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Abstract

In this paper we contribute to the debate on macro-prudential regulation by assessing which

structure of the �nancial system is more resilient to exogenous shocks, and which conditions,

in terms of balance sheet compositions, capital requirements and asset prices, guarantee the

higher degree of stability. We use techniques drawn from the theory of complex networks

to show how contagion can propagate under di�erent scenarios when the topology of the

�nancial system, the characteristics of the �nancial institution s, and the regulations on

capital are let vary. First, we benchmark our results using a simple model of contagion

as the one that has been popularized by Gai and Kapadia (2010). Then, we provide a

richer model in which both short- and long-term interbank markets exist. By doing so, we

study how liquidity shocks (de)stabilize the system under di�erent market conditions. Our

results demonstrate how connectivity, the topology of the marketsand the characteristics

of the �nancial institutions interact in determining the stabili ty of the system.
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1 Introduction

The �nancial crisis of the late 2000s has forced economists, both in academia and in regulatory bodies,

to confront themselves with the role of the �nancial system's architecture. Facing the defaults of large

�nancial institutions, regulators found themselves uncertain about the consequences that such failures

would have triggered in the entire �nancial system since the uncertainty about the actual web of

�nancial relationships prevented any reasonable forecast about theeventual path a crisis would follow.

Given these premises, it became clear that new approaches to study �nancial contagion were needed

(Haldane, 2009; Schweitzer et al., 2009) and an important new streamof literature has been developing,

studying this very problem (e.g.: Acemoglu et al. (2013); Amini et al. (2012, 2013); Arinaminpathy

et al. (2012); Battiston et al. (2012a,b); Blasques et al. (2015); Bluhm et al. (2014); Caccioli et al. (2012,

2014); Elliott et al. (2014); Gai et al. (2011); Gai and Kapadia (2010); Georg (2013); Glasserman and

Young (2015); Halaj and Kok Sorensen (2014); Lenzu and Tedeschi (2012); Loepfe et al. (2013); May

and Arinaminpathy (2010); Montagna and Kok (2013); Roukny et al. (2013)).

In this paper, we contribute to the debate on macro-prudential regulation by assessing which

structure of the interbank market is more resilient to exogenous shocks, and which conditions, in terms

of balance sheets composition, capital requirements and asset prices, guarantee the highest degree of

stability. To analyze this problem, we develop two distinct modelsof contagion: abenchmark modeland

an extended model. The benchmark modelis based on a simple framework which has been extensively

studied in the literature (Amini et al., 2013; Arinaminpathy et a l., 2012; Caccioli et al., 2012; Gai

and Kapadia, 2010; May and Arinaminpathy, 2010; Nier et al., 2007), and which represents the most

popular set up to analyze contagion in �nancial networks. In this case, the �nancial system is modeled

as a static network of credit exposures between banks, encompassing anysort of interbank claims,

independently on their maturity and liquidity. In this class of mo dels, the crucial assumption is that

the time scale of the defaults cascade is so quick that bank do not manage to react and modify their

exposures. Instead, in theextended model, banks can dynamically adapt their short-term exposures in

response to (negative) liquidity shocks and they do so to keep theirrisk-weighted capital ratio above the

mandatory threshold set by the policy maker. We model a short-terminterbank market which clears

at each time step according to a perfect information equilibrium, in which agents take into account

their liquidity needs, the liquidity shocks coming from their creditors and the ability of their debtors

to repay. In this complex framework, a clear misalignment of micro-prudential and macro-prudential

objectives emerges.

Our work contributes to the existing literature along two main dimensions: we study how policy

regulations can in�uence systemic risk when banks can modify their lending behavior; and we provide

a systematic overview of the di�erent factors that can a�ect the stabil ity of the interbank market.

With respect to the former, other studies have analyzed what happens when banks can hoard liquidity

in response to changes in market con�dence, counter-party �nancial health, or individual �nancial

robustness (Arinaminpathy et al., 2012; Battiston et al., 2012a; Roukny et al., 2013)); or when there

are stochastic shocks to the supply of households deposits or to the returns from risky assets (Georg,

2013). However, in our work, we directly link macro-prudential policy measures to liquidity hoarding

and we model changes in demand or supply of liquidity endogenously. As a consequence, our analysis

can show what is the direct e�ect of a change in the regulations in terms of systemic risk. Furthermore,

rather than focusing our attention on a speci�c case study (as in Montagna and Kok (2013)), we provide
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a more general assessment on what factors and characteristics of the interbank market determine its

(in)stability, considering not only the e�ects of changes in the capital requirements, but also evaluating

how balance sheet composition, changes in asset prices, network topology and types of shocks can

in�uence the observed level of �nancial contagion.

Our �ndings show that the knife-edge property of diversi�cation p ersists under a variety of assump-

tions regarding the architecture of the �nancial system, its connectivity, the heterogeneity of exposures

and the size heterogeneity of traders. Connectivity is both a risk sharing and a risk ampli�cation

device. The probability of observing systemic crises is non-monotonic in connectivity, reaching a peak

for intermediate values, while the severity of contagion episodes, whenthey happen, worsen as con-

nectivity increases. This leads to robust-yet-fragile systems, in which contagion is a rare event but

when it happens, it involves the entire system. We also �nd that systems of heterogeneous institutions

are more stable to random shocks, con�rming the conjecture of Haldane (2009) and the �ndings of

previous studies such as Roukny et al. (2013) and (Georg, 2013). However, heterogeneity poses higher

risks when too-big-to-fail or too-connected-to-fail banks are distressed. Our results demonstrate how

the contagion risk stemming from their default is particularly high and that connectivity matters more

than size as far as systemic risk is concerned.

Focusing solely on theextended model, the most interesting result concerns the role played by

liquidity reserves and �re-sale prices. Larger cash reserves always worsen the stability of the system,

since they allow banks to keep lower capital bu�ers. As for the �re-sale price, we �nd that �re-sale

losses induce a more prudent behavior of creditors. Indeed, �re-sale losses make debtors more likely to

be illiquid. When creditors seek to obtain the desired amount of liquidity, the illiquidity of a debtor will

induce them to increase their demand of liquidity to other debtors until the desired amount is obtained.

This process is thus likely to cause the closure of short-term exposures with other non-illiquid banks,

removing channel of transmission of shocks. In this sense we castnew light on the challenges regulators

face when designing an appropriate set of micro-incentives for macro-stability and contribute to the

debate on the proper set-up of regulatory requirements (Hanson et al., 2011; Myerson, 2014).

The rest of the paper is structured as follows: Section 2 formalizes our two models of contagion; Sec-

tion 3 describes the parametrizations we considered in our analysis;Section 4 summaries our �ndings;

and Section 5 concludes discussing policy implications.

2 Models of Contagion

In this section we introduce two di�erent simulation models of the interbank market: a benchmark

static model of contagion and an extended dynamic model of contagion. In both cases, we study how

stable and resilient the �nancial system is to an exogenous default of a bank.

We begin by introducing the benchmark modelwhich is based on a simple framework that has been

extensively studied in the literature (Amini et al., 2013; Arinaminpathy et al., 2012; Caccioli et al.,

2012; Gai and Kapadia, 2010; May and Arinaminpathy, 2010; Nieret al., 2007), and which represents

the most essential set up to analyze contagion in �nancial networks.

The interbank system is represented by a static network of credit exposures betweenN banks. More

formally, a graph G = ( I; V ) (see Figure 3),I = f 1; : : : ; ng represents the set of �nancial institutions

(nodes of the graph), andV � I � I is the set of the edges linking the banks. That is, the set of

ordered couples(i; j ) 2 I � I indicating the presence of a loan made by banki to bank j . Every edge

3



Initialization of the interbank network;
Exogenous default of a bank;
while at least one bank defaulteddo

for every banki do
if counterparty losses occuredthen

update equity;
end
if equity < 0 then

default bank i ;
remove banki from the �nancial system;

end
end

end

Figure 1: Simulation algorithm: Benchmark model

Initialization of two interbank networks (short- and long-term );
Exogenous default of a bank;
while at least one bank defaulteddo

for every banki do
if counterparty losses occuredthen

update equity;
end

end
while short-term interbank market is not in equilibrium do

for every banki do
if creditors withdraw lines of credit then

update amount of liquidity to withdraw from the market;
update amount of illiquid assets to sell ;

end
if risk-weighted capital ratio < regulatory minimum capital ratio then

update amount of liquidity to withdraw from the market to includ e regulatory
hoarding;
update amount of illiquid assets to sell includingregulatory �re-sales;

end
end

end
for every banki do

withdraw liquidity from the short-term interbank market;
sell illiquid assets;
repay short-term loans;
if equity < 0 or bank's i became illiquid then

default bank i ;
remove banki from the �nancial system;

end
end

end

Figure 2: Simulation algorithm: Extended model
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A

B

CD

E

A IB
d;e

L IB
e;d

Figure 3: Network structure - Benchmark model : banks are connected via a network of interbank
exposures. For example, the directed edge connecting bankD to bank E represents a credit of size
A IB

d;e (= L IB
e;d) that D has towardsE.

(i; j ) is weighted by the face value of the interbank claim,A IB
i;j . Clearly if (i; j ) =2 I � I , then A IB

i;j = 0 .

This set up allows to represent the system of interbank claims by a single weighted N -by-N matrix

IB ,

IB =

2

6
6
6
6
4

0 A IB
1;2 : : : A IB

1;N

A IB
2;1 0 : : : A IB

2;N
...

...
. . .

...

A IB
N;1 A IB

N;2 : : : 0

3

7
7
7
7
5

in which interbank assets are along the rows, while columns represent vectors of interbank liabilities.

From this matrix, can derive the total exposure of banki in the interbank market, A IB
i =

P
j A IB

i;j (i.e.

the out-strength of node i ), and its total interbank liabilities, L IB
i =

P
j A IB

j;i (i.e. the in-strength of

node i ).

The balance sheet structure of banks is very simple and stylized (see Table 4): interbank assets

(A IB
i ) and liabilities ( L IB

i ); illiquid external assets, such as mortgages (M i ); exogenously given customer

deposits (D i ); and capital (E i ). In this simple model - which we use as benchmark - we only have one

source of contagion: counterparty losses. Therefore, a (negative) shock can di�use only via a direct

channel of contagion. For example, once a bank is declared insolvent and goes bankrupt, its creditors

su�er losses equivalent to the face value of their exposures with the defaulting bank. Furthermore, we

assume zero recovery: i.e. when one's counterparty defaults, the creditor bank loses all of its interbank

assets held against the defaulting bank.

The simulation of the defaults cascade is carried out using the algorithm provided in Figure 1 and it

works as follow. At the beginning of each simulation run, we default a bank wiping out all its external

assets. Then, we update the equity of the neighbors of the failing bank, checking whether or not the

defaults cascade propagates. If no other banks fail, the process stops. Instead, if at least one bank

fails, we repeat the same procedure until no more defaults occur.

However, the benchmark model is not enough to analyze how liquidityhoarding interacts with

macro-prudential policies and balance sheets composition in determining the (in)stability of the �nan-

cial system because long-term and short-term exposures are aggregatedinto a single asset category.
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Assets (A i ) Liabilities ( L i )

Interbank Assets (A IB
i )

External Assets (M i )

Interbank Liabilities ( L IB
i )

Customer Deposits (D i )

E i

Figure 4: Balance sheet structure - Benchmark model

A

B

CD

E

AS
b;a

(a) Short-term interbank market

A

B

CD

E

AL
d;e

(b) Long-term interbank market

Figure 5: Network structure - Extended model : two distinct network of exposures exist. Banks
can be connected either via short-term credit exposures or via long-term credit exposures. For example,
the directed edge connecting bankD to bank E represents a long-term credit of sizeAL

d;e (= L L
e;d) that

D has towards E. Instead, the directed edge connecting bankB to bank A represents a short-term
credit of sizeAS

b;a (= L S
a;b) that B has towardsA
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Moreover, interbank connectivity is static and it does not vary during the unfolding of a crises. Instead,

with the introduction of a second model of contagion � that we call extended model� we are able to

evaluate not only the e�ects of banks' sizes, network topology and targeted shocks on systemic risk � as

done with the benchmark model � but also to explore how capital requirements, banks' characteristics

and changes in asset prices a�ect �nancial contagion.

In the extended modelthe interbank market is composed of two layers: a network oflong-term

exposures and a network ofshort-term exposures (see Figures 5). While the former cannot be modi�ed

during the default cascade, the latter may undergone changes due to liquidity hoardings. Montagna

and Kok (2013) is the contribution that is the closest to our modeling framework, even though also

Battiston et al. (2012a); Georg (2013); Roukny et al. (2013) consider the presence of di�erent maturities

in interbank lending. In this extended modeling framework, we can explore the interplay between the

network architecture of the market and the balance sheet structure ofintermediaries, highlighting their

complex interactions that lead to misalignments between micro- and macro-prudential policies. In

particular, banks can dynamically adapt their short-term exposures in response to (negative) liquidity

shocks and they do so to keep their risk-weighted capital ratio abovethe mandatory threshold set by

the policy maker.

Assets (A i ) Liabilities ( L i )

Long-term Interbank Assets (AL
i )

Short-term Interbank Assets (AS
i )

Liquid Assets/Cash (Ci )

Illiquid Assets/Mortgages (M i )

Long-term Interbank Liabilities ( L L
i )

Short-term Interbank Liabilities ( L S
i )

Customer Deposits (D i )

E i

Figure 6: Balance sheet structure - Extended model

In this second model, three di�erent mechanism determine how contagionspreads in the �nancial

system: direct counterparty exposures; liquidity shocks; and changes in asset-prices. As we can see

in Table 6, the balance sheet structure of theextended modelis richer than one used in the previous

section: on the assets side, we indicate withAL
i the long-term interbank assets of banki and with AS

i

its short-term interbank assets; while on the liability side, we denote with L L
i the long-term interbank

liabilities of bank i and with L S
ij its short-term interbank liabilities.

To characterize the relative size of the di�erent assets' categories we use parameters� , � and � :

� =
Ci

A i
(1)

� =
AL

i + AS
i

A i
(2)

� =
AS

i

A i
: (3)

Once the size of the total assetsA i is known, the values of� , � and � allow us to uniquely identify
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the composition of bank i 's assets: parameter� determines the level of liquidity of bank i ; � �xes the

share of banki 's assets which are exposed to counterparty risk; and� controls the share of short-term

interbank assets over total assets.

In the extended model, to study the e�ects of macro-prudential policies on �nancial stability, we

introduce regulations on capital. Let us denote with RWA i (t) the risk-weighted assets of banki at

time t and let us de�ne RWA i (t) as:

RWA i (t) = 
 C Ci (t) + 
 IB (AL
i (t) + AS

i (t)) + 
 M M i (t); (4)

where 
 C , 
 IB and 
 M represents the weights assigned to liquid non-interbank assets, interbank loans

and illiquid assets respectively. Typically 
 C = 0 , and this will the assumed henceforth. Therefore,

the risk-weighted capital ratio ei (t) of bank i at time t can be de�ned as:

ei (t) =
E i (t)

RWA i (t)
: (5)

Then, we let the policy maker regulate the �nancial system by imposing a minimum risk-weighted

capital ratio to the operating �nancial institutions (i.e. ban ks). In our model, we denote the mandatory

minimum risk-weighted capital ratio with e� and banks have to adjust their level of capital dynamically,

while the simulation unfolds, to keep their risk-weighted capital ratio abovee� . Therefore, the following

relation has to be satis�ed at each time step of the simulation:

ei (t) =
E i (t)

RWA i (t)
� e� : (6)

To adjust the composition of their balance sheet, banks can hoard liquidity and, in some cases,

sell illiquid assets. In particular, as soon as a bank experiences losses which erode its equity below

the regulatory threshold, i.e. ei (t) < e � , the bank will try to meet the required capital ratio by �rst

reducing its short-term interbank exposures and then, if this adjustment is not su�cient, by selling its

illiquid assets. Therefore, each banki seeks aregulatory adjustment equal to:

RA i (t) = max
�

0; RWA i (t) �
E i (t)

e�

�
; (7)

and it will try to ful�ll capital requirement by �rst resorting to regulatory liquidity hoarding:

�AS
i (t) = min

�
AS

i (t);
RA i (t)


 IB

�
; (8)

which thus represents the amount of liquidity the bank has to withdraw from the market to comply

with the regulations on capital. Then, if liquidity hoarding is no t enough, the bank will try to sell its

illiquid assets (i.e. regulatory �re-sales). However, the success of this strategy crucially depends on

the �re-sale price of illiquid assets. Assume that the fair value of a unit of illiquid assets is1, then,

when the �re-sale pricep is larger than 1 � e� 
 M , banks will have to engage in regulatory �re-sales for

a quantity of

�M i (t) = min
�

M i (t); max
�

0;
RWA i (t) � 
 IB �AS

i (t)

 M � (1 � p)=e�

��
: (9)
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Instead, if p < 1 � e� 
 M , banks will never �nd convenient to �re-sale illiquid assets in order to meet

their capital requirements. Indeed, in this case, large price discountswill induce losses which more

than o�set the reduction of the RWA, and �M i (t) would hence be zero.

A bank will try to adjust its RWA as far as it is possible. Once its capital ratio irremediably falls

below the minimum requirement, the bank has no other choice that tokeep operating with that ratio.

Indeed, the only available solution would be to raise capital, which is an action that cannot be pursued

in the short time scale of a contagion scenario, which is the focus of our analysis. Note also that

insolvent banks, i.e. those withE i (t) � 0, will withdraw all their funds from the short-term market,

i.e. �AS
i (t) = AS

i (t) for insolvent banks.

The dynamic adjustment of short-term exposures triggers bank runsin the interbank market. More

speci�cally, we model runs as perfect information equilibria. Eisenberg and Noe (2001) provide the

basic set up which we need to adapt to our framework where the regulatory hoarding constitute the

initial demand shock.

Compared to Eisenberg and Noe (2001), we give more micro-foundation to the clearing algorithm

by making rationality assumption on banks' behavior instead of assuming proportional hoarding with

respect to short-term debtors. Indeed, this pure proportionality assumption may arti�cially lead banks

to illiquidity if a debtor is illiquid. Suppose that bank i hoards a quantity �AS
i of funds, proportionally

splitting this amount among its short-term creditors in quanti ties �AS
i 1, �AS

i; 2, ..., �AS
in . If a debtor j

is illiquid its supply of funds to i is less than �AS
ij . If the algorithm stops here, it may be the case

that also i becomes illiquid, thus reducing the fund it may supply to its hoarding creditors. A more

realistic assumption is that, if i is not able to meet its demand for liquidity because ofj 's illiquidity,

it may increase the quantities hoarded from the other debtors, up tothe point in which the supply

of funds from liquid debtors is enough to meeti 's demand for funds. As soon as a bankj is found

to be illiquid, perfect information in the short-term market mak es withdrawing all the fund from it a

weakly-dominating strategy for all its short-term creditors. However, no payments will be made and

exposures are marked down to zero, since slow and costly default procedures will be initiated by the

supervisors. It is important to note that runs to illiquid banks happen only when illiquidity is revealed

by the failure to make a required payment. Indeed, in the short timescale we assume, updated balance

sheet information are not made public, and the only source of information are market demand and

supply of funds. To make the analysis more precise we give the following de�nition of illiquid bank.

Illiquid bank A bank i is illiquid if the total amount of funds it can raise is not enough to meet the

demand for funds
P ~AS

ji (t) of its creditors.

If we de�ne as �( t) the set of banks which become illiquid at timet, then the amount of funds bank i

can raise is given byCi (t) +
P

j =2 �( t ) AS
ij (t) + pM i (t) which corresponds to the sum of the amount of

cash available at time t, the liquidity it can recall from its creditors, and the liquidity it can obtain

through �re-sales. It is clear from the de�nition that whether a bank i s illiquid crucially depends on

whether its short-term debtors are liquid or not. With this behavioral framework in mind we can de�ne

an equilibrium in the short-term market.

Equilibrium in the short-term market An equilibrium in the short-term market is a matrix of

liquidity demands, D � (t) =
�

~AS
ij (t)

� n

i;j =1
, where ~AS

ij is the equilibrium demand for cash ofi to j ,
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and a matrix of liquidity supply, S� (t) =
�

ÂS
ij (t)

� n

i;j =1
, where ÂS

ij is the equilibrium supply of cash of

i to j , such that:

I.
P

j =2 �( t )
~AS

ij (t) = min
�

P
j =2 �( t ) AS

ij (t); max
�

�AS
i (t);

P
j

~AS
ji (t) � Ci (t)

��
8i

II.
P

j Âs
ij (t) = min

�
P

j
~AS

ji (t); Ci (t) +
P

j =2 �( t ) ÂS
ji (t) + p ~M i (t)

�
8i

III. ~M �
i (t) = min

�
M i (t); max

�
�M i (t); 1

p

� P
j

~AS
ji (t) � Ci (t) �

P
j =2 �( t ) ÂS

ji (t)
� ��

IV. ~AS
ij (t)= ~AS

ik (t) = As
ij (t)=AS

ik (t) 8i 2 I; 8j; k =2 �( t)

V. ÂS
ij (t)=ÂS

ik (t) = ~AS
ji (t)= ~AS

ki (t) 8i; j; k 2 I

VI. i 2 �( t) if and only if
P

j ÂS
ij (t) <

P
j

~AS
ji (t)

VII. ~AS
ij (t) = ÂS

ji (t) 8i 2 I; 8j =2 �( t)

Equilibrium demands and supply are then computed by an iterative algorithm as suggested by Eisen-

berg and Noe (2001).

Condition I. states that banks' total demand for cash cannot exceed the amount of their short-

term interbank assets as that should be at least as large as to include both its regulatory demand and

creditor's hoarding exceeding available cash.

Condition II. indicates that banks' total supply of cash does not exceed the total demand they have

to meet and the liquidity they are able to raise via cash, supply ofliquidity from short-term creditors

and assets �re-sales.

Condition III. implies that equilibrium �re-sales cannot exceed the available illiquid assets and

should be enough to take into account regulatory �re-sales and the liquidity demand of creditors

exceeding cash reserves and funds obtained from the short-term interbank market.

Condition IV. , i.e. demands proportional to exposures, and conditionV., i.e. supplies proportional

to demands, are the formalization of the behavioral assumptions we made in our micro-foundation.

Condition VI. is the de�nition of illiquid bank in equilibrium. Note that thi s condition, together

with condition V., implies that, for an illiquid bank i , it holds that ÂS
ij (t) < ~AS

ji (t) for every creditor

j .

Condition VII. is a market clearing condition with illiquidity, in which the market clears with

equality only for liquid debtors, while there is excess demand to illiquid debtors.

The clearing of the market conveys a crucial signal to �nancial institutions since it reveals which

banks are unable to make the promised payments. In accordance with current �nancial regulation, as

soon as a bank is found illiquid it does not makeany payment and it is then subject to regulatory

supervision.

Since default procedures due to illiquidity are costly and time consuming processes whose outcome

is uncertain and since shorter maturity does not necessarily imply higher seniority, we assume that all

the creditors, both long-term and short-term, of illiquid banks mark-to-market their exposures.

Therefore, insolvency is not the only source of contagion. Banks' defaults can be induced also

by illiquidity due to bank runs. Consequently, both insolvent and illiquid banks induce losses to

their direct lenders. Such losses reduce the capital bu�er of the creditorwhich, if negative, makes
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it insolvent as well. Furthermore, a reduction of the capital bu�er also forces banks to adjust their

RWA, thus (possibly) triggering an additional round of bank runs. When the short-term market clears,

new illiquid banks default and, together with the banks that became insolvent in the previous period,

trigger another round of insolvencies. The default cascade continues aslong as no additional defaults

happen (see Figure 2).

We can de�ne �( t) as the set of banks which are in default at timet. Then, assuming a zero

recovery rate in the short run, we may update the exposures of institutions as follows:

AS
ij (t + 1) = AS

ij (t) � ~AS
ij (t) if j =2 �( t) (10)

AS
ij (t + 1) = 0 if j 2 �( t) (11)

fort the short-term, and

AL
ij (t + 1) = AL

ij (t) if j =2 �( t) (12)

AL
ij (t + 1) = 0 if j 2 �( t) (13)

for the long-term. Certainly, defaulted banks continue to have liabilities to their creditors. However,

as default procedures start, the timing and the amount of the �nal obligations become exogenous to

our model. Hence, according to the update rules, we remove defaulted banks from the system by

wiping-away all their interbank liabilities. Illiquid assets ar e updated according to:

M i (t + 1) = M i (t) � ~M S
i (t) (14)

while cash reserves follow the rule:

Ci (t + 1) = Ci (t) +
X

j =2 �( t )

ÂS
ji + p ~M S

i (t) �
X

j

ÂS
ij if i =2 �( t) (15)

Ci (t + 1) = Ci (t) +
X

j =2 �( t )

~hat
S
ji + p ~M S

i (t) if i 2 �( t) (16)

The dynamics of the capital bu�er can thus be expressed as follows:

E i (t + 1) = E i (t) � (1 � p) ~M S
i (t) �

X

j 2 �( t )

�
AS

ij (t) + AL
ij (t)

�
(17)

Finally, the set of defaulted banks is updated as follows:

�( t + 1) = �( t) [ �( t + 1) [ f i jE i (t+1) < 0g i (18)

and we look at the steady-state of the default cascade. i.e. at the state of the system at timet � when

�( t � + 1) = �( t � ).
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3 Simulations Settings

To provide a general assessment on what factors and characteristics of the interbank market deter-

mine its (in)stability we consider di�erent parametrizations of o ur models where we let vary: capital

requirements, banks' balance sheet composition, �re-sale prices, network topology and types of (neg-

ative) shocks hitting the system. We start by considering �ve di� erent (macro) scenarios where we

let vary the topology of the interbank market and the overall degreeof heterogeneity of the system.

Second, for each scenario, we consider di�erent calibrations to assess how di�erent degrees of banks'

heterogeneity, market liquidity, capital regulation, and price levels a�ect the emergence of systemic

risk. Third, we check which types of shocks make the system less stable (i.e. random vs targeted

attacks). Lastly, we compare the �ndings of the two models of contagion.

The �ve (macro) scenarios we consider are1:

ER1: Homogeneous banks with homogeneous exposures. In this scenario,an Erd®s and Rényi (1960)

network model is used to generate interbank connections and banks are assumed to have the

same asset size. Interbank claims are evenly distributed among the outgoing links.

ER2: Homogeneous banks with heterogeneous exposures. As in the previous case, all banks have the

same asset size and the network is Erd®s and Rényi (1960). However, we now allow banks to

unevenly distribute their exposures across creditors, in such a waythe link weight is power-law

distributed.

ER3: Heterogeneous banks with heterogeneous exposures. In this case, also banks are heterogeneous

and their size (expressed in terms of total assets) is power-law distributed.

FIT1: Heterogeneous banks with homogeneous exposures. We move towardsa more realistic architec-

ture for the �nancial system, which shows a fat-tail degree distribution. We generate a network

using a �tness model (De Masi et al., 2006), with an exogenous distribution of the �tness param-

eter that follows a power-law and with interbank claims that are evenlydistributed among the

outgoing links.

FIT2: Heterogeneous banks with heterogeneous exposures. Here, we allow also for heterogeneous ex-

posures so that, once the network is generated using the �tness model,we draw the value of the

exposures from a power-law distribution with the same exponent of the distribution of the �tness

parameter.

By analyzing those �ve scenarios, we can show how di�erent features that characterize the �nancial

system can a�ect its stability. We start with the most simple case, where we assume that banks are

homogeneous, credit is allocated with the same proportion to all neighbors, and the interbank network

is generated using an Erd®s and Rényi (1960) model. Then, with scenariosER2 and ER3, we add

heterogeneity both in terms of banks' sizes and in terms of how credit is allocated to creditors. Lastly,

in scenariosFIT1 and FIT2 , we change the topology of the interbank market and we use a�tness model

to generate a network of exposures that match more closely the empirical features of real interbank

networks (Montagna and Lux, 2013).

1Additional details are provided in Appendix C.
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Furthermore, di�erent types of shocks are considered. In the simulations, we let vary the average

degree of the network, which represents the average number of creditors and debtors a randomly chosen

bank has. As such, the average degree is a measure of diversi�cationat the level of single institutions;

but, from a systemic point of view, it is also a measure of connectivity, which thus represents channels

through which a shock may propagate. As in previous contributions (Caccioli et al., 2012; Gai and

Kapadia, 2010), we will exogenously set into default one bank and analyze the steady-state e�ect of

contagion: i.e. the number of defaulted banks when the contagion process stops. We will focus on the

frequency of contagion, de�ned as the probability that at least 10% of the intermediaries default, and

on the extent of contagion, i.e. average fraction of defaulted banks, provided that it is larger than 10%.

When heterogeneity is introduced (as in casesER2, ER3, FIT1 and FIT2 ) through exogenous power-

law distributions, also the exponent of the distribution will b e subject to analysis, since it represents

the degree of heterogeneity: smaller exponents correspond to fatter tails and, consequently, to higher

levels of heterogeneity.

The triggering event of contagion is the exogenous default of a bank. We assume four targets of

the exogenous shock:

� Random, in which the exogenously defaulting bank is picked up randomly,with equal probability

for each bank;

� Too-connected-to-fail, in which we set into default the banks with the largest number of creditors;

� Too-exposed-to-fail, in which the exogenous default hits the bank with the largest debt exposure

(used only in the extended model);

� Too-big-to-fail, in which the exogenous default hits the bank with the largest asset size, and which

is feasible only in those cases in which the asset size is heterogeneous,i.e. casesER3, FIT1 and

FIT2

Indeed, one of the crucial policy implications of this contribution comes from our results on the

role of large �nancial institutions, either in terms of connectivity or in term of a sset size. When het-

erogeneity is introduced, the system presents potentialtoo-connected-to-fail and too-big-to-fail banks.

On the one hand, they may have detrimental e�ects because of their largeexposures in the interbank

market. On the other hand, their magnitude allows them to better absorb shocks, since their higher

level of diversi�cation or their larger capital bu�ers prevent them to g o bankrupt after the default of

a relatively small banks.

In our setting we simulate �nancial systems composed of 1000 bankswhere each di�erent parame-

terization is run 500 times. Additionally, to preserve comparability with previous contributions, such

as Gai and Kapadia (2010) and Caccioli et al. (2012), we keep - in the benchmark model - a �xed ratio

of capital to total assets equal to 4%; while - in both models - we set the ratio of interbank assets to

total capital equal to 20% (i.e. � = 0 :2). Furthermore, in the extended model, we set the capital bu�er

� = 2 :5%, the risk weight for illiquid assets 
 M = 50% (which is the weight assigned by regulators

to residential loans), and the risk weight for interbank claims
 IB = 100% (which corresponds to the

regulatory weight for loans to BBB- institutions, thus implying a conservative scenario).

As far as the extended model is concerned, we use logit regressions to summarize our results and

to disentagle the e�ects that di�erent parameters of the model have on the probability of observing
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Name Dummy Details Scenarios Regressor(s)

Constant all x0

Average Degree levels & logs all x1 and x2

High Min Capital Ratio yes min capital = 10% all x3

Low Min Capital Ratio yes min capital = 6% all x4

Sales at loss yes �re-sale price = 50% all x5

High liquidity yes � = 0.72 all x6

Low liquidity yes � = 0.08 all x7

Large short-term market yes � = 0.18 all x8

Large long-term market yes � = 0.02 all x9

High heterogeneity yes tail exponent = 2.5 ER2,ER3,FIT1,FIT2 x10

Low heterogeneity yes tail exponent = 3.5 ER2,ER3,FIT1,FIT2 x11

Too-connected-to-fail yes all x12

Too-exposed-to-fail yes ER2, ER3, FIT1, FIT2 x13

Too-big-to-fail yes ER3, FIT1, FIT2 x14

Table 1: List of covariates included in the logit regressions.

default cascades. Thelogit model we estimate is de�ned as follows:

P rob(contagionjthreshold = h; X ) =
eX 0�

1 + eX 0� (19)

whereh is the share of intermediaries that have to fail in order for us toconsider that event a �default

cascade�,X the regressors' matrix and� is the vector of parameters that have to be estimated. For

each regression, we use the set of covariates described in Table 1.

We also add severalinteraction terms to take into account of the fact that the e�ects of the

regressors depend crucially on the average level of connectivity of the system. Therefore, we interact

all the dummy covariates included in the model with theaverage degreeregressors (both taken in levels

and in logs). For example, in addition to regressorx3 (i.e. high capital requirements), we also add

covariatesx14 and x15 obtained asx14 = x3 � x1 and x15 = x3 � x2. Our choice of regressors implies that

our baseline con�guration is the one where: the minimum capital ratio is set to 8%, there are no losses

during �re-sales (i.e. �re-sale price = 100%), liquidity is set at its intermediate level (i.e. � = 0 :4),

short-term and long-term interbank markets have the same size (i.e. � = 0 :1) and the defaulting bank

is chosen at random. Furthermore, if heterogeneity is present (i.e. scenarios ER2, ER3, FIT1 and

FIT2 ), the power-law exponent is set to3:0.

To analyze the impact of the parameters we show - for each regressor -the distribution of its

marginal e�ects by computing such e�ects for each possible combination of the othercovariates. Indeed,

in the case of a logit regression, we need to specify the point at whichwe are measuring the marginal

e�ects of a regressor because:

@Prob(Y = 1 jx)
@x

= �( x0� )[1 � �( x0b)]�; (20)

where �( z) = ez

1+ ez . Therefore, to give a clearer idea of the impact that each covariate has onthe

probability of observing default cascades, we decided to combine theresults obtained considering all

the possible combinations available. We show the results forh = 10%. Furthermore, in Table 2,

we report the quality measures for the regressions performed and thenumber of observations (i.e.

simulations) used to estimate each logit regression.
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Scenario Precision Recall F1-score Observations (in millions)

ER1 0.86 0.86 0.86 3.24
ER2 0.88 0.88 0.88 14.58
ER3 0.85 0.84 0.85 19.44
FIT1 0.89 0.90 0.89 19.44
FIT2 0.90 0.91 0.90 19.44

Table 2: Quality measures1of logit regressions.

Main Findings

Baseline system stability: Non-monotonic role of diversi� cation (i.e. system connectivity).

Extent of contagion
The �nancial system can be both robust-yet-fragile and
robust-and-not-fragile depending on balance sheets composition.

Heterogeneity in exposures Higher heterogeneity induces a wider contagion window

Heterogeneity in bank sizes
The �nancial system is more stable in the benchmark model,
mixed results in the extended model.

Scale-free networks
In general, the �nancial system is more stable (under random
attacks) than in Erd®s and Rényi (1960) con�gurations.

Targeted attacks Size alone matters less than connectivity in spreading contagion.
Minimum capital ratio Higher regulatory capital ratios increase system stabilit y.

Fire-sale price
The probability of contagion is lower when banks incur in los ses
while liquidating assets.

Liquidity
Higher the share of liquid assets in portfolio, lower the stab ility
of the system.

Share of short-term exposures Non-monotonic role of balance sheets maturity structure.

Table 3: Summary of the main �ndings.

4 Findings

In the following section we summarize the main �ndings we obtain using the two models of contagion.

In particular, by using the extended model, we also outline what arethe e�ects of imposing di�erent

capital requirements on the �nancial system, altering the �re-sale price of illiquid assets and - more

in general - considering di�erent balance sheets compositions via tuning parameters � and � of the

extended model2.

Baseline system stability.The non-monotonic role diversi�cation has on �nancial stabilit y is evident

in all the scenarios considered. For small average degree values, increasing connectivity increases the

frequency of contagion and hence the probability of observing default cascades. Indeed, in such cases,

the presence of additional transmission channels more than o�setthe role of diversi�cation. However,

this e�ect is reversed for larger values of the average degree, so that contagion becomes a rarer event due

to diversi�cation. The system has therefore two phase transitionswhich delimit a so-calledcontagion

window (Gai and Kapadia, 2010). For example, this is what emerges by lookingat estimated marginal

e�ects of average degree on the probability of cascades as depicted in Figure 10a (extended model,

scenarioER1).

Extent of contagion. However, while the frequency of contagion declines beyond a certain threshold,

this is not the case - in the benchmark model- for the extent of contagion. Near the upper phase

1Precision is de�ned as the number of correctly predicted contagious events over the total number of predicted
contagious events. Recall is de�ned as the number of correctly predicted contagious events over the total number of
contagious events. The F1-score is de�ned as 2(Precision � Recall)=(Precision + Recall).

2While, let's remind the reader, parameter � is kept �xed at 0.2.
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(a) � = 18%, � = 8% (b) � = 18%, � = 40% (c) � = 18%, � = 72%

Figure 7: Extended model | Extent of contagion - Threshold: 10%
Colors identify the di�erent levels of the minimum capital requirement: 6% red, 8% blue, and 10%
green. Line styles identify �re-sale prices: solid line for �re-saleprice equal to 50% of the asset value,
dashed line for price equal to 100% of the asset value. The scenario considered is FIT2 where the
too-connected-to-fail node is defaulted.

transition the system exhibits the robust-yet-fragile property: contagion is a rare event, but, once

it breaks up, it a�ects the entire network. Our experiments suggest that the same random shock

may have completely di�erent e�ects depending on the level of connectivity of the interbank market.

Instead, in the extended model, the system can also berobust-and-not-fragile, depending on the balance

sheet composition of the banks. Indeed, given the dynamic �avor of the extended model, the �nancial

system can adjust its connectivity avoiding full collapse providedthat certain conditions hold. In

particular, if � is high - i.e. banks have more short-term assets than long-term assets - the fragility

of the system will depend upon the actual level of liquid assets (i.e. cash) present in the market:

higher the liquidity in the interbank market, higher the level of fr agility. For example, see Figure 7

where we report the extent of contagion for scenarioFIT2 when � = 18% and � 2 f 8%; 40%; 72%g.

This happens because banks can dynamically adjust their short-term exposures, therefore reducing the

probability of a systemic collapse; and because - when liquidity is low - agents are forced to recall many

lines of credit to be able to adjust their risk-weighted capital ratio1. From a policy standpoint, this

�nding has two main implications. First, it means that �nancial markets can �nd a value to preserve

themselveswithout external intervention. However, this can happen only when theabsolute level of

capital is not too low, as it is when liquidity is high (i.e. a lower level of capital is needed to satisfy the

constraint on the risk-weighted capital ratio). Therefore, it is not su�cient to force banks to comply

with regulations on capital ratios, but additional metrics are needed to distinguish robust-yet-fragile

systems fromrobust-but-not-fragile systems.

Heterogeneity in exposures.When we compare the resultsacross scenarios, it emerges that the

presence of an uneven distribution of claims creates a much wider contagion window than having

claims evenly distributed among debtors. For example, notice the di�erences between scenariosER1

and ER2 in the benchmark modelin Figures 9a and 11a. The same holds when we compare the results

for the extended model (see Figure 8.

Heterogeneity in bank sizes.Instead, when we consider heterogeneity in bank sizes (i.e. we compare

scenariosER2 and ER3) we observe that size heterogeneity makes the �nancial system more stable

1This can be inferred by looking back at equation 4.
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in the benchmark model; while the results are mixed in the extended model where the (baseline)

probability of contagion appears to pick at a lower level than in scenario ER2. even though at medium-

to-high levels of connectivity the probability of contagion is higher in scenarioER3.

Scale-free networks.When we move to consider scale-free distributions for the degree and also the

size of banks (scenariosFIT1 and FIT2 ), as long as attacks to the system are random, the �nancial

system is more stable than it is in Erd®s and Rényi (1960) con�gurations. For example, this can be

seen - in the extended model - by comparing the baseline probabilities of default cascades as depicted

in Figure 8. However, thecontagion window is larger than in ER1 scenario and the structure remains

robust-yet-fragile even for larger values of the average degree, no matter which degree of heterogeneity

we consider. This result was expected given the extensive literature on network resilience in the case

of scale-free networks (Albert et al., 2000; Cohen et al., 2000, 2001; Crucitti et al., 2004; Doyle et al.,

2005; Gallos et al., 2005; Zhao et al., 2004).

When we compare the frequency of contagion between scenariosFIT1 and FIT2 , we reach di�erent

conclusions when comparing the results from thebenchmark modelto the ones of theextended model.

In the benchmark model, frequency of contagion is clearly lower than incaseER3 but also than in

caseFIT1 . Additionally, heterogeneity plays a stabilizing role despite the presence of contagious links

and highly connected hubs. Moreover, heterogeneity seems always to be bene�cial since the frequency

of contagion, for a given average degree, decreases with the power-law exponent. For exponents as

small as 2.25, the maximum frequency of contagion in the benchmarkmodel is the lowest, not even

reaching 20%.

Instead, in the extended model, the baseline probability of contagion inFIT2 is slightly higher than

the one observed inFIT1 (see Figure 8). Moreover, when we look at marginal e�ects of having high

vs low heterogeneity, we discover that heterogeneity does not stabilize the system as in the benchmark

model. Instead, in the extended model, it makes the system less stableand more prone to systemic

risk (see Figures 22a,22b,26a,26b).

Targeted attacks.Targeted attacks alter the risk pro�les of the di�erent interbank a rchitectures. In

general, probability of contagion increases when we move from a random default to a targeted default.

In the extended model, the highest probability of contagion for scenario ER2 is found in the too-

exposed-to-fail case (compare the marginal e�ects in Figures 13i and 14c). Additionally, in line with

what emerges in scenarioER1, the too-exposed-to-failattack contributes to creating a wider window

of contagion since its e�ects are notable also for the highest level ofconnectivity. Therefore, no degree

of diversi�cation can prevent the system from being exposed to default cascades.

Whenever banks are heterogeneous also in size (as in scenariosER3,FIT1,FIT2 ) we can test the

potential for disruption of an attack to the biggest bank. Put i t di�erently, are more systemically impor-

tant too-big-to-fail institutions or too-connected-to-fail/too-exposed-to-fail institutions? Our �ndings

suggest that size alone matters less than connectivity in spreading contagion. For example, in the

extended model, if we compare Figures 17i and 21i we see that an attackto the most-connected bank

has a stronger impact on the stability of the system than an attack to the biggest one. This result

holds especially for low to medium levels of connectivity. Instead, when the connectivity in the system

is extremely high, targeting the biggest institutions might be more dangerous (in some scenarios).

In the following, we focus our attention on the �ndings we obtained using solely theextended

model. As we previously stressed, only by using the extended model we can analyze how liquidity
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hoarding interacts with macro-prudential policies and balance sheetscomposition in determining the

(in)stability of the �nancial system. Therefore, in the following paragraphs, we describe what are the

e�ects on systemic risk of varying minimum capital ratios, �re-sale prices, the share of liquid assets

held by �nancial institutions, and the maturity composition of banks' balance sheets.

Minimum capital ratio. Using the extended model, we can also test di�erent regulatory requirements

on capital and measure how changing such requirements alters the �nancial stability of the interbank

market. We �nd that the e�ects of having an higher regulatory capital ratio are unambiguously positive.

The probability of contagion is always reduced by increasing the minimum capital ratio. This was not,

however, a trivial result. Indeed, while higher capital ratios provide a larger bu�er to absorb losses,

they also raise the threshold that triggers runs in the short-term market because of the adjustments

of the risk-weighted assets. For example, in Figures 10b and 10c, we see the marginal e�ects for the

cases when the minimum capital ratio is set to 6% (panel(c)) and when the minimum capital ratio

is set to 10% (panel(b)). To interpret the results, we have to keep in mind that - in these cases- we

are looking at the marginal e�ects of two dummy variables where thebenchmark caseis the one where

the minimum capital ratio is set to 8%. Therefore, a positive marginal e�ect in the case of a minimum

capital ratio set equal to 6% means that - in such a case - there is anhigher probability of contagion

compared to what we would have had if we were to keep the minimum capital ratio equal to 8% (i.e.

the value at the baseline). The absolute size of the marginal e�ects -as in the case of the average

degree - dies out quickly for high levels of connectivity.

Fire-sale price. These results are probably the most counterintuitive ones and interesting, since

they clearly highlight how the interplay between network architecture and behavioral rules can yield

unexpected outcomes. The probability of contagion is always lower when banks incur losses as they

sell their illiquid assets (i.e. the selling price of the illiquid assets is set to be equal to 50% of their book

value). The reason for this fact is that banks, when facing �re-sale losses, have higher probability of

becoming illiquid. All short-term creditors will thus try to obta in the desired amount of liquidity from

other debtor banks. This implies that a larger fraction of credit linesare reduced and, in part, closed.

The closure of short-term credit lines with short-term debtors removespossible channels through which

contagion can spread, thus giving higher stability to the entire system. In general, we have observed

that the bene�cial e�ect of �re-sale losses is more evident when the fraction of short-term interbank

claims is small (i.e. � is small) and when diversi�cation is high, i.e. in the cases in which every

short-term link carries a smaller weight and thus is more likely to be removed during a run. In Figure

21d we report the marginal e�ects for the case when the �re-sale price isset to 50% of the original

value; the baseline value is set as having a �re-sale price equal to the book value of the assets; and the

scenario considered isFIT1 .

Liquidity (i.e. � ). As far as contagion through interbank exposures is concerned, a highershare

of liquid items in portfolio is detrimental for the stability of the system. Despite the fact that they

provide a cash bu�er preventing liquidity shocks to spread, they also lower the risk-weighted assets

(RWA) and thus the initial absolute amount of capital available to absorb losses. The result is that the

most stable con�guration is reached when liquid assets are at theirminimum, i.e. when � = 0 :08. In

Figures 10e and 10f, we see that whenever we have high liquidity in the system (i.e. � = 0 :72), there is

also an higher probability of observing default cascades. Furthermore, the magnitude of the (positive)

marginal e�ects of having high liquidity are typically much larg er than the (negative) marginal e�ects
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when liquidity is low. The interquantile range for the case with low levels of liquidity is approximately

zero when average degree is higher than eight; while with high levels of liquidity marginal e�ects are

still relevant up to very high levels of connectivity.

Share of short-term exposures (i.e.� ). The marginal e�ects of the share of short-term exposures

seem to be non-linear. Let us recall that whenever� = 0 :10, the overall size of the short-term interbank

market is the same as the one of the long-term interbank market. This follows from the fact that the

total amount of assets allocated in the two markets is the same. Therefore, what we observe - as an

example - in Figures 10g and 10h is what happens whenever one of the markets is larger than the

other. In particular, the marginal e�ects in the two cases (i.e. � = 0 :18 in panel (g) and � = 0 :02 in

panel (h)) have - for low levels of connectivity - negative marginal e�ects; whilethe opposite holds for

higher levels of connectivity. In the Erd®s and Rényi (1960) scenarios, the minimum value is recorded

when average degree equals one. One reason that could explain this �nding is that, in Erd®s and Rényi

(1960) models, average degree values lower than one imply that agiant component does not exist.

Therefore, when defaults do happen, they do not percolate to the rest of thenetwork. Once we pass

that threshold, we see that the marginal e�ects start to become less negative, until they become strictly

positive for average degree values higher than two. Consequently, when connectivity is high and market

sizes areunbalanced, the increased number ofcontagious links makes the system more unstable since

�nancial distress does propagate. Instead, when we move to consider scenarios where the underlying

network structures are scale-free (FIT1 and FIT2 ), the marginal e�ects are still negative for low levels

of connectivity, but their minimum is reached at lower level of connectivity. Additionally, network

unbalances where long-term assets outsize short-term assets (i.e.� = 0 :02) are more dangerous than

scenarios where short-term assets outsize long-term assets. The reason being that short-term liabilities

can be dynamically adjusted by the banks at running time, while long-term liabilities creates channels

of contagion that cannot be cut while a default cascade unfolds.

5 Conclusions

In this paper we explored the interplay between heterogeneity, network structure and balance sheet

composition in the spreading of contagion.

In the �rst part, using an established model of contagion, we haveshown that the system presents

phase transitions in connectivity. Indeed, connectivity is both a driver of contagion, as it provides the

channel for shocks to propagate, but it is also an hedge against contagion, via diversi�cation. This

result is consistent with what has been found also in other studies suchas Gai and Kapadia (2010),

Caccioli et al. (2012) and Elliott et al. (2014).

Also heterogeneity has an ambiguous role. If heterogeneity regards exclusively the link weights,

the main e�ect is a widening of the interval of connectivity levels in which contagion is possible. This

is due to the fact that diversi�cation cannot, in this case, prevent contagious links to exist, which are

a necessary condition for contagion to arise.

When size heterogeneity is introduced, also some positive e�ects are seen.Big banks seems to act

as shock absorber, making contagion a less likely phenomenon. Heterogeneity in connectivity provides

additional stabilization when the initial default is random. However, this comes with the cost of an

extremely high contagion risk when the most connected or the largest institution is initially distressed

(as it was also discussed in Caccioli et al. (2012) and Roukny et al. (2013)).
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(a) ER1 (b) ER2 (c) ER3

(d) FIT1 (e) FIT2

Figure 8: Extended model | Baseline Probabilities of Observing Default Cascades - Thresh-
old: 10%
Panels (a)�(e) show the estimated probability of observing default cascades where more than 10% of
the total assets had been wiped out.
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(a) Random Default (b) Too-Connected-To-Fail

Figure 9: Benchmark model - [ER1] | Frequency and Extent of Contagion - Th reshold:
10%
Frequency (red) and extent (blue) of contagion as functions of the average number of interbank con-
nections of the banks in the system.

We showed howtoo-connected-to-fail banks are more dangerous that thetoo-big-to-fail ones. In

our model, despite being very correlate, the two set of institutions do not necessarily overlap. We

then proved that the total amount of distressed loans matters less than the number of creditors being

initially hit by the default.

In our extended model of contagion, which includes default cascades, endogenous bank runs and

asset-liability management, we highlighted the complex interactions between network structure and

balance sheet composition. We proved that larger capital requirementsare e�ectively able to stabilize

the system, while larger liquid reserves, despite providing a bu�erin case of liquidity run, induce banks

to keep a smaller amount of capital, thus making them vulnerable to contagion.

This �nding is in line with what has been predicted also by other authors. For example, in Battiston

et al. (2012a), it was shown that the size of default cascades would increase when the average robustness

(i.e. the average equity ratios of banks) would decrease. The same result is also discussed in Nier et al.

(2007) where it is found that when levels of equity falls below a given threshold, there is a sharp

increase in the risk of a systemic breakdown.

The relative weight of short-term and long-term exposures also matters in this framework and an

intermediate balance between the two seems optimal. Short-term exposures are indeed both a channel

for liquidity shocks, but they can also be easily removed, preventing shock to propagate.

Finally, the role of �re-sales highlight the complexity of this k ind of models in which several channels

of contagion operate. Indeed, �re-sale losses imply higher risk of illiquidity. Hoarding banks will then

seek funds from other non-illiquid banks, reducing their exposures to them and, eventually, leading

to a more likely closure of the credit lines. This e�ectively removes channels for the propagation of

contagion. In this sense, �re-sale losses induce a more prudent behavior.

This paper also provides policy suggestions for the regulation of the �nancial system. The role of

too-connected-to-fail and too-big-to-fail institutions in �nancial markets is ambiguous, since they act as

shock absorbers in case of random attack, but pose relevant systemic risk if distressed. Nevertheless, we

proved that too-connected-to-fail banks should be the primary concern for a contagion-averse regulator,

since their distress is more likely to trigger systemic breakdowns.

Capital requirements should also be rethought in the light of the trade-o�s highlighted by our
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(a) Average degree (b) High min capital ratio (c) Low min capital ratio

(d) Sales at Loss (e) High liquidity (f) Low liquidity

(g) Large short-term market (h) Large long-term market (i) Too-connected-to-fail

Figure 10: Extended model - [ER1] | Marginal E�ects - Threshold: 10%
Panels (a)�(i) show the marginal e�ects for the di�erent parameters: the blue line represents the median
marginal e�ect; the shaded area marks the value of the marginal e�ect between the 25th and the 75th

percentiles; while the upper and lower dashed red lines correspond, respectively, to the maximum and
minimum estimated marginal e�ect for each speci�c regressor.
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(a) Random Default

(b) Too-Connected-To-Fail

Figure 11: Benchmark model - [ER2] | Frequency of Contagion - Threshold: 1 0%
Frequency of contagion as a function of the average number of interbank connections of the banks in
the system and of the exponent of the power-law distribution used to generate the interbank exposures.

complex system approach, together with the incentives micro-prudential regulation should set. Indeed,

such incentives may be strongly mis-aligned with macro-prudentialobjectives, if not designed in a

systemic perspective. Our paper has indeed clearly highlighted how conditions that are extremely

desirable from a micro-prudential point of view (e.g. larger liquid reserves and no �re-sale losses), may

induce, at a macro level, systemic fragility.

Our analysis, however, is far from being complete. The model we have hereby presented can still

be extended along di�erent dimensions. From a macro-prudential standpoint, the menu of possible

market regulations that can be tested shall be expanded. One addition we are currently working on

is to include a liquidity requirement along with the capital requirements which are already part of

our framework. This additional control mechanism will probably intensify the dynamics of the short-

term interbank market because having mandatory liquidity requirements will increase the demand for

liquidity during distressed times. Another possibility would be to introduce � alongside the other

measures �counter-cyclical capital bu�ers and/or maximum leverage ratios.

In terms of the dynamics of the model, additional features shall beincluded. First, banks shall be

allowed not only to alter the structure of their short-term lendi ng but also to transform the maturity of

long-term loans. Second, asset prices shall be made endogenous. In the current version of the model,

asset prices are exogenously determined and they do not vary while contagion unfolds. Instead, a more

realistic approach would be to let prices adjust depending on the amount of assets sold in the market

at any given time and balance sheets shall be evaluatedmark-to-market. Lastly, di�erent types of asset
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(a) Random Default

(b) Too-Connected-To-Fail

Figure 12: Benchmark model - [ER2] | Extent of Contagion - Threshold: 10%
Extent of contagion as a function of the average number of interbankconnections of the banks in the
system and of the exponent of the power-law distribution used to generate the interbank exposures.
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(a) Average degree (b) High min capital ratio (c) Low min capital ratio

(d) Sales at Loss (e) High liquidity (f) Low liquidity

(g) Large short-term market (h) Large long-term market (i) Too-connected-to-fail

Figure 13: Extended model - [ER2] | Marginal E�ects - Threshold: 10% (A)
Panels (a)�(i) show the marginal e�ects for the di�erent parameters: the blue line represents the median
marginal e�ect; the shaded area marks the value of the marginal e�ect between the 25th and the 75th

percentiles; while the upper and lower dashed red lines correspond, respectively, to the maximum and
minimum estimated marginal e�ect for each speci�c regressor.
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(a) High heterogeneity (b) Low heterogeneity (c) Too-exposed-to-fail

Figure 14: Extended model - [ER2] | Marginal E�ects - Threshold: 10% (B)
Panels (a)�(c) show the marginal e�ects for the di�erent parameters: the blue line represents the
median marginal e�ect; the shaded area marks the value of the marginal e�ect between the 25th

and the 75th percentiles; while the upper and lower dashed red lines correspond, respectively, to the
maximum and minimum estimated marginal e�ect for each speci�c regressor.

categories shall be introduced. This will allow us to study how the composition of banks' (overlapping)

portfolios in�uence the stability of the �nancial system.

Finally, other topological features of the interbank network can beanalyzed to explain the di�usion

of �nancial contagion. Due to computation constraints, we have restricted our attention � in this

�rst contribution � to a smaller set of network metrics. However, a la rger set topological features

of the interbank network can be analyzed: the distribution of nodeclustering; the graph-component

distribution; or the community structure of the graph 1. Correlating systemic events with such �ner-

grained characteristics of the interbank network will allow the policy maker to better understand how

the topology of the interbank lending can be tweaked and/or controlled to improve the stability and

the resilience of the �nancial system.

Appendix

A Network Theory: De�nitions

A network is simply a collection of points connected by links, which wemay formalize as a setG =

(I; V ), where I is the set of vertices (nodes), whileV is the set of couples(i; j ) 2 I 2 representing the

edges, which may be ordered or unordered, and we shall then speak of directed or undirected graphs

respectively.

Any network can be unambiguously represented by an adjacency matrixA(G), whose elements

aij take the value of zero or one depending on whether(i; j ) =2 V or (i; j ) 2 V . If the network

is undirected the adjacency matrix is symmetric. Moreover, whenever links have di�erent weights,

1A component of a graph is a minimal subset of nodes that are connected, i.e. for which any two nodes are connected
by a path going through the nodes of the subset. A community st ructure is a partition of the nodes of the graph, induced
by observed topology, where the nodes in each set of the partition are more strongly linked between each other than they
are with nodes belonging to di�erent sets of the partition. S ee Newman (2010) for an introduction.
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(a) Random Default

(b) Too-Connected-To-Fail

(c) Too-Big-To-Fail

Figure 15: Benchmark model - [ER3] | Frequency of Contagion - Threshold: 1 0%
Frequency of contagion as a function of the average number of interbank connections of the banks in
the system and of the exponent of the power-law distribution used to generate the interbank exposures
and the banks' total size.
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(a) Random Default

(b) Too-Connected-To-Fail

(c) Too-Big-To-Fail

Figure 16: Benchmark model - [ER3] | Extent of Contagion - Threshold: 10%
Extent of contagion as a function of the average number of interbankconnections of the banks in the
system and of the exponent of the power-law distribution used to generate the interbank exposures
and the banks' total size.
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(a) Average degree (b) High min capital ratio (c) Low min capital ratio

(d) Sales at Loss (e) High liquidity (f) Low liquidity

(g) Large short-term market (h) Large long-term market (i) Too-connected-to-fail

Figure 17: Extended model - [ER3] | Marginal E�ects - Threshold: 10% (A)
Panel (a) shows the estimated probability of observing default cascades where more than 10% of the
total assets had been wiped out. Panels (b)�(i) show themarginal e�ects for the di�erent parameters:
the blue line represents the median marginal e�ect; the shaded area marks the value of the marginal
e�ect between the 25th and the 75th percentiles; while the upper and lower dashed red lines correspond,
respectively, to the maximum and minimum estimated marginal e�ect for each speci�c regressor.
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(a) High heterogeneity (b) Low heterogeneity

(c) Too-exposed-to-fail (d) Too-big-to-fail

Figure 18: Extended model - [ER3] | Marginal E�ects - Threshold: 10% (B)
Panels (a)�(c) show the marginal e�ects for the di�erent parameters: the blue line represents the
median marginal e�ect; the shaded area marks the value of the marginal e�ect between the 25th

and the 75th percentiles; while the upper and lower dashed red lines correspond, respectively, to the
maximum and minimum estimated marginal e�ect for each speci�c regressor.
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representing di�erent intensities in the connections one may de�ne a weighted matrix W (G) whose

elementswij represent the weight of the link from i to j if a link between them exist, while they are

zero if no link is present between them.

A network is a natural representation of an interbank market. Banks represent the nodes of the

graph, edges are given by lending relations and their weight is the value of the exposures. By taking

this point of view on the �nancial system, one is able to analyze its properties and its architecture, in

order to identify the relevant features for its stability. Indeed we are interested in the network structure

of an interbank market for its consequences in the transmission of liquidity shocks and default cascades.

Network Statistics

A �rst step towards the understanding of the stability of �nanci al systems passes through the analysis

of their structure itself. Despite not exhaustive of the entire set of topological feature one my compute

in a network, the following list provides an overview of the statistics which are both economically

meaningful and relevant for �nancial stability. In the following de�nitions we consider a network ofn

nodes, whose adjacency matrix isA and whose weighted matrix isW .

Node Degree The in-degreek in
i and out-degreekout

i of a node in a directed networks are the number

of incoming and outgoing links respectively:

k in
i =

nX

j =1

aij and kout
i =

nX

j =1

aji :

In the context of an interbank network the in-degree represent the number of creditors and the out-

degree the number of debtors.

Node Strength The in-strength sin
i and out-strength kout

i of a node in a directed networks are the

total amount of weight carried by its incoming and outgoing links respectively:

sin
i =

nX

j =1

wij and sout
i =

nX

j =1

wji :

The de�nition parallels that of node in- and out-degree and, in our framework, can be interpreted

as the total amount of interbank assets and liabilities.

Connectivity Connectivity is the fraction of possible links that the network actually displays. Calling

l the number of existing edges, in a directed graph, connectivity is given by

c =
l

n(n � 1)
:

Connectivity of thus a measure of the fraction of possible interbank relations which actually exist.

It thus provide a measure of diversi�cation and also of the channels of transmissions through which a

shock may �ow. A closely related concept is that of average degree

Average Degree The average degree is the average in-degree, or, equivalently, the average out-degree,
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of the n nodes in the network

�k =
nX

i =1

k in
i =

nX

i =1

kout
i

Which thus represents the average number of counterparties a bank has, and thus even more clearly

represents both the average level of diversi�cation and the average number of possible sources of shock.

Average Path Length A path is a sequence of vertices such that each pair of consecutive verticesin

the sequence are connected by an edge. The number path of lengthr from i to j is the elementi; j of

A r . The average path length is the average shortest path between any two nodes.

Despite most studies on interbank contagion have, so far, focused onconnectivity, also the average

path length should be taken into consideration when exploring the resilience of an interbank markets.

Indeed it represents the average number of connections separating two banks and may thus be relevant

for the timing and the severity of a default cascade.

Reciprocity In directed networks, reciprocity is the fraction of links for which a link in the opposite

direction exists. An expression for reciprocity is

r =
T rA 2

l
:

Reciprocity represents the frequency of reverse lending relationships.Certainly, from an empirical

point of view, it is interesting to note how several contributions have found high levels of reciprocity in

real interbank networks (Bech and Atalay, 2010; Soramäki et al., 2007). This possibly re�ects the role

of what Cocco et al. (2009) de�ne preferential lending, i.e. the importance of non-economic foundations

for interbank lending.

Clustering In an undirected network, the clustering coe�cient is de�ned as the probability that two

nodes, which are connected with another node, are connected between themselves:

C =
number of triangles� 3

number of connected triples
=

1
n

nX

i =1

(A3) ii

ki (ki � 1)
:

In the de�nition of the clustering coe�cient, we consider, for simpli city, the case of an undirected

network, which can be derived from a directed one if the directionality of a link is neglected. ki

indicates the (undirected) degree of nodei , i.e. the number of connections i has, and(A3) ii represents

the i -th element in the diagonal of A3. The clustering coe�cient is a measure of how tight interbank

relations are at local level. An high clustering coe�cient indicates that the counterparties of a given

bank are very likely to make transactions also between themselves.

Assortativity and Disassortativity A network is said to be assortative if nodes with a certain

degree are more likely to be connected with nodes with similar degree. It is said to be disassortative

if the opposite holds. A simple measure of assortativity in undirected networks is

m =
cov(ki ; ANND i )
� (ki )� (ANND i )

2 [� 1; 1]

where ANND i is the average nearest neighbor degree, i.e. the average degree of nodei 's neighbors.
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As for the clustering coe�cient, we presented only the undirected version of the assortativity coe�cient.

Interbank markets tend to be disassortative, in the sense that small banks tend to trade with large

banks and viceversa. This may be symptomatic of the presence of banking groups, in which small

subsidiaries preferentially trade with the parent company.

The previous statistics are either referred to single nodes, or are synthetic network-level measures

that summarize, in a single number, a series of local features. Other relevant information may instead

come from the statistical distribution of certain local characteristics. First and foremost, the distri-

bution of the degree, i.e. the number of counterparties, provides important information regarding the

structure of an interbank network, since it is able to quantify the level of heterogeneity of its nodes.

Degree Distribution Given a network, construct a sequence of possible degreesf 1; 2; : : : g and a

sequence of probabilitiesf p1; p2; : : : g, wherepk is the frequency of nodes with degreek. The quantities

f p1; p2; : : : g thus de�ne a probability distribution over degrees f 1; 2; : : : g, which is de�ned as degree

distribution .

More appropriately, in the context of directed graphs, we would dealt with a joint degree distribution

f pk in kout g representing the probability that a node have in-degreek in and out-degreekout .

B Models of Network Formation

The previous overview of de�nitions can be applied to any arbitrary network. However, when one seeks

to build a network displaying some desired features, he has to confront with the theory of network

formation, which provides a set of models that, because of di�erent assumptions on the mechanism of

link formation, are able to generate a corresponding set of networks with speci�c statistical peculiarities.

Here, we intend to provide a brief description of the two network formation models employed in our

analysis, namely the random graph model by Erd®s and Rényi (1960) and the �tness model1.

B.1 Erd®s-Rényi Model

The random graph model due to Erd®s and Rényi (1960) is a model in which, given a set ofN nodes,

a link from node i to node j exists with probability p, which is constant for each pair of nodes. In the

network there are N (N � 1) possible directed links to be created, resulting in an expected number of

edges in the network equal topN(N � 1), so that the (expected) average degree isp(N � 1). Indeed

each node has(N � 1) nodes to which it can connect. It follows that both the distribution of the in-

and the out-degree follows a binomial distribution:

pin (k) = pout (k) =
�

N � 1
k

�
pk (1 � p)N � k� 1:

If c denotes the average degree of a random graph, asymptotically, asN ! 1 , the degree distribution

converges to a Poisson(c)

p(k) =
e� cck

k!
;

1For a more complete overview of network formation models one may refer to standard textbooks as Newman (2010)
or to the reviews by Albert and Barabási (2002) and Chakrabar ti and Faloutsos (2006).

33



which is the reason why the model is sometimes referred to as Poisson random graph.

Since the probability of forming a link is homogeneous, the resulting network structure does not

present marked heterogeneity. In a Poisson distribution the dispersion around the mean is limited and

deviations from it are exponentially rare. An interbank network generated using this model will thus

provide of a homogeneous market, in which banks tend to have similar levels of connectivity, i.e. their

speci�c number of counterparties does not signi�cantly vary from the average.

The Erd®s and Rényi (1960) graph is also said to be small-world,since it presents a short average

path length and its diameter, i.e. the longest of the shortest paths linking two nodes, grows at a much

lower rate than N , precisely aslog(N ). The clustering coe�cient is equal to the probability of a link's

existence,p.

This model has been extensively applied for the study of contagion in �nancial networks, e.g. in

the contributions from Nier et al. (2007), Gai and Kapadia (2010), Iori et al. (2006) and Montagna

and Kok (2013).

B.2 Fitness Model

The �tness model is a very �exible model of network formation, which is able to generate a wide range

of structural features. Every node i is endowed with a �tness parameter,x i , which is a measure of

its �attractiveness�, and links are formed between nodes with a probability which is a function of the

�tness of the nodes. More formally, if we de�ne pij as the probability that a link exists from i to j ,

this probability is given by

pij = f (x i ; x j )

for a generic function f .

Depending on the shape of the functionf and on the probability distribution � of the �tness,

various properties may emerge.

In general the expected in-degree for a node with �tnessx is

k in (x) = n
Z + 1

�1
f (t; x )� (t)dt � nF in (x);

while the expected out-degree is

kout (x) = n
Z + 1

�1
f (x; t )� (t)dt � nFout (x):

Clearly, the two expressions coincide iff is symmetric, i.e. f (x i ; x j ) = f (x j ; x i ), meaning that the

�tness parameter represents the attractiveness of the node irrespectiveof the direction of the relation

to be established.

Under the assumption of invertibility of F in and F out and of di�erentiability of their inverse, one

can derive an analytical expression for the probability of observing nodes with in-/out-degree equal to
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a generick:

P in (k) = �
�
F � 1

in

�
k
n

��
�

d
dk

F � 1
in

�
k
n

�

Pout (k) = �
�
F � 1

out

�
k
n

��
�

d
dk

F � 1
out

�
k
n

�
:

One may also compute higher order properties of networks built via �tness models. Focusing on

undirected models, wherepij = f (x i ; x j ) = f (x j ; x i ) represents the probability of an undirected link

betweeni and j , closed form solutions are available for the clustering coe�cient of nodes with �tness

x

C(x) = n2

R+ 1
�1

R+ 1
�1 f (x; t )f (t; s)f (s; x)� (t)� (s)dtds

k(x)2

and for the average degree of their neighbors

ANND (x) =
n

k(x)

Z + 1

�1
f (x; t )k(t)� (t)dt:

Despite this is just a brief summary of the properties of a �tness model1, it should be clear enough

that its �exibility has the potential to take into account a number of target properties. This is the

reason why authors as De Masi et al. (2006) and Montagna and Lux (2013) suggest the �tness model

in order to match the empirical features of real interbank networks.

In our (directed) interbank network we use a �tness model with an additive linking function

pij = f (x i ; x j ) = c(x i + x j ); (21)

where c is a constant that we tune in order to obtain the desired average degree.

We then draw a series ofn �tness parameters f x1; x2; : : : ; xng, one for each bank from a power-law

distribution with exponent � > 2 and minimum value x0

P(x) = ax� � ; x > x 0: (22)

Solving the integration for the expected in- and out-degree we �nd that

Fin (x) = Fout (x) =
cx2� �

0

� � 2
+

acx1� �
0

� � 1
x:

Inverting these functions and using the formulas for the degree distribution we see that

P in (k) = Pout (k) / (k � � ) � � ; (23)

where � is a positive constant that depends on the parameters of the �tness model. This means that

our model is able to replicate a power-law tail decay of the degree distribution, which is a feature often

observed in real networks (Caldarelli, 2007; Newman, 2010), including in interbank markets (Bech and

Atalay, 2010; Boss et al., 2004; Cont et al., 2013; Iazzetta and Manna, 2009; Iori et al., 2008; Soramäki

1For a more detailed description of its properties we invite t he reader to refer to Caldarelli et al. (2002), Caldarelli
(2007) and Servedio et al. (2004).
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et al., 2007) and which is thus symptomatic of high levels of heterogeneity in the connectivity of

�nancial institutions. The model is �exible enough to allow us to t une the exponent of the tail decay.

C Scenarios

The models presented in Section 2 are tested against �ve di�erent architectures of the �nancial system.

Three employ the Erd®s and Rényi (1960) network model (casesER1, ER2 and ER3), while two of

them use the �tness model (De Masi et al., 2006) (casesFIT1 and FIT2 ) to generate the interbank

network1.

ER1: Homogeneous banks with homogeneous exposures.The Erd®s and Rényi (1960) network model

is used to generate interbank connections and banks are assumed to have the same asset size. In the

benchmark model, just one network is generated; in theextended model, two Erd®s and Rényi (1960)

graphs are generated (on for the short-term interbank market and one for the long-term interbank

market). By using - in the extended model- two independent graphs to assign short and long term

exposures, we allow cases in which a bank can lend (or borrow) from another �nancial institution at

both maturities. Interbank claims are evenly distributed among the outgoing links, so that there is

no single exposure which is more dangerous than the others. In theextended model, they are evenly

distributed within each maturity class.

ER2: Homogeneous banks with heterogeneous exposures.As in the previous case, all banks have the

same asset size and the network(s) is Erd®s and Rényi (1960). However, we now allow banks to unevenly

distribute their exposures across creditors, in such a way the linkweight is power-law distributed. For

each bank we extract a number of weights equal to its out-degree from a power-law distribution, we

then assign interbank claims to the links proportionally to the respective weights. This represents

a scenario in which over-exposures may be present, implying the existence of contagious links. The

assumption about the distribution of link weights has been madein accordance to empirical �ndings

(Cont et al., 2013; Soramäki et al., 2007).

ER3: Heterogeneous banks with heterogeneous exposures.In this case we allow for heterogeneity

also in the asset size. First, Erd®s and Rényi (1960) network(s) isgenerated. Then, in thebenchmark

model, link weights are drawn from a power-law distribution and assigned the links. Total assets

are assigned to banks proportionally to their interbank exposures (A IB + L IB ) in such a way that, on

average, interbank assets represent 20% of total assets. The result isa network in which link weights are

power-law distributed and asset sizes are power-law distributed aswell. The presence of heterogeneity

in balance sheet sizes implies the presence of money center hubs, whose ambiguous role as shock

absorbers or shock ampli�ers will be assessed. Instead, in theextended model, the constraints set by

our model (i.e. � , � , � , e� and � ) are veri�ed exactly. For instance, the constraint that interbank assets

must be 20% of total assets is satis�ed only on average in thebenchmark model; instead, in the extended

model, this constraint is veri�ed for each individual bank. This is obta ined in the following way. First,

we generate link weights (in the two graphs) extracting their valuesfrom a Pareto distribution. Second,

we reshu�e part of the links so that the constraints imposed on the balance-sheets are satis�ed. The

same reshu�ing procedure - for the extended model- is applied also in the following scenarios:FIT1

and FIT2 .
1Appendix A explains the di�erences between the two models an d their main features.
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FIT1: Heterogeneous banks with homogeneous exposures.We move towards a more realistic archi-

tecture for the �nancial system, which shows a fat-tail degree distribution. We generate a network

using a �tness model (De Masi et al., 2006), with an exogenous distribution of the �tness parameter

that follows a power-law. In order to close the model, the high level ofheterogeneity in the connectivity

imposes heterogeneity also in the asset size. However, in this case, exposures remain homogeneous, so

that no link is more dangerous than any other. In thebenchmark model, we �rst build the network and

then assign assets to bank proportionally to their interbank exposures (A IB + L IB ), the distribution

of the asset size is power-law and the �xed ratio of interbank assetsto total assets is maintained on

average. In theextended model, even though the two graphs are generated independently, the ��tness

sequence� is the same in the two networks. That is, the bank with the highest �tness in the short-term

interbank market will also be the bank with the highest �tness in the long-term interbank market, and

so on. As done inFIT1 , exposures are evenly distributed (within each maturity class).

FIT2: Heterogeneous banks with heterogeneous exposures.Here, we allow also for heterogeneous

exposures so that, once the network is generated using the �tness model, we draw the value of the

exposures from a power-law distribution with the same exponent of the distribution of the �tness

parameter. In the benchmark model, total assets are then assigned proportionally to total interbank

exposures (A IB + L IB ) in order to maintain the interbank ratio �xed at 20% on average. In the extended

model, link weights are generated using the same procedure used in casesER2 and ER3.
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(a) Random Default

(b) Too-Connected-To-Fail

(c) Too-Big-To-Fail

Figure 19: Benchmark model - [FIT1] | Frequency of Contagion - Threshold: 1 0%
Frequency of contagion as a function of the average number of interbank connections of the banks
in the system and of the exponent of the power-law distribution used to generate the banks' �tness
parameter.
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(a) Random Default

(b) Too-Connected-To-Fail

(c) Too-Big-To-Fail

Figure 20: Benchmark model - [FIT1] | Extent of Contagion - Threshold: 10%
Extent of contagion as a function of the average number of interbankconnections of the banks in the
system and of the exponent of the power-law distribution used to generate the banks' �tness parameter.
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(a) Average degree (b) High min capital ratio (c) Low min capital ratio

(d) Sales at Loss (e) High liquidity (f) Low liquidity

(g) Large short-term market (h) Large long-term market (i) Too-connected-to-fail

Figure 21: Extended model - [FIT1] | Marginal E�ects - Threshold: 10% (A)
Panels (a)�(i) show the marginal e�ects for the di�erent parameters: the blue line represents the median
marginal e�ect; the shaded area marks the value of the marginal e�ect between the 25th and the 75th

percentiles; while the upper and lower dashed red lines correspond, respectively, to the maximum and
minimum estimated marginal e�ect for each speci�c regressor.
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(a) High heterogeneity (b) Low heterogeneity

(c) Too-exposed-to-fail (d) Too-big-to-fail

Figure 22: Extended model - [FIT1] | Marginal E�ects - Threshold: 10% (B)
Panels (a)�(c) show the marginal e�ects for the di�erent parameters: the blue line represents the
median marginal e�ect; the shaded area marks the value of the marginal e�ect between the 25th

and the 75th percentiles; while the upper and lower dashed red lines correspond, respectively, to the
maximum and minimum estimated marginal e�ect for each speci�c regressor.
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(a) Random Default

(b) Too-Connected-To-Fail

(c) Too-Big-To-Fail

Figure 23: Benchmark model - [FIT2] | Frequency of Contagion - Threshold: 1 0%
Frequency of contagion as a function of the average number of interbank connections of the banks
in the system and of the exponent of the power-law distribution used to generate the banks' �tness
parameter.
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(a) Random Default

(b) Too-Connected-To-Fail

(c) Too-Big-To-Fail

Figure 24: Benchmark model - [FIT2] | Extent of Contagion - Threshold: 10%
Extent of contagion as a function of the average number of interbankconnections of the banks in the
system and of the exponent of the power-law distribution used to generate the banks' �tness parameter.
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(a) Average degree (b) High min capital ratio (c) Low min capital ratio

(d) Sales at Loss (e) High liquidity (f) Low liquidity

(g) Large short-term market (h) Large long-term market (i) Too-connected-to-fail

Figure 25: Extended model - [FIT2] | Marginal E�ects - Threshold: 10% (A)
Panels (a)�(i) show the marginal e�ects for the di�erent parameters: the blue line represents the median
marginal e�ect; the shaded area marks the value of the marginal e�ect between the 25th and the 75th

percentiles; while the upper and lower dashed red lines correspond, respectively, to the maximum and
minimum estimated marginal e�ect for each speci�c regressor.
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(a) High heterogeneity (b) Low heterogeneity

(c) Too-exposed-to-fail (d) Too-big-to-fail

Figure 26: Extended model - [FIT2] | Marginal E�ects - Threshold: 10% (B)
Panels (a)�(c) show the marginal e�ects for the di�erent parameters: the blue line represents the
median marginal e�ect; the shaded area marks the value of the marginal e�ect between the 25th

and the 75th percentiles; while the upper and lower dashed red lines correspond, respectively, to the
maximum and minimum estimated marginal e�ect for each speci�c regressor.
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Figure 27: Example of Erd®s and Rényi (1960) random graph : 100 nodes and average degree
of 3.

Figure 28: Example of graph generated with a �tness model : 100 nodes and average degree of
3. The distribution of the �tness is power-law with exponent 2.5.
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