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Abstract

This paper proposes a structural model of exchange rates where agents formulate their one-step ahead

predictions based on social learning process and higher order beliefs. Individual choices are then aggre-

gated and plugged into a rather standard macroeconomic model to derive the dynamics of exchange rates.

Bayesian estimation of the structural parameters is implemented exploiting Foreign exchange Consensus

Survey data of heterogeneous forecasts and fundamentals. Results show that higher order beliefs accounts

for a large part of the total value, while public information play the most important role in determining

individual expectations. Although the precision of the private signal is larger than the public one, infor-

mation publicly revealed does exert a disproportionate influence, and differences in the estimated signals

determine the equilibrium strategy of each agent as a combination between personal beliefs and higher

order expectations.
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1. Introduction

Are agent’s expectations a reasonable reflection of the available information, and if so, do the choices

those expectations lead to, drive the equilibrium outcome? Can other investors’ choices matter in forming

those expectations?

Systematic biases in individual expectations away from the truth have been empirically tested since

Lucas (1972). Recent evidences have tried to better comprehend the limitations faced by agents in the

acquisition process of information as stressed by Sims (2003) and Woodford (2002), amongst others. A

growing body of the recent empirical literature focuses on the role information play in the expectation

formation mechanism using macro and micro data. These contributions are based on estimates of the

process that drives expectations (see, e.g., Andolfatto et al., 2008 and Del Negro and Eusepi, 2011), as

well as investigations of whether survey responses conform to various theories, e.g., sticky information

theories (Reis, 2006; Branch, 2007).

It’s not yet clear to what extent different information sources are relevant for the equilibrium rela-

tionships between economic aggregates and individual choices and if heterogeneity among investors is

important. In particular, one untested question is if there is perhaps a role for higher order expectations

and which kind of information is important in making the optimal choice.

This paper aims to understand the decision process that takes place in a market where expectations

are formed. Rather than blindly follow a simple individual maximization rule, investors work to sort

out how choices of other investors match their need. Thus, an average evaluation of individual forecasts

among investors is taken into account when individual expectations are derived, since agents rationally

choose to learn more about the market behavior.

We focus on the exchange rates market where agents form their expectations by combining attention on

economic fundamentals together with subjective knowledge. Bacchetta and Van Wincoop (2006) suggest

that private information constitute relevant factors of predictions in the short run, whereas macroeconomic

fundamentals play a larger role in the long run. Survey data on individual forecasts appear to be a

reliable tool to recover private information for an econometric model. In our setup, we use survey data

on subjective expectations on exchange rates associated with information on economic fundamentals to

empirically measure how the combination of both public and private information helps agents to build

their forecasts. We base our analysis on the Foreign Exchange Consensus Survey by looking at the eur/usd

currency from 2006 to 2012. As confirmed by Bellemare and Manski (2011) and Engelberg et al. (2011), the
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use of expectations in survey has a strict comparative advantage especially for econometric applications.

Jongen et al. (2012) exploit survey information on exchange rates in order to disentangle the effect of

differences in agents’ beliefs. Survey data have also been used by Coibion and Gorodnichenko (2012) to

compare the impact of different information rigidities faced by economic agents. They find that, when

agents observe noisy signals about the true current inflation, a learning process figures out as the most

important determinant in explaining US inflation dynamics. They claim that investors are continuously

updating their information set in order to make a correct inference. Different from Bacchetta and Van

Wincoop (2006), who assume that uncertainty on exchange rates is due to some lack of knowledge related

to future fundamentals, here instead, in line with Coibion and Gorodnichenko (2012), we hypothesize

agents do not observe the current exchange rate, but receive noisy signals as in standard process of

learning and consequently derives one-step-ahead expectations.1

We develop a simple, dynamic framework à la Morris and Shin (2002) that highlights interactions

between higher order beliefs and learning considering the effect that individual’s choices have on other

participants. The key role of social learning is to help agents in the decision about her own individual

belief, but also to evaluate others’ beliefs in an optimal manner. Allowing agents to gather information

selectively after observing market behavior has a fundamental effect on individual learning and on the

resulting market dynamics. We embed this process of forecasting information into a macroeconomic

framework of exchange rates in line with Bacchetta and Van Wincoop (2006).

Our main contribution consists in defining and estimating a theoretical model that describes the

expectation process for exchange rates. The structural model we find is casted in a state-space form

and estimated through Bayesian techniques. We estimate a social learning process where private and

public information strategically interact by observing how the precisions of signals guide the equilibrium

strategy. We gauge the relevant information used by agents and disentangle the effects of both public and

private signals identifying the weights assigned to each source of information. The discrepancy between

the two sources of information is motivated by the effect that higher order beliefs play in determining

outcomes.

The analysis provides two main results. First, we find that higher order beliefs accounts for about

82% of the total value. Secondly, public information play the most important role in determining indi-

1In financial markets the assumption of noisy signals on risky assets has been used, amongst others, in Diamond and
Verrecchia (1981). However, in our framework, it is easy to derive the dynamics of the exchange rates even without the
presence of noise terms.
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vidual expectations with more than 75% compared to private information. Although the precision of the

private signal is larger than the public one, information publicly revealed does exert a disproportionate

influence, while differences in the estimated signals drive a wedge between personal choices and higher

order expectations-formation process.

A fuller review of related research is postponed until Section 6. To our knowledge, this paper represents

the first attempt to estimate a structural learning model on exchange rates expectations demonstrating

that public information, and the consequent transparency among investors, are the main features of the

optimal process. Our theoretical framework follows in the tradition the literature on social value of infor-

mation firstly popularized by Morris and Shin (2002) and afterwards analyzed by several contributions,

see among others Colombo et al. (2014) and Myatt and Wallace (2014, 2015). The game analyzed has

a similar structure to that found in the literature concerned with information sharing (e.g., Vives, 1997;

Angeletos et al., 2004, 2007), where the Gaussian-quadratic model and the linear solutions are common

hypothesis. This choice represents a simple and flexible tool to link the theoretical part to the empirical

structural model. This close relationship allows to derive a reduced form parametrization that allows to

get estimates of the parameters in the individual utility function. The role of private information and

its relationship in coordinating settings was investigated by Hellwig and Veldkamp (2009) who show that

adopting strategic complementarities in actions incentive the role that higher order beliefs play in deter-

mining exchange rates. We validate this point observing a reassessment of the information. The insight

is that the optimal choices are closed by averagely public signals, although contrary to Morris and Shin

(2002, 2005) is never optimal to release just a purely public or a private signal.

The remainder of this paper is as follows: section 2 introduces the theoretical set-up and equilibrium

solutions. Section 4 presents the empirical estimation of the structural model, while some comments are

proposed on Section 5 about the posterior estimates and policy implications. Section 6 encompasses the

relevant literature in the field, plus some concluding remarks.

2. A social learning process and exchange rate dynamics

Let us assume an economy populated by a finite series of predictors, n = {1, . . . , N}. In period t,

each agent i observes noisy private and public signals about the exchange rate st which belongs to a set
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Ψ : s ∈ Ψ and evolves stochastically:

st = st−1 + γt where γt ∼ N(0, σ2γ) (1)

where the shock γt occurring at the beginning of period t is normally distributed with mean 0, variance

σ2γ , and precision ρs ≡ σ−2
γ .

After the occurrence of a shock, each agent i receives a common public signal about the fundamental

ft as a function of the exchange rate:

ft = st + ηt ηt ∼ N(0, σ2η) (2)

and a private personal signal:

xit = st + ǫit ǫit ∼ N(0, σ2ǫ ) (3)

So while information about the fundamental ft is common knowledge among agents, the private signal xit

is specific to agent i and not observed by other predictors. The common posterior about st, taking into

account public information, is normally distributed with mean ỹt = Et[st|ft] and precision ρỹ = ρ[st|ft],

such that Et[st|ft] = (ρsst−1 + ρfft) / (ρs + ρf ) and ρỹ = ρ[st|ft] = ρs+ρf . Private posteriors are gaussian

and identified by mean E
i
t[st|ft;xit] = (ρỹỹt + ρxxit) / (ρỹ + ρx) and precision ρ[st|ft;xit] = ρỹ + ρx.

The weight of the public signal in the Bayesian projection s on the information set Hi(t) = {ft;xit} is

αỹ = ρỹ/ (ρỹ + ρx), while the weight of the private signal is αxi = ρx/ (ρỹ + ρx). The posterior mean

for each agent i is then derived, i.e., Eit[st|ft;xit] = αxixit + αỹỹt. Thus, based on public and private

signals at time t, the expected prediction for st+1 is easily obtained through the recursion in eq. (1), i.e.

E
i
t[st+1] = E

i
t[st|xit; ft].

2

We denote the individual expectation of subject i at time t, i.e., eit = E
i
t[st+1], while ēt ≡

∫

j
ejt(.)dj

and σ2e ≡
∫

j
[eit(.) − ēt(.)]

2dj are respectively the average or consensus, and the dispersion of investors’

expected evaluations in the economy. Preferences of agents are explicitly characterized by a concave

increasing function U(eit, ēt, σ
2
e , st+1). As generally as possible, we assume that the dispersion σe has

only a second-order non-strategic effect, i.e., Ueσ = Usσ = 0, while Uσ(eit, ēt, 0, st+1) = 0, ∀eit; ēt; st+1.

Under perfect information about the exchange rate st+1, due to symmetry (eit(.) = ēt(.) = st+1, ∀i),

2This is customary in the Kalman filter one-step-ahead prediction step, as stressed by Coibion and Gorodnichenko (2012).
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the best response is given by the unique equilibrium characteristics where the predictors’ choice exactly

coincides with their expectation. In case of imperfect information, in contrast, optimality is required for

any (xit; ft) in the predictor’s choice. For a finite number of investors (as in Marinovic et al., 2011), the

individual’s expected utility assumes the following form:

U(eit, ēt, σ
2
e , st+1) = −(1− δ)(eit − st+1)

2 − δ(eit − ēt)
2 (4)

The first component is a quadratic loss in the distance between the expectation and the actual exchange

rate, while the second component is a quadratic loss in the distance between the expectation and the

consensus. Each predictor aims to minimize the expected distance between their evaluation and the

average. The parameter δ ∈ (0, 1) is a scalar that describes the intensity of the coordination motive, i.e.

the importance that agent i attaches to the expectations of other market predictors.

More intuitively, eq. (4) describes the predictor’s decision-making process in terms of her choice

between two incentives which constitute the reward rule assigned to agent’s forecast success. The first

incentive induces the agent to anchor her predictions on the fundamentals. It relies on the distance

between the expectation of the agent and the one-step-ahead spot, and represents the cost of the forecast

error, i.e. the cost of making a mistake with respect to the fundamental. The second incentive, in contrast,

captures the cost of diverging from the consensus prediction. This is the factor related to the presence

of higher order beliefs and whose weight is expressed by the parameter δ. The quadratic specification

of the utility function ensures the linearity of the predictors’ best responses and efficient allocations. To

keep the algebra simple, we assume the best prediction of each agent is based on current information,

that is, xit and ft, even though, a generalization that includes past information can be easily derived, as

suggested by Coibion and Gorodnichenko (2012).

Solving for eit, we obtain that:

eit(xit; ft; ρỹ; ρx) = (1− δ)Eit[st+1|xit; ft; ρỹ; ρx] + δEit[ēt|xit; ft; ρỹ; ρx] (5)

which can be rewritten as:

eit(xi; f ; ρỹ; ρx) = (1− δ)Eit[st+1|xit; ft; ρỹ; ρx] + δ
eit
n

+ δ
n− 1

n
E
i
t[e−it|xit; ft; ρỹ; ρx] (6)

where E
i
t[e−it|xit; ft; ρỹ; ρx] = E

i
t[(

e1t+...+ei−1t+ei+1t+...ent

n
)|xit; ft; ρỹ; ρx]. In the unique equilibrium with
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heterogeneous information, each individual i 6= j at time t follows a linear strategy as:

eit(xit; ft; ρỹ; ρx) = ϕxxit + ϕỹỹt (7)

According to this strategy, the predictor’s expectation about the other (n−1) agents is linear in (ft; st+1)

and is given by:

E
i
t[e−it|xit; ft; ρỹ; ρx] = ϕxE

i
t[x−it] + ϕỹỹt

then according to eq. (3), Eit[x−it] = E
i
t[st+ ǫ−it]. Moreover since ǫit ∼ N(0, σ2ǫ ) and using it into eq. (1),

E
i
t[st + ǫ−it] = E

i
t[st+1]. Therefore,

E
i
t[e−it|xit; ft; ρỹ; ρx] = ϕxE

i
t[st+1] + ϕỹỹt (8)

Plugging eq. (8) and eq. (7) into eq. (6),

eit = (1− δ)Eit[st+1|xit; ft; ρỹ; ρx] + δ
eit
n

+ δ
n− 1

n
E
i
t[ϕxst+1 + ϕỹỹt|xit; ft; ρỹ; ρx] (9)

while rearranging it, we obtain:

eit = (1− ̺+ ̺ϕx)

[

ρx
ρỹ + ρx

xit +
ρỹ

ρỹ + ρx
ỹt

]

+ ̺ϕỹỹt (10)

where ̺ = nδ−δ
n−δ

. According to eq. (7), the coefficients (ϕx;ϕỹ) for the optimal linear strategy must

therefore satisfy:

ϕx =
(1− ̺)ρx

(1− ̺)ρx + ρỹ
and ϕỹ =

ρỹ
(1− ̺)ρx + ρỹ

(11)

as the unique solution of the system. Therefore, the optimal solution of the social learning game relies on

the individual expectation about the next-period exchange as:

E
i
t(st+1) = ϕxxit + ϕyỹt, (12)

where the sensitivity of the predictor’s expectations to exchange rates is driven by two factors. First, the

weight of the beauty contest factor, i.e. δ, identifies the importance attached to the expectations of other

predictors. Note that when δ = 0, the predictor’s optimal choice coincides with her personal expectation.

7



Higher values of δ induce the agent to take mainly into account public sources of information when making

her own prediction. Second, the sensitivity of the predictor’s expectations to the exchange rate depends

on the quality of private and public signals in terms of precision. Agents assign lower weights to private

signal while public source acts as a coordinating mechanism for prediction of others’ action.

Following Bacchetta and Van Wincoop (2006), the aggregate expectation is implemented in a standard

equilibrium model for exchange rates with heterogeneous agents, such that:

st = λĒt[st+1] + (1− λ)ft − λψt (13)

in which α is the parameter describing interest rates in equilibrium, λ = α/(1 + α), ψt is the liquidity

premium whereas the observable fundamental ft follows

ft = mt −m∗
t − φ(yt − y∗t ), (14)

where mt and m∗
t are the logs-money supplies, while yt and y∗t are the logs-output levels respectively

for the home and the foreign countries.3 The combination of learning process in a macroeconomic setup

allows to easily derive a statistical model necessary to make inference on utility function’s parameters.

Equation (13) explains how the current exchange rate is related in a simple way to the heterogeneous

expectations of investors, Ēt[st+1], a commonly observed fundamental, ft and the value of liquidity trade,

ψt.
4

Therefore, according to the individual solution of social learning game, eq. (12), we aggregate the

individual predictions of n investors as,

Ēt[st+1] = ϕxx̄t + ϕyỹt, (15)

while, by substituting it in eq.(13)

st = λ(ϕxx̄t + ϕỹỹ) + (1− λ)ft − λψt. (16)

3The steps to derive equation (13) are available in AppendixA.
4Note that the exchange rate proposed in eq. (13) is one of the possible solutions in macroeconomic modeling. Alternative

aggregations can be proposed and estimated upon requests.
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and rearranging, we get:

st = (1− λ+ λτ2ϕỹ)ft + λϕxx̄t + λτ1ϕỹst−1 − λψt, (17)

with τ1 =
ρs

ρs+ρf
and τ2 =

ρf
ρs+ρf

which can be reduced to

st = β1ft + β2x̄t + β3st−1 + β4ψt, (18)

where β1 = (1 − λ + λτ2ϕỹ), β2 = λϕx, β3 = λτ1ϕỹ and β4 = −λ. The first term indicates the role of

fundamentals in the determination of exchange rate, the second term indicates the role of the strategic

interaction of higher order beliefs, the third term represents the role of persistence, and the fourth term,

finally, represents the role of liquidity trade5.

3. Foreign exchange Consensus Survey data

We consider data on expectations obtained from the Foreign Exchange Consensus Forecasts (FECF )

survey by Consensus Economic of London. This dataset has been recently analyzed in Fratzscher et al.

(2015) and in Jongen et al. (2012).

In this survey, at the second Monday of each month, panelists are asked to forecast spot rates at

different maturities. The sample is composed by almost 250 panelists spread all over the world and 40

of them are personally identifiable with their names. Some panelists provide systematically predictions

in each publication, while some others appear with a lower frequency. There are also cases in which the

panelist is included in the list although its prediction is not indicated. This is depicted by the term, na,

in its forecast value. Albeit the survey refers to different currencies, we focus on US$ vs euro one-month-

ahead forecasts consisting of 78 observations per agent from January 2006 to June 2012.

Our analysis is conducted by taking into account individual forecasts, i.e., forecasts reported by

personally identifiable panel members in the publication. The average expectation of all members is also

reported and indicated by consensus forecast.

We built our dataset as follows. First we collected all individual forecasts from 2006 to 2012 and

we recorded only forecasts from panelists with a response rate higher than 40 percent. We selected 15

5Note that it is also possible to derive a similar dynamics in case st is measured without noise
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institutions, i.e., 15 time series of expectations. We observed that 9 of them have just from 0 to 5 missing

data and only in one case we noticed a response rate smaller than 50 percent. On average, the response

rate for the US$ vs euro one-month-ahead forecasts is around 90 percent. It is worth noting that for

each month we observe at least 11 individual expectations, and the average number of respondents per

month is larger than 13, i.e., a value sufficient for cross sectional heterogeneity among forecasters. Figure

1 evidences that average one-month-ahead forecasts approximates fairly well actual exchange rates. As

stressed by Jongen et al. (2012) expectations are dispersed, thus indicating heterogeneity among panelists.

In particular, lower panel of Figure 1 show that dispersion is relatively moderate from January 2006 to

September 2007, then it increases until reaching a peak in January 2009 and finally decline and stabilizes

from November 2009 to June 2012.

Figure 1: Upper panel: Actual vs average forecasts together with a 95% confidence interval from january
2006 to june 2012. Lower panel: Estimated dispersion over time

Regarding the representativeness of panelists taken into account, it is worth noting that some of them

represent major dealing banks, whose names are reported in Table 1. In particular, 8 out of 15 institutions

are included in the Top 10 currency traders of the Forex market and represent about 70 percent of market

share of exchange rates. Furthermore, some of these institutions provide trading platforms to smaller

banks. This procedure is called white labeling and is highly efficient for market dynamics, although it

induces a concentration of information. In fact, large banks can observe directly small banks’ trading

flows and extract from these data possibly relevant information at lower costs (King et al., 2012). The

list of panelists, the actual sample size and their relevance in term of market size are described in Table

1.
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Table 1: Predictions of individual forecasters: missing observations and percentage on the total number
of observations in the sample. Last two columns: companies with proprietary trading platforms and if
they are in top 10 currency traders list.

n missing % on total white label Top 10

Bank of Tokio - Mitsubushi 1 1
Barclays Capital 31 40 yes yes
BNP Paribas 7 9 yes
BoA - Merril Linch 4 5 yes
Citigroup 45 57 yes yes
Commerzbank 4 5
Deutsche Bank Research 18 23 yes yes
General Motors 0 0
HSBC 1 1 yes yes
IHS Global Insight 0 0
J.P. Morgan 10 12 yes yes
Oxford Economics 7 9
Royal Bank of Canada 0 0
UBS 3 4 yes yes
WestLB 2 4
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4. Empirical Model

4.1. Methods and Data

We consider a state-space model to describe the economic environment as a combination of learning

mechanism of Ottaviani and Sørensen (2006) and the equilibrium model for exchange rates à la Bacchetta

and Van Wincoop (2006). We define our empirical strategy to closely mimic the theoretical framework

described in Section 2. Our empirical model reads as follows:

st = β1ft + β2x̄t + β3st−1 + β4ψt + ǫs,t (19)

ft = α0 + α1f1,t + α2f2,t + ǫf,t (20)

f1,t = φ01 + φ11f1,t−1 + φ12f2,t−1 + ǫf1,t (21)

f2,t = φ02 + φ21f1,t−1 + φ22f2,t−1 + ǫf2,t (22)

ỹt =
ρf

ρf + ρs
ft +

(

1−
ρf

ρf + ρs

)

st−1 (23)

ψt = ρψψt−1 + ǫψ,t (24)

E
i
t[st+1] = ϕỹỹt + ϕxxit, i = 1, . . . , N (25)

xit = xit−1 + ǫxi,t, i = 1, . . . , N (26)

Equation (19) is the empirical counterpart of eq. (18) that describes in equilibrium the dynamics of

exchange rates as a function of private information, i.e., x̄t, of economic fundamentals ft and past exchange

rates. It is worth noting that the coefficients βi are explicit functions of the structural parameters.

Equations (20) to (22) defines ft as a linear combination of two observable fundamentals in line with eq.

(14). In particular, f1,t = mt −m∗
t and f2,t = yt − y∗t , are the differential of the logs-money supplies, and

the differential of logs-output levels respectively for the home and the foreign countries. To be consistent

with Bacchetta and Van Wincoop (2006), we assume fi,t as random walks, by setting φ11 = φ22 = 1 and

φ21 = φ12 = 0. This assumption could be relaxed in principle although it is reasonable in this setup due

to the non-stationary nature of the exchange rates, their expectations and most of their determinants

(Engel and West, 2005). Furthermore, eq. (23) represents the dynamics of the public information defined

as a convex combination of past exchange rates and fundamentals as derived in Section 2. In turn, eq.

(25) identifies the mechanism that forms individual expectations as a mixed effect of private and public

information, weighted respectively by ϕx and ϕỹ defined in eq. (11). The process ψt is an autoregressive
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process. However, in our empirical exercise, we set ρψ = 0 to be consistent with the theoretical setup

of Bacchetta and Van Wincoop (2006). We assume the dynamics of xit in Eq. (26) are non observable

random walks in order to model the expected high persistence in the subjective private information.

The shocks ǫt = (ǫs,t, ǫf,t, ǫf1,t, ǫf2,t, ǫψ,t, ǫxi,t), i = 1, . . . , N are all Gaussian with mean zero and

standard deviation, respectively, σs, σf , σf1 , σf2 , σψ and σxi , whereas N is the number of informed agents

that make predictions on exchange rates.

The model defined in eqs. (19-26) can be rewritten in compact form as

Γ0xt = cx + Γ1xt−1 + Γǫǫt (27)

and in particular xt =
(

st, ft, f1,t, f2,t, ỹt, ψt,E
i
t, xit

)

, i = 1, . . . , N, while Γ0,Γ1 and Γǫ are appropriate

square matrices of parameters that define the system (19-26). By pre-multiplying eq. (27) with Γ−1
0 we

get

xt = Θc +Θxxt−1 +Θǫǫt. (28)

Some of the variables described through eq. (27) are potentially unobservable. For our empirical analysis,

we consider as observables the current exchange rates, st, the expectations E
i
t[st+1] which are represented

by our dataset on heterogeneous survey forecasts concerning the actual exchange rates and the two

fundamentals fi,t, i = 1, 2, that is, ŷt = (ŝt, f̂j,t, Ê
i
t[st+1]), with j = 1, 2 and i = 1, . . . , N .6

We consider observable expectations E
i
t[st+1] for N = 15 institutions which represent the most in-

fluential companies providing predictions for exchange rates in the whole market as stressed in Section

3.

Data on macroeconomic fundamentals have been obtained from Datastream. The money supply for

the two countries is measured by the variable M2 at a monthly frequency. Regarding the output of the

two countries, quarterly data on GDP were disaggregated to a monthly frequency using the methodology

described by Proietti (2006). Following Golinelli and Parigi (2008), as the leading indicators, we use long-

term interest rates (per cent per annum), harmonized unemployment rates, retail trade and industrial

production. Finally, exchange rates have been observed the business day before the survey was conducted

as suggested by Fratzscher et al. (2015).

We thus consider the following measurement equations to link our theoretical model to the real-world

6We use the symbolˆto distinguish observed from theoretical variables.
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economy:

ŷt = Sxt (29)

where S is a selection matrix that links the actual data set to the macroeconomic structure. Equations

(28-29) represent a linear and Gaussian state-space system for which the likelihood can be computed in

closed form through the Kalman filter. In particular, eq. (28), called transition equation, relies on the

latent structure of the model, while (29) is the so called measurement equation. It is worth noting that

our database on subjective forecasts is affected by missing values. This is not a significant problem since

the Kalman filter predicts missing data and allows for the computation of the likelihood function in a

natural way (see Koopman et al., 1999 for a treatment on this point).

In order to deal with non-stationary observed data, it is appropriate to use first differences. To take

this transformation into account, the model can easily be redefined as follows:
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, i = 1, . . . , N

(30)

in which we also added some Gaussian measurement errors γ̃i with standard deviation σEi
that might

affect the observables. Notice that in eq. (30) we also include the lags in the observed variables which are

not specified in the vector xt. To fix the problem it is possible to generalize the vector of the variables of

the model as follows:

x̃t =
(

st, ft, f1,t, f2,t, ỹt, ψt,E
i
t[st+1], xit, st−1, f1,t−1, f2,t−1,E

i
t−1[st]

)

, i = 1, . . . , 15 (31)

to finally obtain the reduced form

∆ŷt = S̃x̃t + γ̃t

x̃t = Θ̃c + Θ̃xx̃t−1 + Θ̃ǫǫ̃t. (32)
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4.2. Prior distributions and inferential methods

To make inference on structural parameters, we recur to Bayesian estimation methods here, and in

particular to Markov chain Monte Carlo algorithms7 (MCMC), which have proved to be successful in

the empirical macroeconomic literature (Kim and Pagan, 1995; Canova, 2007). In particular, as standard

practice for DSGE models (An and Schorfheide, 2007), we update the structural parameters through

a Random Walk Metropolis Hastings algorithm and then, for each draw, we compute likelihood and

acceptance probabilities using the state-space representation of eq. (32).

Our first interest is to capture the effect of higher order beliefs on the dynamics of the rate. This is

identified by the weight δ in the decision process of the individual predictor. Our second task is to measure

the role of private and public information to determine the actual expectation. We need to explore the

coefficients ϕx and ϕỹ obtained from eq. (11).

In the theoretical model of Section 2, we show that the coefficient ϕx measures the relevance of

private information in the formation process of expectations, while, ϕỹ indicates the relevance of public

information. There is also an influence of the value of δ on the dimensions of ϕx and ϕỹ. The larger the

value of δ, the greater the weight associated to the public signal with respect to the private one. Our

prior choices on the structural parameters are summarized in Table 2 8 . Overall, we considered prior

densities that match the domain of the structural parameters. In particular, we select a prior distribution

for δ with average 0.5 (and standard deviation 0.1), consequently assigning an equal weight to the two

incentives present in the decision-making function of our predictors (eq. 4).

A priori, we assume that public and private information play the same role when agents form their

own expectations, i.e., without forcing the model to privilege certain sources of information. This guess

is consistent with the hypothesis that ϕx and ϕỹ are equal. Since these weights depend on the precision

coefficients ρf , ρs and ρx, we need to find prior distributions for them that at least on average, give

E[ϕx] = E[ϕỹ] = 0.5. To obtain this result, we set the prior distributions for ρf and ρs as Gamma with

mean 1 and standard deviation 0.1, whereas ρx is still Gamma, but with larger expected value, namely,

4 and standard deviation 0.4.9 The discount factor λ is a Beta variable with mean 0.5 and standard

deviation 0.1. Furthermore, we assume a weakly informative prior for α1 and α2 that are both Gaussian

7See Robert and Casella (1999, ch. 6-7) for a general treatment on MCMC algorithms and Monte Carlo methods in
general.

8Measurement errors and private information’s precision prior choices are summarized in Tables B.3 and B.4 in AppendixB.
9An extensive sensitivity analysis suggests that posterior estimates of ϕx and ϕỹ are robust with respect to this choice.
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with mean 0 and rather large variance with respect to the mean, i.e., 1. Finally the standard deviations

of the shocks, including standard deviations of the measurement errors, are relatively dispersed. Their

standard deviations in particular are quite large with respect to the corresponding expected values. They

are Inverse Gamma variables with mean 0.6 and standard deviation 0.2.

5. Posterior estimates and policy implications

All computations are based on software written using the Ox c© 7.0 language of Doornik (2001) com-

bined with the state space library ssfpack of Koopman et al. (1999). Posterior estimates were obtained by

running 200, 000 iterations of the MCMC algorithm with a burn-in of 10, 000, which is a sufficient num-

ber of iterations to remove dependence on initial conditions. As standard practice in macro-econometrics,

initial conditions were obtained by maximizing the posterior mode for the parameters. Results are sum-

marized in Table 2 and in Figure 2. Other parameter’s estimates are reported in Table B.3 and B.4 in

İn particular, Table 2 includes posterior estimates of the structural relevant parameters, namely posterior

averages and credibility intervals, whereas Figure 2 displays prior versus posterior comparisons. Figure 2

shows the comparison between prior and posterior distributions. Overall the two sets of distributions dif-

fer substantially, thus suggesting that the contribution of the data/likelihood is relevant and the relevance

of the prior assumptions do not drive the posterior results10.

The first interesting result relates to the value of the coefficient δ. A noticeable shift to the right

of the posterior is observed in the comparison with its prior distribution, thus confirming the important

role of the beauty contest mechanism in the predictor’s evaluation process. Individuals assign a higher

weight than expected (82%) to correctly interpret other predictors’ beliefs and a lower weight (18%) to

the cost of making forecast errors with respect to the fundamental. The rational incentives of predictors

are therefore distorted. The weight assigned to consensus forecasts is definitely higher than the option of

making the right choice on the basis of their own private information.

A second important factor is the role that public and private information play in individual forecasts.

Our analysis is based on the coefficients ϕx and ϕỹ. Results suggest that public information accounts for

about 75% of predictions, whereas just 25% are based on private information, see Table 2 for details. This

is coherent with the previous theoretical results related to the weights associated with higher order beliefs.

The combination of higher order beliefs and information structure ensures relatively rational behavior in

10This evidence is supported also by many robustness checks available upon request
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Table 2: Posterior computation (MCMC) - Structural parameters

Posterior distribution Prior information

Parameter value Mean 95% Cred. Int. Mean S.E. Type

p(β1|ŷ) β1 = 1− λ+ λϕỹ
ρf

ρf+ρs
0.2302 [0.170, 0.301]

p(β2|ŷ) β2 = λϕx 0.6489 [0.559, 0.724]
p(β3|ŷ) β3 = λϕỹ

ρs
ρf+ρs

0.1209 [0.070, 0.177]

p(β4|ŷ) β4 = −λ -0.8561 [-0.916, -0.779]
p(α1|ŷ) 0.0842 [-0.716, 0.851] 0 1 Normal
p(α2|ŷ) -2.5237 [-3.724, -1.289] 0 1 Normal
p(ρf |ŷ) 0.8764 [0.706, 1.070] 1 0.1 Gamma
p(ρs|ŷ) 1.2342 [1.029, 1.454] 1 0.1 Gamma
p(ρx|ŷ) 3.618 [2.910, 4.394] 4 0.4 Gamma

p(ϕx|ŷ) ϕx = (1−̺)ρx
(1−̺)ρx+(ρs+ρf )

0.2412 [0.148, 0.352]

p(ϕỹ|ŷ) ϕỹ =
ρf+ρs

(1−̺)ρx+(ρs+ρf )
0.7588 [0.648, 0.852]

p(σs|ŷ) 1.019 [0.468, 1.455] 0.6 0.16 Inv. Gamma
p(σf |ŷ) 9.2763 [6.986, 12.625] 0.6 0.16 Inv. Gamma
p(σf1|ŷ) 0.5854 [0.503, 0.683] 0.6 0.16 Inv. Gamma
p(σf2|ŷ) 0.9472 [0.812, 1.116] 0.6 0.16 Inv. Gamma
p(σφ|ŷ) 0.8621 [0.408, 1.588] 0.6 0.16 Inv. Gamma
p(λ|ŷ) 0.8561 [0.779, 0.916] 0.5 0.1 Beta
p(δ|ŷ) 0.8202 [0.694, 0.902] 0.5 0.1 Beta

the decision-making process. When agents attach more importance to the consensus prediction than

to their own personal assessment, they implicitly reduce the importance of their private signal. This

finding is consistent with different choices for the prior distributions. Although private signals ρx are

more accurate than public signals, i.e., ρf and ρs, the role of higher order beliefs is largely confirmed.

Public information, therefore, in accordance with the beauty contest analogy acts as a coordinating

mechanism. This is a central result, firstly, proposed by Morris and Shin (2002). We have intentionally

integrated it into our framework to test its presence and intensity in the context of the exchange rate

market. Furthermore, it also furnishes a complementary result to the empirical test of the scapegoat

model posited by Bacchetta and Van Wincoop (2004) and implemented by Fratzscher et al. (2015), who

find that using survey predictions on fundamentals as proxies for scapegoat effects improves our ability

to explain exchange rate movements. Public information is, therefore, capable of capturing changes in

actual exchange rate dynamics. This estimation discovers that the importance of the higher order beliefs

is associated with a larger weight to public information. On a rational level, predictors seek information

on fundamentals. However, they end up attributing excess weight to public information which is not
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Figure 2: Prior vs Posterior distributions of the structural parameters

informative, at least in the short run. This is clearly due, on one side, to the presence of higher order

beliefs, and, on the other side, to the uncertainty entailed by the heterogeneity of expectations. The

fundamental is therefore transformed into a scapegoat in the event of uncertainty regarding structural

parameters. In particular, the higher value of the conditional variance of the fundamental, σf (around 9)

in Table 2 suggests that the short-term uncertainty proposed by Fratzscher et al. (2015) is congruent with

uncertainty stemming from changes in fundamentals, specifically generating the scapegoat effect discussed

by Bacchetta and Van Wincoop (2004).

5.1. Robustness checks and goodness-of-fit

In this section we evaluate the performance of our model against the data. Our first task is to check if

the model provides results consistent with the current literature on exchange rates dynamics, especially
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in term of its ability to produce reliable long and short run predictions.

As a first result, by studying the rank of the autoregressive matrices of eq. (28), we found that variables

are cointegrated. This result suggests a systematic relation between exchange rates and fundamentals

and indicates that fundamentals are reliable predictors for exchange rates in the long run. This result is

consistent with Mark (1995) and Bacchetta and Van Wincoop (2006) amongst others.

As a side result, we evaluated the forecast error variance decomposition (FEVD) for the returns on

exchange rates. To compute the FEVD, we made use of the cointegration relation of the system to

derive its MA representation of ∆xt.
11 This representation was obtained through the Smith-McMillan

factorization of the polynomial matrix associated with the model as proposed in Engle and Yoo (1991).

Our analysis suggests that shocks involving fundamentals constitute the main factor explaining ∆st.

Specifically, fundamentals account for about 90% of the variance in returns. Exchange rate shocks account

for approximately 6% of variability, while liquidity appears to be less significant accounting for about 3%.

Similar results are obtained by looking at the one-step-ahed predictions. A more detailed analysis on the

short run predictions is displayed in Figure 3, in which one-step-ahead forecasts for exchange rates and

their returns have been computed.

Actual exchange rates 
  

One-step-ahead predictions +/- 2 SE 
 

2006 2007 2008 2009 2010 2011 2012

1.2
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Actual exchange rates 
  

One-step-ahead predictions +/- 2 SE 
 

Differenced Exchange rates One-step-ahead predictions +/- 2 SE 
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-5

0

5

Differenced Exchange rates One-step-ahead predictions +/- 2 SE 

TTesto

Figure 3: Upper panel: Actual exchange rates (red line) vs. predicted exchange rates (blue line) together
with 95% credibility bands. Lower panel: Actual exchange rates returns (red line) vs. predicted exchange
rates returns (blue line) together with 95% credibility bands.

In this case, the model replicates the actual data fairly closely. Indeed, more than 70% of actual

exchange rates fall within the 95% credibility interval. Specifically, predicted estimates provide a good

proxy for the behavior of the actual data.

11See AppendixC for some technical details.
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This analysis, together with the FEVD reported above, suggests that fundamentals are reasonable

predictors even in the short run. Apparently, private information is not relevant for forecasting purposes.

This finding is somewhat counterintuitive with respect to the literature since the work of Meese and

Rogoff (1983). This performance can be explained by the indirect role that private information play in

the model. In our setup private informations enter the model indirectly through individual expectations

as a combination of public and private information.

To confirm this analysis, we also evaluated the short run prediction by using a naive rational expec-

tation model with no private signals that closely mimics the dynamics defined in eq. (13). In particular

we consider

st = λEt[st+1] + (1− λ)ft − λψt + ǫt, (33)

in which ft is described in eq. 20, while ψt is an independent and identically distributed sequence.

Furthermore, rational expectations are defined so that Et[st+1] = st + ηt, where ηt is a Gaussian shock

with mean zero and constant variance. We estimated exchange rate dynamics according to the rational

expectation model using MCMC. Specifically, for each posterior draw of the parameters, we solved the

rational expectation system using Sims (2002) and implementing it with the Ox package LiRE developed

by Mavroeidis and Zwols (2007). Then, for each parameter, we simulated the one-step-ahead prediction

produced by the rational expectation model. Figure 4 compares the average rational expectations tra-

True exchange rates 
Survey’s average expectations 
Estimated rational expectations +/- 2 SE 
One-step-ahead predictions on exchange rates 
  2006 2007 2008 2009 2010 2011 2012

1.2

1.3

1.4

1.5

1.6

True exchange rates 
Survey’s average expectations 
Estimated rational expectations +/- 2 SE 
One-step-ahead predictions on exchange rates 
  

Figure 4: Actual exchange rates (green line), average from the survey (red line) together with an estimate
of the rational expectation on exchange rates Et[st+1] (blue line) and the one-step-ahead prediction on st
(black line).
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jectory and the average one from the survey.12 Figure 4 still points out predicted average expectations,

which differ significantly from observed expectations.

Figures 3 and 4, together with the FEVD analysis confirm that fundamentals represent the most

important device for forecasting purposes. However, the role of private signals is crucial and make

fundamentals to be reliable predictors. This empirical evidence can be considered as a symptom that

the private signal is a necessary condition for a correct specification of the model especially for short run

analysis. From an econometric point of view, excluding private information may induce mis-specification

on the exchange rates dynamics. This is the reason why using survey data appears to be a viable strategy

to provide a better description of observed exchange rates.

We also investigate the role of measurement errors in the model by evaluating the goodness-of-fit

through the marginal likelihood estimated as the harmonic mean of the likelihood function evaluated for

each posterior draw of the parameter vector (An and Schorfheide, 2007). The log-marginal likelihoods

for the model with and without measurement errors are -2349.2 and -2359.7 respectively, which imply a

Bayes factor of about e10 in favor of the former model. This evidence suggests a strong rejection of the

model with no measurement errors.

Finally, to study the dynamic interactions between the variables expressed in level, it is useful to

analyze how exchange rates react to structural shocks. This assessment is illustrated in Figure 5. We

show the impulse response functions (IRFs) for exchange rates resulting from positive economic shocks,

related to exchange rates, fundamentals, liquidity and private information. For each shock, the impulse-

response functions are shown along with the 95% credible intervals. Despite the non-stationary nature of

the dynamics of the model, impulse response functions can still be computed (Lütkepohl, 2005, ch. 6.7).

In the graphs shown in Figure 5, the red line relies on the IRF, while the grey band is the 95% credible

interval for the IRF. The top left panel shows how an exchange rate shock affects the overall dynamics of

the exchange rate at short horizons, fading away in few months. The same happens for the shock to the

linear combination of the two fundamentals (top right panel), which also affects the dynamics of the rate.

Such a result is consistent with the standard monetary model with flexible prices where an anticipated

monetary shock affects the exchange rate only temporarily. The bottom left panel shows how a shock to

liquidity has a substantial effect on exchange rate dynamics, in line with Evans and Lyons (2002) which

12Here rational expectations have been computed as the average trajectory compared to the posterior draws based on the
model’s parameters.
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Figure 5: Impulse Response Functions and the 95% credible intervals

have shown the importance of order flow in the determination of the exchange rate. However, this effect

is absorbed with time as a result of the decision to model liquidity as white noise. The final graph of

Figure 5 illustrates the increased role of private information, particularly in the short run, although the

results are rather small in magnitude.

6. Related literature and concluding remarks

Our contribution relates to the whole fast-growing literature on social learning theory which considers

the effect that the diffusion of information and the choice of agents have on subsequent market partic-

ipants (Banerjee, 1992; Bikhchandani et al., 1992; Chamley and Gale, 1994). In the spirit of Keynes

(1936), Morris and Shin (2002) study a static coordination game demonstrating how agents’ choices are

mainly influenced by public source. This result is induced by the role of higher order beliefs which selec-

tively reduce the importance of highly informative private information. In the last decade, Morris and

Shin equilibrium strategy was further proposed and enriched in many settings with asymmetric informa-

tion, including financial markets (Allen et al., 2006), business cycle models, (Angeletos and La’O, 2009),

oligopolistic competition (Myatt and Wallace, 2015).

Initially, the literature slightly distinguished between public and private information by looking at two

signals. We intentionally make the same choice to test our structural model for the sake of simplicity.

Of course multiple information sources may enrich the design and constitute a fertile ground for follow-

up research. Alternative studies that theoretically verified the effects of multiple information sources

are among others, Angeletos et al. (2004, 2007) who consider an investment game evaluating welfare as

aggregation of agents’ outcomes. Similar information structure is observed in Dewan and Myatt (2008)for
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political leadership or in a Lucas-Phelps island setting in Myatt and Wallace (2014). In particular the last

one focuses on the island-economy analysis in a beauty contest where each source (and it consequent signal)

can be perceived by its quality and its clarity, respectively as measures of accuracy and transparency.

Thus a signal with imperfect quality (but perfect clarity) imperfectly identifies the fundamental but is

observed by all agents. The sharp distinction between private and public sources is thinned down and the

results are driven by sources relatively far from averagely public. Information acquisition is also studied

by Colombo et al. (2014) who take into account the sources of inefficiency in the acquisition of private

information studying how this effect slightly reduce the importance of the public source. The incentive

for agents to acquire information can be enhanced when others acquire information and when actions are

complementary as in Hellwig and Veldkamp (2009).

Our investigation also refers to a strand of macroeconomic theory modeling the behaviour of exchange

rates. Building upon work by Bacchetta and Van Wincoop (2004, 2006) who have explored the implication

of heterogeneity in expectations, we differentiate by proposing a learning process on the current exchange

rate and then derives one-step-ahead expectations through Kalman filter (Coibion and Gorodnichenko,

2012). Bacchetta and Van Wincoop (2004) instead develop a framework where agents observe current

exchange movements, basically inconsistent with their future expectations. Searching for an explanation

of this inconsistency, a weight, higher than average, is assigned to some fundamentals chosen as scapegoats.

Fratzscher et al. (2015) develop an empirical test of this theory using as a proxy of scapegoat fundamentals,

Consensus Economics of London surveys of predictors. The authors find that the inclusion of these

expectations improves the explaining power of the fundamentals.13 Bacchetta and Van Wincoop (2006)

focus instead on the order flow and introduce a possible explanation for the empirical results verified by

Evans and Lyons (2002), Payne (2003), and Froot and Ramadorai (2005).14 Assuming that agents are risk

averse, the authors show that due to the imperfect correlated signals among investors, transitory shocks

13In the short run the heterogeneity in the individual evaluation may lead to overrate the random macroeconomic funda-
mental.

14Evans and Lyons (2002) exploit data pertaining to bilateral transactions among FX dealers via Reuters Dealing 2000-1
electronic trading system. They follow Meese and Rogoff (1983)’s methodology to investigate the out of sample forecasting
ability of their linear model. Unfortunately, they do not take into account potential issue of simultaneity bias emerging when
exchange rate movements cause order flow. In order to evaluate the possible feed-back effects of exchange rates on order flow,
an alternative methodology was suggested by Payne (2003). He elaborates a V AR model estimating information on the size
of transactions. This methodology allows for a more precise estimation of the information provided by the order flow. Froot
and Ramadorai (2005) extends the framework of Payne (2003) considering inflation and interest rate differentials alongside
order flow and excess returns. They also estimate long-run effects of international flows on exchange rates and their relation
to fundamentals proposing a decomposition of permanent and transitory components of asset returns.
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may continuously influence the dynamics of exchange rate. These results originate from a counterbalance

effect of risk aversion and uncertainty of information. On one side, the risk-sharing impact is justified

since agents must be compensated for the extra risk assumed as a consequence of their actions. On the

other side, due to information uncertainty, investors may confuse variations of the exchange rate caused

by a liquidity shock with that induced by information on fundamentals. In our micro analysis instead,

empirical results show that higher order beliefs mainly form agents’ expectations. Public source is as a

coordinating device among investors which generate the process of expectations in accordance with the

aggregations of their signals. From a macro perspective, however, similar to Bacchetta and Van Wincoop

(2006), our structural model describes accurate predictions both in the short and long run through a

cointegration relationship between exchange rates and fundamentals.

Our empirical estimation finally takes into account the extensive empirical literature on rationality and

inefficiency of heterogenous surveys. The seminal paper in this field is Ito (1990) which tests individual

biases and idiosyncratic effects for a set of disaggregate expectations about the 1−, 3− and 6−month-

ahead JY/US rate from the JCIF survey over the period 1985 − 1987 finding substantial heterogeneity

among predictors.15 Similar results can be confirmed by Elliott and Ito (1999) and Benassy-Quere et al.

(2003). MacDonald and Ian (1996) replicate Ito’s test for 3− and 12−month- ahead estimates of the

BP/usd, DM/usd and JY/usd rates from the 1989-1992 and find significant evidence of heterogeneous

expectations. Extending the Consensus data set to 1995, Chionis and MacDonald (1997) confirm the

presence of individual effects for predictors. Mitchell and Pearce (2007) conducted a thorough analysis of

unbiasedness and success rate of predictions along with tests for heterogeneity and strategic forecasting,

finding systematic heterogeneity in predictions.16

15This literature stems from the recent availability of individual survey-predictions of exchange rates. Previously, a long
strand of literature has studied inefficiency and irrationality of exchange rates forecasts. Dominguez (1986) tests the efficiency
of foreign exchange market showing that predictors systematically fail in forecasting in the magnitude and the direction of
exchange rates movements. Avraham et al. (1987) test the same hypothesis in a high inflationary Israel of the eighties
rejecting the notion of rationality of exchange rate expectations. Cavaglia et al. (1993) find that exchange rates forecasts
in the EMS are biased. Chinn and Frankel (1994) propose a test rejecting the hypothesis of efficiency and unbiasedness of
exchange rate predictions.

16For a complete review of the tests of heterogeneity hypothesis using disaggregated survey expectations of professional
forecasters, see Jongen et al. (2008).
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AppendixA. A simple model of Exchange Rates

Let us start by a standard dynamic two-country model of exchange rates with the following basic

relationships. Define, pt and p
∗
t , as the logs of the Home and the Foreign price level, respectively and st

is the log-exchange rate. The purchasing power parity equation is then ensured as:

pt = p∗t + st (A.1)

while the money market equilibrium for the two countries is depicted by:

mt − pt = φyt − αrt (A.2)

m∗
t − p∗t = φy∗t − αr∗t (A.3)

where mt and m
∗
t are the logs-money supplies, yt and y

∗
t are the logs-output levels, while rt and r

∗
t are

the interest rates, respectively for Home and Foreign countries.17 Following Bacchetta and Van Wincoop

(2006), the demand for foreign bonds by investor i, namely, biFt
, is:

biFt
=

E
i
t[st+1]− st + r∗t − rt

γσ2t
− bit (A.4)

where the individual expectation of the next period exchange rate is Eit[st+1], while the conditional variance

is σ2t and bit is the hedge against non-asset income. Since bonds are in zero net supply, market equilibrium

is given by
∫ 1

0
biFt

di = 0 (A.5)

The exchange rate exposure is assumed to be equal to the average exposure plus an idiosyncratic term,

i.e., bit = bt + ǫit where ǫit ∼ N(0, σ2ǫ ). Market equilibrium, therefore, determines the following interest

rate arbitrage condition:

Ēt[st+1]− st = rt − r∗t + ψt (A.6)

where Ēt[st+1] is the average expectation across all investors, while, ψt = γσ2t bt is defined as the expecta-

tional error or a risk premium associated with liquidity or hedge trade.

17We assume that there is no a-priori differences in the structure of the two countries, then φ and α are equal among them.
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AppendixB. Other parameters estimates

In this Section are reported the results related to other parameters that are not relevant in our

analysis. In particular Table B.3 summarizes the posterior output of the precision of the private signal

for the 15 forecasters considered as in eq. (26), whereas Table B.4 are related to the standard errors of

the measurement errors of eq. (30).

Table B.3: Posterior computation (MCMC) - Other parameters

Posterior distribution Prior information

Mean 95% Cred. Int. Mean S.E. Type
p(σx1 |ŷ) 0.6314 [0.395, 1.081] 0.6 0.16 Inv. Gamma
p(σx2 |ŷ) 0.6096 [0.393, 0.972] 0.6 0.16 Inv. Gamma
p(σx3 |ŷ) 0.6044 [0.375, 0.975] 0.6 0.16 Inv. Gamma
p(σx4 |ŷ) 0.6098 [0.392, 0.977] 0.6 0.16 Inv. Gamma
p(σx5 |ŷ) 0.6467 [0.393, 1.104] 0.6 0.16 Inv. Gamma
p(σx6 |ŷ) 0.5871 [0.376, 0.958] 0.6 0.16 Inv. Gamma
p(σx7 |ŷ) 0.5902 [0.372, 1.125] 0.6 0.16 Inv. Gamma
p(σx8 |ŷ) 0.6077 [0.371, 1.104] 0.6 0.16 Inv. Gamma
p(σx9 |ŷ) 0.5806 [0.372, 0.934] 0.6 0.16 Inv. Gamma
p(σx10 |ŷ) 0.6039 [0.386, 0.963] 0.6 0.16 Inv. Gamma
p(σx11 |ŷ) 0.6247 [0.381, 1.017] 0.6 0.16 Inv. Gamma
p(σx12 |ŷ) 0.6142 [0.380, 1.056] 0.6 0.16 Inv. Gamma
p(σx13 |ŷ) 0.5919 [0.391, 0.913] 0.6 0.16 Inv. Gamma
p(σx14 |ŷ) 0.6243 [0.404, 0.983] 0.6 0.16 Inv. Gamma
p(σx15 |ŷ) 0.6564 [0.406, 1.183] 0.6 0.16 Inv. Gamma
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Table B.4: Posterior computation (MCMC) - Measurement Errors

Posterior distribution Prior information

Mean 95% Cred. Int. Mean S.E. Type
p(σE1

|ŷ) 1.4055 [1.170, 1.686] 0.6 0.16 Inv. Gamma
p(σE2

|ŷ) 1.7511 [1.386, 2.204] 0.6 0.16 Inv. Gamma
p(σE3

|ŷ) 2.5709 [2.162, 3.071] 0.6 0.16 Inv. Gamma
p(σE4

|ŷ) 3.9357 [3.343, 4.640] 0.6 0.16 Inv. Gamma
p(σE5

|ŷ) 0.867 [0.604, 1.218] 0.6 0.16 Inv. Gamma
p(σE6

|ŷ) 3.3454 [2.844, 3.961] 0.6 0.16 Inv. Gamma
p(σE7

|ŷ) 2.8154 [2.346, 3.380] 0.6 0.16 Inv. Gamma
p(σE8

|ŷ) 1.5442 [1.293, 1.841] 0.6 0.16 Inv. Gamma
p(σE9

|ŷ) 2.6808 [2.277, 3.157] 0.6 0.16 Inv. Gamma
p(σE10

|ŷ) 1.9843 [1.693, 2.337] 0.6 0.16 Inv. Gamma
p(σE11

|ŷ) 2.9299 [2.456, 3.525] 0.6 0.16 Inv. Gamma
p(σE12

|ŷ) 2.9091 [2.450, 3.444] 0.6 0.16 Inv. Gamma
p(σE13

|ŷ) 2.5205 [2.148, 2.969] 0.6 0.16 Inv. Gamma
p(σE14

|ŷ) 2.9644 [2.542, 3.491] 0.6 0.16 Inv. Gamma
p(σE15

|ŷ) 1.687 [1.410, 2.014] 0.6 0.16 Inv. Gamma

AppendixC. Forecast Error Variance Decomposition for ∆xt

To obtain the FEVD for the observed data, we recur to the following MA representation of the

economic system. The reduced form model is

xt = Θxxt−1 + ǫt, E[ǫtǫ
′
t] = ΘǫΘ

′
ǫ

or, using a polynomial notation with lag operator L,

Θx(L)xt = ǫt.

In particular some of the processes involved are random walks. In the following, n is the dimension of xt

whereas n− r is the number of random walks.

By looking at the rank of Θx, we observe that for all the posterior parameters from the MCMC

algorithm, there exist r cointegration relationships, then an MA representation of ∆xt exists. Consider

that,
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Θx(L) =





(1− L)In−r 0n−r,r

−Ar,n−rL I − LBr,r





Following Engle and Yoo (1991), the autoregressive polynomial can be factorized as Θx(L) = U(L)M(L)V (L),

to disentangle the stationary from the non-stationary part of the model. In particular we get

Θx(L) =





In−r 0n−r,r

0r,n−r Ir,r









(1− L)In−r 0n−r,r

0r,n−r Ir,r









In−r 0n−r,r

−Ar,n−rL I − LBr,r





and the corresponding matrix

V =





In−r 0n−r,r

Ar,n−rL Br,r





Some tedious algebra allows to get

∆xt =





In−r 0n−r,r
∑∞

i=1Θ
(i)
21L

i
∑∞

i=1Θ
(i)
22L

i(1− L)



 ǫt

in which Θ
(i)
21 and Θ

(i)
22 are respectively the lower left and right blocks of V i.
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