavior. Such broad explorations are usually infeasible in terms of computational costs.

This potential issue is addressed in Lamperti et al. (2017b), who explicitly tackles parameter space explo-

ration and calibration of ABMs combining supervised machine-learning and intelligent sampling to build

a surrogate meta-model, which is then used to classify parameter vectors according to the behaviour they

produce. By providing a fast and accurate approximation of the original model behaviour, the machine-

learning surrogate dramatically reduce the computation time to perform large scale explorations of the

parameter-space, while providing a powerful �lter to gain insights into the complex functioning of agent-

based models. Once the modeler has �xed the conditions that the output of her/his model should satisfy

(e.g. some properties observed in real data), the surrogate single out the set of points in the parameter

space that satisfy it.

The learning process of a surrogate occurs over multiple rounds (see �gure 3). First, a large “pool” of

parameterizations are drawn using a standard sampling routine, such as quasi-random Sobol sampling.
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Next, a very small subset of the pool is randomly drawnwithout replacement for evaluation in the original

ABM, making sure to have at least one example of the user-desired behaviour. These points are “labelled”

according to the statistic measured on the output generated by the ABM and act as a “seed” set of sam-

ples to initialize the surrogate model learned in the �rst round. This �rst surrogate is then exploited to

predict the labels for unlabelled points remaining in the pool. Then, over multiple rounds, this process is

repeated until a speci�ed budget of evaluations is achieved. In each round, the surrogate directs which un-

labelled points are drawn from the pool to maximize the performance of the surrogate learned in the next

round. This semi-supervised “active” learning procedure incrementally improves the surrogate model,

while maximizing the information gained over the ABM parameter space.

The crucial part of the job is �nding a precise approximation of the original model, which has to be

learnt over samples of points selected to minimize the computational e�ort of the overall procedure. In

particular, the surrogate training procedure involves three decisions:

1. choose a machine-learning algorithm to act as a surrogate for the original ABM;

2. select a sampling procedure to draw samples from the parameters space in order to train the surro-

gatel;

3. select a score or criterion to evaluate the performance of the surrogate.

Extreme gradient boosted trees (XGBoost, see Chen and Guestrin, 2016) are used as the prede�ned surro-

gate learning algorithm employed to form a random ensemble of classi�cation and regression trees (CART,

cf. Breiman et al., 1984). This choice allows the surrogate to learn non-linear “knife-edge” properties, which

typically characterize ABM parameter spaces. The sampling procedure builds a set of parameter vectors

on which the agent-based model is actually evaluated in order to provide labelled data points for the train-

ing of the surrogate. Sets of parameter combinations are successively drawn according to a quasi-random

Sobol sampling over the parameter space (Moroko� and Ca�isch, 1994). Finally, the quality of the surro-

gate approximation is measured through the true positive ratio (TPR), a standard classi�cation accuracy

indicator computed as the number of parameter vectors correctly predicted (by the surrogate) to satisfy

the user-speci�ed conditions over the total number of parameters in the “pool” truly satisfying them.

Lamperti et al. (2017b) provide two applications of the machine-learning surrogate approach employ-

ing a �nancial ABM and a model of endogenous growth. Results are encouraging. In the growth model

(Fagiolo and Dosi, 2003), parameter vectors delivering endogenous growth cum fat-tailed output growth-

rate distributions are selected. growth rates exhibit fat-tails. They �nd that even for limited budget, the

surrogate correctly classi�es more than 80% parameter combinations (cf. �gure 4, left panel) and com-
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Figure 4: Results from exploration of the parameter space for the Islands growth model. Source: Lamperti et al.

(2017b).

putational costs are extraordinarily lower than those required by the original ABM (see �gure 4, right

panel).

6 Conclusions

Ten years after the in�uential article by Windrum et al. (2007), the issue of empirical validation of agent-

based models (ABM) in economics and �nance is still among the top items in the to-do list of researchers.

This despite the fact that many advances have occurred, especially in the three key areas of: (i) calibration

and estimation of model parameters; (ii) comparison of real world and arti�cial data; and (iii) parameter

space exploration.

This Chapter has attempted to critically survey such a recent literature focusing on developments in

the above three areas.

Notwithstanding the huge e�ort made in advancing the frontier in ABM validation techniques, the

process of developing a complete and coherent validation toolbox is still on-going and some important

issues are still to be better understood.

First, the pros and cons of each di�erent validation methodology are still not completely laid out in

the literature. This is a pity, as a sort of if-then map would be extremely useful for practitioners aiming at

picking the right tool in each speci�c situation. Projects developing such a map would be very welcome in

the community, although it is of course clear that each tools is aimed at a speci�c task, and no validation

technique is more general than the others. Relatedly, validation software packages should be developed

to ease the adoption of the di�erent existing techniques.
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Second, and most importantly, more research e�orts should be devoted towards advancing hypothesis

testing in ABM. In particular, more robust statistical tests should be developed in order to better charac-

terizing model stationarity and ergodicity, and to better understand how the failure of these properties

might a�ect the problems of estimation, calibration, validation and exploration.

To conclude, we believe that the development of better empirical-validation techniques is a never-

ending process, which must naturally co-evolve together with the developments of new models, new

statistical techniques and with the increase in computational power. In that, recent developments in

machine-learning and the increase availability of big data could entail the next leap forward: machine

learning o�ers indeed more �exible methodologies that allow one to minimize the number of assumptions

when running an econometric model; big data, instead, allow one to perform more torough comparisons

of the model with the real world situations, by extending validation also to the micro-level. All in all, these

extensions would allow ACE models to progress from Level 2 to Level 3 in the Axtell and Epstein (1994)

classi�cation (see Section 4).

Furthermore, validation of ABMs will never tell whether a model is a correct description of the com-

plex, unknown and non-understandable real-world data generating process. However, in a Popperian

fashion, the ABM validation techniques should eventually allow researchers to understand whether a

model is a bad description of it.
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