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Abstract

This study investigates the effects of a monetary policy shock on real output

and prices, by means of a novel distribution-free nonrecursive identification

scheme for structural vector autoregressions. Structural shocks are assumed

to be mutually independent. The identification procedure is agnostic in Uh-

lig [2005]’s sense, since the response of output to a monetary shock is not

restricted. Moreover, assuming mutual independence of the shocks allows

us to impose no additional constraints derived from economic theory.
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1 Economic Motivation

Our study is aimed at answering two questions. Does a contractionary monetary

policy reduce the real gross domestic product? Does a contractionary monetary

policy reduce prices?

We answer the two questions above within the framework of Vector AutoRegres-

sions (VARs). Sims [1980] introduces VARs by loosening some of the theoret-

ical economic assumptions constraining the simultaneous equation models, and

suggests a first “structural” version of vector autoregressions to show that, in the

United States, an exogenous increase in the money stock translates into a tempo-

rary increase of the real gross national product and into a permanent increase in

prices (for a one standard deviation shock, prices increase for about two years). A

deeper reflection on the coexistence of supply and demand elements in the money

stock brings Sims [1986] to argue that, after an unpredicted increase in Treasury-

Bill rates, the real gross national product would decrease, while the response of

prices would first be positive (up to around three years) and then negative.

The latter result is stylized by Sims [1992] [cfr. also Eichenbaum, 1992] as the

“price puzzle”: positive interest rate innovations, interpretable as contractionary

monetary policy shocks, seem to generate an increase in the general level of prices.

“Policy authorities might know that inflationary pressure is about to arrive”, Sims

[1992, p. 988] suggests, and the price puzzle could thus result from an endogene-

ity in monetary policy which escapes the chronological order suggested by the

observable data. On the other hand, Sims [1992] shows that commodity prices

immediately decrease following the contractionary policy (one of the reasons why

the subsequent studies have often included commodity prices in the macroeco-

nomic datasets, see also the comments by Christiano et al., 1999, on this issue).

Starting with the article by Bernanke and Blinder [1992], exogenous shocks to

the Federal funds rate are labelled as unanticipated changes in monetary policy,

or monetary policy shocks. Using monthly data, Bernanke and Gertler [1995] and

Bernanke and Mihov [1998] confirm the results of the previous literature, although

with a changed time frame: following a contractionary monetary policy (an exoge-

nous increase in the Federal funds rate), the response of the real gross domestic

product (GDP) becomes negative within four months, while the response of the

GDP deflator becomes negative after about one year of being positive.

Uhlig [2005] argues that the existing literature, including the works we have men-
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tioned above, adopts identifying assumptions which look reasonable a priori, based

on economic theory, but less reasonable ex post, because they lead to puzzling

results. Moreover, the attempts made in the literature to attain more credible re-

sults, by adopting different economic assumptions, often narrow down the range

of possible answers to the question of interest, about the impact of monetary policy

shocks on GDP, by mechanisms which are not always explicit. As a complement

to the existing literature, it would thus be desirable “to make the a priori theoriz-

ing explicit (and use as little of it as possible), while at the same time leaving the

question of interest open” [Uhlig, 2005, p. 384]. A new identification procedure is

then suggested, under the assumption that a contractionary monetary policy shock

does not lead to increases in prices, nor to increases in nonborrowed reserves, nor

to decreases in the federal funds rate, for a certain period following the shock.

The procedure is called “agnostic” because the key question, about the effects of

monetary policy on output, is left “agnostically open by design of the identifica-

tion procedure: the data will decide” [Uhlig, 2005, p. 384]. Results show that,

following a contractionary monetary policy shock, prices fall (slowly in terms of

the GDP price deflator, quickly in terms of the commodity price index). The real

effects are ambiguous, with a higher probability of the real GDP increasing instead

of decreasing.

Arias et al. [2015] have recently criticized the restrictions imposed by Uhlig [2005],

while endorsing his agnostic identification approach. Instead of constraining the

responses to the monetary policy exogenous shock, they suggest to identify the

structural shocks by imposing restrictions on the systematic (endogenous) com-

ponent of monetary policy. Motivated by Christiano et al. [1996], their baseline

identification scheme assumes that the Federal Funds rate only reacts contempo-

raneously to output and prices, and the contemporaneous reaction is nonnegative

(other identification schemes are also proposed, still based on zero and sign re-

strictions on the systematic component of monetary policy). Results show that a

contractionary monetary policy leads to a persistent decline in output and prices.

We follow the agnostic approach of Uhlig [2005]: we want to make theoretical

assumptions whose constraint on the answer to the key question, about the im-

pact of monetary policy shocks on GDP, is as small as possible, and as explicit as

possible. Like Arias et al. [2015], we want our theoretical assumptions not to ex-

clude positive effects of contractionary monetary policies on prices. Our intuition

for identification is: all the works cited above assume orthogonality of structural

shocks, but the economic reasons behind orthogonality would also support mutual
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independence of the structural shocks. Since independence is a stronger assump-

tion than orthogonality, identification of the structural vector autoregression may

be freed from other theory-based constraints. Moneta et al. [2013] have recently

shown the possibilities offered by independent component analysis, and in par-

ticular by the algorithms in Hyvärinen et al. [2010], for analyzing the effects of

monetary policy. We suggest a simplification of their identification procedure,

and apply it on the same data used by Uhlig [2005] and Arias et al. [2015].

2 Model

Our model is defined by the following four assumptions:

(Assumption 1) Each observable variable is a random variable, whose realiza-

tion at each time period depends only and linearly on the previous realizations of

the same variable, on the previous realizations of all the other observable vari-

ables, and on unpredictable mutually independent random shocks which we call

“structural shocks” (each observable variable may be hit by the structural shocks

directly, or contemporaneously through other observable variables);

(Assumption 2) The coefficients describing the linear dependencies, among the

observable variables as well as between the observable variables and the unpre-

dictable random shocks, are constant over time;

(Assumption 3) At each time period, the same number of structural shocks im-

pact the observable variables; each of the structural shocks is drawn according to

a probability distribution which is constant over time; each drawing is independent

from previous drawings;

(Assumption 4) No more than one structural shock is drawn from a Gaussian prob-

ability distribution;

(Assumption 5) The number of structural shocks is equal to the number of ob-

servable variables.

The first part of Assumption 1 and Assumption 2 place our model within the stan-

dard framework of vector autoregressions: the current realization of any observed
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variable may influence the future realization of all variables. In notation:

xt = D1xt−1 +D2xt−2 +⋯ +Dℎxt−ℎ + ut , (1)

where xt is the vector of realizations at time t of the observable variables; ℎ is the

maximum lag of the vector autoregression; D1, D2 …Dℎ are the parameters de-

scribing the relations between past and current values of the observable variables;

ut is the vector of residuals at time t i.e. the difference between the observed xt

and the value of xt predicted at time t − 1.

The second part of Assumption 1 implies that the residuals in (1) are linear com-

binations of mutually independent random shocks:

ut = A"t , (2)

where "t is the vector containing the realizations at time t of the random mutually

independent shocks.

The mutually independent shocks " are called “structural”, in the broad sense of

“connected to a claim of usefulness in the prediction of the effects of actions”

(Sims, 1986, p. 4, footnote 2). Indeed, by reconducting the reduced-form residu-

als to a set of independent shocks, we want to disentangle the independent sources

of variation in the system. Since the introduction of vector autoregressions, resid-

ual orthogonalization has been a way to see “the distinct patterns of movement the

system may display” (Sims, 1980, p. 21). We think that the arguments usually

put forward to justify the orthogonality of structural shocks are, in many contexts,

consistent with the stronger assumption of independence of structural shocks. We

will use this stronger assumption for identification.

Assumption 3 states that the structural shocks are serially independent and identi-

cally distributed, and allows us to infer more easily the shock probability distribu-

tions from the observable data.

Assumption 4 is made only in order to apply Independent Component Analysis,

which will be described in the next section; Assumption 5 is made only for sim-

plicity and to facilitate comparisons with other autoregressive models. We do not

have a motivation rooted in economic theory for choosing a particular number of

random shocks driving the economic system, nor are there statistical constraints

which would otherwise prevent our model estimation (in the last paragraph of Sec-

tion 4, we give a hint on how Assumption 5 could be relaxed).
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3 Estimation

First, each observable variable is regressed, by ordinary least squares, on its own

past values and on the past values of all the other observable variables (one sepa-

rate regression for each observed variable). In this way, we obtain an estimate of

the D matrices in (1), and, for each time t, of the residuals ut. The estimates ût are

the differences between observed and predicted values of xt. Roughly speaking,

the regressions are used to wash away the effect of the past on xt, so that our anal-

ysis may focus on the innovations of xt.

Independent component analysis is then applied on the matrix Û having as columns

all the vectors ût obtained as residuals for each time t. Indeed, following the no-

tation of (2), Assumption 1 implies that, for any t, ût derives from a vector of

independent “structural” shocks "̂t, linearly combined according to a mixing ma-

trix A which is constant over time. If we denote by ℇ the matrix having as columns

all the structural shocks "̂t which impact the system at each time t, then the inde-

pendent component analysis can be defined as the search for the unmixing matrix

W which, multiplied by U , results in rows of ℇ “as independent as possible”:

WU = ℇ , (3)

(W is the inverse of the mixing matrix A defined in the previous section).

Following Comon [1994], we define “as independent as possible” the structural

shocks for which the distribution of the product of marginal probabilities diverges

the least from the joint distribution, where divergence is measured by the “mean in-

formation for discrimination” (Kullback and Leibler, 1951, p. 80). In our context,

assuming that the system dynamics is driven by n mutually independent shocks (n

being also the number of observable variables), the goal of our structural analy-

sis is finding the n linear combinations "1, "2,… , "n of the reduced-form residuals

u1, u2,… , un such that the following Kullback-Leibler divergence is minimized:

∫
ℇn

⋯∫
ℇ2
∫
ℇ1

p("1, "2,… , "n) log
p("1, "2,… , "n)

p("1)p("2)… p("n)
d"1 d"2 … d"n , (4)

where ℇ1,ℇ2,… ,ℇn indicate the support of the marginal distributions of respec-

tively "1, "2,… , "n.

The Kullback-Leibler divergence of the distribution of the product of marginal

probabilities from the joint probability distribution, represented in (4), is often

called “mutual information” (see, e.g., Fraser and Swinney, 1986, p. 1137). Our
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search for minimum dependence among structural shocks can thus be seen as a

search for shocks having minimum mutual information.1

Comon [1994, pp. 295-296] has shown that the divergence in (4) can be mini-

mized by maximizing the negentropy of the marginal distributions of respectively

"1, "2,… , "n, under the assumptions that "1, "2,… , "n are uncorrelated and at most

one of them is Gaussian. Negentropy is defined as the result of a particular nor-

malization of differential entropy: while the differential entropy of a random shock

"i is defined as

H("i) = −∫
ℇi

p("i) log p("i)d"i , (5)

the negentropy of "i is defined as the opposite of the difference between H("i) and

the differential entropy of a Gaussian random variable having same variance as "i.

The negentropy of a probability distribution can thus be interpreted as a distance

from Gaussianity.

Hyvärinen [1999] has suggested an efficient algorithm, named “FastICA”, to find

the directions in which negentropy is maximized. Given that the estimates of

the FastICA algorithm may change according to its initialization, Himberg and

Hyvärinen [2003] have built the “Icasso” software package to obtain more robust

estimates, by averaging FastICA results obtained under different initializations.

The Icasso package has a consolidated reputation within the neuroscience research

community (see e.g. Himberg et al., 2004, and Corradi-Dell’Acqua et al., 2016).

We will feed Icasso with the residuals u1, u2,… , un of the reduced-form VAR es-

timation, in order to retrieve the structural shocks "1, "2,… , "n.
2

1For an overview of the possible contributions of information theory to econometrics, see the

special issue introduced by Golan [2002].
2We use: version 1.22 of Icasso,

downloaded from http://research.ics.aalto.fi/ica/icasso/;

version 2.5 of FastICA,

downloaded from http://research.ics.aalto.fi/ica/fastica/;

release R2015b of MATLAB,

institutionally licensed (http://www.mathworks.com/products/matlab/).

The additional MATLAB code written for this study is available at www.capasso.info .
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4 Methodological Novelty

Moneta et al. [2013] have recently highlighted the possibilities offered by Inde-

pendent Component Analysis in both micro- and macro-economic contexts. In

particular, they have shown that the approach by Hyvärinen et al. [2010], who

model the residuals of a reduced-form VAR estimation according to the “Linear

Non-Gaussian Acyclic Model” (LiNGAM) by Shimizu et al. [2006], can be fruit-

ful when there is no consensus on the economic theories to use for identification.

While our study also applies independent component analysis to VAR residuals,

there is one main feature in the LiNGAM approach that we want to jettison. The

LiNGAM would assume a recursive contemporaneous causal structure among the

observed variables (“acyclicality” assumption), thus forcing the unmixing matrix,

named W in our equation 3, to be triangular (see Algorithm C at page 2009 of

Shimizu et al., 2006, and step 6 of the algorithm at page 715 of Moneta et al.,

2013).

In the previous literature, recursiveness has been a usual assumption when struc-

tural VARs are identified by means of short-run restrictions. Starting with Sims

[1980, p. 21], economists have often imposed particular acyclic schemes to the

contemporaneous relations among observed variables, chosen on the basis of the-

oretical economic reflections. Stock and Watson [2001, p. 112] have warned

that “[r]arely does it add value to repackage a recursive VAR and sell it as struc-

tural”, and that a deeper inspection on previous VAR analyses often reveals flaws

in the economic theories behind particular recursive schemes, or behind recursive-

ness in general. The graph-theoretic approach to VAR identification proposed by

Bessler and Lee [2002], Demiralp and Hoover [2003], and Moneta [2008], like the

LiNGAM approach by Hyvärinen et al. [2010] and Moneta et al. [2013], avoids

the a priori choice of a particular recursive scheme, and suggests a procedure to

select the most plausible causal structure among the contemporaneous variables

according to the data, where the contemporaneous causal structure is assumed to

be represented as a directed acyclic graph. This is equivalent to say that there exists

a recursive causal scheme (of which we do not know the order) that constitutes the

propagation mechanism of the shocks. Moreover, the structural shocks are asso-

ciated one-to-one to the observable variables: at each time period, each structural

shock is assumed to impact one particular observable variable, and instantaneously

propagate throughout the system because of the causal relations among the observ-

able variables.
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Instead, we are closer in spirit to the view of Blanchard and Quah [1989], and

in general of VAR modellers who consider long-run identification schemes. Blan-

chard and Quah [1989] assume that two unobservable random shocks, respectively

“demand” and “supply”, drive the dynamics of the observable variables “output”

and “unemployment”. Both demand and supply shocks affect contemporaneously

both output and unemployment, and it would be difficult, at least at yearly data

frequency, to assume a recursive scheme in which one of the unobservable shocks

only impacts one of the two observable variables but not the other one. No struc-

tural shock is considered as an exogenous innovation of one particular observed

variable. In our paper, although we do not impose long-run restrictions, struc-

tural shocks do not necessarily have a one-to-one association to observed variables.

They might even be latent factors affecting contemporaneously different observ-

able variables that would otherwise be causally disconnected. Recursiveness is

allowed as a possibility, not imposed as a restriction.

We take stock of the remarks by Lanne et al. [forthcoming], who use structural

shock independence as an identification restriction, and strongly argue against as-

suming recursiveness. However, we do not follow them on the parametric estima-

tion of the mutually independent structural shocks, since we prefer not to assume

any particular non-Gaussian probability distribution (or family of distributions)

for the structural shocks. In their macroeconomic application, Lanne et al. [forth-

coming] impose that the structural shocks are drawn from Student’s t-distributions.

Lanne and Lütkepohl [2010] have previously suggested to assume normal mixture

distributions of the structural shocks, when the macroeconomic system is charac-

terized by two different regimes, with different volatilities. Siegfried [2002] has

argued that monetary policy shocks should be distributed logistically, based on an

analysis of the decision-making processes within central banks.

We think that, in our empirical work, there is no solid ground on which the as-

sumption of a particular shock distribution could rest. Although Gouriéroux et al.

[forthcoming] have recently shown that a misspecification of the prior distribu-

tions of the independent shocks does not lead to inconsistent estimates, we follow

a distribution-free approach similar to the one proposed by Herwartz and Plödt

[2016], who assume neither recursiveness nor a particular probability distribution

of the structural shocks. However, Herwartz and Plödt [2016] search for the mini-

mal distance between the empirical copula of the shock vector and the theoretical

copula under the hypothesis of independence and, consequently, they use a differ-

ent estimation procedure than ours.
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A possibility that we leave open for future analyses is relaxing Assumption 5. For

instance, we could imagine an approximate factor model (as in Chamberlain and

Rothschild, 1983), where the dependencies among the n observed variables are

mainly due to the common influence of q mutually independent random shocks

(with q < n). Our estimation procedure could easily be adapted by considering

only the first q principal components of our dataset, and rotating only those q prin-

cipal components to retrieve the q mutually independent structural shocks. The

data dependencies left unexplained by the q structural shocks would be ascribed

to spurious dependencies among idiosyncratic variations (for instance, measure-

ment errors) of the observed variables.

5 Empirical Analysis

We use the dataset in Uhlig [2005], which contains macroeconomic observations

for the United States since January 1965 until December 2003 (a similar dataset

had previously been employed, with a shorter time span, by Bernanke and Mi-

hov, 1998). The six observable variables are: real gross domestic product (GDP),

GDP price deflator (PGDP), commodity price index (PSCCOM), total reserves

(TR), non-borrowed reserves (NBR), Federal funds rate (FFR).3 All data have a

monthly frequency following the interpolation of GDP and GDP deflator; details

about the dataset construction are in Section 3 of Uhlig, 2005. (We also perform

estimations on quarterly data using the variables in Sims, 1986; results are shown

in Appendix A). We follow Uhlig [2005] in the choice of taking the logarithm of

all the variables except for FFR, and in the number of lags, equal to 12, of the VAR.

We thus estimate, by ordinary least squares, an unrestricted 12-lag VAR (in levels)

in the reduced form of (1). Figure 1 contains the histograms of the reduced-form

residuals, associated to each of the six observed variables; a normal distribution

fit has been added to highlight their leptokurtosis.4

We use Icasso to estimate (2), that is to retrieve the mixing matrix and the structural

3The dataset is freely available in the compressed folder:

https://estima.com/procs_perl/uhligjme2005.zip .

In particular, we have used the file uhligdata.xls , last modified on February 23, 2006.
4The histograms have been obtained using the “histfit” MATLAB function. The estimates of

the reduced-form parameters are available upon request.
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"1 "2 "3 "4 "5 "6

GDP 0.016 0.000 -0.050 -0.298 0.066 0.023

PGDP -0.018 -0.004 -0.010 -0.015 -0.092 0.056

PSCCOM 0.142 0.448 0.323 0.369 1.051 2.466

TR -2.148 0.089 -0.145 0.063 0.025 0.038

NBR -1.799 1.339 0.410 0.031 0.019 -0.221

FFR 0.012 0.018 -0.485 0.054 0.041 0.061

Table 1: Mixing matrix estimate. Each row reports how the six shocks load on the reduced-form

residual associated to one particular observed variable.

independent shocks from the reduced-form residuals.5 Given that the structural in-

dependent shocks estimated by Icasso are not precisely orthonormal, we rescale

them so that they have variances equal to one, and we accordingly rescale the mix-

ing matrix. The resulting mixing matrix, i.e. the estimate of the matrix A in (2), is

shown in Table 1: each row reports how the six shocks load on the reduced-form

residual associated to one particular observed variable (rows are ordered following

the variable order given at the beginning of this section).

We label as “monetary policy” the structural shock which contributes the most to

the FFR’s variance. The sixth row of the mixing matrix in Table 1 shows how

the six structural shocks load on the reduced-form residual associated to FFR. The

highest number in the sixth row, in absolute value, occupies the third cell. There-

fore, we label as “monetary policy” the structural shock associated to the third

column of the mixing matrix (different labelling possibilities are explored in Ap-

pendix B). To obtain the impulse-response functions, we generate a contractionary

“monetary policy” impulse in the form of a vector where all cells contain zeroes

except for the loading on FFR which is equal to negative one (given the rescaling,

this corresponds to a one standard deviation monetary policy impulse, raising FFR

at impact). Then, using the mixing matrix in Table 1, we obtain the response at lag

zero (i.e. the impact of the impulse on the observed variables), and using the esti-

mates of the reduced form in (1) we obtain the responses for lags greater than zero.

5We let Icasso run 500 iterations of FastICA, with a different initialization for each iteration. For

each given initialization, we allow FastICA a maximum number of 300 steps to reach convergence;

if convergence is not reached, the value obtained by the algorithm after 300 steps is kept for the

Icasso averaging.
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(a) Real GDP (b) GDP price deflator

(c) Commodity price index (d) Total reserves

(e) Non-borrowed reserves (f) Federal funds rate

Figure 1: Histograms of the reduced-form residuals, with a normal distribution fit.
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In order to obtain confidence intervals for the impulse-response functions, a boot-

strap procedure is used consisting of 1000 iterations. At each iteration, a matrix of

simulated residuals Ũ is generated on the basis of the reduced-form residuals in Û

(as defined in Section 3). In particular, for k = 1,… , n, the k-th row of Ũ , with

length equal to the number of observations T in the dataset minus the number of

VAR lags ℎ, is obtained by drawing, with repetition, T − ℎ values from a discrete

probability distribution which is uniform on the values contained in the k-th row

of Û (i.e. which is uniform on the estimates of the reduced-form residuals). The

simulated residuals in Ũ are fed to Icasso, so that a new mixing matrix and the

corresponding impulse-response functions can be obtained and stored. At the end

of all the 1000 iterations, the quantiles of the distribution of responses, computed

separately for each response lag, are used to build the confidence intervals of the

impulse-response functions.

The resulting impulse-response functions, estimated as responses of each of the six

variables to the contractionary monetary policy impulse, are shown in Figure 2.

Immediately after a contractionary monetary policy shock, commodity prices fall.

After around six months, the real GDP starts to decline, and the response remains

negative thereafter. The response of the GDP price deflator is initially positive,

but becomes negative after about three years.

Our findings are thus far from what shown in Uhlig [2005]: both the GDP con-

traction and the price puzzle are evident. The panels of Figure 2 remind of the

impulse responses obtained in many previous studies, like in Sims [1986], in Sims

[1992], in Christiano et al. [1996], and in Bernanke and Mihov [1998]. In par-

ticular, Figure 2 bears a striking resemblance to Figures 7 and 12 in Arias et al.

[2015], where, while estimating the model on the same data as ours, identification

has been achieved, respectively, by adopting the recursive scheme in Christiano

et al. [1996] and by assuming a systematic policy response to changes in the M2

money stock. Notably, we reach their same result by imposing shock independence

as the main identifying assumption.

6 Conclusion

Our study has applied a novel identification scheme to a structural vector autore-

gression of macroeconomic variables, in order to estimate the response of real out-
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(a) Real GDP (b) GDP price deflator

(c) Commodity price index (d) Total reserves

(e) Non-borrowed reserves (f) Federal funds rate

Figure 2: Responses to a contractionary monetary policy shock one standard deviation in size.

The solid line represents the estimate for the real dataset. The upper and the lower dashed lines

represent respectively the 84% quantile and the 16% quantile of the bootstrap estimates.
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put and prices to a contractionary monetary policy shock. Identification is achieved

by independent component analysis, since we assume that the structural shocks

driving the macroeconomic dynamics are mutually independent.

In the spirit of Blanchard and Quah [1989], and appreciating the remarks by Lanne

et al. [forthcoming], we have not imposed recursiveness as a short-run constraint

on the causal relations among the observed variables. We have, instead, simpli-

fied the method in Hyvärinen et al. [2010] and Moneta et al. [2013], in order to

use mutual independence as the only main assumption for identifying the struc-

tural vector autoregression. In our view, this new identification procedure narrows

down economic a priori theorizing, and is loyal to the “agnostic” approach sug-

gested by Uhlig [2005] and recently adopted by Arias et al. [2015].

Our empirical analysis has been conducted on the same United States macroe-

conomic dataset as in Uhlig [2005], covering the time span between January 1965

and December 2003. Results show that a negative influence of the contractionary

monetary policy on real output materializes after around six months. Prices have a

positive reaction for about three years, their response becoming negative thereafter.
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Appendix A. Different Data

Our main empirical analysis employs the same variables and the same time span

as in Uhlig [2005] and in Arias et al. [2015]. In this appendix, instead, we con-

sider the variables in Sims [1986]: real gross national product, real investment,

GNP price deflator, the M1 measure of money, unemployment, and Treasury-bill

rates (see Table A.1; “real inventories” will be added in an extended version of the

dataset).6

As in Sims [1986], the variables are observed at quarterly frequency. We adopt

the same time span of Uhlig [2005] and of our previous analysis, that is from year

1965 until year 2003, so that changes in results, between the main text and this

appendix, cannot be attributed to the estimation window.

We consider the Treasury-bill rates as the monetary policy variable (taking the role

played by the Federal funds rate in our previous analysis). Therefore, following the

independent component analysis, we label as “monetary policy” shock the struc-

tural shock which affects Treasury-bill rates the most, and we call “contractionary”

the corresponding one standard deviation impulse which increases the Treasury-

bill rates.

The estimated impulse-response functions (i.e. the responses of each of the six

variables to the contractionary monetary policy impulse) are represented in Fig-

ure A.1. The price puzzle emerges even more clearly than in our main analysis:

the top-right panel of Figure A.1 indeed shows the GNP deflator responding posi-

tively immediately after the shock; the response becomes approximately flat after

three years. The response of the real GNP (top-left panel of Figure A.1) becomes

negative after about one year, a result that is not dissimilar from what we have

previously obtained.

Interestingly, the initial response of the real GDP seems to be positive, as in our

previous Figure 2 and in many previous studies (see e.g. the bottom-left panel of

Figure 5 in Sims, 1992, p. 986, and, in symmetric representation, the top panels

of Figure II in Bernanke and Mihov, 1998, p. 893). As pointed out by Bernanke

and Gertler [1995, p. 32], inventory accumulation could partially explain the de-

6The data were retrieved from the FRED database of the Federal Reserve Bank of St. Louis,

https://fred.stlouisfed.org/ , on June 27, 2016. We have substituted the “business

fixed investment” used by Sims [1986] with “real investment”, as proxied by gross fixed capital

formation.
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Variable File code in FRED

Real gross national product GNPC96

GNP price deflator GNPDEF

Real investment (gross fixed capital formation) NAEXKP04USQ661S

M1 money stock MANMM101USQ189S

Unemployment rate USAURHARMQDSMEI

Interest rate T-bills TB3MS

Real inventories (non-farm change in private inventories) A015RX1Q020SBEA

Table A.1: Variables used in Appendix B, retrieved from the FRED database of the Federal Re-

serve Bank of St. Louis. All variables, except for real inventories, form our dataset D1. All

variables including real inventories form our dataset D2.

layed reaction of real gross product to a contractionary monetary policy (aggregate

production following demand only after some lag). Therefore, we now extend the

dataset D1 by adding an inventory variable (see last row of Table A.1), and we

rename the dataset as D2.

As can be seen in the bottom-left panel of Figure A.2, inventories are likely to

increase following a contractionary monetary policy shock. After one year, the

response becomes negative, and it approaches zero around three and a half years

following the shocks (that is when the GNP response becomes straighter, see top-

left panel of Figure A.2). The inclusion of inventories in the analysis does not alter

our main findings: the real output responds negatively to the contractionary shock

in the medium-long run, while prices increase at least in the short-medium run.
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(a) Real GNP (b) GNP price deflator

(c) Real investment (d) M1 money stock

(e) Unemployment rate (f) Interest rate T-bills

Figure A.1: Responses to a contractionary monetary policy shock one standard deviation in size,

estimated using the dataset D1 (quarterly data; same variables as in Sims, 1986). The solid line rep-

resents the estimate for the real dataset. The upper and the lower dashed lines represent respectively

the 84% quantile and the 16% quantile of the bootstrap estimates.
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(a) Real GNP (b) GNP price deflator

(c) Real investment (d) M1 money stock

(e) Inventories (f) Interest rate T-bills

Figure A.2: Responses to a contractionary monetary policy shock one standard deviation in size,

estimated using the dataset D2 (quarterly data; same variables as in Sims, 1986 plus inventories).

The solid line represents the estimate for the real dataset. The upper and the lower dashed lines rep-

resent respectively the 84% quantile and the 16% quantile of the bootstrap estimates. The response

of the unemployment rate is not shown.
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Appendix B. Different Shock Labels

In our empirical analysis, the structural shock affecting the Federal funds rate the

most, at impact, has been labelled as “monetary policy” shock. In this appendix,

we analyze the response of the observable variables to two other structural shocks,

exploring the possibility that monetary policy could be associated to a different

shock, or to more than one shock. Among the observable variables, we consider

total reserves and non-borrowed reserves as the two other possible policy instru-

ments (apart from the Federal funds rate) which are under a direct influence of the

central bank.

First, we define the “labelling scheme” A1 according to the hypothesis that a “mon-

etary policy” shock affects total reserves the most. In the mixing matrix previously

reported in Table 1, the first column contains the highest number, in absolute value,

of the fourth row (the row associated to total reserves). Therefore, under the la-

belling scheme A1, the shock "1 would be labelled as a “monetary policy” struc-

tural shock.

The responses of the observed variables to shock "1 (one standard deviation im-

pulse, lowering total reserves at impact) are shown in Figure B.1. In particular,

the response of GDP (top-left panel) is positive at all time lags, the response of the

GDP deflator (top-right panel) is negative for the first three years, and the response

of the commodity price index (center-left panel) is positive after four years. These

results would let us think that the labelling scheme A1 does not properly recog-

nize the monetary policy shock. Rather, it might wrongfully label, as monetary

policy shock, a systematic response of monetary policy to output booms and re-

cessions. Moreover, the confidence intervals in Figure B.1 indicate a high variance

and asymmetry of the response estimates. This could be due to the presence, in

the datasets, of abrupt changes in total reserves, unexplainable through the usual

connections of the total reserves to the rest of the economic system (an exemplary

event is September 2001: see pages 37-39 of Neely, 2004, and page 62 of Sims

and Zha, 2006).

The labelling scheme A2 assumes, instead, that non-borrowed reserves are the

main monetary policy instrument. However, non-borrowed reserves may decrease

as a consequence of the decrease in total reserves, which we have considered as

main policy instrument under the labelling scheme A1. Therefore, we now point

at the structural shock which affects non-borrowed reserves the most, at impact,
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only after excluding the shock affecting total reserves the most. Considering the

mixing matrix in Table 1, the structural shock "2 is thus now labelled as a “mon-

etary policy” shock, since, after excluding the first column (associated to "1, with

high impact on total reserves), the second column contains the highest number, in

absolute value, of the fifth row (the row associated to non-borrowed reserves).

The responses of the observed variables to the shock "2 (one standard deviation im-

pulse, lowering non-borrowed reserves at impact) are shown in Figure B.2. Within

two-three months following the contractionary shock, the real output declines; it

begins to recover only after one-two years (possibly due to a fast decrease of the

Federal funds rate). The commodity price index drops immediately, and the re-

sponse remains negative almost uninterruptedly for at least two years. The re-

sponse of the GDP price deflator, after an uncertain period of about one year,

becomes markedly and constantly negative. Putting together the results illustrated

in the different panels Figure B.2, we can conclude that the labelling scheme A2

provides a credible alternative to the benchmark scheme (where the Federal funds

rate is the main policy target). Indeed, the scheme A2 highlights an alternative

monetary channel exploited by policy makers, with non-borrowed reserves used

as the main policy instrument, and interest rates playing only a minor role (at least

in the short run). Interestingly, no price puzzle would emerge from the responses

to the structural shock labelled as “monetary policy” under this alternative scheme.

24



(a) Real GDP (b) GDP price deflator

(c) Commodity price index (d) Total reserves

(e) Non-borrowed reserves (f) Federal funds rate

Figure B.1: Responses to a contractionary monetary policy shock one standard deviation in size,

under the labelling scheme A1 (monetary policy shock impacting mainly total reserves). The solid

line represents the estimate for the real dataset. The upper and the lower dashed lines represent

respectively the 84% quantile and the 16% quantile of the bootstrap estimates.
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(a) Real GDP (b) GDP price deflator

(c) Commodity price index (d) Total reserves

(e) Non-borrowed reserves (f) Federal funds rate

Figure B.2: Responses to a contractionary monetary policy shock one standard deviation in size,

under the labelling scheme A2 (monetary policy shock impacting mainly non-borrowed reserves).

The solid line represents the estimate for the real dataset. The upper and the lower dashed lines

represent respectively the 84% quantile and the 16% quantile of the bootstrap estimates.
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