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Abstract

In this paper we contribute to the debate on macro-prudential reguhtion by assessing which
structure of the nancial system is more resilient to exogenous shds, and which conditions,
in terms of balance sheet compositions, capital requirements and adsrices, guarantee the
higher degree of stability. We use techniques drawn from the theoryfacomplex networks
to show how contagion can propagate under di erent scenarios when theopology of the
nancial system, the characteristics of the nancial institution s, and the regulations on
capital are let vary. First, we benchmark our results using a simfe model of contagion
as the one that has been popularized by Gai and Kapadia (2010). Then, evprovide a
richer model in which both short- and long-term interbank markets exst. By doing so, we
study how liquidity shocks (de)stabilize the system under di erert market conditions. Our

results demonstrate how connectivity, the topology of the marketsand the characteristics
of the nancial institutions interact in determining the stabili ty of the system.
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1 Introduction

The nancial crisis of the late 2000s has forced economists, both incademia and in regulatory bodies,
to confront themselves with the role of the nancial system's archiecture. Facing the defaults of large
nancial institutions, regulators found themselves uncertain abait the consequences that such failures
would have triggered in the entire nancial system since the uncertaity about the actual web of
nancial relationships prevented any reasonable forecast about theventual path a crisis would follow.
Given these premises, it became clear that new approaches to study nandiaontagion were needed
(Haldane, 2009; Schweitzer et al., 2009) and an important new streaiof literature has been developing,
studying this very problem (e.g.: Acemoglu et al. (2013); Amini et & (2012, 2013); Arinaminpathy
et al. (2012); Battiston et al. (2012a,b); Blasques et al. (2015); RIhm et al. (2014); Caccioli et al. (2012,
2014); Elliott et al. (2014); Gai et al. (2011); Gai and Kapadia (2010); Georg (2013); Glasserman and
Young (2015); Halaj and Kok Sorensen (2014); Lenzu and Tedeschi (2B); Loepfe et al. (2013); May
and Arinaminpathy (2010); Montagna and Kok (2013); Roukny etal. (2013)).

In this paper, we contribute to the debate on macro-prudential reglation by assessing which
structure of the interbank market is more resilient to exogenous shtks, and which conditions, in terms
of balance sheets composition, capital requirements and asset pricesjagantee the highest degree of
stability. To analyze this problem, we develop two distinct modelsof contagion: abenchmark modeknd
an extended model The benchmark modelis based on a simple framework which has been extensively
studied in the literature (Amini et al.,, 2013; Arinaminpathy et al., 2012; Caccioli et al., 2012; Gai
and Kapadia, 2010; May and Arinaminpathy, 2010; Nier et al., 07), and which represents the most
popular set up to analyze contagion in nancial networks. In this case, the nancial system is modeled
as a static network of credit exposures between banks, encompassing asgrt of interbank claims,
independently on their maturity and liquidity. In this class of mo dels, the crucial assumption is that
the time scale of the defaults cascade is so quick that bank do not amage to react and modify their
exposures. Instead, in theextended modelbanks can dynamically adapt their short-term exposures in
response to (negative) liquidity shocks and they do so to keep thenisk-weighted capital ratio above the
mandatory threshold set by the policy maker. We model a short-terminterbank market which clears
at each time step according to a perfect information equilibrium, in whch agents take into account
their liquidity needs, the liquidity shocks coming from their creditors and the ability of their debtors
to repay. In this complex framework, a clear misalignment of micrggrudential and macro-prudential
objectives emerges.

Our work contributes to the existing literature along two main dimensions: we study how policy
regulations can in uence systemic risk when banks can modify their leting behavior; and we provide
a systematic overview of the di erent factors that can a ect the stability of the interbank market.
With respect to the former, other studies have analyzed what happens whenamks can hoard liquidity
in response to changes in market con dence, counter-party nancial hdh, or individual nancial
robustness (Arinaminpathy et al., 2012; Battiston et al., 2012a Roukny et al., 2013)); or when there
are stochastic shocks to the supply of households deposits ar the returns from risky assets (Georg,
2013). However, in our work, we directly link macro-prudential polcy measures to liquidity hoarding
and we model changes in demand or supply of liquidity endogenouslys a consequence, our analysis
can show what is the direct e ect of a change in the regulations in terms fosystemic risk. Furthermore,
rather than focusing our attention on a speci ¢ case study (as in Motagna and Kok (2013)), we provide



a more general assessment on what factors and characteristics of theédrbank market determine its
(in)stability, considering not only the e ects of changes in the captal requirements, but also evaluating
how balance sheet composition, changes in asset prices, network topgy and types of shocks can
in uence the observed level of nancial contagion.

Our ndings show that the knife-edge property of diversi cation p ersists under a variety of assump-
tions regarding the architecture of the nancial system, its conrectivity, the heterogeneity of exposures
and the size heterogeneity of traders. Connectivity is both a risk shdng and a risk ampli cation
device. The probability of observing systemic crises is hon-monotdnin connectivity, reaching a peak
for intermediate values, while the severity of contagion episodes, whetlhey happen, worsen as con-
nectivity increases. This leads to robust-yet-fragile systems, in with contagion is a rare event but
when it happens, it involves the entire system. We also nd that sysems of heterogeneous institutions
are more stable to random shocks, con rming the conjecture of Hdane (2009) and the ndings of
previous studies such as Roukny et al. (2013) and (Georg, 2013). Wever, heterogeneity poses higher
risks when too-big-to-fail or too-connected-to-fail banks are ditressed. Our results demonstrate how
the contagion risk stemming from their default is particularly high and that connectivity matters more
than size as far as systemic risk is concerned.

Focusing solely on theextended model the most interesting result concerns the role played by
liquidity reserves and re-sale prices. Larger cash reserves always vgan the stability of the system,
since they allow banks to keep lower capital bu ers. As for the re-saé price, we nd that re-sale
losses induce a more prudent behavior of creditors. Indeed, re-saledses make debtors more likely to
be illiquid. When creditors seek to obtain the desired amount of ligidity, the illiquidity of a debtor will
induce them to increase their demand of liquidity to other debtors untl the desired amount is obtained.
This process is thus likely to cause the closure of short-term exposes with other non-illiquid banks,
removing channel of transmission of shocks. In this sense we camtw light on the challenges regulators
face when designing an appropriate set of micro-incentives for macwstability and contribute to the
debate on the proper set-up of regulatory requirements (Hanson et al2011; Myerson, 2014).

The rest of the paper is structured as follows: Section 2 formalizes ouwb models of contagion; Sec-
tion 3 describes the parametrizations we considered in our analysiSection 4 summaries our ndings;
and Section 5 concludes discussing policy implications.

2 Models of Contagion

In this section we introduce two di erent simulation models of the interbank market: a benchmark
static model of contagion and an extended dynamic model of contagiorin both cases, we study how
stable and resilient the nancial system is to an exogenous defaultfoa bank.

We begin by introducing the benchmark modelwhich is based on a simple framework that has been
extensively studied in the literature (Amini et al., 2013; Arinaminpathy et al., 2012; Caccioli et al.,
2012; Gai and Kapadia, 2010; May and Arinaminpathy, 2010; Nieet al., 2007), and which represents
the most essential set up to analyze contagion in nancial networks

The interbank system is represented by a static network of credit exposes betweerN banks. More

(nodes of the graph), andV | | is the set of the edges linking the banks. That is, the set of
ordered coupleq(i;j) 2 1 | indicating the presence of a loan made by bank to bank j. Every edge
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Initialization of the interbank network;
Exogenous default of a bank;
while at least one bank defaultedio
for every banki do
if counterparty losses occuredhen
| update equity;
end
if equity < O then
default bank i;
remove banki from the nancial system;
end
end
end

Figure 1: Simulation algorithm: Benchmark model

Initialization of two interbank networks (short- and long-term );

Exogenous default of a bank;

while at least one bank defaultedio

for every banki do

if counterparty losses occuredhen

| update equity;

end

end

while short-term interbank market is not in equilibrium do

for every banki do

if creditors withdraw lines of credit then
update amount of liquidity to withdraw from the market;
update amount of illiquid assets to sell ;

nd

= @

hoarding;

end

end

end

for every banki do

withdraw liquidity from the short-term interbank market;

sell illiquid assets;

repay short-term loans;

if equity < 0 or bank'si became illiquid then
default bank i;
remove banki from the nancial system;

end

end

end

Figure 2: Simulation algorithm: Extended model

risk-weighted capital ratio < regulatory minimum capital ratio then
update amount of liquidity to withdraw from the market to includ e regulatory

update amount of illiquid assets to sell includingregulatory re-sales;



Figure 3: Network structure - Benchmark model . banks are connected via a network of interbank
exposures. For example, the directed edge connecting barik to bank E represents a credit of size
AP, (= L) that D has towardsE.

(i;] ) is weighted by the face value of the interbank claimA(? . Clearly if (i;j) 21 I, then A[® =0.
This set up allows to represent the system of interbank claims by a singlweighted N -by-N matrix
s 2 B ... aB S
0 AB i AB
. gAgél 0 i A'ZE;'N%
AR, AR, it 0

in which interbank assets are along the rows, while columns represenegtors of interbank liabilities.
From this matrix, can derive the total exposure of banki in the interbank market, AlB = j Ai'uB (i.e.
the out-strength of nodei), and its total interbank liabilites, L{® = ;A (i.e. the in-strength of
nodei).

The balance sheet structure of banks is very simple and stylized (see b 4): interbank assets
(A!B) and liabilities (LB ); illiquid external assets, such as mortgages\;); exogenously given customer
deposits O;); and capital (E;). In this simple model - which we use as benchmark - we only have en
source of contagion: counterparty losses. Therefore, a (negative) shocan di use only via a direct
channel of contagion. For example, once a bank is declared insolvent cugoes bankrupt, its creditors
su er losses equivalent to the face value of their exposures with theafaulting bank. Furthermore, we
assume zero recovery: i.e. when one's counterparty defaults, the creditoabk loses all of its interbank
assets held against the defaulting bank.

The simulation of the defaults cascade is carried out using the algithm provided in Figure 1 and it
works as follow. At the beginning of each simulation run, we defalia bank wiping out all its external
assets. Then, we update the equity of the neighbors of the failingdnk, checking whether or not the
defaults cascade propagates. If no other banks fail, the process p& Instead, if at least one bank
fails, we repeat the same procedure until no more defaults occur.

However, the benchmark model is not enough to analyze how liquidithoarding interacts with
macro-prudential policies and balance sheets composition in determing the (in)stability of the nan-
cial system because long-term and short-term exposures are aggregatetb a single asset category.



Assets @A) Liabilities (Lj)

Interbank Liabilities (L!B)

Customer Deposits Dj)

Interbank Assets (A!B)

|

Figure 4: Balance sheet structure - Benchmark model
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(a) Short-term interbank market (b) Long-term interbank market
Figure 5: Network structure - Extended model . two distinct network of exposures exist. Banks

can be connected either via short-term credit exposures or via long-term edit exposures. For example,
the directed edge connecting banlD to bank E represents a long-term credit of sizé\ ., (= L5.o) that
D has towardsE. Instead, the directed edge connecting baniB to bank A represents a short-term
credit of sizeAJ, (= L3,) that B has towardsA



Moreover, interbank connectivity is static and it does not vary during the unfolding of a crises. Instead,
with the introduction of a second model of contagion that we call extended model we are able to
evaluate not only the e ects of banks' sizes, network topology and tegeted shocks on systemic risk as
done with the benchmark model but also to explore how capital requiements, banks' characteristics
and changes in asset prices a ect nancial contagion.

In the extended modelthe interbank market is composed of two layers: a network ofong-term
exposures and a network ohort-term exposures (see Figures 5). While the former cannot be modi ed
during the default cascade, the latter may undergone changes due taquidity hoardings. Montagna
and Kok (2013) is the contribution that is the closest to our modeing framework, even though also
Battiston et al. (2012a); Georg (2013); Roukny et al. (2013) considr the presence of di erent maturities
in interbank lending. In this extended modeling framework, we can exiore the interplay between the
network architecture of the market and the balance sheet structure ointermediaries, highlighting their
complex interactions that lead to misalignments between micro- and racro-prudential policies. In
particular, banks can dynamically adapt their short-term exposures in response to (negative) liquidity
shocks and they do so to keep their risk-weighted capital ratio abovéhe mandatory threshold set by
the policy maker.

Assets @A) Liabilities (L)

Long-term Interbank Assets (Al) Long-term Interbank Liabilities (L})

Short-term Interbank Assets (A) Short-term Interbank Liabilities ( L)

Liquid Assets/Cash (C;) Customer Deposits Dj)

Figure 6: Balance sheet structure - Extended model

In this second model, three di erent mechanism determine how contagiospreads in the nancial
system: direct counterparty exposures; liquidity shocks; and chages in asset-prices. As we can see
in Table 6, the balance sheet structure of theextended modelis richer than one used in the previous
section: on the assets side, we indicate witi- the long-term interbank assets of banki and with AS
its short-term interbank assets; while on the liability side, we cnote with L+ the long-term interbank
liabilities of bank i and with Lf its short-term interbank liabilities.

To characterize the relative size of the di erent assets' categories wese parameters , and

Ci

= A*I 1)
_ AR+ AP

==t (2)
_ AP

A )

Once the size of the total assetd\; is known, the values of , and allow us to uniquely identify



the composition of banki's assets: parameter determines the level of liquidity of banki; xes the
share of banki's assets which are exposed to counterparty risk; and controls the share of short-term
interbank assets over total assets.

In the extended model, to study the e ects of macro-prudential polices on nancial stability, we
introduce regulations on capital. Let us denote with RWA;(t) the risk-weighted assets of bank at
time t and let us de ne RWA|(t) as:

RWAi() = cCi(t)+ 1B (AF(D)+ APD)+ wmMi(); (4)

where ¢, g and \ represents the weights assigned to liquid non-interbank assets,terbank loans
and illiquid assets respectively. Typically ¢ = 0, and this will the assumed henceforth. Therefore,
the risk-weighted capital ratio e (t) of bank i at time t can be de ned as:

Ei(t)

e(t) = W,(t) %)

Then, we let the policy maker regulate the nancial system by imposirg a minimum risk-weighted
capital ratio to the operating nancial institutions (i.e. ban ks). In our model, we denote the mandatory
minimum risk-weighted capital ratio with e and banks have to adjust their level of capital dynamically,
while the simulation unfolds, to keep their risk-weighted capital ratio abovee . Therefore, the following
relation has to be satis ed at each time step of the simulation:

Ei(t)

e(t) = RWA (1) € (6)

To adjust the composition of their balance sheet, banks can hoard duidity and, in some cases,
sell illiquid assets. In particular, as soon as a bank experiences &&s which erode its equity below
the regulatory threshold, i.e. g (t) < e , the bank will try to meet the required capital ratio by rst
reducing its short-term interbank exposures and then, if this adjutment is not su cient, by selling its
illiquid assets. Therefore, each bank seeks aregulatory adjustment equal to:

RA;(t) = max O; RWA;(t) E;(t) : (7)

and it will try to ful ll capital requirement by rst resorting to  regulatory liquidity hoarding:

AS(t) = min A?(t);RAIL(t) ; (8)

which thus represents the amount of liquidity the bank has to withdraw from the market to comply
with the regulations on capital. Then, if liquidity hoarding is not enough, the bank will try to sell its
illiquid assets (i.e. regulatory re-sales). However, the success of this strategy crucially depends on
the re-sale price of illiquid assets. Assume that the fair valle of a unit of illiquid assets is1, then,
when the re-sale pricepis larger than1 e y, banks will have to engage in regulatory re-sales for

a quantity of
RWAi(t) 18 AS(t)

(1 p=e

Mi(t) =min M;(t);max O; 9)



Instead, ifp< 1 e \, banks will never nd convenient to re-sale illiquid assets in order to meet
their capital requirements. Indeed, in this case, large price discountwill induce losses which more
than o set the reduction of the RWA, and M;j(t) would hence be zero.

A bank will try to adjust its RWA as far as it is possible. Once its capital ratio irremediably falls
below the minimum requirement, the bank has no other choice that tdkeep operating with that ratio.
Indeed, the only available solution would be to raise capital, wich is an action that cannot be pursued
in the short time scale of a contagion scenario, which is the focusf @ur analysis. Note also that
insolvent banks, i.e. those withE;(t) 0, will withdraw all their funds from the short-term market,
i.e. AS(t) = AS(t) for insolvent banks.

The dynamic adjustment of short-term exposures triggers bank rungn the interbank market. More
speci cally, we model runs as perfect information equilibria. Eiseberg and Noe (2001) provide the
basic set up which we need to adapt to our framework where the regulatgrhoarding constitute the
initial demand shock.

Compared to Eisenberg and Noe (2001), we give more micro-foundati to the clearing algorithm
by making rationality assumption on banks' behavior instead ¢ assuming proportional hoarding with
respect to short-term debtors. Indeed, this pure proportionality asumption may arti cially lead banks
to illiquidity if a debtor is illiquid. Suppose that bank i hoards a quantity AS of funds, proportionally
splitting this amount among its short-term creditors in quantities A%, AZ,, ..., A5 . If a debtor j
is illiquid its supply of funds to i is less thanAﬁ. If the algorithm stops here, it may be the case
that also i becomes illiquid, thus reducing the fund it may supply to its hoardng creditors. A more
realistic assumption is that, if i is not able to meet its demand for liquidity because of 's illiquidity,
it may increase the quantities hoarded from the other debtors, up tothe point in which the supply
of funds from liquid debtors is enough to meeti's demand for funds. As soon as a bank is found
to be illiquid, perfect information in the short-term market mak es withdrawing all the fund from it a
weakly-dominating strategy for all its short-term creditors. However, no payments will be made and
exposures are marked down to zero, since slow and costly default procedarwill be initiated by the
supervisors. It is important to note that runs to illiquid banks happen only when illiquidity is revealed
by the failure to make a required payment. Indeed, in the short timescale we assume, updated balance
sheet information are not made public, and the only source of infonation are market demand and
supply of funds. To make the analysis more precise we give thellmwing de nition of illiquid bank.

Illiquid bank A bank i is illiquid if the total amount of funds it can raise is not enough to meet the
demand for funds A“JSI (t) of its creditors.

If we de ne as ( t) the set of banks which become illiquid at timet, then the amount of funds banki
can raise is given byC;(t) + 21 Aﬁ(t) + pM;(t) which corresponds to the sum of the amount of
cash available at timet, the liquidity it can recall from its creditors, and the liquidity it can obtain
through re-sales. It is clear from the de nition that whether a bank i s illiquid crucially depends on
whether its short-term debtors are liquid or not. With this behavioral framework in mind we can de ne
an equilibrium in the short-term market

Equilibrium in the short-term market An equilibrium in the short-term market is a matrix of
n

liquidity demands, D (t) = ASj(t) L where ASj; is the equilibrium demand for cash ofi to j,
=



and a matrix of liquidity supply, S (t) = Af () n L whereAﬁ’ is the equilibrium supply of cash of
=
i to j, such that:

P S i P S (t)- siy-P xS i

1. Pj/Stﬁ (t) = min PjA“ﬁ(t);Ci(t)+ Pjg(t)/stjs(t)Jr pMri(t)  8i

. N (t)=min  M;(t); max Mi(t);% PjA‘ﬁ(t) Ci(t) Pjg(t),&ﬁ(t)

V. AP (D)=A3 (1) = A (D=AR() 8i21;8;k2 (1)
V. AT (0)=A% (1) = AS ()=A5 (1) 8ijik 21

VI. i 2 (t)ifand only if Pj/&ﬁ(t)< PjA‘ﬁ(t)

VI AS(t)= AS(t) 8i21;8 2 ()

Equilibrium demands and supply are then computed by an iterative #gorithm as suggested by Eisen-
berg and Noe (2001).

Condition I. states that banks' total demand for cash cannot exceed the amount of #ir short-
term interbank assets as that should be at least as large as to indlie both its regulatory demand and
creditor's hoarding exceeding available cash.

Condition 1l. indicates that banks' total supply of cash does not exceed the total deand they have
to meet and the liquidity they are able to raise via cash, supply ofiquidity from short-term creditors
and assets re-sales.

Condition 1ll. implies that equilibrium re-sales cannot exceed the available iliquid assets and
should be enough to take into account regulatory re-sales and theiduidity demand of creditors
exceeding cash reserves and funds obtained from the short-term interbla market.

Condition V., i.e. demands proportional to exposures, and conditioV., i.e. supplies proportional
to demands, are the formalization of the behavioral assumptios we made in our micro-foundation.

Condition VI. is the de nition of illiquid bank in equilibrium. Note that thi s condition, together
with condition V., implies that, for an illiquid bank i, it holds that A‘ﬁ’ (1) < A']SI (t) for every creditor
j-

Condition VII. is a market clearing condition with illiquidity, in which the market clears with
equality only for liquid debtors, while there is excess demand to iltjuid debtors.

The clearing of the market conveys a crucial signal to nancial instituions since it reveals which
banks are unable to make the promised payments. In accordance with ment nancial regulation, as
soon as a bank is found illiquid it does not makeany payment and it is then subject to regulatory
supervision.

Since default procedures due to illiquidity are costly and time consming processes whose outcome
is uncertain and since shorter maturity does not necessarily imply lgher seniority, we assume that all
the creditors, both long-term and short-term, of illiquid banks mark-to-market their exposures.

Therefore, insolvency is not the only source of contagion. Banks' defaisl can be induced also
by illiquidity due to bank runs. Consequently, both insolvent and illiquid banks induce losses to
their direct lenders. Such losses reduce the capital bu er of the creditowhich, if negative, makes
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it insolvent as well. Furthermore, a reduction of the capital bu er also forces banks to adjust their
RWA, thus (possibly) triggering an additional round of bank runs When the short-term market clears,
new illiquid banks default and, together with the banks that became nsolvent in the previous period,
trigger another round of insolvencies. The default cascade continues &g as no additional defaults
happen (see Figure 2).

We can de ne ( t) as the set of banks which are in default at timet. Then, assuming a zero
recovery rate in the short run, we may update the exposures of indtitions as follows:

AP(t+1)= AP(t) AT (1) if j2 (1) (10)
AF(t+1)=0 if j2 (1) (11)

fort the short-term, and

A (t+1)= Af (1) if j2 (1) (12)
AF(t+1)=0 if j2 (1) (13)

for the long-term. Certainly, defaulted banks continue to have lidilities to their creditors. However,
as default procedures start, the timing and the amount of the nal obligations become exogenous to
our model. Hence, according to the update rules, we remove defaulted bies from the system by
wiping-away all their interbank liabilities. Illiquid assets are updated according to:

Mi(t+1)= Mi(t) M3(t) (14)
while cash reserves follow the rule:
X X
Ci(t+1)= Ci(t)+ AS + pV (1) A3 if i2 (1) (15)
1'2X( t) ]
Ci(t+1)= Ci(t)+ hatjsi + pl\7ri5(t) if 12 (1) (16)

i2(1

The dynamics of the capital bu er can thus be expressed as follows:

Ei(t+1)= Ei(t) (1 pNM3(t) 5 AP () + A (1) (17)
j2(1)

Finally, the set of defaulted banks is updated as follows:

(t+1)=( [ (t+1) [fijg;a+1)<og] (18)

and we look at the steady-state of the default cascade. i.e. at the ate of the system at timet when
(t+1)=( t).
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3 Simulations Settings

To provide a general assessment on what factors and characteristic$ the interbank market deter-
mine its (in)stability we consider di erent parametrizations of our models where we let vary: capital
requirements, banks' balance sheet composition, re-sale prices, netrk topology and types of (neg-
ative) shocks hitting the system. We start by considering ve di erent (macro) scenarios where we
let vary the topology of the interbank market and the overall degreeof heterogeneity of the system.
Second, for each scenario, we consider di erent calibrations to assessew di erent degrees of banks'
heterogeneity, market liquidity, capital regulation, and price levek a ect the emergence of systemic
risk. Third, we check which types of shocks make the system less &ia (i.e. random vs targeted
attacks). Lastly, we compare the ndings of the two models of cotagion.

The ve (macro) scenarios we consider are

ER1: Homogeneous banks with homogeneous exposures. In this scenadn,Erd®s and Rényi (1960)
network model is used to generate interbank connections and banks aressumed to have the
same asset size. Interbank claims are evenly distributed among the @oing links.

ER2: Homogeneous banks with heterogeneous exposures. As in the predaase, all banks have the
same asset size and the network is Erd®s and Rényi (1960). Howevee now allow banks to
unevenly distribute their exposures across creditors, in such a wathe link weight is power-law
distributed.

ER3: Heterogeneous banks with heterogeneous exposures. In this casepdianks are heterogeneous
and their size (expressed in terms of total assets) is power-law distuted.

FIT1: Heterogeneous banks with homogeneous exposures. We move towaalsnore realistic architec-
ture for the nancial system, which shows a fat-tail degree distrbution. We generate a network
using a tness model (De Masi et al., 2006), with an exogenous distoution of the tness param-
eter that follows a power-law and with interbank claims that are evenlydistributed among the
outgoing links.

FIT2: Heterogeneous banks with heterogeneous exposures. Here, we allowodisr heterogeneous ex-
posures so that, once the network is generated using the tness modele draw the value of the
exposures from a power-law distribution with the same exponent oftie distribution of the tness
parameter.

By analyzing those ve scenarios, we can show how di erent features tht characterize the nancial
system can a ect its stability. We start with the most simple case, whele we assume that banks are
homogeneous, credit is allocated with the same proportion to all neltbors, and the interbank network
is generated using an Erd®s and Rényi (1960) model. Then, with scenari@&R2 and ER3, we add
heterogeneity both in terms of banks' sizes and in terms of how credit isliacated to creditors. Lastly,
in scenariosFIT1 and FIT2, we change the topology of the interbank market and we use #éness model
to generate a network of exposures that match more closely the empial features of real interbank
networks (Montagna and Lux, 2013).

! Additional details are provided in Appendix C.

12



Furthermore, di erent types of shocks are considered. In the simulabns, we let vary the average
degree of the network, which represents the average number of creditoand debtors a randomly chosen
bank has. As such, the average degree is a measure of diversi catiahthe level of single institutions;
but, from a systemic point of view, it is also a measure of connectivit which thus represents channels
through which a shock may propagate. As in previous contributios (Caccioli et al., 2012; Gai and
Kapadia, 2010), we will exogenously set into default one bank andrelyze the steady-state e ect of
contagion: i.e. the number of defaulted banks when the contagion procestops. We will focus on the
frequency of contagion de ned as the probability that at least 10% of the intermediaries default, and
on the extent of contagion i.e. average fraction of defaulted banks, provided that it is largr than 10%.
When heterogeneity is introduced (as in caseER2, ER3, FIT1 and FIT2 ) through exogenous power-
law distributions, also the exponent of the distribution will b e subject to analysis, since it represents
the degree of heterogeneity: smaller exponents correspond to fatter taiand, consequently, to higher
levels of heterogeneity.

The triggering event of contagion is the exogenous default of a bank. @assume four targets of
the exogenous shock:

Random in which the exogenously defaulting bank is picked up randomlywith equal probability
for each bank;

Too-connected-to-fail in which we set into default the banks with the largest number of ceditors;

Too-exposed-to-fail in which the exogenous default hits the bank with the largest debt egosure
(used only in the extended model

Too-big-to-fail, in which the exogenous default hits the bank with the largest assetize, and which
is feasible only in those cases in which the asset size is heterogeneadwss, casesER3, FIT1 and
FIT2

Indeed, one of the crucial policy implications of this contribution comes from our results on the
role of large nancial institutions, either in terms of connectivity or in term of a sset size. When het-
erogeneity is introduced, the system presents potentialoo-connected-to-fail and too-big-to-fail banks.
On the one hand, they may have detrimental e ects because of their largexposures in the interbank
market. On the other hand, their magnitude allows them to better absawb shocks, since their higher
level of diversi cation or their larger capital bu ers prevent them to g o bankrupt after the default of
a relatively small banks.

In our setting we simulate nancial systems composed of 1000 bankshere each di erent parame-
terization is run 500 times. Additionally, to preserve comparabilty with previous contributions, such
as Gai and Kapadia (2010) and Caccioli et al. (2012), we keep - in thedmchmark model - a xed ratio
of capital to total assets equal to 4%; while - in both models - we sethie ratio of interbank assets to
total capital equal to 20% (i.e. = 0:2). Furthermore, in the extended model, we set the capital bu er

= 2:5%, the risk weight for illiquid assets y = 50% (which is the weight assigned by regulators
to residential loans), and the risk weight for interbank claims 5 = 100% (which corresponds to the
regulatory weight for loans to BBB- institutions, thus implying a conservative scenario).

As far as the extended model is concerned, we use logit regressions tansnarize our results and
to disentagle the e ects that di erent parameters of the model have on he probability of observing
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Name Dummy Details Scenarios Regressor(s)

Constant all Xo
Average Degree levels & logs all X1 and Xz
High Min Capital Ratio yes min capital = 10% all X3
Low Min Capital Ratio yes min capital = 6% all X4
Sales at loss yes re-sale price = 50% all Xs
High liquidity yes =0.72 all X6
Low liquidity yes =0.08 all X7
Large short-term market yes =0.18 all Xs
Large long-term market yes =0.02 all X9
High heterogeneity yes tail exponent = 2.5 ER2,ER3,FITL,FIT2 X10
Low heterogeneity yes tail exponent = 3.5 ER2,ER3,FIT1,FIT2 X11
Too-connected-to-fail yes all X12
Too-exposed-to-fall yes ER2, ER3, FIT1, FIT2 X13
Too-big-to-fail yes ER3, FIT1, FIT2 X14

Table 1: List of covariates included in the logit regressions.

default cascades. Thdogit model we estimate is de ned as follows:

exO

P rob(contagionjthreshold = h; X)) = T3 T

(19)
where h is the share of intermediaries that have to fail in order for us toconsider that event a default
cascade ,X the regressors' matrix and is the vector of parameters that have to be estimated. For
each regression, we use the set of covariates described in Table 1.

We also add severalinteraction terms to take into account of the fact that the e ects of the
regressors depend crucially on the average level of connectivity of thgsgem. Therefore, we interact
all the dummy covariates included in the model with the average degregegressors (both taken in levels
and in logs). For example, in addition to regressorxs (i.e. high capital requirements), we also add
covariatesxi4 and X5 obtained asxi4 = X3 X1 and X15 = X3 Xz. Our choice of regressors implies that
our baseline con guration is the one where: the minimum capital rato is set to 8%, there are no losses
during re-sales (i.e. re-sale price = 100%), liquidity is set at its intermediate level (i.e. = 0:4),
short-term and long-term interbank markets have the same size @ = 0:1) and the defaulting bank
is chosen at random. Furthermore, if heterogeneity is present (i.e. scernias ER2, ER3, FIT1 and
FIT2 ), the power-law exponent is set t03:0.

To analyze the impact of the parameters we show - for each regressorthe distribution of its
marginal e ects by computing such e ects for each possible combination of the othetovariates. Indeed,
in the case of a logit regression, we need to specify the point at whiclie are measuring the marginal
e ects of a regressor because:

@Propy =1jx) _
@x -

(x) (xB1; (20)
where ( z) = %. Therefore, to give a clearer idea of the impact that each covariate has othe
probability of observing default cascades, we decided to combine theesults obtained considering all
the possible combinations available. We show the results foh = 10%. Furthermore, in Table 2,
we report the quality measures for the regressions performed and theumber of observations (i.e.
simulations) used to estimate each logit regression.
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Scenario Precision Recall Fl-score Observations (in mithns)

ER1 0.86 0.86 0.86 3.24
ER2 0.88 0.88 0.88 14.58
ER3 0.85 0.84 0.85 19.44
FIT1 0.89 0.90 0.89 19.44
FIT2 0.90 0.91 0.90 19.44

Table 2: Quality measuresof logit regressions.

Main Findings

Baseline system stability: Non-monotonic role of diversi cation (i.e. system connectivity).
The nancial system can be both robust-yet-fragile and
robust-and-not-fragile depending on balance sheets compaosition.
Heterogeneity in exposures Higher heterogeneity induces a wider contagion window
The nancial system is more stable in the benchmark model,
mixed results in the extended model.
In general, the nancial system is more stable (under random
attacks) than in Erd®s and Rényi (1960) con gurations.
Targeted attacks Size alone matters less than connectivity in spreading contagion.
Minimum capital ratio Higher regulatory capital ratios increase system stabilit y.
The probability of contagion is lower when banks incur in los ses
while liquidating assets.
Lo Higher the share of liquid assets in portfolio, lower the stab ility
Liquidity

of the system.
Share of short-term exposures Non-monotonic role of balance sheets maturity structure.

Extent of contagion

Heterogeneity in bank sizes

Scale-free networks

Fire-sale price

Table 3: Summary of the main ndings.

4  Findings

In the following section we summarize the main ndings we obtain ®ing the two models of contagion.
In particular, by using the extended model, we also outline what arghe e ects of imposing di erent
capital requirements on the nancial system, altering the re-sale price of illiquid assets and - more
in general - considering di erent balance sheets compositions via tung parameters and of the
extended model?.

Baseline system stability. The non-monotonic role diversi cation has on nancial stability is evident
in all the scenarios considered. For small average degree values, e&sing connectivity increases the
frequency of contagion and hence the probability of observing deféiucascades. Indeed, in such cases,
the presence of additional transmission channels more than o sehe role of diversi cation. However,
this e ect is reversed for larger values of the average degree, so that caglion becomes a rarer event due
to diversi cation. The system has therefore two phase transitionswhich delimit a so-called contagion
window (Gai and Kapadia, 2010). For example, this is what emerges by lookingt estimated marginal
e ects of average degree on the probability of cascades as depicted in Figur@al(extended model,
scenarioER1).

Extent of contagion. However, while the frequency of contagion declines beyond a certain threslal,
this is not the case - in the benchmark model- for the extent of contagion. Near the upper phase

IPrecision is de ned as the number of correctly predicted contagious events over the total number of predicted
contagious events. Recall is de ned as the number of correctly predicted contagious events over the total number of
contagious events. The Fl-score is de ned as 2(Precision Recall)=(Precision + Recall).

2While, let's remind the reader, parameter is kept xed at 0.2.
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Figure 7: Extended model | Extent of contagion - Threshold: 10%

Colors identify the di erent levels of the minimum capital requirement: 6% red, 8% blue, and 10%
green. Line styles identify re-sale prices: solid line for re-saleprice equal to 50% of the asset value,
dashed line for price equal to 100% of the asset value. The scenario cmlesed is FIT2 where the
too-connected-to-fail node is defaulted.

transition the system exhibits the robust-yet-fragile property: contagion is a rare event, but, once
it breaks up, it a ects the entire network. Our experiments suggest thda the same random shock
may have completely di erent e ects depending on the level of connectivity ¢ the interbank market.
Instead, in the extended modelthe system can also beobust-and-not-fragile depending on the balance
sheet composition of the banks. Indeed, given the dynamic avor oftie extended model, the nancial
system can adjust its connectivity avoiding full collapse providedthat certain conditions hold. In
particular, if is high - i.e. banks have more short-term assets than long-term asts - the fragility
of the system will depend upon the actual level of liquid assets (i.e. ch}¥ present in the market:
higher the liquidity in the interbank market, higher the level of fr agility. For example, see Figure 7
where we report the extent of contagion for scenarid-IT2 when = 18% and 2 f 8%;40% 72%g.
This happens because banks can dynamically adjust their short-term @osures, therefore reducing the
probability of a systemic collapse; and because - when liquidity i<l - agents are forced to recall many
lines of credit to be able to adjust their risk-weighted capital raio. From a policy standpoint, this
nding has two main implications. First, it means that nancial markets can nd a value to preserve
themselveswithout external intervention. However, this can happen only when theabsolute level of
capital is not too low, as it is when liquidity is high (i.e. a lower level of capial is needed to satisfy the
constraint on the risk-weighted capital ratio). Therefore, it is not su cient to force banks to comply
with regulations on capital ratios, but additional metrics are needed to distinguish robust-yet-fragile
systems fromrobust-but-not-fragile systems.

Heterogeneity in exposures.When we compare the resultsacross scenarios it emerges that the
presence of an uneven distribution of claims creates a much wider contagi window than having
claims evenly distributed among debtors. For example, notice the dierences between scenaridsR1
and ER2 in the benchmark modelin Figures 9a and 11a. The same holds when we compare the results
for the extended model (see Figure 8.

Heterogeneity in bank sizesInstead, when we consider heterogeneity in bank sizes (i.e. we compare
scenariosER2 and ER3) we observe that size heterogeneity makes the nancial system more dike

IThis can be inferred by looking back at equation 4.
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in the benchmark model; while the results are mixed in the extended maal where the (baseline)
probability of contagion appears to pick at a lower level than in sceario ER2. even though at medium-
to-high levels of connectivity the probability of contagion is higher in scenarioER3.

Scale-free networks.When we move to consider scale-free distributions for the degree andsal the
size of banks (scenario&IT1 and FIT2 ), as long as attacks to the system are random, the nancial
system is more stable than it is in Erd®s and Rényi (1960) con gwations. For example, this can be
seen - in the extended model - by comparing the baseline probabilitied default cascades as depicted
in Figure 8. However, thecontagion windowis larger than in ER1 scenario and the structure remains
robust-yet-fragile even for larger values of the average degree, no matter which degree of hetgroeity
we consider. This result was expected given the extensive literature onetwork resilience in the case
of scale-free networks (Albert et al., 2000; Cohen et al., 2000, 2001; @itti et al., 2004; Doyle et al.,
2005; Gallos et al., 2005; Zhao et al., 2004).

When we compare the frequency of contagion between scenariel1l and FIT2, we reach di erent
conclusions when comparing the results from théenchmark modelto the ones of theextended model
In the benchmark model, frequency of contagion is clearly lower than irtaseER3 but also than in
caseFIT1. Additionally, heterogeneity plays a stabilizing role despite the presence of contagious links
and highly connected hubs. Moreover, heterogeneity seems always to be learal since the frequency
of contagion, for a given average degree, decreases with the power-law erpnt. For exponents as
small as 2.25, the maximum frequency of contagion in the benchmarkodel is the lowest, not even
reaching 20%.

Instead, in the extended modelthe baseline probability of contagion inFIT2 is slightly higher than
the one observed inFIT1 (see Figure 8). Moreover, when we look at marginal e ects of havingigh
vs low heterogeneity, we discover that heterogeneity does not stabilizén¢ system as in the benchmark
model. Instead, in the extended model, it makes the system less stabéd more prone to systemic
risk (see Figures 22a,22b,26a,26b).

Targeted attacks. Targeted attacks alter the risk pro les of the di erent interbank a rchitectures. In
general, probability of contagion increases when we move from a ranch default to a targeted default.
In the extended model, the highest probability of contagion for scenda ER2 is found in the too-
exposed-to-failcase (compare the marginal e ects in Figures 13i and 14c). Additionly, in line with
what emerges in scenariceR1, the too-exposed-to-failattack contributes to creating a wider window
of contagion since its e ects are notable also for the highest level afonnectivity. Therefore, no degree
of diversi cation can prevent the system from being exposed to default cascades.

Whenever banks are heterogeneous also in size (as in scenad®3,FIT1,FIT2 ) we can test the
potential for disruption of an attack to the biggest bank. Put it di erently, are more systemically impor-
tant too-big-to-fail institutions or too-connected-to-fail/too-exposed-to-fail institutions? Our ndings
suggest that size alone matters less than connectivity in spreading ntagion. For example, in the
extended model, if we compare Figures 17i and 21i we see that an attatk the most-connected bank
has a stronger impact on the stability of the system than an atta& to the biggest one. This result
holds especially for low to medium levels of connectivity. Instead, whenhte connectivity in the system
is extremely high, targeting the biggest institutions might be mae dangerous (in some scenarios).

In the following, we focus our attention on the ndings we obtained using solely theextended
model As we previously stressed, only by using the extended model we can dywe how liquidity
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hoarding interacts with macro-prudential policies and balance sheetsomposition in determining the
(in)stability of the nancial system. Therefore, in the following paragraphs, we describe what are the
e ects on systemic risk of varying minimum capital ratios, re-sale prices, the share of liquid assets
held by nancial institutions, and the maturity composition of banks' balance sheets.

Minimum capital ratio. Using the extended modelwe can also test di erent regulatory requirements
on capital and measure how changing such requirements alters the ancial stability of the interbank
market. We nd that the e ects of having an higher regulatory capital ratio are unambiguously positive.
The probability of contagion is always reduced by increasing the miimum capital ratio. This was not,
however, a trivial result. Indeed, while higher capital ratios provide a larger bu er to absorb losses,
they also raise the threshold that triggers runs in the short-tem market because of the adjustments
of the risk-weighted assets. For example, in Figures 10b and 10c, weesthe marginal e ects for the
cases when the minimum capital ratio is set to 6% (pane(c)) and when the minimum capital ratio
is set to 10% (panel(b)). To interpret the results, we have to keep in mind that - in these cases we
are looking at the marginal e ects of two dummy variables where thebenchmark caseds the one where
the minimum capital ratio is set to 8%. Therefore, a positive margiral e ect in the case of a minimum
capital ratio set equal to 6% means that - in such a case - there is anigher probability of contagion
compared to what we would have had if we were to keep the minimum cagt ratio equal to 8% (i.e.
the value at the baseline). The absolute size of the marginal e ects as in the case of the average
degree - dies out quickly for high levels of connectivity.

Fire-sale price. These results are probably the most counterintuitive ones and irgresting, since
they clearly highlight how the interplay between network architecture and behavioral rules can yield
unexpected outcomes. The probability of contagion is always lower whenamks incur losses as they
sell their illiquid assets (i.e. the selling price of the illiquid assets is set to be equal to 50% of their book
value). The reason for this fact is that banks, when facing re-sale leses, have higher probability of
becoming illiquid. All short-term creditors will thus try to obta in the desired amount of liquidity from
other debtor banks. This implies that a larger fraction of credit linesare reduced and, in part, closed.
The closure of short-term credit lines with short-term debtors removegossible channels through which
contagion can spread, thus giving higher stability to the entire gstem. In general, we have observed
that the bene cial e ect of re-sale losses is more evident when the fractiom of short-term interbank
claims is small (i.e. is small) and when diversi cation is high, i.e. in the cases in which esry
short-term link carries a smaller weight and thus is more likely to ke removed during a run. In Figure
21d we report the marginal e ects for the case when the re-sale price iset to 50% of the original
value; the baseline value is set as having a re-sale price equal tthé¢ book value of the assets; and the
scenario considered i$I1T1.

Liquidity (i.e. ). As far as contagion through interbank exposures is concerned, a highshare
of liquid items in portfolio is detrimental for the stability of the system. Despite the fact that they
provide a cash bu er preventing liquidity shocks to spread, they also lower the risk-wighted assets
(RWA) and thus the initial absolute amount of capital available to absorb losses. The result is that the
most stable con guration is reached when liquid assets are at theiminimum, i.e. when =0:08. In
Figures 10e and 10f, we see that whenever we have high liquidity in éhsystem (i.e. =0:72), there is
also an higher probability of observing default cascades. Furtherore, the magnitude of the (positive)
marginal e ects of having high liquidity are typically much larg er than the (negative) marginal e ects
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when liquidity is low. The interquantile range for the case with low levels of liquidity is approximately
zero when average degree is higher than eight; while with high levels ofjliidity marginal e ects are
still relevant up to very high levels of connectivity.

Share of short-term exposures (i.e. ). The marginal e ects of the share of short-term exposures
seem to be non-linear. Let us recall that whenever = 0:10, the overall size of the short-term interbank
market is the same as the one of the long-term interbank market. Tis follows from the fact that the
total amount of assets allocated in the two markets is the same. The&fore, what we observe - as an
example - in Figures 10g and 10h is what happens whenever one of the merk is larger than the
other. In particular, the marginal e ects in the two cases (i.e. =0:18in panel(g) and =0:02in
panel (h)) have - for low levels of connectivity - negative marginal e ects; whilethe opposite holds for
higher levels of connectivity. In the Erd®s and Rényi (1960) scenaripthe minimum value is recorded
when average degree equals one. One reason that could explain this mdiis that, in Erd®s and Rényi
(1960) models, average degree values lower than one imply that giant component does not exist.
Therefore, when defaults do happen, they do not percolate to the rest of theetwork. Once we pass
that threshold, we see that the marginal e ects start to become less negive, until they become strictly
positive for average degree values higher than two. Consequently, wh connectivity is high and market
sizes areunbalanced the increased number ofcontagious links makes the system more unstable since
nancial distress does propagate. Instead, when we move to consider segios where the underlying
network structures are scale-freeKIT1 and FIT2 ), the marginal e ects are still negative for low levels
of connectivity, but their minimum is reached at lower level of connectivty. Additionally, network
unbalances where long-term assets outsize short-term assets (i.e.= 0:02) are more dangerous than
scenarios where short-term assets outsize long-term assets. The reabeing that short-term liabilities
can be dynamically adjusted by the banks at running time, while lom-term liabilities creates channels
of contagion that cannot be cut while a default cascade unfolds.

5 Conclusions

In this paper we explored the interplay between heterogeneity, network tsucture and balance sheet
composition in the spreading of contagion.

In the rst part, using an established model of contagion, we haveshown that the system presents
phase transitions in connectivity. Indeed, connectivity is both a diver of contagion, as it provides the
channel for shocks to propagate, but it is also an hedge against a@agion, via diversi cation. This
result is consistent with what has been found also in other studies suchs Gai and Kapadia (2010),
Caccioli et al. (2012) and Elliott et al. (2014).

Also heterogeneity has an ambiguous role. If heterogeneity regards exsluely the link weights,
the main e ect is a widening of the interval of connectivity levels in which contagion is possible. This
is due to the fact that diversi cation cannot, in this case, prevent cortagious links to exist, which are
a necessary condition for contagion to arise.

When size heterogeneity is introduced, also some positive e ects are sedBig banks seems to act
as shock absorber, making contagion a less likely phenomenon. Hetgemeity in connectivity provides
additional stabilization when the initial default is random. However, this comes with the cost of an
extremely high contagion risk when the most connected or the largest ingution is initially distressed
(as it was also discussed in Caccioli et al. (2012) and Roukny et al. (2.3)).
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Figure 9: Benchmark model - [ER1] | Frequency and Extent of Contagion - Th reshold:
10%

Frequency (red) and extent (blue) of contagion as functions of the aveige number of interbank con-
nections of the banks in the system.

We showed howtoo-connected-to-fail banks are more dangerous that theoo-big-to-fail ones. In
our model, despite being very correlate, the two set of institutions d not necessarily overlap. We
then proved that the total amount of distressed loans matters lesstan the number of creditors being
initially hit by the default.

In our extended model of contagion, which includes default cascades, endwogus bank runs and
asset-liability management, we highlighted the complex interactions between network structure and
balance sheet composition. We proved that larger capital requirementare e ectively able to stabilize
the system, while larger liquid reserves, despite providing a bu ein case of liquidity run, induce banks
to keep a smaller amount of capital, thus making them vulnerable to cotagion.

This nding is in line with what has been predicted also by other authors. For example, in Battiston
et al. (2012a), it was shown that the size of default cascades woulddrease when the average robustness
(i.e. the average equity ratios of banks) would decrease. The same udfsis also discussed in Nier et al.
(2007) where it is found that when levels of equity falls below a given treshold, there is a sharp
increase in the risk of a systemic breakdown.

The relative weight of short-term and long-term exposures also madrs in this framework and an
intermediate balance between the two seems optimal. Short-term exposes are indeed both a channel
for liquidity shocks, but they can also be easily removed, preventig shock to propagate.

Finally, the role of re-sales highlight the complexity of this kind of models in which several channels
of contagion operate. Indeed, re-sale losses imply higher risk ofliuidity. Hoarding banks will then
seek funds from other non-illiquid banks, reducing their exposuresot them and, eventually, leading
to a more likely closure of the credit lines. This e ectively removes chanels for the propagation of
contagion. In this sense, re-sale losses induce a more prudent behax

This paper also provides policy suggestions for the regulation ohe nancial system. The role of
too-connected-to-fail and too-big-to-fail institutions in nancial markets is ambiguous, since they act as
shock absorbers in case of random attack, but pose relevant systamisk if distressed. Nevertheless, we
proved that too-connected-to-fail banks should be the primary concern for a contagion-averse regulat,
since their distress is more likely to trigger systemic breakdowns.

Capital requirements should also be rethought in the light of the tade-o s highlighted by our
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Figure 10: Extended model - [ER1] | Marginal E ects - Threshold: 10%

Panels (a) (i) show the marginal e ects for the di erent parameters: the blue line represents the median
marginal e ect; the shaded area marks the value of the marginal e ect letween the 24" and the 75"
percentiles; while the upper and lower dashed red lines correspond, respeely, to the maximum and
minimum estimated marginal e ect for each speci ¢ regressor.
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Figure 11: Benchmark model - [ER2] | Frequency of Contagion - Threshold: 1 0%
Frequency of contagion as a function of the average number of interlo&k connections of the banks in
the system and of the exponent of the power-law distribution usedd generate the interbank exposures.

complex system approach, together with the incentives micro-prudentiregulation should set. Indeed,
such incentives may be strongly mis-aligned with macro-prudentialobjectives, if not designed in a
systemic perspective. Our paper has indeed clearly highlighted how conitins that are extremely
desirable from a micro-prudential point of view (e.g. larger liqud reserves and no re-sale losses), may
induce, at a macro level, systemic fragility.

Our analysis, however, is far from being complete. The model we have tedsy presented can still
be extended along di erent dimensions. From a macro-prudential stadpoint, the menu of possible
market regulations that can be tested shall be expanded. One additrowe are currently working on
is to include a liquidity requirement along with the capital requirements which are already part of
our framework. This additional control mechanism will probably intensify the dynamics of the short-
term interbank market because having mandatory liquidity requirements will increase the demand for
liquidity during distressed times. Another possibility would be to introduce alongside the other
measures counter-cyclical capital bu ers and/or maximum leverage ratios

In terms of the dynamics of the model, additional features shall béncluded. First, banks shall be
allowed not only to alter the structure of their short-term lending but also to transform the maturity of
long-term loans. Second, asset prices shall be made endogenous. Ia tlurrent version of the model,
asset prices are exogenously determined and they do not vary while cogian unfolds. Instead, a more
realistic approach would be to let prices adjust depending on the aount of assets sold in the market
at any given time and balance sheets shall be evaluatedark-to-market. Lastly, di erent types of asset
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(a) Random Default

(b) Too-Connected-To-Fall

Figure 12: Benchmark model - [ER2] | Extent of Contagion - Threshold: 10%
Extent of contagion as a function of the average number of interbankconnections of the banks in the
system and of the exponent of the power-law distribution used to gegrate the interbank exposures.
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(a) Average degree (b) High min capital ratio (c) Low min capital ratio

(d) Sales at Loss (e) High liquidity (f) Low liquidity

(g) Large short-term market (h) Large long-term market (i) Too-connected-to-fail

Figure 13: Extended model - [ER2] | Marginal E ects - Threshold: 10% (A)

Panels (a) (i) show the marginal e ects for the di erent parameters: the blue line represents the median
marginal e ect; the shaded area marks the value of the marginal e ect letween the 24" and the 75"
percentiles; while the upper and lower dashed red lines correspond, respeely, to the maximum and
minimum estimated marginal e ect for each speci ¢ regressor.
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(a) High heterogeneity (b) Low heterogeneity (c) Too-exposed-to-fail

Figure 14: Extended model - [ER2] | Marginal E ects - Threshold: 10% (B)

Panels (a) (c) show the marginal e ects for the di erent parameters: the blue line represents the
median marginal e ect; the shaded area marks the value of the margal e ect between the 25"

and the 78" percentiles; while the upper and lower dashed red lines correspond, respigety, to the

maximum and minimum estimated marginal e ect for each speci c regresso

categories shall be introduced. This will allow us to study how the comosition of banks' (overlapping)
portfolios in uence the stability of the nancial system.

Finally, other topological features of the interbank network can beanalyzed to explain the di usion
of nancial contagion. Due to computation constraints, we have estricted our attention in this
rst contribution to a smaller set of network metrics. However, a larger set topological features
of the interbank network can be analyzed: the distribution of nodeclustering; the graph-component
distribution; or the community structure of the graph 1. Correlating systemic events with such ner-
grained characteristics of the interbank network will allow the polcy maker to better understand how
the topology of the interbank lending can be tweaked and/or contrdled to improve the stability and
the resilience of the nancial system.

Appendix

A Network Theory: De nitions

A network is simply a collection of points connected by links, which wemay formalize as a setG =
(I1; V), where| is the set of vertices (nodes), whileV is the set of couples(i;j ) 2 12 representing the
edges, which may be ordered or unordered, and we shall then speak ofatited or undirected graphs
respectively.

Any network can be unambiguously represented by an adjacency matriA(G), whose elements
aj take the value of zero or one depending on whethefi;j) 2 V or (i;j) 2 V. If the network
is undirected the adjacency matrix is symmetric. Moreover, whenever links &ve di erent weights,

1A component of a graph is a minimal subset of nodes that are connected, i.e. for which any two nodes are connected
by a path going through the nodes of the subset. A community st ructure is a partition of the nodes of the graph, induced
by observed topology, where the nodes in each set of the parttion are more strongly linked between each other than they
are with nodes belonging to di erent sets of the partition. S ee Newman (2010) for an introduction.
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(a) Random Default

(b) Too-Connected-To-Fall

(c) Too-Big-To-Fall

Figure 15: Benchmark model - [ER3] | Frequency of Contagion - Threshold: 1 0%
Frequency of contagion as a function of the average number of interlo&k connections of the banks in
the system and of the exponent of the power-law distribution usedd generate the interbank exposures

and the banks' total size.
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(a) Random Default

(b) Too-Connected-To-Fall

(c) Too-Big-To-Fall

Figure 16: Benchmark model - [ER3] | Extent of Contagion - Threshold: 10%
Extent of contagion as a function of the average number of interbanliconnections of the banks in the
system and of the exponent of the power-law distribution used to gegrate the interbank exposures

and the banks' total size.
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(a) Average degree (b) High min capital ratio (c) Low min capital ratio

(d) Sales at Loss (e) High liquidity (f) Low liquidity

(g) Large short-term market (h) Large long-term market (i) Too-connected-to-fail

Figure 17: Extended model - [ER3] | Marginal E ects - Threshold: 10% (A)

Panel (a) shows the estimated probability of observing default casaes where more than 10% of the
total assets had been wiped out. Panels (b) (i) show themarginal e ects for the di erent parameters:
the blue line represents the median marginal e ect; the shaded area mhks the value of the marginal
e ect between the 28" and the 78" percentiles; while the upper and lower dashed red lines correspond,
respectively, to the maximum and minimum estimated marginal e ect for each speci ¢ regressor.

29



(a) High heterogeneity (b) Low heterogeneity

(c) Too-exposed-to-fail (d) Too-big-to-fail

Figure 18: Extended model - [ER3] | Marginal E ects - Threshold: 10% (B)

Panels (a) (c) show the marginal e ects for the di erent parameters: the blue line represents the
median marginal e ect; the shaded area marks the value of the margal e ect between the 23"

and the 78" percentiles; while the upper and lower dashed red lines correspond, respigety, to the

maximum and minimum estimated marginal e ect for each speci c regresso
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representing di erent intensities in the connections one may de ne a weigted matrix W (G) whose
elementsw;; represent the weight of the link fromi to j if a link between them exist, while they are
zero if no link is present between them.

A network is a natural representation of an interbank market. Banks epresent the nodes of the
graph, edges are given by lending relations and their weight is thealue of the exposures. By taking
this point of view on the nancial system, one is able to analyzets properties and its architecture, in
order to identify the relevant features for its stability. Indeed we are interested in the network structure
of an interbank market for its consequences in the transmission ofguidity shocks and default cascades.

Network Statistics

A rst step towards the understanding of the stability of nanci al systems passes through the analysis
of their structure itself. Despite not exhaustive of the entire set @ topological feature one my compute
in a network, the following list provides an overview of the statigics which are both economically
meaningful and relevant for nancial stability. In the following de nitions we consider a network ofn
nodes, whose adjacency matrix i\ and whose weighted matrix isW.

Node Degree The in-degreek!" and out-degreek®"! of a node in a directed networks are the number
of incoming and outgoing links respectively:

k"= a and kM= a:
j=1 j=1
In the context of an interbank network the in-degree represent the numker of creditors and the out-

degree the number of debtors.

Node Strength  The in-strength si" and out-strength k°“ of a node in a directed networks are the
total amount of weight carried by its incoming and outgoing links respectively:

S = Wij and SiOUt = Wiji -

i=1 j=1
The de nition parallels that of node in- and out-degree and, in ourframework, can be interpreted
as the total amount of interbank assets and liabilities.
Connectivity  Connectivity is the fraction of possible links that the network actually displays. Calling

| the number of existing edges, in a directed graph, connectivity is givenyb

I .
n(n 1)

Connectivity of thus a measure of the fraction of possible interbak relations which actually exist.
It thus provide a measure of diversi cation and also of the chanels of transmissions through which a
shock may ow. A closely related concept is that of average degree

Average Degree The average degree is the average in-degree, or, equivalently, the avgesout-degree,
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of the n nodes in the network
X X
k = klm — kiout
i=1 i=1
Which thus represents the average number of counterparties a bankas, and thus even more clearly
represents both the average level of diversi cation and the average mber of possible sources of shock.

Average Path Length A path is a sequence of vertices such that each pair of consecutive verticies
the sequence are connected by an edge. The number path of lengtifrom i to j is the elementi;j of
A". The average path length is the average shortest path between any twooules.

Despite most studies on interbank contagion have, so far, focused aonnectivity, also the average
path length should be taken into consideration when exploring the esilience of an interbank markets.
Indeed it represents the average number of connections separating two ks and may thus be relevant
for the timing and the severity of a default cascade.

Reciprocity In directed networks, reciprocity is the fraction of links for which a link in the opposite
direction exists. An expression for reciprocity is

TrA?
|

Reciprocity represents the frequency of reverse lending relationshipsCertainly, from an empirical
point of view, it is interesting to note how several contributions have found high levels of reciprocity in
real interbank networks (Bech and Atalay, 2010; Soramaki et al., 207). This possibly re ects the role
of what Cocco et al. (2009) de ne preferential lending, i.e. the importare of non-economic foundations
for interbank lending.

Clustering In an undirected network, the clustering coe cient is de ned as the probability that two
nodes, which are connected with another node, are connected between themselves:

number of triangles 3 1 X' (A%);

- number of connected triples  n i ki(ki 1)

In the de nition of the clustering coe cient, we consider, for simpli city, the case of an undirected
network, which can be derived from a directed one if the directionality & a link is neglected. k;

indicates the (undirected) degree of nodé, i.e. the number of connections i has, anqA3); represents
the i-th element in the diagonal of A3. The clustering coe cient is a measure of how tight interbank
relations are at local level. An high clustering coe cient indicates that the counterparties of a given
bank are very likely to make transactions also between themselves.

Assortativity and Disassortativity A network is said to be assortative if nodes with a certain
degree are more likely to be connected with nodes with similar degree. Isisaid to be disassortative
if the opposite holds. A simple measure of assortativity in udirected networks is

_ cov(ki;ANND )
~ (ki) (ANND )

2 1;1]

where ANND ; is the average nearest neighbor degree, i.e. the average degree of nosl@eighbors.
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As for the clustering coe cient, we presented only the undirected versim of the assortativity coe cient.
Interbank markets tend to be disassortative, in the sense that smabanks tend to trade with large
banks and viceversa. This may be symptomatic of the presence of bamg groups, in which small
subsidiaries preferentially trade with the parent company.

The previous statistics are either referred to single nodes, or are siretic network-level measures
that summarize, in a single number, a series of local features. Other mlant information may instead
come from the statistical distribution of certain local characteristics. First and foremost, the distri-
bution of the degree, i.e. the number of counterparties, provides imptant information regarding the
structure of an interbank network, since it is able to quantify the level of heterogeneity of its nodes.

Degree Distribution Given a network, construct a sequence of possible degre€$;2;:::g and a
sequence of probabilitied p1; p2;::: g, wherepy is the frequency of nodes with degrek. The quantities
fp1;p2;:::g thus de ne a probability distribution over degrees f1;2;:::g, which is de ned as degree
distribution.

More appropriately, in the context of directed graphs, we would dealwith a joint degree distribution
f pein kout g representing the probability that a node have in-degreek™ and out-degreek®.

B Models of Network Formation

The previous overview of de nitions can be applied to any arbitrary retwork. However, when one seeks
to build a network displaying some desired features, he has to comfnt with the theory of network
formation, which provides a set of models that, because of di erent asimptions on the mechanism of
link formation, are able to generate a corresponding set of netwoskwith speci ¢ statistical peculiarities.
Here, we intend to provide a brief description of the two network fornation models employed in our
analysis, namely the random graph model by Erd®s and Rényi (195@nd the tness model*.

B.1 Erd®s-Rényi Model

The random graph model due to Erd®s and Rényi (1960) is a model in wdfi, given a set ofN nodes,
a link from node i to nodej exists with probability p, which is constant for each pair of nodes. In the
network there areN (N 1) possible directed links to be created, resulting in an expected number of
edges in the network equal topN(N 1), so that the (expected) average degree isg(N 1). Indeed
each node hagN 1) nodes to which it can connect. It follows that both the distribution of the in-
and the out-degree follows a binomial distribution:

PN = P = Tk p Kt

If c denotes the average degree of a random graph, asymptotically, &'!1 , the degree distribution
converges to a Poissor)

cok
p(k) = =

1For a more complete overview of network formation models one may refer to standard textbooks as Newman (2010)
or to the reviews by Albert and Barabasi (2002) and Chakrabar ti and Faloutsos (2006).
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which is the reason why the model is sometimes referred to as Poisson dam graph.

Since the probability of forming a link is homogeneous, the restihg network structure does not
present marked heterogeneity. In a Poisson distribution the dispeien around the mean is limited and
deviations from it are exponentially rare. An interbank network gererated using this model will thus
provide of a homogeneous market, in which banks tend to have simildevels of connectivity, i.e. their
speci ¢ number of counterparties does not signi cantly vary from the average.

The Erd®s and Rényi (1960) graph is also said to be small-worldjnce it presents a short average
path length and its diameter, i.e. the longest of the shortest patls linking two nodes, grows at a much
lower rate than N, precisely aslog(N). The clustering coe cient is equal to the probability of a link's
existence,p.

This model has been extensively applied for the study of contagion in ancial networks, e.g. in
the contributions from Nier et al. (2007), Gai and Kapadia (2010) lori et al. (2006) and Montagna
and Kok (2013).

B.2 Fitness Model

The tness model is a very exible model of network formation, which is able to generate a wide range
of structural features. Every nodei is endowed with a tness parameter,X;, which is a measure of
its attractiveness, and links are formed between nodes with a probaility which is a function of the
tness of the nodes. More formally, if we de ne pj as the probability that a link exists from i to j,
this probability is given by
pi = f(Xi;%j)
for a generic functionf .
Depending on the shape of the functionf and on the probability distribution of the tness,
various properties may emerge.
In general the expected in-degree for a node with tness is
. Z +1
K" (x)=n f(tx) (t)dt  nFin(x);
1

while the expected out-degree is

Z,
koU'(x) = n ' f(x;t) ()dt  nFou(x):
1

Clearly, the two expressions coincide if is symmetric, i.e. f (Xj;X;j) = f (Xj;X;), meaning that the
tness parameter represents the attractiveness of the node irrespectivef the direction of the relation
to be established.

Under the assumption of invertibility of F™ and F°U and of di erentiability of their inverse, one
can derive an analytical expression for the probability of observig nodes with in-/out-degree equal to
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a generick:

; k d k
PR (k)= Fy' o @Finl Y
k d k

POUt(k): l:ou:tL ﬁ &Fou% ﬁ

One may also compute higher order properties of networks built via thess models. Focusing on
undirected models, wherep; = f (xi;x;) = f(Xj;Xi) represents the probability of an undirected link
betweeni and j, closed form solutions are available for the clustering coe cient & nodes with tness

X R,; R
TG S)E (%) (1) (s)dtds
C(x)=n k()2
and for the average degree of their neighbors
n Z +1
ANND (x) = ) f(x;t)k(t) (t)dt:

Despite this is just a brief summary of the properties of a tness malel*, it should be clear enough
that its exibility has the potential to take into account a number of target properties. This is the
reason why authors as De Masi et al. (2006) and Montagna and Lux (3) suggest the tness model
in order to match the empirical features of real interbank networks.

In our (directed) interbank network we use a tness model with an additive linking function

pij = f(Xi;Xj)= c(Xi + Xj); (22)

wherec is a constant that we tune in order to obtain the desired average deage.

distribution with exponent > 2 and minimum value xg
P(x)=ax ; Xx>Xxo: (22)
Solving the integration for the expected in- and out-degree we nd tlat

2 1
CcX acx
0o, 2%

Fin (X) = Fout(x) = 2 1 X

Inverting these functions and using the formulas for the degree dtribution we see that
PP (k)= Pk / (k) (23)

where is a positive constant that depends on the parameters of the tness mwdel. This means that
our model is able to replicate a power-law tail decay of the degree didbution, which is a feature often
observed in real networks (Caldarelli, 2007; Newman, 2010), includgin interbank markets (Bech and
Atalay, 2010; Boss et al., 2004; Cont et al., 2013; lazzetta and Mann&009; lori et al., 2008; Soramaki

1For a more detailed description of its properties we invite t he reader to refer to Caldarelli et al. (2002), Caldarelli
(2007) and Servedio et al. (2004).
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et al.,, 2007) and which is thus symptomatic of high levels of hetemeneity in the connectivity of
nancial institutions. The model is exible enough to allow us to t une the exponent of the tail decay.

C Scenarios

The models presented in Section 2 are tested against ve di erent architeaires of the nancial system.
Three employ the Erd®s and Rényi (1960) network model (casdsR1, ER2 and ER3), while two of
them use the tness model (De Masi et al., 2006) (caseBIT1 and FIT2 ) to generate the interbank
network?.

ER1: Homogeneous banks with homogeneous exposurEse Erd®s and Rényi (1960) network model
is used to generate interbank connections and banks are assumed to kathe same asset size. In the
benchmark modeljust one network is generated; in theextended modeltwo Erd®s and Rényi (1960)
graphs are generated (on for the short-term interbank market and oe for the long-term interbank
market). By using - in the extended model two independent graphs to assign short and long term
exposures, we allow cases in which a bank can lend (or borrow) from ar@r nancial institution at
both maturities. Interbank claims are evenly distributed among the outgoing links, so that there is
no single exposure which is more dangerous than the others. In thextended modelthey are evenly
distributed within each maturity class.

ER2: Homogeneous banks with heterogeneous exposums.in the previous case, all banks have the
same asset size and the network(s) is Erd®s and Rényi (1960). Howewve now allow banks to unevenly
distribute their exposures across creditors, in such a way the linkveight is power-law distributed. For
each bank we extract a number of weights equal to its out-degree from aower-law distribution, we
then assign interbank claims to the links proportionally to the respective weights. This represents
a scenario in which over-exposures may be present, implying the existem of contagious links. The
assumption about the distribution of link weights has been maden accordance to empirical ndings
(Cont et al., 2013; Soramaki et al., 2007).

ER3: Heterogeneous banks with heterogeneous exposurés.this case we allow for heterogeneity
also in the asset size. First, Erd®s and Rényi (1960) network(s) generated. Then, in thebenchmark
model| link weights are drawn from a power-law distribution and assiged the links. Total assets
are assigned to banks proportionally to their interbank exposues (A'® + L'B) in such a way that, on
average, interbank assets represent 20% of total assets. The resuleisietwork in which link weights are
power-law distributed and asset sizes are power-law distributed asell. The presence of heterogeneity
in balance sheet sizes implies the presence of money center hubs, whose gmnbiis role as shock
absorbers or shock ampli ers will be assessed. Instead, in thextended modelthe constraints set by
our model (i.e. , , ,e and ) are veri ed exactly. For instance, the constraint that interbank assets
must be 20% of total assets is satis ed only on average in thbenchmark model instead, in the extended
model this constraint is veri ed for each individual bank. This is obtained in the following way. First,
we generate link weights (in the two graphs) extracting their valuedrom a Pareto distribution. Second,
we reshu e part of the links so that the constraints imposed on the balance-sheets are satis ed. The
same reshu ing procedure - for the extended model is applied also in the following scenariosFIT1
and FIT2.

! Appendix A explains the di erences between the two models and their main features.
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FIT1: Heterogeneous banks with homogeneous exposur&¥e move towards a more realistic archi-
tecture for the nancial system, which shows a fat-tail degree distrbution. We generate a network
using a tness model (De Masi et al., 2006), with an exogenous distoution of the tness parameter
that follows a power-law. In order to close the model, the high level ofieterogeneity in the connectivity
imposes heterogeneity also in the asset size. However, in this case, expesuemain homogeneous, so
that no link is more dangerous than any other. In thebenchmark modelwe rst build the network and
then assign assets to bank proportionally to their interbank expsures @' + L'B), the distribution
of the asset size is power-law and the xed ratio of interbank assett total assets is maintained on
average. In theextended modeleven though the two graphs are generated independently, the tness
sequence is the same in the two networks. That is, the bank with the lghest tness in the short-term
interbank market will also be the bank with the highest tness in the long-term interbank market, and
so on. As done inFIT1, exposures are evenly distributed (within each maturity class).

FIT2: Heterogeneous banks with heterogeneous exposurddere, we allow also for heterogeneous
exposures so that, once the network is generated using the tness melj we draw the value of the
exposures from a power-law distribution with the same exponent ofte distribution of the tness
parameter. In the benchmark modeltotal assets are then assigned proportionally to total interbank
exposures A'B + L'B) in order to maintain the interbank ratio xed at 20% on average. In the extended
model link weights are generated using the same procedure used in cadeR2 and ER3.
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(a) Random Default

(b) Too-Connected-To-Fall

(c) Too-Big-To-Fail

Figure 19: Benchmark model - [FIT1] | Frequency of Contagion - Threshold: 1 0%
Frequency of contagion as a function of the average number of interb&nconnections of the banks
in the system and of the exponent of the power-law distribution usd to generate the banks' tness
parameter.
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(a) Random Default

(b) Too-Connected-To-Fall

(c) Too-Big-To-Falil

Figure 20: Benchmark model - [FIT1] | Extent of Contagion - Threshold: 10%
Extent of contagion as a function of the average number of interbaniconnections of the banks in the
system and of the exponent of the power-law distribution used to gnerate the banks' tness parameter.
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(a) Average degree (b) High min capital ratio (c) Low min capital ratio

(d) Sales at Loss (e) High liquidity (f) Low liquidity

(g) Large short-term market (h) Large long-term market (i) Too-connected-to-fail

Figure 21: Extended model - [FIT1] | Marginal E ects - Threshold: 10% (A)

Panels (a) (i) show the marginal e ects for the di erent parameters: the blue line represents the median
marginal e ect; the shaded area marks the value of the marginal e ect letween the 24" and the 75"
percentiles; while the upper and lower dashed red lines correspond, respeely, to the maximum and
minimum estimated marginal e ect for each speci ¢ regressor.
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(a) High heterogeneity (b) Low heterogeneity

(c) Too-exposed-to-fail (d) Too-big-to-fail

Figure 22: Extended model - [FIT1] | Marginal E ects - Threshold: 10% (B)

Panels (a) (c) show the marginal e ects for the di erent parameters: the blue line represents the
median marginal e ect; the shaded area marks the value of the margal e ect between the 23"

and the 78" percentiles; while the upper and lower dashed red lines correspond, respigety, to the

maximum and minimum estimated marginal e ect for each speci c regresso
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(a) Random Default

(b) Too-Connected-To-Fall

(c) Too-Big-To-Fail

Figure 23: Benchmark model - [FIT2] | Frequency of Contagion - Threshold: 1 0%
Frequency of contagion as a function of the average number of interb&nconnections of the banks
in the system and of the exponent of the power-law distribution usd to generate the banks' tness
parameter.
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(a) Random Default

(b) Too-Connected-To-Fall

(c) Too-Big-To-Falil

Figure 24: Benchmark model - [FIT2] | Extent of Contagion - Threshold: 10%
Extent of contagion as a function of the average number of interbaniconnections of the banks in the
system and of the exponent of the power-law distribution used to gnerate the banks' tness parameter.
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(a) Average degree (b) High min capital ratio (c) Low min capital ratio

(d) Sales at Loss (e) High liquidity (f) Low liquidity

(g) Large short-term market (h) Large long-term market (i) Too-connected-to-fail

Figure 25: Extended model - [FIT2] | Marginal E ects - Threshold: 10% (A)

Panels (a) (i) show the marginal e ects for the di erent parameters: the blue line represents the median
marginal e ect; the shaded area marks the value of the marginal e ect letween the 24" and the 75"
percentiles; while the upper and lower dashed red lines correspond, respeely, to the maximum and
minimum estimated marginal e ect for each speci ¢ regressor.
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(a) High heterogeneity (b) Low heterogeneity

(c) Too-exposed-to-fail (d) Too-big-to-fail

Figure 26: Extended model - [FIT2] | Marginal E ects - Threshold: 10% (B)

Panels (a) (c) show the marginal e ects for the di erent parameters: the blue line represents the
median marginal e ect; the shaded area marks the value of the margal e ect between the 23"

and the 78" percentiles; while the upper and lower dashed red lines correspond, respigety, to the

maximum and minimum estimated marginal e ect for each speci c regresso
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Figure 27: Example of Erd®s and Rényi
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Figure 28: Example of graph generated with a tness model
3. The distribution of the tness is power-law with exponent 2.5.



References

Acemoglu, D., A. Ozdaglar, and A. Tahbaz-Salehi (2013): Systemic risk and stability in
nancial networks, NBER Working Paper 18727

Albert, R. and A.-L. Barabasi (2002): Statistical mechanics of complex networks, Reviews of
Modern Physics 74, 47.

Albert, R., H. Jeong, and A.-L. Barabasi (2000): Error and attack tolerance of complex
networks, Nature, 406, 378 382.

Amini, H., R. Cont, and A. Minca (2012): Stress testing the resilience of nancial networks,
International Journal of Theoretical and Applied Finance, 15, 1250006 (20 pages).
(2013): Resilience to contagion in nancial networks, Mathematical Finance

Arinaminpathy, N., S. Kapadia, and R. M. May (2012): Size and complexity in model nancial
systems, Proceedings of the National Academy of Science409, 18338 18343.

Battiston, S., D. Delli Gatti, M. Gallegati, B. Greenwald, and J. E . Stiglitz ~ (2012a):

Default cascades: When does risk diversi cation increase stability? Journal of Financial Stability,
8, 138 149.

(2012b): Liaisons dangereuses: Increasing connectivity, risk  sharing, and systemic risk, Jour-
nal of Economic Dynamics and Contro} 36, 1121 1141.

Bech, M. and E. Atalay (2010): The topology of the federal funds market, Physica A: Statistical
Mechanics and its Applications 389, 5223 5246.

Blasques, F., F. Brauning, and I. Van Lelyveld (2015): A dynamic network model of
the unsecured interbank lending market, BIS Working Paper No. 491., Available at SSRN:
http://ssrn.com/abstract=2569301 , 1 55.

Bluhm, M., E. Faia, and J. P. Krahnen (2014): Endogenous banks' networks,
cascades and systemic risk, SAFE Working Paper No. 12., Available at SSRN:
http://papers.ssrn.com/sol3/papers.cfm?abstract_id= 2235520 1 76.

Boss, M., H. Elsinger, M. Summer, and S. Thurner (2004): Network Topology of the Interbank
Market, Quantitative Finance, 4, 677 684.

Caccioli, F., T. A. Catanach, and J. D. Farmer (2012): Heterogeneity, correlations and nan-
cial contagion, Advances in Complex Systemsl5, 1250058 (15 pages).

Caccioli, F., M. Shrestha, C. Moore, and J. D. Farmer (2014): Stability analysis of nancial
contagion due to overlapping portfolios, Journal of Banking & Finance, 46, 233 245.

Caldarelli, G. (2007): Scale-free networks: Complex webs in nature and technologyxford Univer-
sity Press.

Caldarelli, G., A. Capocci, P. De Los Rios, and M. A. Mufioz (2002): Scale-free networks
from varying vertex intrinsic tness, Physical Review Letters 89, 258702.

Chakrabarti, D. and C. Faloutsos (2006): Graph mining: Laws, generators, and algorithms,
ACM Computing Surveys (CSUR) 38, 2.

Cocco, J., F. Gomes, and N. Matrtins (2009): Lending relationships in the interbank market,
Journal of Financial Intermediation, 18, 24 48.

Cohen, R., K. Erez, D. ben Avraham, and S. Havlin (2000): Resilience of the Internet to
Random Breakdowns, Phys. Rev. Lett, 85, 4626 4628.
(2001): Breakdown of the Internet under Intentional Attack, Phys. Rev. Lett, 86, 3682 3685.

48



Cont, R., A. Moussa, and E. B. Santos (2013): Network structure and systemic risk in banking
systems, in Handbook on Systemic Risked. by Fouque, Jean-Pierre, Langsam, Joseph A., Cam-
bridge University Press.

Crucitti, P., V. Latora, M. Marchiori, and A. Rapisarda (2004): Error and attack tolerance
of complex networks, Physica A: Statistical Mechanics and its Applications 340, 388 394.

De Masi, G., G. lori, and G. Caldarelli (2006): Fitness model for the Italian interbank money
market, Physical Review E 74, 066112.

Doyle, J. C., D. L. Alderson, L. Li, S. Low, M. Roughan, S. Shalunov, R. Tanaka, and
W. Willinger (2005): The robust yet fragile nature of the Internet, Proceedings of the National
Academy of Sciences of the United States of Americd 02, 14497 14502.

Eisenberg, L. and T. H. Noe (2001): Systemic risk in nancial systems, Management Science
47, 236 249.

Elliott, M., B. Golub, and M. Jackson (2014): Financial Networks and Contagion, American
Economic Review 104, 3115 53.

Erd®s, P. and A. Rényi  (1960): On the evolution of random graphs, Magyar Tud. Akad. Mat.
Kutat6 Int. Kozl , 5, 17 61.

Gai, P., A. Haldane, and S. Kapadia (2011): Complexity, concentration and contagion, Journal
of Monetary Economics 58, 453 470.

Gai, P. and S. Kapadia (2010): Contagion in nancial networks, Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Science466, 2401 2423.

Gallos, L. K., R. Cohen, P. Argyrakis, A. Bunde, and S. Havlin (2005): Stability and
Topology of Scale-Free Networks under Attack and Defense Strategies?hys. Rev. Lett, 94, 188701.

Georg, C.-P. (2013): The eect of the interbank network structure on contagion and common
shocks, Journal of Banking & Finance, 37, 2216 2228.

Glasserman, P. and H. P. Young (2015): How likely is contagion in nancial networks? Journal
of Banking & Finance, 50, 383 399.

Halaj, G. and C. Kok Sorensen (2014): Modeling emergence of the interbank networks, ECB
Working Paper No. 1646, Available at SSRN: http://ssrn.confabstract=2397106, 1 41.

Haldane, A. G. (2009): Rethinking the nancial network, Speech delivered at the Fnancial Student
Association, Amsterdam, April.

Hanson, S. G., A. K. Kashyap, and J. C. Stein (2011): A Macroprudential Approach to Financial
Regulation, Journal of Economic Perspectives25, 3 28.

lazzetta, C. and M. Manna (2009): The topology of the interbank market: Developments in Itdy
since 1990I, Banca d'ltalia Temi di Discussione.

lori, G., G. De Masi, O. V. Precup, G. Gabbi, and G. Caldarelli (2008): A network analysis
of the Italian overnight money market, Journal of Economic Dynamics and Contro] 32, 259 278.

lori, G., S. Jafarey, and F. Padilla (2006): Systemic risk on the interbank market, Journal of
Economic Behavior & Organization 61, 525 542.

Lenzu, S. and G. Tedeschi (2012): Systemic risk on dierent interbank network topologies,
Physica A: Statistical Mechanics and its Applications 391, 4331 4341.

Loepfe, L., A. Cabrales, and A. Sanchez (2013): Towards a Proper Assignment of Systemic
Risk: The Combined Roles of Network Topology and Shock Characterists, PLoS ONE, 8, e77526.

49



May, R. M. and N. Arinaminpathy (2010): Systemic risk: the dynamics of model banking sys-
tems, Journal of the Royal Society Interface 7, 823 838.

Montagna, M. and C. Kok (2013): Multi-layered interbank model for assessing systemicisk,
Kiel Working Paper 1873, Kiel Working Paper, Kiel.

Montagna, M. and T. Lux (2013): Hubs and resilience: Towards more realistic models of ¢h
interbank markets, Tech. rep., Kiel Working Paper.

Myerson, R. B. (2014): Rethinking the Principles of Bank Regulation: A Review of Admati and
Hellwig's The Bankers' New Clothes Journal of Economic Literature, 52, 197 210.

Newman, M. (2010): Networks: An Introduction, Oxford University Press, Inc.

Nier, E., J. Yang, T. Yorulmazer, and A. Alentorn (2007): Network models and nancial
stability, Journal of Economic Dynamics and Contro] 31, 2033 2060.

Roukny, T., H. Bersini, H. Pirotte, G. Caldarelli, and S. Battiston (2013): Default
cascades in complex networks: Topology and systemic riskScienti ¢ Reports.

Schweitzer, F., G. Fagiolo, D. Sornette, F. Vega-Redondo, A. Vespignani, and D. R.
White (2009): Economic networks: The new challenges,Science 325, 422 425.

Sewedio, V. D., G. Caldarelli, and P. Butta (2004): Vertex intrinsic tness: How to produce
arbitrary scale-free networks, Physical Review E 70, 056126.

Soramaki, K., M. Bech, J. Arnold, R. Glass, and W. Beyeler (2007): The topology of
interbank payment ows, Physica A: Statistical Mechanics and its Applications 379, 317 333.

Zhao, L., K. Park, and Y.-C. Lai (2004): Attack vulnerability of scale-free networks due to

cascading breakdown, Phys. Rev. E 70, 035101.

50



