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Abstract

Efficiently calibrating agent-based models (ABMs) to real data is an open challenge. This paper
explicitly tackles parameter space exploration and calibration of ABMs by combining machine-
learning and intelligent iterative sampling. The proposed approach “learns” a fast surrogate meta-
model using a limited number of ABM evaluations and approximates the nonlinear relationship
between ABM inputs (initial conditions and parameters) and outputs. Performance is evaluated
on the Brock and Hommes (1998) asset pricing model and the “Islands” endogenous growth model
(Fagiolo and Dosi, 2003). Results demonstrate that machine learning surrogates obtained using
the proposed iterative learning procedure provide a quite accurate proxy of the true model and
dramatically reduce the computation time necessary for large scale parameter space exploration
and calibration.
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1 Introduction

This work proposes a novel approach to model calibration and parameter space exploration in agent-

based models (ABM). It combines supervised machine learning and intelligent sampling in the design of

a surrogate meta-model, which constitutes a computationally cheap approximation of the real model.1

Our surrogate can then be employed to explore the parameter space of the model at almost zero

computational costs.

ABMs deal with the study of socio-ecological systems that can be properly conceptualized through a

set of micro and macro relationships. One problem with this framework is that the relevant statistical

properties are a priori unknown, even to the modeler. Such properties emerge from the repeated

interactions among ecologies of heterogeneous, boundedly rational and adaptive agents.2 This results

in dynamic properties that cannot be studied analytically, causal mechanisms that are not always

possible to identify and emergent relationships that cannot be deduced by simple aggregation of

micro-level interactions (Anderson et al., 1972, Tesfatsion and Judd, 2006, Grazzini, 2012, Gallegati

and Kirman, 2012). This raises the issue of finding appropriate tools to investigate the emergent

behavior of the model with respect to different parameter settings, random seeds, and initial conditions

(see also Lee et al., 2015).

The primary challenge in exploring the parameter space and calibrating ABMs is the escalation in

the number of parameters resulting from increasingly realistic ABM dynamics. For example, recent

macroeconomic models use dozens of parameters to capture the complexity of micro-founded, multi-

sector and multi-country phenomena (see Fagiolo and Roventini, 2017, for a recent survey). Existing

tools for direct estimation and global sensitivity analysis (often advocated as a natural approach to

ABM exploration, cf. Moss, 2008; Thiele et al., 2014; ten Broeke et al., 2016) are computationally

prohibitive, requiring time and computational resources that are not often available to researchers

or practitioners. This increase in the parameter set results in what is referred to as the “curse of

dimensionality”, i.e. the convergence of any estimator to the true value of a smooth function defined

on a high dimensional parameter space is very slow (Weeks, 1995; De Marchi, 2005). There are

potentially an exponential number of local critical points in the parameter space that can be mistaken

for global maxima or minima.

Traditionally, three computationally expensive steps are involved in ABM calibration; running the

model, measuring calibration quality and locating parameters of interest (more on validation of ABMs

in Fagiolo et al., 2017). As remarked in Grazzini et al. (2017), such steps account for more than

half of the time required to estimate ABMs, even for extremely simple models. Appropriate tools

need then to be designed to quickly search for “meaningful” parameters and initial conditions. One

approach is to replace the computationally expensive ABM with a cheaper proxy. This is the aim of

meta-models or surrogates, which approximate the relationship between ABMs’ inputs and outputs

(see Lee et al., 2015; Fagiolo et al., 2017) in order to quickly explore the parameter space. Surrogate

1Supervised learning is the machine learning task of inferring a function from training data, which consists in a set of
input-output pairs. A supervised learning algorithm analyses the training data and produces an inferred function, which
is called a classifier (if the output is discrete) or a regression function (if the output is continuous). Such a function is
then used to make prediction over data-points outside the training sample. Intelligent sampling refers here to the task
of selecting data-points, used to learn the surrogate, in a way they covey the maximal amount of information.

2In the last two decades a variety of ABM have been applied to study many different issues across a broad spectrum
of disciplines beyond economics and including ecology (Grimm and Railsback, 2013), health care (Effken et al., 2012),
sociology (Macy and Willer, 2002), geography (Brown et al., 2005), bioterrorism (Carley et al., 2006), medical research
(An and Wilensky, 2009), military tactics (Ilachinski, 1997) and many others. See also Squazzoni (2010) for a discussion
on the impact of ABM in social sciences, and Fagiolo and Roventini (2012, 2017) for an assessment of macroeconomic
policies in agent-based models.
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models are traditionally employed as fast approximations of complex phenomena that are expensive

to evaluate in real life or in simulation (see Booker et al., 1999), and are regularly leveraged to locate

promising parameter combinations avoiding costly computations. Accordingly, if the approximation

error is small, the surrogate can be interpreted as a reasonably good replacement for the original ABM

during parameter space exploration, calibration and sensitivity analysis.3

Recently, kriging (Rasmussen and Williams, 2006; Conti and O’Hagan, 2010) has been introduced

as a surrogate modeling approach to facilitate parameter space exploration and sensitivity analyses of

ABMs (Salle and Yildizoglu, 2014; Dosi et al., 2016, 2017c,b; Bargigli et al., 2016). However, when

the model’s response surface is completely unknown and possibly contains non-smooth regions, as it is

typically the case in ABMs, kriging requires a large number of evaluations and extensive exploratory

data analysis that increase with the size of the parameter space (more on that in Section 2). Such

constraints hold also for state-of-the-art extensions (see Wilson et al., 2015; Herlands et al., 2015) and

it forces modelers of large scale ABM to arbitrarily fix a subset of parameters whenever the parameter

space is too large (see e.g. Barde and van der Hoog, 2017).

What is needed is an efficient, “hands-off” approach to explore the complex parameter space of

agent-based models that practically accounts for the limited computational resources of the user.

Our approach explores the ABM parameter space using a non-parametric machine learning surrogate

and iterative sampling algorithm that intelligently searches the response surface with few limiting

conditions. In particular, no parametric assumptions or knowledge of the topology governing the

spatial distribution of the data is required.

In a nutshell, the procedure begins by first drawing a relatively large “pool” of parameter combi-

nations using any standard sampling routine, where each combination contains a value for each initial

condition. This pool acts as a proxy for the full parameter space. Next, a (very small) random subset

of combinations are drawn without replacement from the pool to initialize the learning procedure

(again using any standard sampling routine). The ABM is then evaluated for each of these initial

combinations and its outputs receive a “label”. Those outputs satisfying a user-defined calibration

criterion are assigned to a “positive” category (label 1), otherwise to a “negative” one (label 0). A

surrogate is then learned over the combinations using the selected surrogate algorithm.4 The first

surrogate is used to predict the probability that unlabeled combinations in the pool belong to the

“positive” category. This concludes the first round. In the second and subsequent rounds, a very

small subset of the pool is drawn according to the predicted positive probability. These selections

are evaluated in the ABM to learn their true labels and aggregated to the set of all other combina-

tions that have been sampled during the previous rounds. This continues over multiple rounds until

the user-defined number of evaluations (the so called “budget”) is reached or a predefined level of

performance is achieved.

As illustrative examples, we apply our procedure to two well known ABMs: the asset pricing model

proposed in Brock and Hommes (1998) and the endogenous growth model developed in Fagiolo and

Dosi (2003). Despite their relative simplicity, the two models might exhibit multiple equilibria, allow

different behavioural attitudes and account for a wide range of dynamics, which crucially depends

on their parameters. We find that our machine-learning surrogate is able to efficiently filter out

3Note that surrogates can be used for sensitivity analysis if their approximation errors are very small. This requires
many more evaluations than those used in the examples of this paper.

4In the paper, we choose to use a non-parametric machine learning algorithm, the extremely boosted gradient trees
(XGBoost, see Chen and Guestrin, 2016) as our surrogate. However, the user can choose different surrogates such as
simple logistic regression. More on that in Section 3.
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combinations of parameters conveying the output of interest, assess the relative importance of models’

parameters and provide an accurate approximation of the underlying ABM in a negligible amount of

time. The advantages in terms of computation cost, hands-free parameter selection and ability to deal

with non-linear characteristics of the ABM parameter space of our approach paves the way towards

an efficient and user-friendly procedure to parameter space exploration and calibration of agent-based

models.

The rest of the paper proceeds as follows. Section 2 reviews literature on ABM calibration valida-

tion, making the case for surrogate modeling. Section 3 presents our surrogate modeling methodology.

Sections 4 and 5 report the results of its application to the asset pricing model proposed in Brock

and Hommes (1998) and the growth model developed in Fagiolo and Dosi (2003) respectively. Finally,

Section 6 concludes.

2 Calibration and validation of agent-based models: the case for

surrogate modelling

As stated in Fagiolo et al. (2007) and Fagiolo and Roventini (2012, 2017), the extreme flexibility

of ABMs concerning various forms of individual behaviour, interaction patterns and institutional

arrangements has allowed researchers to explore the positive and normative consequences of departing

from the often over-simplifying assumptions characterizing most mainstream analytical models. Recent

years have witnessed a trend in macro and financial modeling towards more detailed and richer models,

targeting a higher number of stylized facts, and claiming a strong empirical content.5

A common theme informing both theoretical analysis and methodological research concerns the

relationships between ABMs and real-world data. Recently, many studies have addressed the problem

of estimating and calibrating ABMs (see Fagiolo et al., 2017, for a recent survey). As stated by Chen

et al. (2012), ABMs need to move from stage I, i.e. the capability to grow stylized facts in a qualitative

sense, to stage II, where appropriate parameter values are selected according to sound econometric

techniques. In those cases where the model is sufficiently simple and well behaved, one can derive

a closed form solution for the distributional properties of a specific output of the model, and then

estimating the parameters governing such distributions (see e.g. Alfarano et al., 2005, 2006; Boswijk

et al., 2007). However, when model complexity prevents analytical solutions, more sophisticated

techniques are required. Amilon (2008) estimates a model of financial markets with 15 parameters

(with only 2 or 3 agents) using the method of simulated moments6, reporting high model sensitivity

to assumptions made on the noise term and stochastic component of the procedure. Gilli and Winker

(2003) and Winker et al. (2007) introduce an algorithm and objective function to estimate exchange-

rate models by indirect inference7, pushing them closer to the properties of real data. Franke (2009)

refines on this framework to estimate 6 parameters of an asset pricing model. Franke and Westerhoff

(2012) propose a model contest over structural stochastic volatility models, but the models are defined

5See e.g. Dosi et al. (2010, 2013, 2015); Caiani et al. (2016a); Assenza et al. (2015) and Dawid et al. (2014a) on
business cycle dynamics, Lamperti et al. (2017) on growth, green transitions and climate change, Dawid et al. (2014b)
on regional convergence and Leal et al. (2014) on financial markets. The surveys in Fagiolo and Roventini (2012, 2017)
provides a more exhaustive list.

6The method of simulated moments was introduced as an approach to estimating moment functions when they can
not be evaluated directly. See Gilli and Winker (2003); Franke and Westerhoff (2012) for more information on its use in
the macro literature.

7Note that the method of simulated moments is a form of indirect inference.
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by only a few parameters.8 Finally, Recchioni et al. (2015) use a simple gradient-based procedure for

calibration, evaluating performance based on out-of-sample forecast errors.

A parallel stream of research has recently focusing on developing tools to investigate how well

ABMs approximate reality (see Marks, 2013; Lamperti, 2017, 2016; Barde, 2016b,a; Guerini and

Moneta, 2016). Some of these contributions propose objective functions that replace longitudinal

moments within an estimation setting (e.g. the GSL-div introduced in Lamperti, 2017). A common

limitation shared by all these methods is the expense of simulating ABMs. As well discussed in

Grazzini et al. (2017), simulating the ABM is the most expensive step in calibration, estimation and

validation.9 As an illustrative example, the method proposed in Barde (2016b) requires each Monte

Carlo (MC) evaluation to produce time series of 219 periods. Many macroeconomic ABMs might

require weeks to perform a single MC exercise of this kind. This might explain why the vast majority

of such a literature relies on extremely simple ABMs (with only a few parameters, few agents and no

stochastic draws). Conversely, many large macroeconomic ABMs are poorly validated and calibrated,

possible revealing underlying computational constraints. New alternative methods must deal with two

issues: considerable reduction in computational time and design of appropriate criteria for calibration

and validation procedures.

This paper shows that reducing computational time can be achieved in a meaningful way by

efficiently training a surrogate model over multiple rounds to approximate the mapping between ABM

inputs and the response of the ABM output to a user-defined calibration criterion. Our procedure has

some similarities to the one of Dawid et al. (2014b), where penalized splines methods are employed to

shortcut parameter exploration and unravel the dynamic effects of policies on the economic variables

of interest. However, our method especially focuses on computational efficiency and therefore builds

on two pillars: surrogate modelling and intelligent sampling.

Our approach is akin to kriging (also known as Gaussian process regression in the machine learning

literature, see Rasmussen and Williams, 2006; Conti and O’Hagan, 2010), which has been introduced

as a surrogate modeling approach to facilitate parameter space exploration and sensitivity analyses

of ABMs (Salle and Yildizoglu, 2014; Dosi et al., 2016, 2017c,b; Bargigli et al., 2016). This spatial

interpolation technique estimates the ABM response over the full parameter space from a finite sample

of ABM evaluations to generate the best unbiased linear predictor through knowledge of the true

variogram or true degree of spatial dependence in the data. In the case of spatially homogeneous data,

kriging only requires 30 points to estimate the spatial structure. However, when the spatial distribution

of the data is unknown, as is often the case with ABMs, kriging requires specialist knowledge of

variography to empirically estimate the spatial dependence of the data. This generally requires a

large number of ABM evaluations and extensive exploratory data analysis that increases with the

size of the parameter space. Unfortunately, the performance of any kriging model depends on the

accuracy of estimating this true variogram, as the empirical variogram asymptotically converges to

the true one when the number of ABM evaluations reaches infinity. Our surrogate machine-learning

approach should allow to overcome such limitations at negligible computational costs. Let us present

8See also Grazzini and Richiardi (2015) and Fabretti (2012) for other applications of the same approach.
9The macro-DSGE literature has worked in parallel with the ABM literature in developing techniques to estimate

models with many parameters, mostly in the Bayesian tradition (Fernández-Villaverde et al., 2016). However, contrary to
ABM modelers, DSGE modelers have rarely faced high computational costs in generating output from their models. The
calibration procedure described in this paper might be applied, in principle, to any model involving the production of a
storable output. Gains tend to overcome the costs of learning a surrogate when the model is not costless to simulate. For
this reason, we believe the present approach has little to no appeal for the DSGE community. Rather, it can contribute
to close the gap with the macro-ABM literature in taking models to the data.
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it in the the next section.

3 Surrogate Modeling

3.1 Setting specification

This paper proposes an iterative algorithm to efficiently approximate a surrogate model for any ABM

using a limited budget B ∈ N of ABM evaluations. Once this budget is reached, the surrogate model’s

approximation of the ABM is complete and the surrogate is available to provide a nearly costless

approach to predict the model’s response.10

In all generality, one can represent an agent-based model as a mapping m : I → O from a set of

input parameters I into an output set O. The set of parameters can be conceived as a multidimensional

space spanned by the support of each parameter. Usually, the number of parameters go from 1 or 2

to few dozens, as in large macro models. The output set is generally larger, as it corresponds to time-

series realizations of a very large number of micro and macro level variables. This rich set of outputs

allows a qualitative validation of agent-based models based on their ability to reproduce the statistical

properties of empirical data (e.g. non-stationarity of GDP, cross-correlations and relative volatilities of

macroeconomic time series), as well as microeconomic distributional characteristics (e.g. distribution

of firms’ size, of households’ income, of assets’ returns). Beyond stylized facts, the quantitative

validation of an agent-based model also requires the calibration/estimation of the model on a (generally

small) set of aggregate variables (e.g. GDP growth rates, inflation and unemployment levels, asset

returns etc.).

In practice, such a quantitative calibration consists in the determination of input values such

that the output satisfies certain calibration conditions, coming from, e.g., a statistical hypothesis test

or the evaluation of a likelihood or loss function. This is in line, for example, with the method of

simulated moments (Gilli and Winker, 2003; Franke and Westerhoff, 2012) or the simulated minimum

distance approach (Grazzini and Richiardi, 2015). The assessment of a model’s output is carried

out by computing a specific indicator, which we shall call the calibration measure. Two settings are

considered:

• Binary outcome. The calibration measure might take just two values: 1 if a certain property

(or set of properties) on the output is satisfied, or 0 otherwise. For example, one might want to

test whether a financial ABM shows excess kurtosis in the distribution of simulated returns or

self-sustained GDP growth occur.

• Real-valued outcome. The calibration measure is a real-valued number providing a quanti-

tative assessment of a certain property of the model. For example, one might want to compute

excess kurtosis of simulated data, or the average GDP growth rate.

Obviously, one would like to find the set of input parameters x ∈ I such that the calibration mea-

sure satisfies certain conditions, which we call calibration criteria. To continue with the illustration,

consider a user investigating non-normal time series realizations from an ABM. Further, assume that

non-normality is measured through negative skew and excess kurtosis, which are then identified as

10Notwithstanding its precision, the surrogate remains an approximation of the original ABM. It can be employed to
identify those parameter combinations satisfying certain conditions, but further investigations of model behavior around
such combinations should be performed using the original ABM.
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our calibration measures. Once the ABM generates the time series, both the skew and kurtosis are

computed. In the classification outcome setting, the calibration criterion might simply require the

presence of both excess kurtosis and negative skew. This reflects the indirect validation approach

undertaken in, e.g., Dosi et al. (2015); Caiani et al. (2016b) and Popoyan et al. (2017a). In the

real-valued outcome setting, instead, the calibration criterion might involve the comparison of the

computed calibration measures with specified thresholds, with the empirical counterparts or with the

same quantities computed for other parameter combinations. In particular, in case one chooses a

calibration criterion requesting that the distance between empirical and simulated skew and kurtosis

should be lower than all previously evaluated points, she would obtain the standard calibration prob-

lem of minimizing some loss function over the parameter space. This would mirror exercises like those

proposed in Bianchi et al. (2007); Fabretti (2012) or Grazzini et al. (2017).

Then, the following definition identifies positive and negative calibrations.

Definition 1. A positive calibration is a parameter vector x ∈ I such that model’s output satisfies

the calibration criterion, whereas one gets a negative calibration if the opposite occurs.

Assume that the calibration criterion takes the form of a simple sign test of the skew and the excess

kurtosis. Positive calibrations must show a negative sign on the skew and positive one on the excess

kurtosis. All other combinations of skew and kurtosis are negative calibrations. “Positive” and “neg-

ative” are what we call labels of the points in the parameter space.11 The objective will be then to

find all positive calibrations conditioned on a limited budget B of evaluations.

Remark 1. Positive calibrations may exist in multiple locations of the parameter space, potentially

including those that correspond to economically difficult-to-interpret conditions. ABMs are not de-

signed to mirror every economic scenario, but they must provide reasonable results for those they have

been designed for. Ultimately, one should assume that positive calibrations lie along several regions of

the parameter space and may not sit solely along regions that are contiguous, or connected to a mean-

ingful economic interpretation. In fact, the most reasonable assumption seems to be that there exist

an increasing number of equivalent positive calibrations as the ABM increases in complexity. Finding

these areas can be relevant, from the modeller’s perspective, to evaluate the model, its reliability and

domain of application.

Remark 2. The topology of the ABM’s response can be characterized by a smooth transition between

areas of positive and negative calibrations. Unfortunately, this might also not be the case. Positive

calibrations may exist in several regions of the space without much structure. For example, given a

combination of parameters of a financial market ABM, the estimated kurtosis of a distribution gen-

erated by simulated data may indicate Gaussian returns. This does not guarantee that neighboring

points in the parameter space provide the same evidence. The ABM might exhibits “knife-edge” prop-

erties, where the response can be described as having a discontinuous and clustered topology (see, e.g.,

Gualdi et al., 2015; Lamperti, 2016). One of the purposes of the procedure described below is to avoid

assumptions on the response surface, which might show either smooth or non-smooth, contiguous or

non-contiguous regions.

11We recall that in the machine learning literature supervised learning refers to the problem of making predictions
about the label of some data-point using a training labelled dataset. When the training dataset includes non-labelled
data we face what is called semi-supervised learning problem. The exercise we perform in this paper falls in the latter
category.
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Figure 1: Schematic representation of the proposed procedure to learn a surrogate for an ABM.

3.2 Step-by-step implementation

In the process of finding positive calibrations, it is crucial to drastically reduce the computational

time. To do so, we construct our machine learning surrogate following the procedure represented in

Figure 1 and further detailed below.

First, the surrogate training procedure requires three preliminary decisions:

1. Selection of the surrogate algorithm. The user must choose a machine learning algorithm

to act as a surrogate for the original ABM, taking care that the assumptions made by the

machine learning model do not force unrealistic assumptions on the response generated over the

parameter space.

2. Selection of a fast uniform sampler. The user must select a sampling procedure to draw

samples from the parameters space in order to train the surrogate.

3. Selection of the surrogate performance measure: The user must choose a metric to

evaluate the performance of the surrogate.

Once these three choices have been made, the procedure proceeds with the following steps.

I step. The process begins by first drawing a relatively large “pool” of parameter combinations, where

each combination is a vector containing a value for each parameter, using any standard sampling

routine. In particular, we use quasi-random Sobol sampling (Morokoff and Caflisch, 1994). Such

a sampling strategy belongs to the class of quasi-Monte Carlo methods and it outperforms other

standard approaches, like Monte Carlo and Latin Hypercubes, especially when one has to sample from

distributions with an unknown topology as in our setting. Further, standard design of experiments

are computationally costly in high dimensional spaces and show little or no advantage over random

sampling (Bergstra and Bengio, 2012; Lee et al., 2015). The pool which is constructed at this stage

dictates the ability of the algorithm to learn a good surrogate model. As there is a trade-off between

the good approximation of the parameter space provided by the pool and the speed to obtain it, we

prefer to adopt faster sampler given the high computational cost of running the models.12

12However, it is entirely reasonable to use a computationally expensive sampling procedure to draw the pool. For
example, a large pool of orthogonal Latin hypercube samples can be drawn to populate the pool.

8



(a) (b)

Figure 2: Partitions (left) and decision tree structure (right) for a classification tree model. Source
Loh (2011).

II step. Evaluating the initialization samples consists in running the selected parameter combinations

through the ABM and running the output(s) from the ABM through a selected calibration measure

and (optional) calibration criterion to determine which of these parameter combinations are positive

or negative calibrations.13

These two previous steps constitute the initialization phase of our procedure. The following steps

define the iterative process.

III step. A meta-model is learned over the initial labeled values in order to build the surrogate.14 In

this paper, we approximate a surrogate by building a set (or “ensemble”) of decision trees to fit the

labeled parameter combinations.15 In particular, we rely on XGBoost (Chen and Guestrin, 2016) as our

surrogate model. XGBoost implements gradient boosting in a variety of programming languages and

is freely available for download from the associated GitHub repository.16 Gradient boosting consists

in a machine learning technique for regression and classification problems. In our setting it produces a

statistical model that predicts the label of points in the pool. Such a model is an ensemble of simpler

decision trees (see Remark 3), which are aggregated to improve the overall prediction performance.

XGBoost builds the model in a stage-wise fashion like other boosting methods do, but it generalizes

them by allowing optimization of an arbitrary differentiable loss function. Details about the CARTS

and XGBoost are contained in Appendix A.

Remark 3. Decision trees are designed to efficiently solve classification problems relying on the use

of decision paths, which are a set of conditional statements that result in a binning of the data. In

the construction of a decision tree, the bin is referred to as the “leaf” of the path or one of the

full tree. For example, consider the space spanned by the support of two parameters, X1 and X2,

13Note that as the sample size should contain at least a single positive calibration, we suggest to employ at least 100
samples.

14Note there no single algorithm is the best for all types of data. As a consequence, choosing the surrogate algorithm
depends on the kind of data one is working with (see e.g. Wolpert, 2002)

15The use of decision trees in the analysis of ABMs is not a complete new. See Sridharan and Tesauro (2002) and
Dupouët and Yıldızoğlu (2006) for two examples. For additional details on classification and regression trees (CART),
please see the remark 3 and Appendix A. For an econometric introduction to CART, see Mullainathan and Spiess (2017).

16https://github.com/dmlc/xgboost.
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as illustrated in Figure 2a. Assume that the calibration measure allows to identify three different

behaviours corresponding to the labels of parameter combinations (“1”,“2” and “3”).We now want to

learn a decision tree model that predicts such behaviours given any vector of parameter values provided

as input. One possible decision path leading to the identification of behaviour “2” is: X2 ≤ 0.7 AND

X1 ≤ −1.4. Then, every parameter value satisfying these statements will be predicted as behaviour “2”.

The same will hold for the following decision path: X2 > 0.7 AND X1 < −0.6. The core issue here

is obviously to find the optimal tree structure. If one evaluates all possible parameter combinations

and construct a tree with all possible paths, she could fully characterize the relationship between input

parameters pairs and the ABM behavior. Given that constructing such a tree is prohibitive and one

has typically a limited budget of ABM evaluations, she must select a subset of parameter combinations

to learn a classification model that provides the best representation on a subset of all possible paths.

XGBoost provides an intelligent procedure to generate decision paths over a set of trees, and provide

the relevant advantage of avoiding any assumption about the structure of the response-surface of the

calibration measure. Further, note that in our procedure the classification is simpler than in the

example: the surrogate model is used to predict one or two possible labels as a parameter vector can be

either a positive or negative calibration.

IV step. The surrogate model approximated on the set of evaluated samples is used to predict the

response over the parameter combinations in the pool, i.e. real-valued responses in the case of a

calibration measure and a category in the case of a calibration criterion.

V step. A very small subset of the unlabeled combinations is drawn from the pool and evaluated

in the ABM, labeled according to the application of the calibration criterion and added to the set

of labeled combinations within the pool. Two issues need to be addressed at this stage. First, how

many new points should be sampled and, second, how to select them. In line with the results in

Ross et al. (2011), the total number of additional parameters vectors that are drawn at this stage is

the logarithm of the budget. Concerning new data points selection, the algorithm randomly selects

parameter combinations among those points having positive predictions. The procedure incrementally

increases true positives, while reducing false ones. If there are no new positive predictions in the current

round, new points are added to the set of labeled combinations. In the absence of probabilities that

predict a positive label, we use the so-called uncertainty sampling (Lewis and Gale, 1994). Such

technique relies on the entropy of the distribution of existing labels in order to increase the sampling

frequency of parameter combinations that are difficult to label correctly by the surrogate. In this

way we reduce the discrepancy, in terms of sampling, between the regions that contain a manifold

of interest, which are usually sampled by our algorithm, and those where the surrogate tend to fail,

which are more informative from a learning perspective (Zhu, 2005; Goldberg et al., 2011).

The previous three steps are repeated until the budget of ABM evaluations is reached.17

Remark 4. Standard design of experiments are computationally costly to compute and show little

or no advantage over random sampling (Bergstra and Bengio, 2012; Lee et al., 2015). Alternatively,

iterative sampling approaches from the machine learning literature exploit the information gained from

sample to sample and offer a variety of ways to choose samples over multiple rounds to improve

17Appendix A contains the pseudo-code of the algorithm together with additional technical details. The online sup-
plementary material provides the Python functions that allow the user to replicate the exercises presented in this paper
and the following repository, https://github.com/amirsani/online_surrogate_modeling, contains a working example
and a comparison of our algorithm with kriging meta-modelling.
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sampling performance (Settles, 2010; Cohn et al., 1994).18 Here, we exploit the information gained

through iterative sampling and use it to intelligently direct the selection of new data points. Ross

et al. (2011) provides convergence rates for aggregating samples over multiple rounds without making

any assumption on the distribution that generated the data. As our approach performs the same

iterative aggregation of labeled data over multiple rounds without any assumptions on the underlying

distribution, we can use their result - which suggest to sample log(budget) points - to provide a guideline

on how many parameter combinations to label at each round. Of course, it is entirely reasonable to

use different approaches. The statement is only meant to provide users with a guideline heuristic.

Remark 5. The proposed approach share with iterative Monte Carlo methods (iMC, see Doucet et al.,

2000 for an example) the feature of recursive sampling. In particular it aggregates informative sam-

ples for accurate predictive inference by sampling predicted positive calibrations from a non-stationary

approximation of the distribution of positive and negative calibrations in the parameter space. On the

other side iMC methods, such as the Metropolis Hastings algorithm (Metropolis et al., 1953), itera-

tively and directly sample the distribution at random, traversing along an assumed Markov chain until

enough samples have been collected to converge to the stationary distribution generating the samples

(Chib and Greenberg, 1995). A series of differences emerges. First, the proposed approach does not

assume that a Markov chain underlies the sequence of samples. Second, it does not assume that the

approximated distribution is stationary over rounds, as each additional set of labelled samples changes

the approximation in each round. Third, no statistical assumptions are made on the parameter dis-

tribution. Finally, our approach relies on a pool of unlabelled combinations from the parameter space

as a proxy for the full population; it first predicts the values of unlabelled combinations in the pool

and then samples from the predictions, conditioned on a positive prediction. On the contrary, iMC

methods directly sample and evaluate the samples in each round.

3.3 Surrogate performance and its evaluation

During the surrogate learning stage of our algorithm (step III in Section 3.2), the meta-model is

evaluated and optimized. In practice, this means that XGBoost tries to find the best CART model

for the data it processes in each round. To do so, it needs a performance (or loss) measure to be

maximised (or minimized).

As outlined above the paper considers two settings: a binary outcome setting, where any test that

compares simulated output with real data is considered (e.g. a non-parametric test on distribution

equality); and a real-valued outcome setting, where any quantifiable feature the model might generate

is considered (e.g. difference between growth rates in real and simulated data). In the case of a binary

response, the performance objective is to maximize the standard classification accuracy measure F1

(Fawcett, 2006):

F1 =
2 · true positives

2 · true positives + false positives + false negatives
, (1)

which is bounded between 0 and 1. In the case of a real-valued response, the performance objective

is to minimize the mean squared error (MSE):

MSE =
∑N

i=1(ŷi − yi)2

N
, (2)

18Some examples include uncertainty sampling (Lewis and Gale, 1994), query by committee (Seung et al., 1992; Balcan
et al., 2006), and error minimization (Roy and McCallum, 2001; Timothé and Olivier, 2015).
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where ŷi indicates the surrogate’s prediction, yi corresponds to the true value, and N is the size of

the sample of learning points, i.e. the points in the pool that have been evaluated through the ABM.

The use of the MSE is in line with the loss function employed in recent calibration exercises (see e.g.

Recchioni et al., 2015).

Once the budget has been reached and the surrogate approximated, an out-of-sample set of points

is used to test the performance of our meta-model in finding positive calibrations. In both settings,

we rely on the so-called “True Positive Rate” (TPR, see Fawcett, 2006):

TPR =
number of correctly predicted positives

number of positives in the pool
, (3)

which measures the proportion of calibrations correctly predicted by the surrogate against the number

of true positive calibrations. In practice, the TRP cannot be measured without evaluating all the pos-

sible parameters combinations. However, we decided to present it in our simulated scenarios because

it is intuitive, easy to compute and provides a nice summary statistic to validate the performance of

our surrogate.

3.4 Parameter importance

The algorithm provides an intuitive procedure to assess the importance of each parameter in explaining

the variance of the data by counting the relative number of times a parameter was “split-on” in the

CART ensemble (for details see e.g. Archer and Kimes, 2008; Louppe et al., 2013; Breiman, 2001).

As each tree is constructed according to an optimized splitting of the possible values for a specific

parameter vector, and it is increasingly focusing on difficult-to-predict samples, splits dictate the

relative importance of parameters in discriminating the output conditions of the ABM. Accordingly,

the relative number of splits over a specific parameter provides a quantitative assessment of the

sensitivity of the surrogate to the parameter and the importance of that parameter to the user-

specified conditions. As a consequence, one can rank rank model’s parameters on the basis of their

importance in producing a behavior of the model that satisfies the calibration criterion.

However, the relative feature importance does not represent a sensitivity analysis of the parameters

and does not provide the direction of influence. Indeed, given the non-linear response of ABMs to

changes in parameters, many additional samples would be necessary to approximate the first, second

and total order variation and direction of sensitivities. Given the computational cost of such an

exercise, this is often ignored in the literature and replaced by simulated sensitivities obtained from

a linear kriging model. The result is an approximate sensitivity which could be far from the one. We

then believe that before moving to sensitivity analysis, one must extensively test the performance of

any meta-model in approximating the true ABM. For instance, we compare our procedure with kriging

in Appendix B and our results suggest that our proposed machine learning surrogate is more accurate

in approximating the true model than kriging. We intentionally leave the issue of incorporating

sensitivity analysis in our approach to future research.

4 Application I: The Brock and Hommes model

In their seminal contribution, Brock and Hommes (1998) develop an asset pricing model (referred here

as B&H), where an heterogeneous population of agents trade a generic asset according to different

strategies (fundamentalist, chartists, etc.). In what follow, we first briefly introduce the model (cf.
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Section 4.1). We then report the empirical setting (see Section 4.2) and the results of our machine

learning calibration and exploration exercise (cf. Section 4.3). We recall that the seed of the pseudo-

random number generator is fixed and kept constant across runs of the model over different parameter

vectors.

4.1 The B&H asset pricing model

There is a population of N traders that can invest either in a risk free asset, which is perfectly

elastically supplied at a gross return R = (1 + r) > 1, or in a risky one, which pays an uncertain

dividend y and has a price denoted by p. Wealth dynamics is given by

Wt+1 = RWt + (pt+1 + yt+1 − Rpt)zt, (4)

where pt+1 and yt+1 are random variables and zt is the number of the shares of the risky asset bought

at time t. Specifically, an agent’s wealth at time t+1 equals the sum of previously accumulated wealth

multiplied by its gross return and the market gain obtained in that period, where the latter is given

by the dividend yt+1 plus the capital gain (pt+1 − Rpt) for each share.

Traders are heterogeneous in terms of their expectations about future prices and dividends and

are assumed to be myopic mean-variance maximizers. However, as information about past prices and

dividends is publicly available in the market, agents can apply conditional expected value Et, and

variance Vt. The demand for share zh,t of agents with expectations of type h is computed solving:

max
zh,t

{

Eh,t(Wt+1) −
ν

2
Vh,t(Wt+1)

}

, (5)

which in turns implies

zh,t = Eh,t(pt+1 + yt+1 − Rpt)/(νσ2), (6)

where ν controls for agents’ risk aversion and σ indicates the conditional volatility, assumed to be

equal across traders and constant over time. In case of zero supply of outside shares and different

trader types, the market equilibrium equation can be written as:

Rpt =
∑

nh,tEh,t(pt+1 + yt+1), (7)

where nh,t denotes the share that traders of type h hold at time t. In presence of homogeneous traders,

perfect information and rational expectations, one can derive the no-arbitrage market equilibrium

condition:

Rp∗
t = Et(p∗

t+1 + yt+1), (8)

where the expectation is conditional on all histories of prices and dividends up to time t and where p∗

indicates the fundamental price. In case dividends are independent and identically distributed over

time with constant mean, equation (8) has a unique solution where the fundamental price is constant

and equal to p∗ = E(yt)/(R − 1). In what follows, we will express prices as deviations from the

fundamental price, i.e. xt = pt − p∗
t .

At the beginning of each trading period t = {1, 2, ..., T}, agents form expectations about future

prices and dividends. Agents are heterogeneous in their forecasts. More specifically, investors believe

that, in a heterogeneous world, prices may deviate from the fundamental value by some function fh(·)

depending upon past deviations from the fundamental price. Accordingly, the beliefs about pt+1 and
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yt+1 of agents of type h evolve according to:

Eh,t(pt+1 + yt+1) = Et(p∗
t+1) + fh(xt−1, ..., xt−L). (9)

Many forecasting strategies specifying different trading behaviours and attitudes have been studied in

the economic literature, (see e.g. Banerjee, 1992; Brock and Hommes, 1997; Lux and Marchesi, 2000;

Chiarella et al., 2009). Brock and Hommes (1998) adopt a simple linear representation of beliefs:

fh,t = ghxt−1 + bh, (10)

where gh is the trend component and bh the bias of trader type h towards a particular value of the

price. If bh 6= 0, the agent h can be either a pure trend chaser if gh > 0 (strong trend chaser if g > R),

or a contrarian if g < 0 (strong contrarian if g < R). If gh = 0, the agent of type h does not believe

in any trending movement but is just influenced by the bias. In the special case when both gh and

bh are equal to zero, the agent is a “fundamentalists”, i.e. she believes that prices return to their

fundamental value. Agents can also be fully rational, with frational,t = xt+1. In such a case, they have

perfect foresight but, they must pay a cost C.19

In our application, we use a simple model with only two types of agents, whose behaviours vary

according to the choice of trend components, biases and perfect forecasting costs. Combining equations

(7), (9) and (10), one can derive the following equilibrium condition:

Rxt = n1,tf1,t + n2,tf2,t, (11)

which allows to compute the price of the risky asset (in deviation from the fundamental) at time t.

Traders switch among different strategies according to the their evolving profitability. More specif-

ically, each strategy h is associated with a fitness measure of the form:

Uh,t = (pt + yt − Rpt−1)zh,t − Ch + ωUh,t−1 (12)

where ω ∈ [0, 1] is a weight attributed to past profits. At the beginning of each period, agents reassess

the profitability of their trading strategy with respect to the others. The probability that an agent

choose strategy h is given by:

nh,t =
exp(βUh,t)

∑

h exp(βUh,t)
, (13)

where the parameter β ∈ [0, +∞) captures traders’ intensity of choice. According to equation 13,

successful strategies gain an increasing number of followers. In addition, the algorithm introduces a

certain amount of randomness, as less profitable strategies may still be chosen by traders. In this way,

the model captures imperfect information and agents’ bounded rationality. Moreover, the system can

never be stacked in an equilibrium where all traders adopt the same strategy.

4.2 Experimental design and empirical setting

Despite the model being relatively simple, different contributions have tried to match the statistical

properties of its output with those observed in real financial markets (Boswijk et al., 2007; Recchioni

19In our experiments we allow for the possibility that a positive cost might be by paid also by non-rational traders.
This mirrors the fact that some trader might want to buy additional information, which they might not be able to use
(due e.g. to computational mistakes).
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Table 1: Parameters and explored ranges in the Brock and Hommes model.

Parameter Brief description Theoretical support Explored range

Brock and Hommes Model

β intensity of choice [0; +∞) [0.0; 10.0]
n1 initial share of type 1 traders [0; 1] 0.5
b1 bias of type 1 traders (−∞; +∞) [−2.0; 2.0]
b2 bias of type 2 traders (−∞; +∞) [−2.0; 2.0]
g1 trend component of type 1 traders (−∞; +∞) [−2.0; 2.0]
g2 trend component of type 2 traders (−∞; +∞) [−2.0; 2.0]
C cost of obtaining type 1 forecasts [0; +∞) [0.0; 5.0]
ω weight to past profits [0.0, 1.0] [0.0; 1.0]
σ asset volatility (0; +∞) (0.0; 1.0]
ν attitude towards risk [0; +∞] [0; 100]
r risk-free return (1; +∞) [1.01, 1.1]

TBH number of periods N 500

et al., 2015; Lamperti, 2016; Kukacka and Barunik, 2016). This makes the model an ideal test case

for our surrogate: it is relatively cheap in terms of computational needs, it offers a reasonably large

parameter space and it has been extensively studied in the literature.

There are 12 free parameters (Table 1) whose values are to be determined trough calibration.20

The ranges for parameters’ values have been identified relying on both economic reasoning and pre-

vious experiments on the model. However, their selection is ultimately a user specific decision. Our

procedure allow to deal with large parameter spaces, thus minimizing the constraints face by mod-

ellers. In what follows, we refer to the parameter space spanned by the intervals specified in the last

column of Table 1. Naturally, it can be further expanded or reduced according to the user’s needs and

the available budget.

Let us now consider the conditions identifying positive calibrations. As already discussed above,

any feature of model’s output can be employed to express such conditions. According to Section 3

two types of calibration criteria are considered, giving respectively binary and real-valued outcomes.

In the binary outcome case, we employ a two-sample Kolmogorov-Smirnov (KS) test between the

distribution of logarithmic returns obtained from the numerical simulation of the model and the one

obtained from real stock market data.21 More specifically, we rely on daily adjusted closing prices for

the S&P 500 going from December 09, 2013 to December 07, 2015, for a total of 502 observations,

and we compute the following test statistic:22

DRW ,S = sup
r

|FRW (r) − FS(r)|, (14)

where r indicate logarithmic returns and FRW and FS are the empirical distribution functions of the

real world (RW ) and simulated (S) samples respectively. Then, in a real-valued outcome setting, we

use the p-value of the KS test, P (D > DRW,S), as an expression of model’s fit with the data. In

particular, the higher the p-value of the test, the more difficult to reject the null and the larger the

20We underline that the dimension of the parameter space is in line or even larger that in recent studies on ABM
meta-modelling (see e.g. Salle and Yildizoglu, 2014; Bargigli et al., 2016).

21Let pt and pt−1 be the prices of an asset at two subsequent time steps. The logarithmic return from t − 1 to t is
given by rt = log(pt/pt−1) ≃ (pt − pt−1)/pt−1.

22The data have been obtained from Yahoo Finance: https://finance.yahoo.com/quote/%5EGSPC/history. The test
is passed if the null hypothesis “equality of the distributions” is not rejected at 5% confidence level.
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fit with the data. We also consider an equivalent condition for the binary outcome: predicted labels

above 5% indicate positive calibrations. The choice is made on purpose: using equivalent conditions

allows to compare the binary and real-valued outcome in terms of precision (ability to identify true

calibrations) and computational time (in the real-valued scenario there is more information to be

processed.)

We train the surrogate 100 times over 10 different budgets of 250, 500, 750, 1000, 1250, 1500,

1750, 2000, 2250, 2500 labelled parameter combinations, with a fixed random seed23, and evaluate it

on 100000 unlabelled points. Having a large number of out-of-sample, unlabelled, possibly well-spread

points is fundamental to evaluate the performance of the meta-model. We use a larger evaluation set

than any other meta-modelling contribution we are aware of (see, for instance, Salle and Yildizoglu,

2014; Dosi et al., 2017c; Bargigli et al., 2016).

4.3 Results

In Figure 3, we show the parameter importance results for the Brock and Hommes (B&H) model.

We find that the most relevant parameters to fit the empirical distribution of returns observed in the

SP500 are those characterizing traders’ attitude towards the trend (g1 and g2) and, secondly, their

bias (b1 and b2). This result is in line with recent findings by Recchioni et al. (2015) and Lamperti

(2016) obtained using the same model. Moreover, the intensity of choice parameter (β, cf. Section 4),

which is of crucial importance in the original model developed by Brock and Hommes (1998), does

not appear to be particularly relevant in determining the fit of the model with the data if compared

to other behavioural parameters (at least within the range expressed by Table 1, ).24 Also traders’

risk attitude (α) and the weight associated to past profits (ω) are relatively unimportant to shape the

empirical performance of the model.

Figure 3: Importance of each parameter (feature) in shaping behaviour of the Brock and Hommes
model according to the specified conditions (i.e. equality between distributions of simulated and real
returns). As noted in Section 3.4, this chart demonstrates the relative rank-based importance for each
parameter.

23Note that additional seeds could be used to generate a Monte-Carlo evaluation, as demonstrated in Section 5.4, but
it is also possible to use the block-free Bootstrap estimation procedure proposed in Sani et al. (2015).

24See also Boswijk et al. (2007) where the authors estimate the B&H model on the SP500 and, in many exercises, find
the switching parameter not to be significant.
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Let us now consider the behaviour of the surrogate. As outlined in Section 3.3, we run a series of

exercises where the surrogate is employed to explore the behaviour of the model over the parameter

space and filter out positive calibrations matching the distribution of real stock-market returns. Figure

4 collects the results and show the performance of the surrogate in the two proposed settings (binary

and real-valued outcome) for a variable budget size. Within the binary outcome exercise, the F1-score

is steadily increasing with the size of the training sample and it reaches a peak value of around 0.80

when 2500 points are employed (cf. Figure 4a). In other words, the average between the share of

true positive calibrations and the share of positive calibrations the surrogate correctly predicts is 0.8.

Taken into consideration the upper bound of 1 and various practical applications (e.g. Petrovic et al.,

2011; Cireşan et al., 2013), we consider the former result satisfying. However, such a classification

performance should be evaluated in view of the surrogate’s searching ability, which is reported in Figure

4c and indicates the share of total positive calibration that the surrogate is able to find. Specifically,

we find that around 75% of the positive calibrations present in the large set of out-of-sample points

are found.

Obviously, the surrogate’s performance worsens as the training sample size is reduced. However,

once we move to the real-valued setting, where the surrogate is learnt using a continuous variable

(containing more information about model’s behaviour), its performance is remarkably higher. Indeed,

even when the sample size of the training points is particularly low (500), the True Positive Ratio

(TPR) is steadily around 70%, and it reaches almost 95% (on average) when 2500 parameter vectors

are employed (see Figure 4d).25

Timing results are reported according to the average seconds required for a single compute core to

complete the specific task 100 times. Specifically, these tasks are: building the surrogate (green line,

labeled as âĂĲSurrogateâĂİ), predict labels using the surrogate (blue line, labeled as âĂĲPredic-

tionâĂİ) and evaluate the true label running the ABM and evaluating its output (red line, labeled as

âĂĲABMâĂİ). First, we notice that the increase in performance from classification (see Figure 4e) to

regression (see Figure 4f) requires roughly 3X the modelling time and a nearly equivalent prediction

time. Given such negligible computational costs, our approach facilitates a nearly costless exploration

of the parameter space, delivering good results in terms of F1-score, TPR and MSE. The time sav-

ings in comparison to running the original ABM are substantial. In this exercise over a set of 10000

out-of-sample points, the surrogate is 500X faster on average in prediction. Note also that the learned

surrogate is reusable on any number of out-of-sample parameter combinations, without the need for

additional training. Further, we remark that computational gains are expected to be larger as more

complex and expensive-to-simulate models are used. The next section goes in this direction.

5 Application II: The Islands model

In the “Island” growth model (Fagiolo and Dosi, 2003), a population of heterogeneous firms locally

interact discovering and diffusing new technologies, which ultimately lead to the emergence (or not)

of endogenous growth. After having presented the model (Section 5.1), we describe the empirical

setting (see Section 5.2) and the results of the machine learning calibration and exploration exercises

(cf. Section 5.3). We recall that the seed of the pseudo-random number generator is fixed and kept

25We notice that the observation of the relationship between TRP and budget size might suggest a stopping rule in
determining a reasonable budget size for the model. For example, a rule of thumb like: âĂĲif the marginal performance
gain from increasing the budget size is increasing, then keep enlarging the budget; stop otherwiseâĂİ may be a valuable
option.
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(a) Binary-outcome: F1 Score (b) Real-valued outcome: Mean Squared Error

(c) Binary-outcome: True Positive Rate (d) Real-valued outcome: True Positive Rate

(e) Binary-outcome: Computation Time (seconds) (f) Real-valued outcome: Computation Time (seconds)

Figure 4: Brock and Hommes surrogate modelling performance averaged over a pool of 10000
parametrizations. Black vertical lines indicate 95% confidence intervals on 100 repeated and inde-
pendent experiments. Budget size is on the X-axis. Y-axis in log scale for panels 4e and 4f.

constant across runs of the model over different parameter vectors.
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5.1 The Island growth model

A fixed population of heterogeneous firms (I = 1, 2, ..., N) explore an unknown technological space

(“the sea”), punctuated by islands (indexed by j = 1, 2, ...) representing new technologies. The tech-

nological space is represented by a 2-dimensional, infinite, regular lattice endowed with the Manhattan

metrics d1. The probability that each node (x, y) is an island is equal to p(x, y) = π. There is only

one homogeneous good, which can be “mined” from any island. Each island is characterized by a

productivity coefficient sj = s(x, y) > 0. The production of agent i on island j having coordinates

(xj , yj) is equal to:

Qi,t = s(xj , yj)[mt(xj , Yj)]α−1, (15)

where α ≥ 1 and mt(xj , yj) indicates the total number of miners working on j at time t. The GDP of

the economy is simply obtained summing up the production of each island.

Each agent can choose to be a miner and produce an homogeneous final good in her current island,

to become an explorer and search for new islands (i.e. technologies), or to be an imitator and sail

towards a known island. In each time step, miners can decide to become explorer with probability

ǫ > 0. In that case, the agent leaves the island and “sails” around until another (possibly still unknown)

island is discovered. During the search, explorers are not able to extract any output and randomly

move in the lattice. When a new island (technology) is discovered, its productivity is given by:

sjnew = (1 + W ){[|xjnew | + |yjnew |] + ϕQi + ω} (16)

where W is a Poisson distributed random variable with mean λ > 0, ω is a uniformly distributed

random variable with zero mean and unitary variance, ϕ is a constant between zero and one and,

finally, Qi is the output memory of agent i. Therefore, the initial productivity of a newly discovered

island depends on four factors (see Dosi, 1988): (i) its distance from the origin; (ii) cumulative learning

effects (φ); (iii) a random variable W capturing radical innovations (i.e. changes in technological

paradigms); (iv) a stochastic i.i.d. zero-mean noise controlling for high-probability low-jumps (i.e.

incremental innovations).

Miners can also decide to imitate currently available technologies by taking advantage of informa-

tional spill-overs stemming from more productive islands located in their technological neighbourhoods.

More specifically, agents mining on any colonized island deliver a signal, which is instantaneously

spread in the system. Other agents in the lattice receive the signal with probability:

wt(xj , yj ; x, y) =
mt(xj , yj)

mt

exp{−ρ[|x − xj | + |y − yj |]}, (17)

which depends on the magnitude of technology gap as well as on the physical distance between two

islands (ρ > 0). Agent i chooses the strongest signal and become an imitator sealing to island according

to the shortest possible path. Once the imitated island is reached, the imitator will start mining again.

The model shows that the very possibility of notionally unlimited (albeit unpredictable) techno-

logical opportunities is a necessary condition for the emergence of endogenous exponential growth.

Indeed, self-sustained growth is achieved whenever technological opportunities (captured by both the

density of islands π and the likelihood of radical innovations λ), path-dependency (i.e. the fraction

of idiosyncratic knowledge, ϕ, agents carry over to newly discovered technologies), and spreading in-

tensity in the information diffusion process (ρ), are beyond some minimum thresholds (Fagiolo and

Dosi, 2003). Moreover, the system endogenously generate exponential growth if the trade-off between
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Table 2: Parameters and explored ranges in the Island model.

Parameter Brief description Theoretical support Explored range

Islands Model

ρ degree of locality in the diffusion of knowledge [0, +∞) [0; 10]
λ mean of Poisson r.v. - jumps in technology [0; +∞) 1
α productivity of labour in extraction [0, +∞) [0.8; 2]
ϕ cumulative learning effect [0, 1] [0.0; 1.0]
π probability of finding a new island [0.0, 1.0] [0.0; 1.0]
ǫ willingness to explore [0, 1] [0.0; 1.0]

m0 initial number of agents in each island [2, +∞) 50
TIS number of periods N 1000

exploration and exploitation is solved, i.e. if the ecology of agents find the right balance between

searching for new technologies and mastering the available ones.

5.2 Experimental design and empirical setting

The Island model employs eight input parameters to generate a wide array of growth dynamics. We

report the parameters, their theoretical support and the explored range in Table 2. We kept the

number of firms fixed (and equal to 50) to study what happens to the same economic system, when

the parameters linked to behavioural rules are changed.26

Similarly to section 4.2, we characterize a binary outcome and a real-valued outcome setting. In

the first case, the surrogate is learnt using a binary target variable y taking value 1 if a user-defined

specific set of conditions is satisfied and zero otherwise. More specifically, we define two conditions

characterizing the GDP time series generated by the model. The first condition requires the model

to generate self-sustained pattern of output growth. Given the long-run average growth rate of the

economy (AGR):

AGR =
log(GDPT ) − log(GDP1)

T − 1
, (18)

sustained growth emerges if AGR > 2%.

The second condition aims at capturing the presence of fat tails in the output growth-rate distri-

butions. This empirical regularities, which suggest that deep downturns coexist with mild fluctuations

has been found in both OECD (Fagiolo et al., 2008) and developing countries (Castaldi and Dosi, 2009;

Lamperti and Mattei, 2016). More specifically, we fit a symmetric exponential power distribution (see

Subbotin, 1923; Bottazzi and Secchi, 2006) , whose functional form reads:

f(x) =
1

2ab
1
b Γ(1 + 1

b
)
e− 1

b
| x−µ

a
|b (19)

where a controls for the standard deviation, b for the shape of the distribution and µ represents the

mean. As b gets smaller, the tails become fatter. In particular, when b = 2 the distribution reduces

to a Gaussian one, while for b = 1 the density is Laplacian. We say that the output growth-rate

distribution exhibits fat tails if b ≤ 1. Note that there is a hierarchy in the conditions we have just

defined: only those parametrizations satisfying the first one (AGR > 2%) are retained as candidates

for positive calibrations and further investigated with respect to the second condition. In the real-

26Note that the Island model does not exhibit scale effects: the results generated by the model does not depend on
the number of agents in the system (Fagiolo and Dosi, 2003).

20



valued outcome case, instead, we just focus on shape of growth rates distribution. In particular, we

our target variable is the estimated b of the symmetric power exponential distribution and a positive

calibration is found if b > 1.27 Again, the choice of the condition to be satisfied ensures (partial, in

this case) consistency between the two settings.

We train the surrogate as we did with the B&H model, but given the higher computational com-

plexity of the Island model, we reduce the number of unlabelled points to 10000.28

5.3 Results

As for the Brock and Hommes model, we start our analysis reporting the relative importance for all the

parameters characterizing the Island model (figure 5). We find that all the parameters of the model

linked to production, innovation and imitation appear to be relevant for the emergence of sustained

economic growth.

The surrogate’s performances is presented in Figure 6, where the first column of the plots refers

to the binary outcome setting, while the second one to the real-valued one. The F1-score displays

relatively high values even for low training sample sizes (250 and 500) pointing to a good classification

performance of the surrogate (see Figure 6a). However, it quickly saturates, reaching a plateau

around 0.8. Conversely, in the real-valued setting, the surrogate’s performance keeps increasing with

the training sample size, and it displays remarkably low values of MSE when more than 1000 points

are employed (cf. Figure 6b).

Figure 5: Importance of each parameter (feature) in shaping behaviour of the Islands model according
to the specified conditions (sustained growth and fat tails). As noted in Section 3.4, this chart
demonstrates the relative rank-based importance for each parameter.

In both settings, the searching ability of the surrogate behaves in a similar way: the TRP steadily

increases with the training sample size (cf. Figures 6c and 6d). In absolute terms, the real-valued

setting delivers much better results than the binary one, as for the Brock and Hommes model (section

4.3). In particular, the largest true positive ratio reaches 0.9 for the real-valued case and 0.8 for

27In the real-valued outcome setting our exercise is comparable to those performed in Dosi et al. (2017c), where the
same distribution and parameters are used in a model of industrial dynamics.

28This choice is motivated by the fact that we need to run the model on the out-of-sample points in order to evaluate
the surrogate.
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(a) Binary-outcome: F1 Score (b) Real-valued outcome: Mean Squared Error

(c) Binary-outcome: True Positive Rate (d) Real-valued outcome: True Positive Rate

(e) Binary-outcome: Computation Time (seconds) (f) Real-valued outcome: Computation Time (seconds)

Figure 6: Islands surrogate modelling performance versus budget size averaged over a pool of 10000
parametrizations. Black vertical lines indicate 95% confidence intervals on 100 repeated and indepen-
dent experiments. Budget size is on the X-axis. Y-axis in log scale for panels 6e and 6f.

the binary one. Therefore, by training the surrogate on 2500 points we are able to (i) find 90% of

true positive calibrations (Figure 6d) and predict the thickness of the associated distribution of growth

rates incurring in a mean squared error of less than 0.08 (Figure 6b) using a continuous target variable
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Surrogate Algorithm True Negatives False Positives False Negatives True Positives Precision

Logit 62 22 61 355 94.17%
XGBoost 178 17 0 305 94.72%
XGBoost (scaled) 193 2 0 305 99.35%

Table 3: Surrogate modelling performance using the learning procedure presented in this paper.

and, (ii) find 80% of the true positives (panel 6c) and correctly classifying around the 80% of them

(panel 6a) using a binary target variable.

Given the satisfactory explanatory performance of the surrogate, do we also achieve considerable

improvements in the computational time required to perform such exploration exercises? Figures 6e

and 6f provides a positive answer. Indeed, the surrogate is 3750 times faster than the fully-fledge

Island agent-based model. Moreover, the increase in speed is considerably larger than in the Brock

and Hommes model. This confirms our intuition on the increasing usefulness of our surrogate modeling

approach when the computational cost of the ABM under study is higher. Such a result is a desirable

property for real applications, where the complexity of the underlying ABM could even prevent the

exploration of the parameter space.

5.4 Robustness analysis

We now assess the robustness of our training procedure with respect to different surrogate models.

More specifically, we compare the XGBoost surrogate employed in the previous analysis with the

simpler and more widely used Logit one. Our comparison exercise is performed in a fully stochastic

version of the Island agent-based model, where an additional Monte Carlo (MC) is carried out on the

seed parameter governing the stochastic terms of the model. As a sneak preview, we can anticipate

that our procedure is pretty robust to different surrogate methods.

We focus on a binary outcome setting (the one delivering worse performances) and we employ

the milder condition that the average growth rate must be positive and sustained, i.e. AGR > 0.5%.

In this way, the results can be compared to those obtained in the original exercise in Fagiolo and

Dosi (2003). We set a budget of 500 evaluations of the “true” Islands ABM and run a Monte Carlo

exercise of size 100 per parameter combination to generate an MC average of the GDP growth rate

that serves as our output variable. Note that this exercise is more complete that the one performed

in the previous sections: here, we develop a surrogate model that learns the relationship between

parameters and the MC average over their ABM evaluations. This requires many more evaluations

of the parameter combinations in the true ABM to converge to the statistic required for the label. In

our proposed procedure, an MC average growth rate below 0.5% is labelled “false”, while AGR above

0.5% are labeled “true”. The aim is to learn a surrogate model that accurately classifies parameter

combinations as positive or negative calibrations.

We demonstrate the performance of our machine learning approach using two different surrogates:

the nonlinear XGBoost and faster, linear, Logit. The former, employed in the analyses carried out in

the previous sections, benefits from increased accuracy in exchange for greater computational costs.

The latter is a standard statistical model employed regularly for this type of regression analysis. The

performance of these alternative surrogates will be evaluated according to the F1-score while training

the surrogate, with the final objective of maximizing the precision of the resulting models, i.e. the

number of true evaluations which are accurately predicted as positive before they are evaluated. This

is a key point to this exercise because real-world use of the proposed approach does not allow us to
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evaluate all the points in our sample space. Real-world evaluation only provides labels for points that

are predicted positive and the resulting performance can only be measured with regard to the true

and false positives, with a preference to maximize the former.

Using the algorithm described in Section 3, the exercise begins by sampling 1000000 points at

random from the Islands parameter space. Two separate instances of the algorithm are compared.

One using the nonlinear XGBoost algorithm and another using the standard Logit algorithm. These

points are sampled using a standard Sobol sampler. A fixed budget of ABM evaluations is set to 500.

This is the maximum number of evaluations we allow before stopping the algorithm. Both algorithms

are initialized with 35 labelled parameters, which is the number of random evaluations needed before

a single positive calibration was discovered. Remember that the algorithm must be initialised with at

least a single positive calibration. Next, a surrogate is fit to these 35 labeled points in this first round

and the resulting surrogate is used to predict the label probability for the 1000000 − 35 remaining

unlabeled points. The procedure then samples log(500) combinations at random from the predicted

positive combinations. These log(500) combinations are then evaluated in the ABM and added to the

set of labeled points, resulting in 35 + log(500) labeled points after the first round. This repeats until

we achieve 500 labeled combinations from the pool of 1000000 originally unlabelled combinations.

The proposed procedure results in a comparable precision of 94.17% and 94.72% between Logit and

XGBoost, respectively. The negligible difference between the precision of the two surrogates suggests

that out training procedure provide satisfying results even when the fast and standard Logit statistical

model is employed. However, when the XGBoost predicted probabilities are corrected through the

Platt scaling procedure,29 its precision rises to 99.35%. Moreover, scaled XGBoost performs is con-

siderably superior to Logit with regard to true vs. false positives. Considering its higher computation

costs and need for hyperparameter optimization in using the more precise XGBoost surrogate, users

might prefer the faster Logit surrogate when false positives are cheap. Nevertheless, our proposed

surrogate modelling procedure works well in both the Logit and XGBoost cases.

6 Discussion and concluding remarks

In this paper, we have proposed a novel approach to the calibration and parameter space exploration

of agent-based models, which combines the use of supervised machine learning and intelligent sampling

to construct a cheap surrogate meta-model. To the best of our knowledge, this is the first attempt to

exploit machine learning techniques for calibration and exploration in an agent-based framework.

The results obtained with two agent-based models — the Brock and Hommes (1998) asset pricing

model and the “Islands” endogenous growth model (Fagiolo and Dosi, 2003) — show that our machine-

learning surrogate approach provides an accurate proxy of the original model and dramatically reduce

the computation time necessary to parameter space exploration and calibration.30 However, the main

29Unlike Logit, which produces accurate probabilities for each of the class labels, probabilities produced by non-
parametric algorithms such as XGBoost require scaling. Here, we use Platt Scaling to correct the probabilities produced
with XGBoost. Platt-scaling is a way of transforming the outputs of a classification model into a probability distribution
over classes. This means that beyond the simple classification, Platt scaling adds a measure of uncertainty over the
classification itself. In particular, it works by simply fitting a logit regression to a classifier’s score. For more information,
see Platt et al. (1999).

30In the current work, we also focus on examples dealing with relatively few parameters. This choice is motivated by
illustrative reasons and the willingness to use well established models whose code is easily replicable. Further, the results
from this paper were produced using a relatively common laptop computer with 16 gigabytes of memory and a 2.4Ghz
Intel i7 5500 CPU. The application to a large scale model is currently under development. However, the computational
parsimony of the algorithm used to construct our surrogates strongly points to the ability to deal with much richer
parameter spaces.
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advantage of our methodology remains in its practical usefulness. Indeed, the surrogate can be learnt

at virtually zero computational costs (for research applications) and requires a trivial amount of time

to predict areas of the parameter space the modeller should focus on with reasonably good results.

Furthermore, the usual trade-off between the quantity of information that needs to be processed (com-

putational costs) and the surrogate performance improvements is, in practice, absent. Ultimately, the

surrogate prediction exercises proposed in this paper take less than a minute to complete, with the

majority of computation coming from the time to assess the budget of true ABM model evaluations.

This means, in practical terms, that the modeller can use an arbitrarily large set of parameter combi-

nations and a relatively small training sample to build the surrogate at almost no cost and leverage the

resulting meta-model to gain an insight on the dynamics of the parameter space for further exploration

using the original ABM.

Relevantly, a rule-of-thumb can be derived from our exercises to determine the budget of evalua-

tions for a given model. To do so, a performance measure (TPR in our case) and a set of parametriza-

tions from the pool to initialize the surrogate can be selected, making sure such set contains at least

one positive calibration. Then the procedure described in Section 3.2 should be repeated adding

log(pool size) new points at each iteration. The performance v.s. evaluations curve (e.g. Figures 4c

and 4d) should be evaluated. Whenever the slope of the curve start to decrease, the user should stop

adding new points. The total number of evaluations performed gives, in our view, a reasonable proxy

for the budget.

Finally, an additional relevant result emerges from the exercises investigated in this paper. The

surrogate is much more effective in reducing the relative cost of exploring the properties of the model

over the parameter space for the “Islands” model, which is more computationally intensive than the

Brock and Hommes. This suggests that the adoption of surrogate meta-modelling allows to achieve

increasing computational gains as the complexity of the underlying model increases.

We believe that our approach offers some advantages over kriging, which has been recently applied

to ABMs (Salle and Yildizoglu, 2014; Dosi et al., 2017c, 2016, 2017b; Bargigli et al., 2016). First,

our machine learning surrogate works also with large scale agent-based models with more than 30

parameters without introducing additional procedures to select, a priori, the subset of parameters to

study, while leaving the rest constant. Second, our approach performs better in out-of-sample testing:

the typical Kriging-based meta-model is tested on 10-20 points within an extremely large space, while

our surrogate is tested on samples with size 10000 in the first set of exercises and 1000000 points in the

last exercise. Finally, as it does not rely on any Gaussianity assumption, the surrogate could provide

a better approximation of the rugged, unsmooth surface commonly reported in agent-based models

(see e.g. Gilli and Winker, 2003; Fabretti, 2012; Lamperti, 2016). The results contained in Appendix

B appear indeed to show that with respect to kriging, our machine learning surrogate exhibits higher

precision in predicting the response surface of the Island model and, additionally, it performs the task

more efficiently in terms of computational time.

This work is only the first step towards a fully-fledge assessment of the properties of agent-based

models employing machine-learning techniques. Such developments are especially important for com-

plex macroeconomic agent-based models (see e.g. Dosi et al., 2010, 2013, 2015, 2017a; Popoyan et al.,

2017b) as they could allow the development of a standardized and robust procedure for model cali-

bration and validation, thus closing the existing gap with Dynamics Stochastic General Equilibrium

models (see Fagiolo and Roventini, 2017, for a critical comparison of ABM and DSGE models). Con-

sistently, in our future research, we plan to apply our methodology to models of larger scale than
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those used in this paper and, additionally, to couple the use of the algorithm of Section 3 with some

standard calibration approaches (e.g. Method of Simulated Moments) to construct the calibration

measure and the calibration criterion. Further, we are currently extending our approach to perform a

complete global sensitivity analysis of agent-based models. Finally, a user-friendly Python surrogate

modelling library will also be released for general use.
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Appendices

A Surrogate Modeling Methodology: Technical Details

Set:

• Evaluation budget B

• Agent Based Model ABM, characterized by the d-dimensional parameter vector X ∈ R
d

• Surrogate Modeling Algorithm A, characterized by parameters θa

Initialize:

• Draw a large pool of parameter combinations X̄ uniformly at random.

• Draw a small subset X uniformly at random from X̄.

While |Y | < B, repeat

1. For X in X:

• Evaluate Y = ABM(X)

• Add {X, Y } to the set of evaluated samples Z

• Remove X from X̄

2. Given the evaluated set Z, find optimized surrogate parameters Θ̂ = HPO(A(Θ, Z))b

3. Given A(Θ̂), predict Ŷ

4. Select a small subset X from X̄ conditioned on Ŷ

end while

aWe refer to these as “hyper” parameters because they are parameters of the surrogate model and not the ABM . Therefore
they are of indirect concern and change according to the choice of surrogate modeling algorithm.

bHere, we automatically set parameters (“Hyper-parameter Optimization”) of the machine learning algorithm using the
Nelder-Mead downhill simplex method, a standard numerical optimization approach for minimizing or maximizing a high-
dimensional function (Nelder and Mead, 1965).

Figure 7: Pseudo-code for our surrogate model training algorithm.

At each update of the surrogate model, the learning objective is defined by minimizing the following

objective,

Obj(Θ) = L(Θ) + Ω(Θ),

where L and Ω are the selected loss and regularization functions, respectively, over machine learning

parameters Θ. Recall that we set L to the F1 score for a binary response and the MSE for a real-

valued response. The selected surrogate algorithm in this paper is the XGBoost algorithm (Chen and

Guestrin, 2016), which is an implementation of extreme gradient boosted decision trees. 31 Recall that

each node in the tree splits a specific feature according to a a simple ≥ or < condition to segregate

the parameter vector along the path from the top “root” node until it reaches the final “leaf” node,

where the result of the path is a leaf that denotes the predicted response of the parameter vector. An

example of a single decision tree can be seen in Figure 8. XGBoost constructs a set of these trees

over multiple rounds with the aim of optimizing the above objective function. The complexity of

the surrogate model is controlled by the regularization term, which prevents “overfitting” the set of

31For more information on Boosting, see Freund (1990); Freund et al. (1996); for more information on CART trees,
see Breiman et al. (1984).
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in-sample parameter combinations. In the case of XGBoost, Ω is a parameterized mixture between

L1 and L2 regularizers.

In particular, the surrogate predicts the true response yi as

ŷi =
K

∑

k=1

fk(xi), fk ∈ F ,

where K is the number of CART trees in the ensemble and F is the functional space of all possible

CART trees. Given that CART trees are functions, the loss gradient resulting from an ensemble or

set of CART trees can be used to optimize any selected target objective.

Figure 8: An example classification and regression tree (CART) used for regression. Features are
labelled f0, . . . , f4 and nodes specify cutoff thresholds that designate the path a new parameter vector
takes from the top (root) node to the final (leaf) node, which denotes the predicted calibration value.
In the process of “boosting” CART trees to produce an ensemble, each subsequent tree increasingly
focuses on the higher weighted samples. This generally results in smaller “specialized” trees that stick
on samples that were most difficult to classify.

In the case of XGBoost, “boosting” is used to magnify the importance of difficult-to-learn pa-

rameter combinations. Note that the algorithm only uses evaluated parameter combinations, so the
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response is available for all the parameter combinations used to approximate the response. Recall

that the algorithm splits the evaluated parameter combinations into an in-sample and out-of-sample

set and only approximates the response using the in-sample set. The out-of-sample set is then used to

evaluate the performance of the algorithm according to the selected objective. Boosting uses weights

to bias hard to approximate parameter combinations in this set of in-sample combinations according

to their difficulty over previously learned decision trees in the set. Note that the algorithm iteratively

constructs decision trees and each subsequent tree only approximates the performance based on the

biased weighting over parameter combinations. This translates to a different loss over the parameter

combinations in each of the rounds and tree “boosting” in the direction of the gradient that minimizes

the total loss. Accordingly, the CART trees increasingly specialize to handle the subset of parameter

combinations that were particularly difficult to approximate (see Freund, 1990; Freund et al., 1996;

Chen and Guestrin, 2016, for more details see).

The iterative construction of the ensemble begins from a first CART prediction,

ŷ
(0)
i = 0,

with subsequent trees,

ŷ
(1)
i = f1(xi)

= ŷ
(0)
i + f1(xi)

ŷ
(2)
i = f1(xi) + f2(xi) = ŷ

(1)
i + f2(xi)

...

ŷ
(t)
i =

t
∑

k=1

fk(xi)

= ŷ
(t−1)
i + ft(xi).

Once CART t is completed, its prediction ŷ
(t)
i , are “boosted” by reweighting the set of evaluated

parameter combinations xi, according to the aggregate prediction performance of the ensemble of

trees constructed up to the current round. Given this ensemble at t − 1, a new CART is added

according to its ability to minimize,

Obj(t) =
n

∑

i=1

l(yi, ŷ
(t)
i ) +

t
∑

i=1

Ω(fi)

=
n

∑

i=1

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft) + constant.

Further, as each tree is added in a sequence of trees that depend on the aggregate performance over

previously constructed trees, the nodes of subsequent trees increasingly focus on the difficult samples.

The result is a set of trees that grows in predictive power by exploiting the knowledge of errors in

previous rounds.
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(a) Budget = 50 ABM evaluations

(b) Budget = 500 ABM evaluations

Figure 9: An out-of-sample comparison of the Mean Squared Error (MSE, on the X-axis) performance
in the real-valued outcome setting over 100 independently drawn out-of-sample sets of 100 parameter
combinations between the proposed approach and Kriging on the Islands Model. The methods are
compared using 50 ABM evaluations in the upper plot and 500 ABM evaluations in the lower plot.

B Kriging vs. Surrogate Meta-Modeling Methodology: Budgeted Performance

Comparison

Here we report the results of a comparison exercise we ran to test our procedure against kriging in

providing a good meta-model for the Islands ABM within the real-valued outcome setting.32 The plots

in Figure 9 compare the distribution of mean-squared errors of kriging and our procedure (labelled

as XGBoost) over 100 random out-of-sample sets of 100 parameter combinations selected using Sobol

Sampling from the Parameters in Table 2, with the slight adjustment that the number of periods

TIS = 100. We find that the XGBoost surrogate learned though our approach appear to outperform

kriging with regard to the out-of-sample mean squared error. Further, the performance appears to be

consistently superior shifting from a small budget of 50 evaluation to a larger one of 500.

Ignoring the computation cost of evaluating the ABM, the run time for our surrogate proposed

approach scales on the order of O(|X|), where X is the total number of parameters.33 Instead, Kriging

32Kriging has been implemented using the Python-based toolbox PyKriging. PyKriging is available at https://

github.com/capaulson/pyKriging. The full code to replicate the exercise in this Appendix can be found at https:

//github.com/amirsani/online_surrogate_modeling.
33Chen and Guestrin (2016) show that a single evaluation of the XGBoost algorithm requires O(Kd|X|), where

K ≪ |X| is the total number of trees, d ≪ |X| is the maximum depth of all the trees and |X| is the total number of data

points. Note also that the algorithm is run over T =
⌈

B
log(B)

⌉

≪ |X| iterations, so |X| is still the dominating term.
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is expected to scale on the order of O(|X|3) for each point in X as the inverse and determinant of

the selected kernel needs to be computed along with the derivatives of the log likelihood (Issaks and

Srivsatava, 1989; Rasmussen and Williams, 2006). As the number of parameters (|X|) increases, and

ignoring the performance advantage of using a non-linear surrogate, the cost of adopting a kriging

meta-model is expected to become prohibitive when compared to XGBoost.
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