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Abstract
After the outbreak of the nancial crisis in 2007-2008 the level of hon-perforning

loans (NPLs) in the economy has generally increased. However, while in s@ntoun-
tries this has been a transitory phenomenon, in others it still repesents a major
threat for economic recovery and nancial stability. The present work investigates
the relationship between non-performing loans and systemic risk usg a network-
based approach. In particular, we analyze how an increase in NPLs at rms lesi
propagates to the nancial system through the network of credits and debis. To

this end we develop a model with two types of agents, banks and rms,ihked one
another in a two-layers structure by their reciprocal credits and debits. The model
is analyzed via numerical simulations and allows a) to de ne a syntheic measure
of systemic risk and b) to quantify the resilience of the nancial system to external
shocks, making it particularly useful from a policy point of view. For illustrative

purposes, in section 3 we present an application of the model to ItalyGermany,
and United Kingdom, using empirically observed data for the three coutries.
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1 Introduction

Over the last 30 years world's economy has experienced an amglleled process of glob-
alization, which has lead to a reduction of the world's e eate size \from XXL to Small"
(Friedman, 2006). In the nancial sector this phenomenon tebeen the cause and the
consequence of a strain to diversi cation which has incread the level of connectivity and
complexity of the nancial system, with the result that today's nancial institutions are
directly or indirectly much more connected than ever before

A non-negligible role in fostering this process has been yéa by the widespread belief
that interconnection of nancial markets would have lead toa greater nancial stability,
as risk would have been reduced via its spreading around thend (Stiglitz, 2010).
However the recent crisis has shown that an higher degree dkirtonnection is not always
desirable to achieve nancial stability (Battiston et al. , 2012a) and that diversi cation,
rather than curtailing the overall level of risk, has dispesed it, transforming idiosyncratic
into systemic risk.

As pointed out by Stiglitz during the IMF conference on interonnectedness in May 2014
\the thrust of economic discussion was that diversi cation,or interconnectedness, was a
great thing", however the nancial crisis started in 2007-Q08 revealed how this belief
was wrong since the high number of interconnections betweemancial intermediaries
\facilitated the breakdown" and became \part of the problemi. Of the same opinion is
Jannet Yellen, current Chair of the Federal Reserve, accordj to which \interconnections
among nancial intermediaries are not an unalloyed good. @agplex interactions [...] may
serve to amplify existing market frictions, information agmmetries, or other externali-
ties" (Yellen, 2013).

The crisis has forced scholars and policy makers to rethinkWw to promote nancial stabil-
ity paying attention to the interconnections among nancid institutions, whose analysis
is now considered crucial to gauge systemic risk and to preweor at least to dampen,
future meltdowns (Schweitzeret al. , 2009).

This has led to an intense research activity aimed at betternderstanding the role of
pairwise interactions between nancial institutions in popagating and amplifying nega-
tive shocks. This eld of research goes back to Allen & Gale (Q0) and Eisenberg &
Noe (2001) and bloomed over the past few years: part of the liggure focused primarily
on theoretical models of networks, such as Gai & Kapadia (20 Gai et al. (2011),
Battiston et al. (2012b), Elliott et al. (2014), Acemogluet al. (2013), Acemogluet al.
(2015), Chinazziet al. (2015¥; while another part devoted its attention to the empirical
analysis of interbank networks, such as, Soramalkit al. (2007), lori et al. (2008), Bech

NInterconnectedness: Building Bridges between Research and Paly", May 2014,
http://www.imf.org/external/pubs/ft/survey/so/2014/RES052314A.htm (accessed on 1 July 2015)
2See Chinazzi & Fagiolo (2013) for a survey.



& Atalay (2010), Beltran et al. (2015), de Andoain Hidalgecet al. (n.d.).

Our paper belongs to the rst stream of this growing body of terature and aims at
analyzing the level of systemic risk and the resilience of aancial system in a network
perspective.

In what follows we develop a network model which simulates Wwoan exogenous shock,
represented by an increase in the level of non-performingatts (NPLs), can a ect the
stability of the nancial system through the network of credts and debits.

Unlike most of the in this eld, we focus on NPLs as source of shodor three main
reasons: rst, because while in some countries their level increased with the outbreak
of the crisis, to go back subsequently to a level equal or lowthe pre-crisis one, in other
countries NPLs are still increasing and have become a majomoern at policy level; sec-
ond, because using NPLs allows to measure the intensity of tekock and anchor it to a
real observable variable; third, because, notwithstandgthe simplifying assumptions of
the model, using a real variable to study the response of naral systems allow to draw
some practical policy conclusion.

To give a better picture of the phenomenon, Figure 1 shows theegrentages of non-
performing loans to total gross loans granted by banks in derent European countries
from 1997 to 2014. By looking at the data it is possible to distguish two groups of
countries: a rst group, shown in the top panel, where the nacial crisis has had only
transitory e ects of the level of NPLs, which increased righiafter the outbreak of the
crisis in 2008 and went back thereafter; and a second grougpresented in the bottom
panel and coinciding mainly with the periphery countries athe Eurozone, where the level
of NPLs boomed after the crisis and remained well above levg@sor to 2008. In partic-
ular, it is worth noting how in countries like Italy, Greece ad Portugal NPLs are still
today marked by an upward trend, with obvious drawbacks in tens lending provision,
economic growth and nancial stability.

In what follows we develop a model with two types of agents, bks and rms, linked one
another in a two-layer network by their claims and obligatios. By means of computer
simulations we investigate the relationship between nonepforming loans, systemic crisis
and resilience, providing a synthetic measure of systemisk and identifying the shock
that a nancial system is able to bear. In order to provide a dser matching with reality,
we calibrate the model with empirical data for three di erem countries, Italy, Germany
and United Kingdom. Nevertheless, due to the lack of publiclyvailable data on bilateral
exposures between banks and between banks and rms, the rkswf the simulations

3Following the de nition of the IMF \a loan is nonperforming when payme nts of interest and principal
are past due by 90 days or more, or at least 90 days of interest payments haween capitalized, re nanced
or delayed by agreement, or payments are less than 90 days overdue,tithere are other good reasons to
doubt that payments will be made in full" (Clari cation and Elaboration of Issues Raised by the December
2004 Meeting of the Advisory Expert Group of the Intersecretariat Working Group on National Accounts,
International Monetary Fund, June 2005).
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Figure 1: Percentage of non-performing loans over total ge$oang from 1997 to 2014
in di erent European countries. Panel a) shows the countriewhere the level of NPLs
remained substantially stable before and after the crisisPanel b) display the countries
where NPLs exploded after 2008 and are still today at levelsdhier than the pre crisis
period. In particular, NPLs in Italy, Portugal and Greece in D14 still show an upward
trend. Source: elaboration of the authors on data from the tarnational Monetary Fund,
Global Financial Stability Report.



should be intended only as illustrative of the usefulness dtiie framework and of the
results that it is possible to obtain. Despite this, the modeprovides a new insight for the
emergence of a systemic crisis and represents a rst attemjotlink together the nancial
and the real side of the economy, constituting a useful stang point for future research.
The model, presented in Section 2, shares the basic struauof Nieret al. (2007) and
Gai & Kapadia (2010); it further draws from Caccioliet al. (2012) as far as regard the
introduction of heterogeneity, from Anandet al. (2013) for the presence of rms and from
Montagna & Lux (2013) in the adoption of a tness algorithm togenerate the network.
In Section 3 we discuss the calibration of the model (more dals in Appendix 4) and the
result of the simulation exercises performed for a baselisetting and three alternative
speci cations corresponding to Italy, Germany and United Kngdom. Section 4 reviews
and concludes the work.



2 The model

Consider an economy composed By banks andM rms. Assume that the two sets of
agents are the nodes of a bipartite network organized in twaterconnected layers, where
one comprises banks and the other rms. Agents are linked on@aather through their
balance sheets by credits and debits which result from nara transactions: for any node
i an incoming link is a credit and an outgoing link is a debit.

Following Nier et al. (2007), we represent each bank via a simpli ed balance shesttuc-
ture as the one depicted in Figure 2and we assume the following relations to hold:

AP = AP+ A (1)

Li" = L?+ Dj + K; ; ()
AP= AR 3
A=) AT @)
Ki= A (5)

where AP represents the interbank assets (i.e. the assets owned tog& other banks),
Al the external assets (i.e. the assets owned towards rms)® the total assets,L the
interbank liabilities, D; the deposit$, K; the net worth and L the total liabilities. Due
to the double-entry bookkeeping systemA!® is equal toL! for all the values. Finally,

and are two constant parameters equal for all banks: the rst ragsents the ratio
between the interbank assets and the total assets of a banketsecond the capital ratio.
From the imposed relations between the elements of the batansheet, it follows that a
bank i is solvent if the solvency condition

Ki= AP+ Al P D;>0 (6)

Is satis ed. We assume that banks can lend and borrow from a#h banks, but can only
lend to rms; moreover we assume that rms cannot borrow fromeach other, but only
from banks. These assumptions imply that banks can have bothcoming and outgoing
links with other banks, but only incoming links form rms. On the other hand, rms can
only have outgoing links toward banks and no links with othemrms.

At time t = 0 each banki = 1;::;N is provided with an amount of interbank assets
AP drawn from a power law distribution (AP) AP * with bounded support AP 2
[AR. AP 1. Similarly, to each rm j = 1;::;;M is assigned a value of total asses™,
distributed according to a power law (F/*')  F* ? with F* 2 [FoL FPL]. We

min a

SWe do not model the balance sheet structure of rms since our focussion the consequences of shocks
for the nancial system.

D, is computed as a di erence betweerA® and LI + K;. We label this di erence \deposits" in
accordance with the current literature, however it must be noted that this is just a convention and that
there is no relation between real banks' deposits and this variable.
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Figure 2: Balance sheet structure. The arrows on the top of thegure indicate the

direction of links: incoming links represent an asset, outgng links represent a liability.

The shock a ects the portion of the assets held against rmsTo cause the default of a
node, the initial shock must be higher than the net worth owrgkby that node. Elaboration

of the authors adapted from Haldane & May (2011).



take AP and F/° as tness parameters of the linking functions that we use toemerate
the network. The algorithm implemented generates the netwk randomly in a kinetic

way’, using the probability given by the linking functions to esablish whether create an
incoming link between two nodes (Caldarelli, 2007). In paidular, following Montagna &

Lux (2013), we assume the following functional forms:

o Alb AP
P(AP;AP) = - ; (7)
I : AII’?]aX Alrgax
] A|b F_tOt
PAP;F) = —— ) : 8
AR R ©

The assumptions about the distribution of banks' and rms' &e and about the linking
function lead to a scale-free network structure, where theapameters , , and dene
the properties of the network itself. It what follows we assue =1and =0:25 forthe
interbank network and =1 and =1 forthe banks- rms network. We do so in order to
reproduce the frequently documented feature of disassaiitee behavior in the interbank
network (lori et al. (2006), Soramakiet al. (2007)) and to create an assortative behavior
in the rms-banks network, which re ect the assumptions tha bigger rms have higher
possibilities to access credit and that on average tend to Vemore links (i.e. more credit
lines) than small rms.

After having generated the network, we assign a weight to eaaimcoming link: for inter-
bank links, the weight depends on the amount of interbank asts of the creditor AP) and
of the debtor (AP), as well as on the number of incoming links of the creditor. dfmally
is:

Wij = A:b Pﬁ: 9)
k2 k

where ; is the set of nodes linked with. Similarly, the weights of bank- rm links depend
on the external assets of each bank!, on the level of total assets of rmsF°" and on
the number of incoming links of the bank. Formally is:

F tot
J

f
Wij = Ai tot :
k2 iFk

(10)
In other words, we distribute the amount of interbank assetand of external assets of
each bank proportionally to the size of the debtor. This re et the assumption that
bigger nodes are able to get more credit from banks, which sitler them as more trust-
worthy and less risky. By assigning weights in this way, intbank liabilities of each bank

"See Appendix 4 for a more detailed explanation of the algorithm used.



are endogenously determined and we are able to compute alétblements of banks' bal-
ance sheet in Figure 2.

Following this procedure we obtain a scale-free network thas bipartite, directed, and
weighted. In terms of adjacency matrix it can be representeak follows:

2 3
011 a2 aiN ag;(N+1) a;(N+M)
an; 022 agN ao;(N +1) a(N+M)
A(N+M);(N+M) = an;1 an;2 OniN an; (N +1) an;(N+M)
On+nyst Oz - Onenysny | Onsnysoneny o Onsn) e m)
ONn+Myr On+myz o Onemyn) | Onemyn+y o Onem)i(N+ M)

In the above matrix each elementa;; represents the debit of nodg towards nodei.
The top-left block represents the interbank network and cdains the weights of the links
among theN banks: in this block, the row sum gives the interbank liabilies of each
bank L = sz1 a;; , While the column sum gives the amount of interbank assets nad
by each bankAP = sz1 a; . The top-right block represents instead the banks- rms
network and contains the weights of the links between thH banks and theM rms: in
this block, the row sum gives the total debt of each rm, whilethe column sum gives
the amount of external assets owned by each ba¥ = szl Xij . The bottom-left and
bottom-right blocks are made of zeros because by assumpsome rule out the possibility
of rms lending to banks and to other rms. Also the main diagoral of the adjacency
matrix has only zeros elements since self-loops, i.e. likarting and ending in the same
node, are not allowed (in other words a bank cannot have a ciedr debit with itself);
instead, consistently with bankruptcy law, we do not net inerbank positions, so two
banks can be linked with each other in both directions. Forlilstrative purposes, gure
3 shows an example of the typical network obtained using thegqvious procedure.

After having initialized the model, at timet = 1 we perturb the system with an exogenous
shock consisting by an increase in the level of NPLs. In pracé we transform some of the
credits provided by banks to rms into be bad loans and we do sy selecting rms at
random and assuming that they become unable to meet their afphtions until we reach
the desired amount of NPLs. More in detail, given an amount of NPLs: we select a rm
at random; again at random we go through its outgoing link onley one; we set the value of
the selected link equal to zero and we repeat until an amount debt equal tox is canceled.
If the total debt of the rm is greater than X, the last link considered is simply reduced
by the amount necessary to reacR. If instead the the total debt of the rm is lower than
X, the procedure continues with another randomly selected m, until the debts of all the
link canceled is equal tax. The idea behind the shock on NPLs is that banks exposed
toward defaulted rms incur in a loss which erodes their net wrth, potentially forcing



Figure 3: Blue circles represent banks, red circles rms. Tha&ize of the circles is pro-
portional to the amount of interbank assets for banks and tat assets for rms. Red
links represent links from rms to banks, blue links represeériinks from banks to other

banks. Notes that there are no links between rms and that, aliough it is not possible
to (clearly) show in the gure the direction of links, red lirks can only be directed from
rms (out) to banks (in), while blue links among banks can gon both directions (in and

out).

them to default. Banks that become insolvent after the shocky being unable to meet
condition (6) (that is those banks whose net worth was not engh to absorb the loss),
are set into defaulf. Again, defaulted banks are assumed to default on all theimlbilities
and for all the amount (no partial recovery’), so the corresponding asset of creditor banks
are set equal to zero and their balance sheets are accordyngdduced by the amount lost.
In this way the initial rm-level shock transmits at interbank level where failed banks are
assumed to default on all of their interbank liabilities, egntually pushing neighbor banks
into default. This process continues to iterate until no futher bank failures occur. In this
way the initial shock can be either absorbed or ampli ed, eveually triggering a cascade
of defaults able to cause a systemic crisis within the nanal network.

8As pointed out in Gai & Kapadia (2010) it is possible to impose a minimal capital requirement,
but this \would leave our results qualitatively unchanged as it would just &l to a linear rescaling of the
balance sheet".

9As far as concern banks, as pointed out in Gai & Kapadia (2010) \this assumption is ikely to
be realistic in the middle of a crisis: in the immediate aftermath of a default, the recovery rate and
the timing of recovery will be highly uncertain and banks' funders are likely to assume the worst-case
scenario". Anyway it would be possible to relax this assumption and allowfor a partial recovery, so
that when a linked bank defaults, the creditors do not lose all their aset, but get some fraction of it,
for example a share of the remaining assets proportional to the weight of editors' asset over all other
liabilities of the defaulted bank.

10



3 Model calibration and simulation results

Using data from Bankscopeand Amadeuswe calibrated the model described in section 2
and we simulated it numerically for a baseline case, whereetlvalues of the parameters are
the ones usually assumed in the literature, and for the casesltaly, Germany and United
Kingdom, where the values of the parameters are based on enwgally observed data. In
particular, for each country we derived the capital/total aset ratio , the interbank
assets/total assets ratio and the distributions of banks' interbank assets and rms' étal
assets.
The values of and have been computed as average of the values of the single lsank
(see Upper (2007)); for the distribution of banks' interbankassetsA® and of rms' total
assetsF ™!, data have been tted using a power-law distributional mode See Newman
(2005), Clausetet al. (2009), Bottazziet al. (2015), Bottazzi (2009).
The distributions of AP and F™ are depicted in Figure 4, while Table 1 reports the
model's list of parameters and their values for the four sintations (see Appendix 4 for
further details).
In the simulations we consider a network of 100 banks and 256ms and di erent com-
binations of ADgg and ADg.r . For every pair of values of the average degrees we draw
200 realizations of the network, in each of which we shock tlsgstem by increasing the
level of NPLs as described by the algorithm in Section 2. We ch®the average degree as
a key parameter to vary as it gives the average number of co@nparts of a node and so
is a proxy for the level of interconnectedness of a system [igtt et al. , 2014). Moreover
the real value ofADgg and ADg ¢ is in general not know?, so we tested a wide range
of reasonable values.
Since we are interested in the risk of a systemic crisis we wdo exclude small chain of
defaults, for this reason, following Gai & Kapadia (2010), eide ne a systemic crisis as the
occurrence of the default of more than 5% of banks in the netvko Given this de nition,
we compute the frequency of a systemic crisif | as the number of times in which more
than 5% of banks default over the 200 drawings and the extent a systemic crisis D) as
the fraction of defaulted banks conditional on contagion &r the 5% threshold breaking
out, which is therefore a measure of the magnitude of the sgshic crisis.
These two quantities allow to de ne a synthetic statisticsdr measuring systemic riskR),
which we compute as the product between the frequency of cagton (F) and the extent
of contagion D):

R=F D (12)

0Few estimates of the interbank average degree are present in the ditature, for example Anandet al.
(2015) nds that the average degree for the German interbank network is 10.5, Wwile Soramaki et al.
(2007) nds an average degree of 15.2 for the Fedwire interbank payment netwk.

11
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Figure 4: Distribution of interbank assets (panel a) and rm&total assets (panel b) for
Italy, Germany and United Kingdom in 2013 (log-log scale). Swmce: computations of the
authors based on data fronBankscopeand Amadeus
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Parameters Baseline Italy Germany United Kingdom

N 100 100 100 100
M 250 250 250 250
T 200 200 200 200
ADg. [0:0.5:25] [0:0.5:25] [0:0.5:25] [0:0.5:25]
ADg.¢ [0:0.5:25] [0:0.5:25] [0:0.5:25] [0:0.5:25]
Alb truncated Pareto truncated Pareto truncated Pareto truncéed Pareto
Ak 5 4.10e+04 1.10e+05 5.15e+04
Ab 100 3.38e+08 3.87e+08 3.99e+08
1 2 1.59 1.68 1.33
F tot truncated Pareto truncated Pareto truncated Pareto truncéed Pareto
F Lot 5 3.77e+03 2.54e+03 6.53e+04
Flot 100 1.48e+06 1.38e+08 1.69e+08
2 2 1.95 1.73 1.72
8% 12% 11% 31%
20% 11% 11% 30%
[0:1.25%:10%)] [0:1.25%:10%] [0:1.25%:10%)] [0:1.25%]10%
1 1 1 1
0.25 0.25 0.25 0.25
1 1 1 1
1 1 1 1

Table 1. The table summarizes the parameters used in the nunoal simulations and
their values for the four scenarios. The rst column list theparameters: N and M are
respectively the number of banks and rms in the network; T ishe number of realizations
for each pair of average degrees, which range and step arewshan the rows ADg.g and
ADgF; AP and F© are distributed according to a truncated Pareto with exponats
respectively given by ; and , and ranges de ned by AR, ;AP Tand [FlL;FlL ], s
the percentage of capital with respect to total asset; is the percentage of interbank assets
with respect to total assets; is the percentage of NPLs over the total amount of loans
in the economy (i.e. is the magnitude of the initial shock); and are the exponents
used in the linking function between banks; and are the exponents used in the linking
function for banks and rms.

Figure 5 and 6 summarizes the results of the simulations for éhbaseline casé. The
four panels in Figure 5 show the level of systemic risk in terntd probability associated
with di erent increases in the NPLs over total gross loans. Oihe x-axis and y-axis we
show respectively the interbank average degréd z.5 and the bank- rm average degree
ADg.r . Low values ofADg.g correspond to a poorly connected interbank network, while
higher values correspond to an highly connected network. &same applies to the values
of AD g.r . White squares in the heat-map corresponds to situations inhich the threshold
of 5% of default has never been reached in the 200 draws of tlmwsations. Di erent
colors represent di erent levels of systemic risk: as showby the vertical bar on the

1 As reported in Table 1 the values of tested go from 0 to 10% with a step of 1.25%. Given the purely
illustrative intent of the work in the gures from 5 to 12 we show only some selected charts in order not
to overload the reading. The full set of charts is available upon requés

13



right-hand side of the heat-map, colors towards blue corqesnd to low levels, while colors
toward red to high levels. The gure shows that, on both the ags, the levels of systemic
risk rst increases and then decreases, showing a non-moowic behavior and peaking in
the bottom-left area of all the panels. Moreover it is possié to see how an higher initial
shock does not change the general shape of the plot, meteris paribusit only increases
the risk level, while it preserves the shape and the non-maoaic behavior.

Figure 6 shows the fraction of defaulted banks over the totalumber of banks present in
the network, as a function of the magnitude of the shock. We cquated the fraction of
defaulted banks as the average over the 200 draws. The resukeported in panel in the
gure are compiled from performing 200 draws for each valué the shock. In the baseline
case it is possible to identify clearly a phase transition fovalues of the shock between
4% and 5%, so small changes in the shocks in terms of magnitwda have very di erent
consequences in terms of fraction of defaults. Being able ittentify such a threshold is
particularly important because it tell a lot about the characteristics of the network and
is a measure of the resilience of the system to exogenous Ehd&y comparing the four
panels of gure 6 it is also possible to se how changes in theesage degrees a ect the
resilience of the systemceteris paribusan increase inAD g, moves the phase transition
to the right, while an increase ofAD g increases the high of the curve and so the the
fraction of defaulted banks.

14
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Figure 5: The gure shows the level of systemic risk associdt¢éo di erent level of initial
shock in the baseline case.
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(@) AD gz =4;AD g =9 (b) AD gg =4:AD g =20

(C) AD gg =13;AD g =9 (d) AD gz =13;AD g =20

Figure 6: The gure relates to the baseline case and shows thiadtion of defaulted banks
for di erent levels of initial shock and di erent combinations of average degrees.

16



For illustrative purposes in gures from 7 to 12 we show the mailts of the simulations
for the cases of Italy, Germany and United Kingdom. In generdhe results obtained for
the three countries are more \noisy" that the ones obtainedf the baseline case and, for
example, it is not always easy to identify a clear phase trami®n as it is instead possible
to do in gure 6 (this is true especially for the United Kingdomwhere the trend appears
linear). Nevertheless, the same considerations made for theseline apply also to the other
three cases, both in terms on non-monotonic behavior of thgssemic risk (with levels
and position varying in the ADgs, ADg.r Space according to country characteristics)
and for what regards the e ects of an increase in the averagegrees on the fraction of
defaulted banks over the total number of banks.

(@) =3:75% (b) =6:25%

(€) =s8:75% (d)  =10%

Figure 7: The gure shows the level of systemic risk associdt¢o di erent level of initial
shock in the case of Italy.
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(@) AD gz =1;AD g =3 (b) AD gg =4:AD g =09

(C) AD gg =4;AD g =14 (d) AD gz =13;AD g =20

Figure 8: The gure relates to the case of Italy and shows thedction of defaulted banks
for di erent levels of initial shock and di erent combinations of average degrees.
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(@ =2:5% (b) =6:25%

(€) =s8:75% (d) =10%

Figure 9: The gure shows the level of systemic risk associdt¢o di erent level of initial
shock in the case of Germany.
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(@) AD gz =1;AD g =3 (b) AD gg =4:AD g =09

(C) AD gg =8;AD g =14 (d) AD gz =13;AD g =20

Figure 10: The gure relates to the case of Germany and showsetliraction of defaulted
banks for di erent levels of initial shock and di erent combnations of average degrees.
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@ =3:7% (b) =7:5%

(€) =s8:75% (d) =10%

Figure 11: The gure shows the level of systemic risk assoaatto di erent level of initial
shock in the case of the United Kingdom.
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(@) ADgg =1;AD g =3 (b) AD gg =4:AD g =3

(C) AD gg =8;AD g =14 (d) aD gz =13;AD g =20

Figure 12: The gure relates to the case of United Kingdom and skwvs the fraction of
defaulted banks for di erent levels of initial shock and dierent combinations of average
degrees.
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4 Conclusions

This paper studies the relationship between non-perforngnloans and nancial stability
in a network perspective. In particular, we analyze how an anease in NPLs at rms level
a ects the nancial system through the network of credits aml debits. To this end we
develop a model with two types of agents, banks and rms, lidd one another by their
credits and debits.

In order to illustrate the model we calibrated it for a basehe case and for the cases
of Italy, Germany, and United Kingdom starting from empiricdly observed data on the
banking sector and on rms for the three countries. The analis of the data showed
that the distributions of banks' interbank assets and rms'total assets follow a power law
distribution and that the ratios \equity over total asset" and \interbank assets over total
assets" are respectively 12% and 11% in lItaly, 11% and 11% iret@any and 31% and
30% in the United Kingdom ( gures for 2013).

By means of simulations we studied the impact of an exogenosisock represented by an
increase in NPLs in terms of systemic risk and resilience ofehnancial system. We nd
that the level of systemic risk varies with the level of intesonnectedness of the network in
a non-monotonic way and that it peeks for low and intermedi@ degrees of connectivity,
rather than for high degrees, with di erences in terms of leals and exact position of the
peek in theADgg ; AD g Space depending on the speci ¢ case.

In terms of resilience, the simulations show the existencé a phase transition for the
baseline case, Italy and Germany (not clear for the United Kgdom), so small variations
in the magnitude of the initial shocks can have very di erentconsequences in terms of
fraction of defaults.

Although the model presented is a simpli ed representationfdhe dynamics that lead to
the emergence of systemic risk, we argue that in presence atadon bilateral exposures
between banks and rms, the framework developed can help tssess the level of risk
to which the system is exposed and to evaluate its resilient@ exogenous shocks, thus
providing useful guidance to policy makers when facing witbdecisions about nancial
stability, such as whether the level of NPLs is critical and»@oses the whole system to
a high risk, whether to intervene to reduce the amount of NPLanithe nancial system,
whether to create incentives/disincentives to modify the gsition of the network in the
\average degrees space" or whether to implement regulat®mbout the values of and
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Appendix A

The dataset used builds on the data provided bfdankscopeand Amadeus two database
produced byBureau van Dijk which collect nancial information respectively on banks
and on public and private companies.

From Bankscopewe extracted information on interbank assetsA™) and banks' total as-
sets A™), while from Amadeuswe got the data about rms' total assets £'). As far
as concerns banks, our dataset covers the period from 20002fil4, while for rms the
dataset goes from 2005 to 2014. The cut o date for the obsetians is 31 March 2015.
Bankscopeand Amadeusreport nancial informations about banks and rms accordirg
to their consolidation level. In order to avoid double counihg issues and keep banking
groups as much aggregated as possible, we selected data@ata to a consolidation
codeU1, C2 or C1'2. However, as pointed out in Duprey (2012) in relation t@ankscope
- the same holds foAmadeus-, even after having considered these consolidation aspect
it still remains possible to face another double countingssie, which is impossible to solve
without information about the ownership for all the years coesponding to the date at
which the observations have been recorded. Ownership datee grovided by Bankscope
but they require an extra license; moreover ownership dataein the cross-section for the
current years, so to get the evolution over time of ownershigtructure in order to include
the evolution of parent/subsidiaries relation over time,tiis necessary to use the updated
version of the database at that time. The data can thereforeuser of a bias, which is
however small and negligible for the purposes of the presembrk.

From the dataset described above we estimated the values ogfed in table 1 which we
used in the simulations. In tables from 2 to 7 we reported thesemates of those values
for all the years available in the dataset. In the simulatios we used the estimated values
for 2013, as they are the most recent with a high coverage ofetlsample. Indeed not for
all the banks and the rms present inBankscopeand Amadeusthe values of the variables
of our interest are reported, so to avoid using in the simulains estimates based of few
observations, we computed a measure of coverage of the sangke last 1-2 columns in
the tables below), which is nothing else that the fraction obanks/ rms for which the
values of the variables are reported, over the total numbef banks/ rms surveyed. From
the tables below it is possible to see that in 2013 the covergf interbank assets, banks'
total assets and rms' total assets are respectively 0.87,88 and 0.88 for Italy, 0.94, 0.95
and 0.50 for Germany, 0.48, 0.85 and 0.93 for the United Kingaho

In the following tables: a) 1, aw and ; indicate the exponent of the power law distri-
bution respectively for the interbank assets, the total agss of banks and the total assets

of rms; b) AP _and AP_ are the estimated minimum and maximum values of the in-

12For more informations about this classi cation reference should be made idectly to the guide provided
by Bureau van Dijk.
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terbank assets A and A%, for banks' total assets and='%!, and F%, for rms' total
assets; c)sampleyin, sampleas , sample-« represent the total number of observations
for banks and rms in the database; d) is the average ratio between interbank assets

and total assets; e) is the average ratio between capital and total asset.

25



Table 2: Italy

Year AP AP sampleys  pw At At sample o coverage,» COverag@uo
2000 1.33 1.21e+03 2.41e+07 15 1.46 4.42e+04 1.68e+08 15 8 0.0.43 0.02 0.02
2001 1.38 3.35e+03 8.57e+06 20 1.35 3.53e+03 1.58e+08 20 7 0240 0.03 0.03
2002 1.47 1.09e+04 7.27e+06 21 1.48 4.77e+04 1.55e+08 21 4 03.36 0.03 0.03
2003 154 1.47e+04 1.04e+07 16 1.46 2.15e+04 1.84e+08 16 208.34 0.02 0.02
2004 1.30 6.27e+03 1.99e+07 22 1.85 8.79e+06 2.17e+08 22 6 03.27 0.03 0.03
2005 1.55 9.08e+03 7.92e+07 530 1.59 2.09e+05 9.29e+08 531 .11 00.12 0.80 0.80
2006 1.53 1.25e+04 9.74e+07 543 1.58 2.63e+05 1.08e+09 544 .11 00.13 0.82 0.82
2007 153 1.37e+04 1.15e+08 551 1.58 3.49e+05 1.50e+09 555 .11 00.14 0.83 0.84
2008 1.51 5.00e+04 1.02e+08 564 1.58 3.88e+05 1.46e+09 566 .12 00.13 0.85 0.86
2009 154 1.60e+04 1.18e+08 562 1.58 3.88e+05 1.34e+09 564 .11 00.12 0.85 0.85
2010 155 1.44e+04 1.72e+08 583 1.61 4.53e+05 1.24e+09 586 .11 00.13 0.88 0.89
2011 155 1.54e+04 2.75e+08 595 1.61 4.62e+05 1.20e+09 600 .10 00.12 0.90 0.91
2012 157 6.24e+04 3.61e+08 591 1.60 5.35e+05 1.22e+09 596 .11 00.12 0.89 0.90
2013 159 4.10e+04 3.38e+08 573 1.61 5.19e+05 1.17e+09 579 .11 00.12 0.87 0.88
2014 1.48 5.84e+04 2.42e+08 222 1.56 1.74e+06 1.02e+09 226 .12 00.11 0.34 0.34
Table 3: Germany
Year AP AP sampless  aw At At sampleyo coverage,» coveragguo
2000 1.85 6.24e+04 8.48e+07 1290 2.07 9.14e+05 6.46e+08 4129 0.12 0.06 0.69 0.70
2001 1.85 4.55e+04 7.86e+07 1292 2.08 1.15e+06 6.31e+08 8129 0.12 0.06 0.69 0.70
2002 190 1.19e+05 6.01e+07 1285 2.04 1.06e+06 5.52e+08 0129 0.13 0.06 0.69 0.69
2003 1.81 7.94e+04 6.65e+07 1264 1.97 1.19e+06 5.98e+08 1127 0.12 0.07 0.68 0.68
2004 1.77 7.79e+04 1.18e+08 1286 1.95 1.44e+06 6.37e+08 6129 0.13 0.07 0.69 0.70
2005 1.75 6.48e+04 1.02e+08 1564 1.91 1.14e+06 5.82e+08 8157 0.13 0.07 0.84 0.85
2006 1.68 6.81e+04 2.51e+08 1618 1.80 1.04e+06 2.07e+09 5163 0.14 0.08 0.87 0.88
2007 1.70 1.14e+05 3.02e+08 1641 1.81 1.39e+06 2.83e+09 0166 0.16 0.08 0.88 0.89
2008 1.73 1.35e+05 3.10e+08 1649 1.79 1.22e+06 3.07e+09 4166 0.17 0.08 0.89 0.89
2009 1.68 9.72e+04 3.47e+08 1701 1.80 1.28e+06 2.16e+09 2171 0.14 0.08 0.91 0.92
2010 1.67 8.10e+04 3.72e+08 1749 1.80 1.27e+06 2.55e+09 4176 0.14 0.09 0.94 0.95
2011 1.69 1.00e+05 4.71e+08 1793 1.81 1.31e+06 2.80e+09 9180 0.15 0.10 0.96 0.97
2012 1.69 1.13e+05 3.82e+08 1790 1.82 1.39e+06 2.67e+09 6180 0.12 0.10 0.96 0.97
2013 1.68 1.10e+05 3.87e+08 1758 1.82 1.43e+06 2.22e+09 4177 0.11 0.11 0.94 0.95
2014 1.30 1.12e+04 3.40e+08 289 2.12 8.47e+07 2.07e+09 293 .15 00.12 0.16 0.16
Table 4: United Kingdom
Year AP AP . sampleyw  aw Al Al samplem coveragenn» COVErag@uo
2000 1.48 3.85e+04 2.93e+07 99 1.63 6.64e+05 2.26e+08 138 390.0.26 0.18 0.26
2001 196 3.17e+05 9.89e+06 103 1.69 9.54e+05 1.46e+08 146 .40 00.27 0.19 0.27
2002 3.09 1.30e+06 1.06e+07 106 1.69 1.50e+06 1.59e+08 159 .39 00.28 0.20 0.30
2003 2.30 6.69e+05 1.30e+07 110 1.75 7.88e+05 2.32e+08 175 .38 00.28 0.20 0.33
2004 1.49 3.55e+05 3.23e+08 153 1.49 8.31e+05 1.38e+09 245 .36 00.25 0.28 0.46
2005 1,53 5.55e+05 3.33e+08 203 1.51 2.36e+06 1.59e+09 326 .34 00.24 0.38 0.61
2006 150 8.16e+05 4.07e+08 203 1.48 2.32e+06 1.96e+09 342 .35 00.23 0.38 0.64
2007 153 1.31e+06 4.51e+08 207 1.48 2.53e+06 3.81e+09 363 .3500.24 0.39 0.68
2008 1.45 4.57e+05 2.62e+08 218 1.42 6.98e+05 3.50e+09 385 .32 00.25 0.41 0.72
2009 1.43 4.99e+05 3.11e+08 228 1.44 8.48e+05 2.75e+09 399 .32 00.28 0.42 0.74
2010 1.34 6.65e+04 3.83e+08 243 145 1.07e+06 2.45e+09 436 .32 00.30 0.45 0.81
2011 1.35 6.85e+04 3.14e+08 254 1.45 1.07e+06 2.56e+09 462 .32 00.30 0.47 0.86
2012 1.36 7.87e+04 3.54e+08 257 1.47 1.55e+06 2.69e+09 468 .31 00.30 0.48 0.87
2013 1.33 5.15e+04 3.99e+08 256 1.48 2.36e+06 2.67e+09 458 .30 00.31 0.48 0.85
2014 1.27 2.51e+04 2.81e+08 131 1.34 5.70e+05 2.63e+09 177 .19 00.21 0.24 0.33
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Table 5: Italy

Year F ot Flot sampleo  coverage o
2005 1.98 3.75e+03 8.32e+05 1681 0.35
2006 1.86 1.62e+03 1.12e+06 1875 0.39
2007 1.88 1.56e+03 8.72e+06 2832 0.59
2008 1.91 2.81e+03 9.97e+06 3120 0.65
2009 193 3.17e+03 8.82e+06 3398 0.70
2010 1.93 3.36e+03 8.97e+06 3738 0.77
2011 1.91 5.50e+03 9.56e+06 4066 0.84
2012 196 3.81e+03 1.52e+06 4219 0.87
2013 195 3.77e+03 1.48e+06 4259 0.88
2014 1.85 2.84e+03 8.70e+05 213 0.04
Table 6: Germany
Year F ot Flot sample-o  coverage
2005 1.63 5.36e+02 1.27e+08 1574 0.43
2006 1.71 1.44e+03 1.28e+08 2468 0.67
2007 1.71 1.09e+03 1.37e+08 2623 0.71
2008 1.72 1.09e+03 1.57e+08 2891 0.78
2009 1.72 1.87e+03 1.53e+08 3098 0.84
2010 1.75 2.80e+03 1.53e+08 3250 0.88
2011 1.76 2.63e+03 1.53e+08 3468 0.94
2012 1.73 3.35e+03 1.40e+08 2410 0.65
2013 1.73 2.54e+03 1.38e+08 1859 0.50
2014 1.48 3.36e+02 1.55e+08 62 0.02
Table 7: United Kingdom
Year F ot Flot sample-o:  coverage o
2005 1.52 5.94e+02 2.12e+08 1695 0.40
2006 159 4.28e+03 2.32e+08 1878 0.45
2007 1.49 5.07e+02 2.42e+08 2094 0.50
2008 151 5.32e+02 2.35e+08 2317 0.55
2009 1.75 1.43e+05 1.68e+08 2538 0.60
2010 1.65 2.21e+04 2.00e+08 2798 0.67
2011 156 4.28e+03 2.37e+08 3122 0.74
2012 157 3.91e+03 1.95e+08 3508 0.84
2013 1.72 6.53e+04 1.69e+08 3884 0.93
2014 1.45 4.19e+01 1.41e+07 1649 0.39
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Appendix B

In what follows we provide some de nitions for the network aacepts mentioned in the
paper, as well as a description of the model used to generatestnetwork and of the
algorithm implemented in the simulations. For a more compte treatment of network
concepts see Newman (2010) and Jackson (2010), while a morenfdrexplanation of the
network model used see Caldarelli (2007) and for an analyicsolution of the kinetic
formation of tness based networks see Bottazzi & Vanni (2@&).

De nitions

In the following de nitions we refer to a directed networkX with N nodes andL links.
The adjacency matrix and the weighted adjacency matrix assiated to the network are
respectivelyAn.n and By, with & 2 Ay and b 2 By -

Degrees of a node In directed networks nodes have both an in-degree and an out-
degree, which represent respectively the number of incorgifinks (i.e. links pointing in
toward the node) and the number of outgoing links (i.e. linkstarting from the node).
Formally the in-degreek™ and the out-degreek® of a nodei are:

_ X X
kin = aij kiOUt = a.ji (12)
j=1 j=1

In our model an incoming link represents an asset for the nodehile an outgoing link
represents a liability, so for each nodethe total assetsA; and the total liabilities L; can
be written as:

A = | hj L, = | qi (13)

Average degree The average degree of a node in a network is the number of lirtkat
a generic node has on average. Formally is:
1 X 1 X L

k== KM= kP = =

(14)
N j=1 j=1

The average degree is therefore a measure of the average nemmif counterparts of a
node and so a proxy for the interconnectedness of the network this sense, to compute
the average degree of a scale-free network (namely a netwastkucture whose degree
distribution follows a power law) is not problematic. A conept closely related to the one
of average degree and often used in its place is the one of dgn®r completeness). The
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density d is computed as the fraction of active links over the total nutmer of possible
links. It is therefore possible to establish a direct reladbhship between the density and
the average degree of a network:

d= = (15)

Assortativity and disassortativity Assortativity (or assortative mixing) is the ten-
dency of nodes to attach to others nodes that are similar to @m in some respect. Usually
assortativity is computed in terms of node's degree, but theneasure of similarity may
vary. A network is then said to be assortative if this propest holds and disassortative in
the opposite case.

Fitness based networks

The model described in section 2 belongs to the class of netkvonodels where the at-
tachment rules are governed by intrinsic node tness. Thistness is a measure of at-
tractiveness of a node and so of the probability of forming ank. Our model is based
on the one described in Caldarellet al. (2002) and Caldarelli (2007) and adapted to
interbank networks in Montagna & Kok (2013). However, whileri these works the model
described isstatic, in the sense that the network is formed in \one shot" by assigng
a probability to each of the possible links and then randomlyactivating” them, in this
paper we implemented &inetic version of the model, where the network is constructed
starting with N isolated nodes and connect two nodes at time. In this way wercaontrol
the average degre& adding L links to the network one by one as shown in Bottazzi &
Vanni (2016). The next section describes the algorithm impimented in the simulations.
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Algorithm of the shock procedure

for each couple of average degreA® gg and AD gf
for each level of the shock
for each of theT realizations
. draw a value of A" for every bank from a truncated Pareto distribution
. draw a value ofF ™ for every rm from a truncated Pareto distribution
. generate a two layer network with the desired\D gg and AD gf
. shock the network with the target level of NPL3
initialize counter equal to O
Whl|e counter < target level of NPLs
. randomly select a rm
for every link of the rmP®
. randomly select a link
if value of the link < di erence between target NPLs and counter
. set the value of the selected link equal to O
. update counter
else subtract to the link the di erence between target NPLs and conter
. update counter and exit while
end
end
end
. initialize ag banks' default equal to 1°
while ag banks' default =1
. set ag banks' default equal to 0
for every bank
. update balance sheet
if equity <=0
. bank defaults and its outgoing links are set to®©
. set ag banks' default equal to 1
end
end
end
end
end
. compute the fraction of defaulted banks
. compute the frequency of contagion
. compute the extent of contagion
. compute the level of systemic risk
nd

=

'J
aTarget level NPLs = = M A!

I 1
bRecall that rms have only outgoing links pointing toward banks, each of which represent a liability
for the rm and an asset for the bank.
®Note that setting the ag for banks' default equal to 0 does not mean assumig ex ante the default
of any bank, it is only a way to enter the while loop.
dWhich are interbank assets of their creditors.
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