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Abstract

Firms grow and decline by relatively lumpy jumps which cannot be ac-
counted by the cumulation of small, \atom-less", independent shocks. Rather
\big" episodes of expansion and contraction are relatively frequent. More tech-
nically, this is revealed by fat tail distributions of growth rates. T his applies
across di�erent levels of sectoral disaggregation, across countries, overdi�erent
historical periods for which there are available data. What determines such
property? In Dosi et al., (2015) we implemented a simple multi-�rm evolution-
ary simulation model, built upon the coupling of a replicator dynamic and an
idiosyncratic learning process, which turns out to be able to robustly reproduce
such a stylized fact. Here, we investigate, by means of a Kriging meta-model,
how robust such \ubiquitousness" feature is with regard to a global exploration
of the parameters space. The exercise con�rms the high level of generality of
the results in a statistically robust global sensitivity analysis framework.
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1 Introduction

Evolutionary theories of economic change have identi�ed as the two main drivers

of the dynamics of industries the mechanisms of market selection and ofidiosyn-

cratic learning by individual �rms. In this perspective, the in terplay between these

two engines shapes the dynamics of entry-exit, the variations of market shares and

collectively the patterns of change of industry-level variables such as average produc-

tivities. Learning entails a various processes of idiosyncratic innovation, imitation,

changes in technique of production. Selection is the outcome of processes of market

interaction where more competitive �rms gain market shares at the expense of less

competitive ones.

Three overlapping streams of analysis try to explain how such interplay operates.

The �rst one, from the pioneering work by Ijiri and Simon, ( 1977) all the way to

Bottazzi and Secchi, (2006), studies the result of both mechanisms in terms of the

ensuing exploitation of \new business opportunities", captured by the stochastic

process driving growth rates. A second stream (see Metcalfe,1998), focuses on the

processes of competition/selection represented by means of a replicator dynamics.

Finally, Schumpeterian evolutionary models unpack the two drivers distinguishing

between the idiosyncratic processes of change in the techniques ofproduction and

the dynamic of di�erential growth driven by heterogeneous pro�tabili ties and the

ensuing rates of investment (Nelson and Winter,1982) or by an explicit replicator

dynamics (Silverberg et al.,1988, Dosi et al., 1995).

Whatever the analytical perspective, the purpose here is to further investigate

one of the key empirical regularities that emerge from the statistical analysis of the

industrial dynamics (for a critical survey see Dosi,2007), the\fat-tailed"distribution

of �rms' growth rates.

In Dosi et al., (2015) we implement a \bare bones", multi-�rm, evolutionary

simulation model, built upon the familiar replicator equation and a cumulative

learning process, which turns out to be able to systematically reproduce several

stylized facts characterizing the dynamics of industries, and in particular the fat-

tailed distributions of growth rates. However, the evaluation of the robustness of this

result is done there by the usual (restricted scope) sensitivity analysis, testing across

di�erent learning regimes a limited sample of interesting points in the parameters

space of the model. Under this scenario it is not possible to guarantee that the

expected results would hold true for the entire range of variation of eachparameter,

in particular when more than one parameter is changed at the same time (Saltelli

and Annoni, 2010), sometimes in combinations that may not even hold economic

sense.

Global scope sensitivity analysis of high-dimensional, non-linear simulation mod-
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els has been a theoretical and { more so { a practical challenge for a long time.

Advancements in both statistical analytical frameworks and computer power have

gradually addressed this issue over the past two decades, starting in engineering and

the natural sciences, but now also applied in the social sciences.Building on what in

the �eld is called meta-modeling, design of experiments and variance-based decom-

position, in this work we investigate how robust the fat tail \ubiquitou sness" feature

is in our bare-bones model with regard to a global exploration of the parameters

space.

In what follows, we apply the Kriging meta-modeling methodology to represent

our model by a mathematically tractable approximation. Kriging is an int erpolation

method that under fairly general assumptions provides the best linear unbiased

predictors for the response of more complex, possibly non-linear, typically computer

simulation models. The kriging meta-model is estimated from a set ofobservations

(from the original model) carefully picked using a near-orthogonal Latin hypercube

design of experiments. This approach minimizes the required number of samples

and allows for high computational e�ciency without impacting on the goodn ess-of-

�t of the meta-model. Finally, the �tted meta-model is used togethe r with Sobol

decomposition to perform a variance-based, global sensitivity analysisof the original

model on all of its parameters. The process allows for a genuinely simultaneous

analysis of all parameters across the entire relevant parameters space while trying

to deal with both non-linear and non-additive systems.

2 Empirical and theoretical points of departure

Firms grow and decline by relatively lumpy jumps which cannot be accounted by

the cumulation of small, \atom-less", independent shocks. Rather \big" episodes of

expansion and contraction are relatively frequent. More technically,this is revealed

by fat tail distributions of growth rates. A typical empirical �nding is illustrated

in Figure 1. The pattern applies across di�erent levels of sectoral disaggregation,

across countries, over di�erent historical periods for which there are available data

and it is robust to di�erent measures of growth, e.g., in terms of sales, value added

or employment (for details see Bottazzi et al.,2002, Bottazzi and Secchi,2006and

Dosi, 2007). What could be determining such property?

In general, such fat-tailed distributions are a powerful evidenceof some un-

derlying correlation mechanism. Intuitively, new plants arrive or disappear in their

entirety, and, somewhat similarly, novel technological and competitive opportunities

tend to arrive in \packages" of di�erent \sizes" (i.e., economic import ance). In turn,

�rm-speci�c increasing returns in business opportunities, as shown by Bottazzi and

Secchi, (2003) are a source of such correlations. In particular, the latter build upon
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Figure 1: Tent shaped size growth rates (Italy, Istat Micro.1 data). Source: Bottazzi and
Secchi, (2006).

the \island" model by Ijiri and Simon, ( 1977) and explore the hypothesis of a path-

dependent exploitation of business opportunity via a Polya Urn scheme, wherein in

each period \success breeds success". This cumulative processdoes account for the

emergence of fat tails.

In Dosi et al., (2015) we show, by means of a simple simulation model, that com-

petitive interactions induce correlation in the entry-growth-ex it dynamics of �rms

entailing the absence of Gaussian distributions of growth rates. Fat tails emerge

independently of the competition regime and the distributional forms of the innova-

tion shocks. Moreover, under the most empirical-friendly regime{ which assumes

some level of cumulative learning { the distribution of growth rates produced by

the model were close to the Laplace distribution, as such a particularinstance of

fat-tailed distribution quite akin to the shape of Figure 1. To furthe r test the robust-

ness of the results obtained in that work, three methodological tools areproposed

namely, in sequence: design of experiments selection (sampling),meta-modeling

and variance-based global sensitivity analysis. The challenge is to overcome the

technical and computational constraints entangled in the original model { in par-

ticular, non-linearity and non-additivity (for thorough overviews, s ee Cioppa and

Lucas, 2007, Rasmussen and Williams,2006and Saltelli et al., 2008).

As numerical simulation has become a standard tool in the natural sciences, and

more recently also in the social sciences, the challenge of parsimoniously evaluate

their results has become a paramount one. As models grow in size and complex-

ity, the \naive" e�orts to accurately explore their behavior by \brut e force" or \one

factor at a time" approaches quickly show their severe limitations in terms of com-
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putational times required and the poor expected accuracy (Helton et al., 2006,

Saltelli and Annoni, 2010). Hence, the search for mathematically \well behaved"

approximations of the inner relations of the original simulated model, frequently

denominated surrogate modelsor meta-models, has become increasingly common

(Kleijnen and Sargent, 2000, Roustant et al., 2012). The meta-model is a simpli�ed

version of the original model that can be more parsimoniously explored { at reason-

able computational costs { to evaluate the e�ect of inputs/parameters on the latter

and (likely) also on the former. Usual techniques employed for meta-modeling are

linear polynomial regressions, neural networks, splines and Kriging.

Kriging (or Gaussian process regression), in particular, is suggestedto be a sim-

ple but e�cient method for investigating the behavior of simulation models (Van

Beers and Kleijnen, 2004). Kriging meta-models came originally from the geo-

sciences (Krige,1951, Matheron, 1963). In essence, it is a Bayesian-based, spatial

interpolation method for the prediction of a system response on unknown points

based on the knowledge of such response on a set of previously known ones(the

observations) to �t a real-valued random �eld. Under some set of assumptions, the

Kriging meta-model can be shown to provide the best linear unbiased prediction

for such points (Roustant et al., 2012). The intuition behind it is that the original

model response for the unknown points can be predicted by a linear combination of

the responses at the closest known points, similarly to an ordinary multivariate lin-

ear regression, but taking the spatial information into consideration, in a Bayesian

framework. Recent advancements extended the technique, by removing the original

assumption that the samples are noise free, made Kriging particularly convenient for

the meta-modeling of stochastic computer experiments (Rasmussen and Williams,

2006).

Kriging, as any meta-modeling methodology, is based on the statistical estima-

tion of coe�cients for speci�c functional forms (decribed in Secti on 4) based on data

observed from the original system or model. Kriging meta-models are frequently

estimated over a near-orthogonal Latin hypercube (NOLH) design of experiments1

(McKay et al., 2000, and nearer to our concerns here Salle and Yildizoglu,2014).

The NOLH is a statistical technique for the generation of plausible setsof points

from multidimensional parameter distributions with good space-�ll ing properties

(Cioppa and Lucas, 2007). It signi�cantly improves the e�ciency of the sampling

process in comparison to traditional Monte Carlo approaches, requiringfar smaller

samples { and much less (computer) time { to the proper estimation of meta-model

coe�cients (Helton et al., 2006, Iooss et al.,2010).

1 In the present case it may be more appropriate to call the choice of the sampling points in the

parameters space asquasi-experiment, as the conditions imposed for selecting the observations for

the sample are speci�ed by the NOLH.
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Sensitivity analysis (SA) aims at \studying how uncertainty in the ou tput of a

model (numerical or otherwise) can be apportioned to di�erent sources of uncer-

tainty in the model input" (Saltelli et al., 2008). Due to the high computational

costs of performing traditional SA on the original model (e.g., ANOVA), authors

like Kleijnen and Sargent, (2000), Jeong et al., (2005) or Wang and Shan, (2007)

argue that the meta-model SA can be a reliableproxy for the original model be-

havior. Building on this assumption, one can propose theglobal SA analysis of the

Kriging meta-model { as we attempt here { to evaluate the response of the original

model over the entire parametric space, providing measurementsof the direct and

the interaction e�ects of each parameter. Following Saltelli et al., (2000), for the

present analysis we selected a Sobol decomposition form of variance-based global

SA analysis. It decomposes the variance of a given output variable of the model

in terms of the contributions of each input (parameter) variance, both individually

and in interaction with every other input by means of Fourier transformations. This

method is particularly attractive because it evaluates sensitivity across the whole

parametric space { it is a global approach { and allows for the independent SA

analysis of multiple output models while being able to deal with non-linear and

non-additive models (Saltelli and Annoni, 2010).

The approach proposed here has proved insightful for the analysis of non-linear

simulation models, including economic ones: see Salle and Yildizoglu,(2014)2 on

two classic models and Bargigli et al., (2016) for an application to an agent-based

model of �nancial markets.

3 The original simulation model

The model of departure, extensively presented and discussed inDosi et al., (2015),

represents the learning process by means of a multiplicative stochastic process upon

�rms productivities ai 2 R+ , i = 1 ; : : : ; N , in time t = 1 ; : : : ; T:

ai (t) = ai (t � 1) f 1 + max [0; � i (t)]g (1)

where � i 2 R+ are realizations of a sequence of random variablesf � gN
i =1 , N is the

number of �rms in the market and T is the number of simulation time steps. Such

dynamics is meant to capture the idiosyncratic accumulation of capabilities within

each �rm (more in Dosi et al., 2000). The process is a multiplicative random walk

with drift: the multiplicative nature is well in tune with the e vidence on productivity

dynamics under the further assumption that if a �rm draws a negative � i , it will stick

2Here, we closely follow, whenever possible, the analytical framework employed by those authors

and refer the readers to their paper for additional details and refere nces.
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to its previous technique (negative shocks in normal times are quite unreasonable!),

meaning that the lower bound for the support of the shocks� i distribution is zero.

In Dosi et al., (2015) we experiment with di�erent learning regimes. Di�erent

speci�cations were tested for � i . In particular, we focus here on the regime called

Schumpeter Mark II, after the characterization of the \second Schumpeter" (Schum-

peter, 1947). In this speci�cation, incumbents do not only learn, but do it in a

cumulative way so that a productivity shock in any �rm is scaled by its extant

relative competitiveness:

� i (t) = min
�
� i (t)

�
ai (t � 1)
�a(t � 1)

� 

; � max

�
;

�a(t � 1) =
X

i

ai (t � 1)si (t � 1)
(2)

where  2 R+ is a parameter, 0< s i (t) � 1 is the market share of �rm i which

changes as a function of the ratio of the �rm's productivity (or \competi tiveness")

ai (t) to the weighted average of the industry �a(t) and � i 2 R is a random drawn

from a set of possible alternative distributions, being a rescaled Beta distribution

the default case.3 � i (t) distribution has average equal to � 2 R+ . � i (t) is limited

by an upper bound � max 2 R+ , based on the empirical evidence on the existence of

a �nite limit to the innovation shocks amplitude.

Competitive interactions are captured by a \quasi-replicator" dynami cs:

� si (t; t � 1) = As i (t � 1)
�

ai (t)
�a(t)

� 1
�

;

�a(t) =
X

i

ai (t)si (t � 1)
(3)

where A 2 R+ is an elasticity parameter that captures the intensity of the selec-

tion exerted by the market, in terms of market share dynamics and, indirectly, of

mortality of low competitiveness �rms. ai (t) is calculated over the lagged market

sharessi (t � 1) for temporal consistency.

Finally, �rms with market share si (t) lower than the parameter 0 < s min < 1

exit the market (\die") and market shares are accordingly recomputed. We assume

that entry of new �rms occurs (inverse) proportionally to the numbe r of \surviving"

incumbents in the market:

E (t) = N � I (t � 1) (4)

where E(t) : N ! N de�nes the number of entrants at time t, I (t � 1) 2 N is the

number of incumbents in the previous period andN is de�ned as above. The empir-

ical evidence supports the idea that there is a rough proportionality between entry
3The rescaled Beta distribution was preferred because of its superior exibility in terms of

parametrization and the bounded support. Other than Beta, Lapl ace and Gaussian, Log-normal

and Poisson distributions were also tested in Dosi et al., (2015). Di�erent distributions did not

qualitatively a�ect the results.
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and exit, thus, in the simplest version of the model, we assume a constant number

of �rms with the number of dying �rms o�set by an equal number of entran ts.

The productivity of entrant j follows a process similar to Eq. (1) but applied to

the average productivity of the industry at the moment of entry, whose stochastic

component � j is again a random drawn from the applicable distribution for � i as in

Eq. 2 (under  = 0):

aj (t) = �a(t)(1 + � j (t)) (5)

being �a(t) calculated as in Eq. (3). Of course, here� j (t) can get negative values.

Indeed, the location of the mass of the distribution { over negative or positive

shocks { captures barriers to learning by the entrant or, conversely, the \advantage

of newness". Entrant initial size is constant at sj (t0) = 1 =N.

Table 1 summarizes all the model and the alternative distributions parameter

settings { our \default" con�guration for the model { as well the remainin g model

simulation setup.4 Because of the stochastic component in� i , the model outputs are

non-deterministic, so the aggregated results must evaluated in terms of the mean

and the variance of the output variables over a Monte Carlo (MC) experiment. It

is executed by a given number of model runs under di�erent seedsfor the random

number generator but with the same parameters con�guration. Considering the

measured variance of the relevant output variables and a target signi�cance level of

5%, a MC sample of 50 runs was determined as su�cient to fully qualify the model

results.

3.1 Timeline of events

� There are N initial �rms at time t = 1 with equal productivity and market

share.

� At the beginning of each period �rms learn according to Eq. (1).

� Firms acquire or lose market share, according to the replicator in Eq. (3).

� Firms exit the market according to the rule si (t) < s min .

� The number and competitiveness of entrants are determined as in Eqs. (4)

and (5).

� After entry market shares of incumbents are adjusted proportionally.
4The simulation model is coded in C++ and it is run inside the LSD simulation platform

(Valente, 2014) which is also employed for the NOLH sampling procedure, as explained below.
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Value

A 1:0

N 150

smin 0:001

 1:0

� 0:05

� max 0:2

Beta shocks (� � ; � � ; � min ; � max ) (1:0; 5:0; 0:0; 0:3)

Laplace shocks (� 1; � 2) (0:01; 0:015)

Gaussian shocks (� ) (0:8)

Initial productivity ( ai (1)) 1:0

Initial market share ( si (t0)) 1=N

Number of time steps (T) 200

Number of MC runs 50

Table 1: Parameters and simulation default settings.

3.2 Firm growth rates distribution

The growth rate of �rm sizes is de�ned as:

gi (t) = log si (t) � logsi (t � 1) (6)

where the market sharesi is used as a proxy for the �rm size.

In order to test the robustness of the results to the shocks speci�cation, in what

follows we experiment with three alternative distributions for t he innovation shocks,

namely rescaled Beta, Laplace and Gaussian, con�gured with the parametersset

forth in Table 1. Figure 2 shows the simulation results for the three distributions.

The departure from (log) normality and the emergence of fat tails is ratherstriking,

independently of the shape of the micro-shocks distribution.

To measure how \fat" the tails of the distributions are, we estimate the b pa-

rameter of a symmetric Subbotin distribution:

f S(x) =
1

2ab1=b�(1 =b+ 1)
e� 1

b j x � �
a jb

(7)

de�ned by the parametersm, a and b, whereinm is a location measure (the median),

a is the scale parameter andbcaptures the \fatness"of the tails. Such a distribution,

according to the value of the parameterb, can yield a Gaussian distribution, if b = 2,

or a Laplace distribution, if b = 1, among other results for di�erent values of b.

Estimates of the Subbotin distribution b parameter are also presented in Figure 2.5

5Subbotin parameters estimation is performed by the maximum-like lihood method using the

Subbotools package (Bottazzi, 2014).
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Figure 2: Firm growth rates under di�erent distributions of innovation shoc ks.

Across the three distributions, the value of the b parameter is always signi�cantly

smaller than 2 (the normality case).

4 Exploring the robustness of the fat tails

As the results presented above suggest the presence of distributions \fatter" than

Gaussian across con�gurations, further inquiry on the generality of these �ndings

seems important. A �rst step in this direction is performed in Dosi et al., (2015)

for some alternative parameter settings. However, even if this approachis still the

current standard for most computer simulations analyses, it is likelynot su�cient

for non-linear, non-additive setups, as convincingly demonstrated bySaltelli and

Annoni, 2010. Given the current model has a clear non-linear nature, the adoption

of more general investigation methods seems recommended. To address the task

at hand we propose the application of a numerical analysis procedure basedon a

Bayesian framework, as discussed in Section 2. The proposed steps are:

1. NOLH DoE : construct an appropriate design of experiments (DoE) perform-

ing e�cient sampling via the NOLH approach.

2. Kriging meta-modeling : estimate and choose among alternative Kriging

meta-model speci�cations.

3. Global sensitivity analysis : analyze the meta-model sensitivity to each

parameter of the model using Sobol (variance) decomposition.
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4. Response surface : graphically map the meta-model response surface (2D

and 3D) over the more relevant parameters and identify critical areas.

In a nutshell, the Kriging meta-model Y is intended to predict the response of

a given (scalar) output variable y of the original simulation model:6

Y(x) = � (x) + � (x) (8)

wherex 2 D is a vector representing any point in the parametric space domainD �

Rk , being x1; : : : ; xk 2 R the k � 1 original model parameters and� (x) : Rk ! R, a

function representing the global trend of the meta-modelY under the general form:

� (x) =
lX

i =1

� i f i (x); l � 1 (9)

being f i (x) : Rk ! R �xed arbitrary functions and � 1; : : : ; � l the l coe�cients to be

estimated from the sampled response of the original model over the imageof y. The

trend function � is assumed here, for simplicity, to be a polynomial of orderl � 1,

more speci�cally of order zero (� 1 is the trend intercept) or one (� 2 is the trend

line inclination). This is usually enough to �t even complex response surfaces when

coupled with an appropriate design of experiment (DoE) sampling technique.7

In Eq. (8), � (x) : Rk ! R models the stochastic process representing the

local deviations from the global trend component � . � is assumed second-order

stationary with zero mean and covariance matrix � 2R (to be estimated), where � 2

is a scale parameter andR is a n � n matrix ( n is the number of observations) whose

(i; j ) element represents the correlation among� (x i ) and � (x j ), x i ; x j 2 D, i; j =

1; : : : ; n. The Kriging meta-model assumes a close correspondence between this and

the correlation acrossy(x i ) and y(x j ) in the original model. Di�erent speci�cations

can be used for the correlation function, according to the characteristics of the

y surface. For example, one of the simplest candidates is the power exponential

function:

corr(� (x i ); � (x j )) = exp

2

4�

0

@
kX

g=1

 gjxg;i � xg;j j

1

A

p3

5 (10)

where xg;i denotes the value of parameterxg at the point x i ,  1; : : : ;  k > 0 are

the k coe�cients to be estimated and 0 < p � 2 is the power parameter (p = 1 for

the ordinary exponential correlation function). They quantify the re lative weight

of parameter xg, g = 1 ; : : : ; k, on the overall correlation between� (x i ) and � (x j )

6 In this section we loosely follow the formalization proposed by R oustant et al., ( 2012) and Salle

and Yildizoglu, ( 2014).
7Higher order polynomials were evaluated but systematically pro duced meta-models with worse

�tting to the original model, even when more samples are added to the DoE.
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and, hopefully, amongy(x i ) and y(x j ). Notice that a higher  g represents a smaller

inuence of parameter xg over � .8

Therefore, the Kriging meta-model requiresl + k +1 coe�cients to be estimated

over the n observations selected by an appropriate design of experiments (DoE). As

discussed before,l = 1 or 2 is adopted. k is determined by the number of parameters

of the original model that are being evaluated in the sensitivity analysis, so it is

dependent on the speci�cation of the innovation shocks (rescaled Beta, Laplace or

Gaussian). The original simulation model has four base parameters:A (replicator

sensitivity), N (number of �rms), smin (the market share below which a �rm exits

the market) and  (learning cumulativity). The alternative shocks distributions have

two common parameters:� and � max (the average shock size and the upper support

limit). Additionally, rescaled Beta distribution requires � � , � � (shape parameters),

� min and � max (support limits), Laplace needs � 1 and � 2 (shape parameters) and

Gaussian,� (standard deviation), leading to a total of k = 10, 7 and 6 parameters

to test, respectively.

In practical terms, we constrained the experimental domain to ranges ofthe pa-

rameters that are empirically reasonable and respect minimal technical restrictions

of the original model,9 according to Table 2. The output variable tested (y) is the

selected \fat-taildness" measure of the distribution of �rms' growt h rates (b) on the

original model. Therefore,y = b is estimated by the maximum-likelihood �t for the

b shape parameter of a Subbotin distribution (as de�ned above).

Three designs of experiments are created to evaluate each innovation shocks

speci�cation. We use the rescaled Beta distributed shocks case to present the results

more extensively. The other cases, conversely, will be presented in a more concise

form. For the rescaled Beta (k = 10) and the Laplace (k = 7) con�gurations, DoE's

with n = 33 samples are created. For the Gaussian (k = 6) case, while n = 17

is usually considered an adequate DoE size, we also selectn = 33 because both

the Q2 and the RMSE goodness-of-�t measures (see below) perform much worse

under the smaller DoE when compared to the other two cases. The near-orthogonal

Latin hypercube (NOLH) DoE's are constructed according to the recommendations

provided by Cioppa and Lucas, (2007). Yet, for the external validation procedures

(see below), 10 additional random samples are generated for each DoE. Because

of the stochastic nature of the original model, each pointx i , i = 1 ; : : : ; n in the

parametric space is computed overm = 50 simulation runs using di�erent seeds for

8De�nitions for other correlation function alternatives can be foun d in Roustant et al., 2012.
9The technical feasibility criterion adopted was the minimally \normal" operation of the market,

measured by the survival of at least two �rms during the majority of s imulation time steps. Also,

some of the parameters' test ranges limit, in practice, the possible ranges of variation for other

parameters (e.g., the distribution average � must be lower than the upper support of distributions

� max ).
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Parameter Minimum Maximum

Base model A 0:2 5:0

N 50 350

smin 0:0001 0:0015

 0:2 5:0

� 0:015 0:15

� max 0:2 1:0

Beta shocks � � 1:0 3:0

� � 3:0 10:0

� min 0:0 0:1

� max 0:2 1:0

Laplace shocks � 1 0:005 0:05

� 2 0:005 0:05

Gaussian shocks � 0:2 2:0

Table 2: Parameters experimental space domainD .

the pseudo-random number generator. The resultingy(x i ) = bi (x i ) is evaluated by

the mean of the observed~bi;m across them runs and its variance is used to specify

the noise in { or the weight of { each point of the DoE in the estimation of Y .10

As discussed above, adequate trend and correlation functions must be selected

{ in Bayesian terms, they are the required priors { for estimation of the Kriging

meta-model. To choose among potential candidates, we perform an evaluation of

the goodness-of-�t (of the meta-model to the original model responsesurface) based

on both cross (in-sample) and external (out-of-sample) validation, as suggested by

Salle and Yildizoglu, (2014). Cross validation is performed using theQ2 predictivity

coe�cient (a proxy of conventional R2). External validation is based on the root

mean square error (RMSE ) measure. The two criteria are usually compatible and

for meta-model estimation we selected the function pair performingbetter according

to both criteria (50:50% weight). Results for the rescaled Beta case arepresented

in Table 3. The analysis was performed for the three cases but not included here as

the general results are similar. The selected function pair for each case is presented

next.

The estimated Kriging meta-models, according to Eqs. (8) { (10), are shown in

Table 4.11 General meta-model �tting was good, as measured by both crossQ2 and

external RMSE validations.
10 Noise is used in the entire estimation process to evaluate observations. Samples under too

much noise (sampling variance over 10 times the average) are discarded in the estimation process.

Table 4 presents the e�ective number of observations used.
11 The meta-model estimation and the following sensitivity ana lysis was performed using the

DiceKriging, DiceOptim and DiceEval packages (Roustant et al., 2012, Dupuy et al., 2015) in R

(R Core Team, 2016).
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Table 3: Comparison of alternative meta-model speci�cations (Beta shocks).
Higher Q2 and lower RMSE values are better.

Validation f i trend Mat �ern 5/2 Mat �ern 3/2 Gaussian Exponential Power exp.

Cross Constant 0:2763 0:3073 0:2527 0:0793 0:2879

(Q2) Linear 0:0000 0:0000 0:0000 0:0000 0:0000

External Constant 1:0249 1:0514 1:0015 1:2370 1:0179

(RMSE ) Linear 1:0112 1:0112 1:0112 1:0112 1:0112

Table 4: Kriging meta-model estimation.

Beta shocks Laplace shocks Gaussian shocks

Trend function constant constant constant

� (intercept ) 1:4649 1:4092 1:9603

Correlation function Power exp. Mat�ern 5/2 Mat�ern 5/2

 (A) 3:5984 3:5630 3:2971

 (N ) 243:7065 101:5874 257:2181

 (sMin ) 0:0005 0:0005 0:0010

 ( ) 9:2324 2:0045 8:0193

 (� ) 0:2700 0:0966 0:1485

 (� max ) 1:6000 1:6000 1:6000

 (� � ) 3:8186

 (� � ) 10:4382

 (� min ) 0:2000

 (� max ) 1:4909

 (� 1) 0:0872

 (� 2) 0:0900

 (� ) 3:6000

Cross validation Q2 0:2879 0:4391 0:6454

External validation RMSE 1:0179 0:7129 0:4721

NOLH samples used (n) 33 32 32

External validation samples 10 10 10
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Figure 3: Sensitivity analysis of parameters e�ects on meta-model response (Beta shocks).

The magnitudes of the estimated coe�cients provide a rough indication of

the (inverse) importance of each parameter on the variation of the Subbotin's b

shape parameter of the �rm's growth rates distribution. However, a more re�ned

analysis is proposed in Figure 3. There we present the results of the Sobol (variance)

decomposition procedure, as proposed by Saltelli et al., (2000), comprised by the

individual and the interaction e�ects of each parameter on the variance ofY { and,

likely, also of y. Even considering the signi�cantly di�erent speci�cations, res ults

are reasonably similar among alternative shocks con�gurations. Figures 3 and 5 ([a]

and [d]) show the sensitivity analysis results. Unexpectedly, the smin parameter is

the most inuential in the three cases. Considering the direct e�ects, in the rescaled

Beta case (estimated under a power exponential correlation functionas per Eq. (10))

smin accounts for more than 80% of the variance ofb, while in the Laplace and the

Gaussian cases (using a Mat�ern 5/2 covariance kernel)12 this inuence is little under

60{50%, respectively. The next relevant parameters areA and N for Beta (around

10% each), Laplace (20{40% respectively) and Gaussian (30% each).� is relevant

for Laplace and Gaussian (25{15% respectively). Only in the Laplace case, is

also important (about 25%) but mainly in interaction with the other paramet ers.

� max and all the distribution-speci�c parameters are relatively unimpor tant for the

meta-model output.

12 The Mat�ern correlation function { the Fourier transform of the Stude nt distribution density

function { in its 5/2 formulation can be speci�ed as (Rasmussen a nd Williams, 2006):

corr( � (x i ); � (x j )) =
�

1 +
p

5h +
5
3

h2
�

exp
�

�
p

5h
�

; h =
kX

g=1

 g jxg;i � xg;j j (11)
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Considering the three dominant parameters detected by the Sobol decomposi-

tion, Figure 4 shows the response surfaces of the rescaled Beta shocks meta-model

for the full range of these parameters, as indicated in Table 2. The plots in the

columns of Figure 4 represent the same response surface, the top one ina 3D repre-

sentation and the one in the bottom using isolevel curves. In all plots,parameters

smin 2 [0:0001; 0:0015] and A 2 [0:2; 5] are explored over their entire variation

ranges. The �rst and the last columns (Figure 4, plots [a], [c], [d] and [f]) show the

response for the limit values of parameterN 2 [50; 350], while the center column

(plots [b] and [e]) depicts the default model setup (except forsmin and A). The

round mark in the two plots represents the meta-model response at the full default

settings, as per Table 1. The prediction of the meta-model for this particular point

in the parameters space { which is not included in the DoE sample { iŝb = 1 :58

while the \true" value from the original model is b = 1 :37, an error of +15% wholly

inside the expected 95% con�dence interval for that point (� = � 0:75).13 In partic-

ular, the default settings point is located at a level close to the globalmaximum of

the response surface, around̂b = 1 :75 (the minimum is at b̂ = 1).

Coupled with the sensitivity analysis results, which show that smin , A and N

are the only parameters signi�cantly a�ecting the predicted b̂, Figure 4 seems to

corroborate the hypothesis that the model results are systematicallyfat-tailed, as

can be inferred from the condition b̂ < 2. However, considering the average 95%

con�dence interval �� = � 0:68 range for the meta-model response surface, it seems

that still exists a region where we cannot discard the absence of fat-tails (b̂ � 2)

at the usual signi�cance levels. Therefore, further analysis is required, this time

focused in this particular area, representing a small portion of the parametric space

where the meta-model resolution is not su�cient to completely specify the response

of the original model. Considering the critical region only (approximated to smin 2

[0:0001; 0:001] andA 2 [0:2; 3]), a \brute force" Monte Carlo sampling approach is

performed in the original model. Not surprisingly, out of 20 random observations,

considered su�cient given the predicted smoothness of the investigated area at a 5%

signi�cance level, the sampled interval true response was in the range [1:25; 1:63],

con�rming that the meta-model predicted b̂, in this particular region, is likely to

overestimate the true value of the shape parameterb. In conclusion, it seems very

probable that the true response surface of the original model is signi�cantly under

the b = 2 limit over the entire explored parametric space for rescaled Beta innovation

shocks.

Similar analysis is conducted for the Laplace and Gaussian innovation shocks

13 Kriging predictions becomes more precise as the interpolated point gets closer to one of the

DoE points, where the error of the model is always zero by constructi on { and vice versa { so � is

not constant.
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meta-models. The results are synthesized in Figure 5. The Laplace case is in the

upper row (plots [a], [b] and [c]) which presents the Sobol decomposition sensitivity

analysis, already discussed, and the surface response for the top two critical param-

eters (smin 2 [0:0001; 0:0015] andN 2 [50; 350]). Again, the meta-model predicted

response with default settings is at a level̂b = 1 :51, close to the global maximum at

b̂ = 1 :77 and above the minimum atb̂ = 0 :91. The true value at the default point is

b = 1 :28 and the prediction error is +18%, well under the 95% con�dence interval

� = � 0:69 in that point. As in the previous case, and despite the entire meta-model

surface is substantially below the critical level b̂ = 2, under the usual signi�cance

levels (�� = � 0:77) there is a region of the surface where we cannot discardb � 2.

However, once again the Monte Carlo exploration of this critical region on theorig-

inal model, also seems to con�rm the hypothesis ofb < 2 for the whole parametric

space of the original model under Laplace innovation shocks.

Qualitatively close results come from the Gaussian meta-model. The dynamics

of the meta-model here is driven bysmin 2 [0:0001; 0:0015] andN 2 [50; 350]. The

produced response surface is slightly more rugged, as depicted in Figure 5 ([d], [e]

and [f]). The meta-model prediction for the default settings point is b̂ = 1 :36, well

in between the surface's global minimum at̂b = 0 :98 and the maximum at b̂ = 1 :71.

The prediction error, in this case, is � 3% given the true b = 1 :40, easily inside the

95% con�dence interval � = � 0:74. Again, considering the average 95% con�dence

interval �� = � 0:47 over the entire surface, there is a small region of the response

surface (the \hilltop" around N < 70 and smin > 0:0010) where it's not possible

to reject the absence of fat tails. However, speci�c MC exploration inthis area on

the original model once more produced no points sitting close to theb = 2 limit,

con�rming the meta-model predictions of b < 2 for the entire region.
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(a) N = 50 (b) N = 150 (c) N = 350

(d) N = 50 (e) N = 150 (f ) N = 350

Figure 4: Response surfaces { Beta shocks. All remaining parameters set at default settings (round mark at default smin and A).

18



(a) Sensitivity analysis (Laplace) (b) 3D response surface (Laplace) (c) Isolevels response surface (Laplace)

(d) Sensitivity analysis (Gaussian) (e) 3D response surface (Gaussian) (f ) Isolevels response surface (Gaussian)

Figure 5: Sensitivity analysis and response surfaces { Laplace and Gaussian shocks. All remaining parameters set at default settings (round mark
at default smin , N and � ).
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5 Discussion

Our results show that the model is able to reproduce, over most of the parameters

space, fat-tailed growth rates distributions { and even strict Laplaceones. The Krig-

ing meta-models con�rm and strengthen the results obtained in Dosi et al., ( 2015),

providing evidence that the coupling of the two evolutionary processes of learning

and selection is a strong candidate to explain the observed fat-taileddistributions

of �rm growth rates.

From the analysis made possible by the meta-models, the modeller canacquire

a set of relevant new information on the original model behaviour. However, care

should be taken to account for the expected prediction errors on the response sur-

faces: isolevels and 3D surfaces should be understood with the associated con�dence

intervals (at the desired signi�cance level), that are not regular (constant) in Kriging

meta-models. In any case, the order of magnitude of the out-of-sample RMSE in Ta-

ble 4 remains a good indication of the limits to be expected on the overall con�dence

intervals. Moreover, even when the con�dence intervals may be notsu�ciently nar-

row to objectively accept or reject a given proposition, the topological information

provided by the meta-model response surface has proved to be a powerful tool on

guiding (and making possible) the exploration of the original model by means of

other (more data-demanding) tools, like conventional Monte Carlo sampling.

According to the global e�ect of parameters on meta-models responses, provided

by variance decomposition, the elicited parameters in the three analysed cases in or-

der of signi�cance are: [i]smin (exit market share), [ii] A (replicator sensitivity), [iii]

N (number of �rms), and [iv]  (degree of cumulativity). When they are relevant,

according to the shocks distribution case, both direct and interaction e�ects inu-

ence the response surfaces. From the analysis of the latter, some regular patterns

of the parameters' e�ects on the value of meta-models'̂b can be identi�ed.

First, the smin parameter exerts a mostly monotonic inuence on the change of

b̂: the higher the death-threshold the fatter the tails of growth rate distribution are.

This result, admittedly unexpected in its strength, is likely to capture the impact

of that extreme form of selection which is \death", upon the whole distribution of

growth rates.

Second, the higher the value of theA parameter, in general the lower the value

of b̂. Similarly to smin , this parameter controls for the degree of selection operating

among incumbent �rms. In fact, higher selection in the market induces a greater

reallocation of shares among surviving incumbents. In the region where competition

is �erce both in the entry-exit and in the reallocation processes,characterised by

high values for smin and A respectively, very low levels of theb̂ parameter are

recorded and almost \pure" Laplacian tails emerge.
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Third, the mechanism of cumulation in learning activities, modulated by  ,

exerts a positive inuence on the tail-fatness in our meta-model speci�cations, as

already detected in Dosi et al., (2015). The process of cumulation of knowledge

inuences directly �rms productivity growth, and indirectly their performance in

the market.

The results from the Kriging meta-models con�rm and strengthen the previous

�ndings discussed in Dosi et al., (2015) but a word of caution is necessary when

interpreting the meta-model and in particular the e�ect of the coe�cients  g on

corr(y(x i ); y(x j )). In fact, a simpli�cation of the deterministic component � (x) puts

the burden of explanation on the stochastic part� (x). Admittedly, focusing on the

modeling of � would yield an increasing dimensionality of the meta-model, compris-

ing all the k = 10, 7 or 6 parameters themselves, their interaction and higher order

terms. Intuitively, the Kriging rationale in privileging the mod eling of cov(� (x)),

instead, is that it allows for the capture the behavior of Y (x) using much fewer ob-

servations while still keeping global covariance-based sensitivity analysis possible.

Indeed, a constant deterministic function can be not only the result of the sum of

constant x1; : : : ; xk 2 R parameters but also, being� (x) : Rk ! R the function

representing the global trend of the meta-modelY , it may well proximately capture

di�erent dynamics for some parametersxg: in such a case a constant deterministic

component could \arti�cially" atten the meta-model. Of course the ass ociated loss

of information about the model sharply falls as the number of parameters or ofthe

DoE samples increase.

Furthermore, even if the correlation function coe�cients are estimated using

data coming from the original model, the ensuing covariances are fullyprecise only at

the exact DoE (sampling) points, as for all others we are using an interpolation of the

closest DoE points to predict the correlation values. That is why, in fact, the meta-

model is just a surrogate model, an approximation which cannot { and so should

not be used to { substitute the original model: the estimated coe�c ients in Table 4

represent the overallexpectede�ects of each parameterxg on the variance of meta-

model's response and thus in the �nal predicted valuesY(x), all subject to the usual

restrictions of any non-parametric Bayesian approximation, in particular the chosen

priors (the trend and the correlation functional forms). The coe�cie nts  being

estimated govern \associations" among the original parameters (the covariation in

the components of the random e�ect � (x)), but they do not represent direct e�ects

of the original parametersxk on Y(x).

Notwithstanding these caveats, the meta-model approximate response surface is

still a powerful guide for the general exploration of the original model,as a kind

of \reduced map", providing illuminating guidance on the sign of the e� ects of the

parameters on the output variable(s), on their relative importance, andon the ones
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critical for particular \suspicious" points. Relatedly, the exerci se hints to the region

of the parameters space to intensively search, on the ground of the original model,

performing traditional local sensitivity analysis, at this stage more feasible given

the lower number of dimensions and factor ranges. That is, despite somepossible

{ or even likely { \false-positives" from the meta-models, any searchin the original

model becomes at least better informed with them.

6 Conclusions

Empirically, one ubiquitously observes fat-tailed distributions of �rm growth rates.

In Dosi et al., (2015) we built a simple multi-�rm agent-based model able to repro-

duce this stylised fact. In this contribution we use Kriging meta-modeling method-

ology associated with a computationally e�cient Near-Orthogonal Latin Hypercu be

design of experiment which allows for the fully simultaneous analysis of all of the

models parameters under their entire useful ranges of variation. Theexercise con-

�rms the high level of generality of the results previously obtained by means of

a statistically robust global sensitivity analysis. The mechanisms ofmarket selec-

tion, both in the entry-exit and in the market share reallocation processes, together

with cumulative learning, turn out to be quite robust candidates to explain the

tent-shaped distribution of �rms' growth rates.
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