Financial constraints and firm exports: accounting for heterogeneity, self-selection and endogeneity

Angelo Secchi °
Federico Tamagni §
Chiara Tomasi *

° University of Paris 1 and Paris School of Economics, France
§ Universitas Mercatorum, Rome, Italy and Scuola Superiore Sant'Anna, Pisa, Italy
* University of Trento, Italy

2014/16 September 2014

ISSN (online) 2284-0400
Financial constraints and firm exports: accounting for heterogeneity, self-selection and endogeneity

Angelo Secchi‡, Federico Tamagni†, and Chiara Tomasi◦

‡Paris School of Economics - Université of Paris 1 Panthéon Sorbonne, 106-112 Bd de l’Hôpital, 75013 Paris, France.
†Corresponding author: Institute of Economics, Scuola Superiore Sant’Anna, Piazza Martiri 33, 56126 Pisa, Italy, E-mail f.tamagni@sssup.it, Tel +39-050-883343.
◦Department of Economics University of Trento, via Inama 5, 38122 Trento, Italy.

September 17, 2014

Abstract

The paper examines the causal effect of financial constraints on firm exports. We exploit a firm-level proxy of constraints based on credit ratings and available for a large panel of Italian exporting and non-exporting firms. Our estimation strategy allows to cure for self-selection into exports and endogeneity of financial constraints. At the same time, we can control for unobserved firm fixed effects both in the selection and in the export equation, thus identifying the effect on exports of within firm changes in financial constraints status. We find that financial constraints produce a sizable reduction in the value of firm foreign sales.

JEL codes: F10, F14, F36, G20, G32, L25

Keywords: financial constraints, exports, self-selection, endogeneity
1 Introduction

A rapidly growing body of research in the trade literature examines the role of external finance in the international activities of firms. Selling to foreign markets indeed involves specific fixed and variable costs, additional to those required for the domestic market, for which there might be a specific need to resort to external credit.\(^1\) Theoretical studies (see Chaney, 2005; Muuls, 2008; Manova, 2011; Feenstra et al., 2011) incorporate this idea within the standard Melitz (2003) model of international trade with heterogeneous firms. In spite of differences in modeling financial constraints, all these theoretical frameworks share the common prediction that financing problems reinforce self-selection into export markets driven by productivity. Indeed, the productivity level required to enter and operate in international markets under financial constraints is higher than in the absence of constraints because firms must also cover the costs of external finance. If external credit is needed to only meet sunk and fixed costs of exports, then financial constraints are predicted to only affect the probability to become an exporter (i.e. the extensive margin), with constrained firms less likely to enter foreign markets. If, instead, external funds are needed to cover both fixed and variable export costs, then financial constraints also affect the overall value of foreign sales (i.e. the intensive margin): \textit{ceteris paribus}, constrained firms that are able to enter foreign markets export less than unconstrained exporters.

The existing empirical literature is usually interpreted as supporting these predictions, although there are exceptions casting doubts on whether the available evidence can be considered as conclusive. Concerning entry into export markets, financial constraints are found to reduce the probability to become exporter in Muuls (2008) for Belgium, in Bellone et al. (2010) for France, in Wagner (2012) for Germany, in Berman and Hricourt (2010) for a sample of nine developing and emerging economies, in Minetti and Zhu (2011) for a cross-section of Italian firms, and in Li and Yu (2009) and Manova et al. (2011) for Chinese firms, whereas contrasting evidence that constraints do not matter for entry into export is provided in Greenaway et al. (2007) for the UK, Stiebale (2011) for France and Arndt et al. (2012) for Germany. Most of these studies, with the notable exception of Muuls (2008), Berman and Hricourt (2010) and Arndt et al. (2012), also find that financial constraints affect the intensive margin of exports by reducing the value of a firm’s exports. Damijan et al. (2010) find evidence that improving the access to external finance helps Slovenian firms to expand exports and even more so for small firms.

In this paper, exploiting a large representative panel of Italian firms, we propose a further look at the empirical identification of the effect of financial constraints on the value of a firm’s foreign sales. We want to address what we perceive as important limitations in previous studies, providing two distinct contributions.

First, we jointly consider a fixed effect type of control for unobserved firm heterogeneity together with two well-known sources of potential bias, namely self-selection into exports and potential endogeneity of financial constraints in the determination of firms’ exports. Among previous empirical papers, Minetti and Zhu (2011) make the only attempt to address self-selection and endogeneity at the same time, notably on a sample of Italian firms different and smaller than the sample available

\(^1\)At a more aggregate level, early evidence on a negative effect of financial development on aggregate exports of countries and sectors was delivered by Beck (2002) and Svaleryd and Vlachos (2005), among others.
to us. They employ a modified Heckman-type procedure to deal with selection, and exploit exoge-
nous variation in the geographical distribution of local supply of banking services to instrument their
proxy of credit constraints. Though, their cross-sectional data do not allow to control for unobserved heterogeneity. Our main step forward with respect to the literature is precisely along this direction. Applying the estimator developed in Semykina and Wooldridge (2010), we are able to fully exploit the panel dimension of our data to control unobserved heterogeneity in both the selection and main equations, and, at the same time, to allow for an instrumental variable treatment of potential endogeneity of access to credit. Thus, we identify the causal effect on exports of within firms changes in financial conditions, while previous studies only capture differences across constrained vs. unconstrained firms. A clear identification of this effect is of crucial importance as it contributes to the debate concerning proper policies to support and foster international expansion of manufacturing firms.

Second, a key issue concerns the intrinsic difficulty in measuring financial constraints. Theoret-
ically the goal is clear: finding an empirical indicator identifying the point where the credit supply
curve faced by a firm becomes inelastic. However, the empirical measures adopted in the literature, inspired by a long standing debate outside the trade literature, are many and different. This heterogeneity in the approaches might be at the origin of the somewhat contrasting findings on the effect of financial constraints on a firm’s exports. The identification assumption common to most measures is that they look at the credit supply as it is reflected by the perception or actions of the firm (Farre-Mensa and Ljungqvist, 2013). We instead build a proxy of financial constraints based on a credit rating index. This means that we identify where the firm credit supply becomes inelastic from the point of view of banks and credit institutions. By incorporating the credit markets’ view and attitude towards potential borrowers, credit ratings measure the way investors decide to provide external finance. A similar approach based on credit scores is followed in Muuls (2008)’s study of Belgian firms, and in Wagner (2012)’s study of German firms.

Moreover, Italy represents a particularly interesting case to study. The industrial system is pop-
ulated by a large number of small-medium sized firms, which are usually considered more exposed to financing problems. And, moreover, financing problems might be of particular relevance since the structure of the Italian financial system presents peculiarities with respect to other major countries. In fact, although the Italian banking system is comparatively small with respect to the real economy (2.7 times the GDP compared to, for instance, 4.2 times the GDP in France), bank credit plays a prominent role as a source of financing of firms in Italy. In recent years, almost 70% of the financial debts of non-financial corporations is made up by bank loans, while the same share is only 37% in France and 55% in Germany (Panetta, 2013). This is a persistent feature of the Italian system, with similar numbers found over the 2000-2003 period under study in this work, consistently across Italian regions (Bank of Italy, 2004). In this context, having a rating index that is issued by an agency “internal” to the banking system, and widely used by Italian banks, provides us with an ideal opportunity to disentangle the impact of financial constraints on exports.

2By contrast, Italian capital and bond markets are quite small compared to other major countries. The stock market capitalization of Italian non financial corporations is less than 20% of GDP, compared with 75% in France and 45% in Germany. Bond financing of Italian non financial corporations amounts to less than 8% of firms’ total financial debt.
Our findings confirm that constraints negatively affect export, conditional on entry. However, the estimated within-firm over time effect of financial constraints is sizably larger than the impact across constrained vs. unconstrained firms identified by most previous studies.

2 Empirical model and estimation strategy

Our main goal is to explore the relationship between financing constraints and a firm’s exports. The baseline equation of interest is

\[\ln \text{Exports}_{f,t} = \gamma \text{FC}_{f,t-1} + \beta \text{Z}_{f,t-1} + FE_f + \epsilon_{f,t} \] (1)

where Exports is the value of exports of firm f in year t, FC is a dummy variable identifying constrained firms, Z is a set of firm level controls, FE is a firm fixed effect capturing time invariant firm specific unobserved characteristics, and \(\epsilon_{f,t} \) is a standard error term. The FC status and controls are lagged, as a first way to reduce potential simultaneity. The parameter of main interest is of course the coefficient \(\gamma \), capturing the effect of being financially constrained.

There are two potential sources of bias in estimating equation (1). A first issue is that, as suggested by economic theory and previous empirical evidence, firms self-select into exports. Thus, hidden factors affecting firms’ decision to enter foreign markets are likely to be correlated with unobserved factors influencing trade activities. Failing to account for this correlation may result into inconsistent estimates of the parameters of interest. Second, an endogeneity problem can arise from potential joint determination of export performance and financial constraints. Indeed, unobserved factors influencing the credit supply of firms might also influence firms’ ability to export.

In order to cure for both potential sources of bias, and at the same time allowing for firm fixed effects, we apply the approach developed in Semykina and Wooldridge (2010). This strategy provides consistent estimation of panel data models with selection also in presence of correlated unobserved effects and endogenous regressors.

The estimation strategy entails to explicitly model the selection mechanism via a two-equation, Heckman-type framework

\[\ln \text{Exports}_{f,t} = \gamma_1 \text{FC}_{f,t-1} + \beta \text{Z}_{f,t-1} + FE_F + \epsilon_{f,t} \] \hspace{1cm} (2)

where Exports is the value of exports of firm f in year t, FC is a dummy variable identifying constrained firms, Z is a set of firm level controls, FE is a firm fixed effect capturing time invariant firm specific unobserved characteristics, and \(\epsilon_{f,t} \) is a standard error term. The FC status and controls are lagged, as a first way to reduce potential simultaneity. The parameter of main interest is of course the coefficient \(\gamma_1 \), capturing the effect of being financially constrained.

\[s_{f,t} = 1 \left[\gamma_2 IV_{f,t-1}^{FC} + \delta \text{W}_{f,t-1} + FE_{2f} + \epsilon_{2f,t} > 0 \right] \] \hspace{1cm} (3)

Equation (2) is the main equation of interest (corresponding to Equation 1 above), where \(\gamma_1 \) is the coefficient of primary interest capturing the impact of the potentially endogenous dummy for constrained firms. Equation (3) is a Probit selection equation where \(s_{f,t} \) is a binary indicator of a firm’s export status (1 if a firm is exporter in t, 0 otherwise). Among the arguments of the indicator function \([\cdot] \) on the right hand side, \(IV_{f,t-1}^{FC} \) is the instrumental variable for \(FC_{f,t-1} \), \(\text{W}_{f,t-1} \) contains exogenous explanatory variables, \(FE_{2f} \) is an unobserved firm fixed effect, and \(\epsilon_{2f,t} \) a usual error term. Following the Procedure 19.2 proposed by Wooldridge (2010), the instrument \(IV_{f,t-1}^{FC} \) is generated as the fitted probability from a Probit regression with the FC dummy as the dependent and
taking as regressors an appropriate instrument capturing exogenous variation in financial constraints, plus the controls in Z_f and their time averages. Notice that $Z_f \subset W_f$, since the set W_f includes the same firm-level controls included in Equation (2), but it also includes a further variable serving as the exclusion restriction curing selection bias. This exclusion restriction variable must capture factors that influence the choice to enter into export markets, but unrelated to subsequent export performance. Proxies of sunk costs of exporting are traditionally accepted to meet this requirement, at least since Roberts and Tybout (1997).

Semykina and Wooldridge (2010) show that, because of the presence of firm-specific unobserved effects also in the selection equation (3), adding the inverse Mills ratio and using a simple Fixed Effects estimator do not produce consistent estimates of Equation (2). However, a solution is available via adding time averages of all the exogenous explanatory variables both in the main equation (controls and generated instruments for FC) and in the selection equation (controls, proxy of sunk costs of export, and generated instruments for FC).

3 Data and variables

The analysis exploits three datasets that we merge to obtain our working sample.

First, we have access to the Italian Foreign Trade Statistics (Commercio Estero, hereafter COE). This is collected by the Italian Statistical Office (ISTAT) and represents the official register of all trade flows involving Italian firms. It contains values (in thousands of euros) and quantities (in Kilos) of all export transactions by exported product and destination country. These are then aggregated to provide a firm level value of foreign sales, that we use as our dependent variable.

Second, we use the Italian Register of Active Firms (Archivio Statistico Imprese Attive, ASIA), which is also maintained by ISTAT and covers the universe of Italian firms operating in all sectors of activity, irrespective of their export status. It reports annual figures on number of employees, sector of main activity, and information about geographical location of the firms (municipality of principal activity or legal address).

Third, we access a firm level accounting dataset collected by the Italian Company Account Data Service (Centrale dei Bilanci, CB) and available through ISTAT. The CB dataset collects standard annual balance sheets and financial statements for all Italian limited liability firms. The long term

3 This is due to well known identification problems related to linearity of the inverse Mills ratio in Heckman-type estimators.

4 More precisely, we are modeling $FE_{2f} = \xi \bar{IV}_f^{FC} + \xi \bar{W}_f + a_{2f}$, where a bar indicates time averages of a variable, and we are modeling $(a_{2f}|IV_f^{FC}, W_f) \sim \text{Normal}(0, \sigma_a^2)$. This is equivalent to assume that FE_{2f} is related to IV_f^{FC} and to W_f only through their time averages, while the remainder is independent of IV_f^{FC} and W_f. Likewise, the other implicit assumption is that the main equation unobserved effect is modeled as $FE_{1f} = \eta FC_f + \eta \bar{Z}_f + a_{1f}$. This transformation, similar in spirit to Mundlak (1978), uses time averages of the explanatories computed over the entire sample of exporters and non-exporters and it is therefore free of selection bias (see Semykina and Wooldridge, 2010, for details).

5 Only transactions involving very small values are left out of the COE data. According to ISTAT, firms in COE cover about 98% of trade flows (http://www.coeweb.istat.it/default.htm). Thus, firms which do not appear in the dataset are either marginal exporters or do not export at all. A detailed description of the requirements for a trade flow to be recorded in the case of Italy is in Bernard et al. (2013).
Table 1: Representativeness vis a vis total manufacturing

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of firms Universe</th>
<th>Number of exporters</th>
<th>Export value (Bill. euros)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of firms Our sample</td>
<td>Number of exporters</td>
<td>Export value</td>
</tr>
<tr>
<td></td>
<td>Number of exporters Our sample</td>
<td></td>
<td>Number of exporters Our sample</td>
</tr>
<tr>
<td>2000</td>
<td>565,396</td>
<td>108,017</td>
<td>78,412</td>
</tr>
<tr>
<td>2001</td>
<td>560,657</td>
<td>111,749</td>
<td>79,577</td>
</tr>
<tr>
<td>2002</td>
<td>552,940</td>
<td>113,056</td>
<td>80,593</td>
</tr>
<tr>
<td>2003</td>
<td>541,835</td>
<td>112,441</td>
<td>79,356</td>
</tr>
</tbody>
</table>

Notes: Table reports the number of firms, the number of exporters and the total value of exports for the universe of manufacturing firms and for our sample.

institutional role of CB ensures high data quality, limiting measurement error.6

The CB dataset posits constraints to the analysis, since we only have access to data over the period 2000-2003, and we can only exploit a small subset of the firm annual reports, limiting the list of potentially relevant variables that we can employ in the estimates. At the same time, however, the CB dataset is also fundamental for our work, as it is the source for our proxy of financial constraints.

After merging the three sources, we obtain a dataset that covers the entire population of Italian limited firms, over the period 2000-2003. The working sample is an unbalanced panel including a total of 149,362 firms active in manufacturing (exporters and non exporters). In Table 1 we show that, compared to the total Italian manufacturing, our sample covers on average 20% of firms, about 58% of all manufacturers that do export, and 85% of the total value of exports. This is also a consequence of the fact that in Italy the legal status of limited firm is more common among medium-large firms, which are also those actors creating the vast majority of jobs, value added and exports. Indeed, in the years under analysis, limited firms represent about 65% of total manufacturing value added and account for about 75% of total employment. Notice, however, that we do have micro and small firms in the sample, and that we do not observe any strong under-representation of small or micro firms in the sample, as compared to their proportion in the population of Italian manufacturers.7

Measuring financial constraints

We base our assessment of firm-level financial constraints (FCs) on a firm-specific credit rating issued yearly by CB. This rating index results from an in-depth analysis conducted by professional financial analysts, complementing “hard data” on borrowers’ annual reports with relevant soft information collected locally.8 The index is given as a score on a scale of 9 categories of creditworthiness: 1-high reliability, 2-reliability, 3-ample solvency, 4-solvency, 5-vulnerability, 6-high vulnerability, 7-risk, 8-high risk, and 9-extremely high risk.

6All the data were accessed at the ISTAT facilities in Rome, and have been made available after careful screening to avoid disclosure of individual information.

7See Secchi et al. (2013) for more information on the data sources and their coverage.

8Soft information refers to any kind of information about a firm coming from private and direct firm-lender relationships, i.e. other than the relatively more public information such as about the availability of collateral or about administrative statements. See Petersen (2004) for a discussion on soft vs. hard information. Detailed description of the CB index is available at http://www.cervedgroup.com.
The problem of measuring financial constraints is a long debated issue. An accepted definition of constraints is a situation where a firm faces an inelastic credit supply schedule, so that the possibility to obtain external financial resources is ruled out. The key difficulty originates from the empirical impossibility to observe when this situation does happen in practice. To overcome this problem, the literature on financial constraints, even outside trade studies, proposes a few indirect proxies of FCs. Scholars either rely on surveys, and thus define the constrained status based on what firms say and perceive, or resort to data coming from firms’ financial accounts, defining constrained firms as those with, e.g., poor liquidity, high leverage, high cash-to-cash-flow sensitivity, or low collateral, on the presumption that these financial variables, or combination of the latter, strongly correlate with the ability to raise external credit. In reviewing the most common measures, Farre-Mensa and Ljungqvist (2013) explain that the implicit identification assumption common to the all the existing proxies is that “managers’ opinions or actions reflect the shape of the credit supply curve as they perceive it.”

Credit ratings represent a valid alternative to identify firms likely to face an inelastic credit supply curve: ratings indeed capture the shape of a firm’s credit supply curve as the credit market perceives or, more precisely, defines it. Let us explain how the specific characteristics of the CB rating support this view.

First, the CB index is an official rating within the Italian banking system, extensively used by Italian banks in the evaluation of potential borrowers. This role of benchmark internal to the banking system is crucial to proxy for financial constraints dynamics in the Italian case, where bank credit is by far the primary source of external finance for firms, as we mentioned in the introduction.

Second, and relatedly, the role of the CB index as a key input in lending procedures of Italian banks makes it a close proxy for what banks do. This is confirmed by previous empirical analyses showing that there is a tight link between the CB rating and the availability and the cost of external finance. Guiso et al. (2013) provide clear evidence that, ceteris paribus, bad ratings have a clear association with higher interest rates and thus, with the cost of credit. Panetta et al. (2009) show that it is unlikely that a firm with poor rating can receive any credit.

Third, the CB index is a suitable measure of FCs also because of the complex set of information captured by the index itself, combining hard and soft data. This feature indeed entails that the CB rating does not merely work as a summary measure of firm performance, but it also includes other considerations which are taken into account in banks’ lending decisions. Previous empirical analyses (Bottazzi et al., 2008, 2014) corroborate this idea, showing that an important fraction of highly productive, highly profitable and fast growing firms indeed receive very poor CB scores.

It is in view of these considerations about its merits in easing the identification of inelastic credit supply that we exploit the CB rating index to split the sample into constrained and unconstrained firms. We build a financial constraints dummy (FC) that, in each different year, equals 1 if the CB rating of a firm is in category 8 or 9, and 0 otherwise. As already noted in presenting the empirical model, we use the 1-year lagged value of the FC dummy in the regressions. Together with providing

9We label as NFC (Not-FC) firms those firms with FC dummy equal to 0. An alternative strategy could be to use all or to group some of the original 9 rating classes, thus trying to account for the graduation in the difficulty to access external finance. However, since the index is an ordinal variable, there is no quantitative meaning in moving, for instance, from class 4 to class 6. The binary categorization, moreover, avoids the potential error in variables problem arising from including dummies for each of the rating classes.
a first control for simultaneity, this choice is also appropriate because the rating scores are updated by CB at the end of each year, and it is therefore the rating in \(t - 1 \) that is available to credit suppliers for their decisions on credit provision in year \(t \).

According to our definition of FC firms, 17.5% of the firms in our dataset are financially constrained. The same ratio is 10% among exporters. There is also variability in firms’ financial status over time. Indeed, looking at the 1-year transition matrix the percentage of firms moving from NFC to FC is 5.7%, while those moving from FC to NFC is 43.1%. Taking the longer time lag between \(t \) and \(t + 3 \), the changes from NFC to FC status increase to 13.9% of total transitions, while changes from FC to NFC status amount to 40.6%. The percentage of within-firm changes in the FC status are even larger if we only consider the exporting firms separately. Between \(t \) and \(t + 1 \) the share of firms moving from NFC to FC is 7.2%, while the FC-to-NFC changes account for 44.1% of total transitions. This is important for identification of the FC effect, since we want to exploit within-firm changes in FC status over time.

Figure 1 shows the share of FC firms by province, in the total sample (left) and among exporters (right). The darker a province in the map and the higher the corresponding share of FC firms over the total number of firms in the province. We observe that, notwithstanding the relatively lower presence of FC firms in Northern provinces, constrained firms are not clustered in few local areas. That is, some Southern provinces also have a relatively low share of rationed firms and some Northern provinces see a relatively high presence of constrained firms. The picture is in line with the findings from Minetti and Zhu (2011) where the definition of FCs exploits a survey of Italian firms asked to assess their perceived degree of credit rationing.

Figure 1: Geographical distribution of firms: share of FC firms by province in 2003. All firms (left) and exporters (right).

10 A province is a local administrative entity, grouping several municipalities and cities, roughly corresponding to a US county.
Controls

Guided by the literature on financing problems of firms (see Cabral and Mata, 2003; Almeida et al., 2004; Angelini and Generale, 2008, among others), and constrained by the limited set of CB variables available to us, we select the following firm-level attributes defining the set of controls \(Z \). First, given the well established result that smaller firms tend to be more prone to financing problems, we can control for firm size via the number of employees (\(\text{Empl} \)) or total turnover (\(\text{Sales} \)).\(^{11}\) Secondly, given that younger firms are more likely to have limited access to external financial resources, we include age (\(\text{Age} \)) computed from the year of foundation of each firm. Finally, we add two controls for financial factors that may interact with external finance in determining the overall amount of financial resources available to a firm. These factors are the availability of internal resources generated by operations, proxied by \(\text{Gross Operating Margin} \), and the amount of overall collateral, which we measure through total \(\text{Assets} \). All the controls enter the regression in logs and lagged by one year.\(^{12}\)

Table 2 presents descriptive statistics about the controls. In column 1, by comparing all firms vs. exporting firms (Panel A vs. Panel B), we confirm the stylized facts that exporters are on average bigger, older and that they have a stronger financial side, with more assets and more internal resources. Column 2 reports a difference in mean test between constrained and unconstrained firms obtained by running an OLS regression of firm attributes (in logs) on the FC dummy, including 3-digit industry fixed effects to get rid of sector-specific patterns on the production side. Results obtained over the entire sample (in Panel A) confirm the stylized facts that firms affected by financial constraints tend, on average, to be smaller, younger, and to suffer from a relatively weaker financial structure in terms of less assets and less internally generated resources. The same picture emerges after conditioning upon being exporters (in Panel B). Moreover, we also observe that constrained exporters export on average less than unconstrained exporters.

Instruments

A further set of variables is used in the econometric methodology to provide instruments in curing the potential endogeneity of the FC dummy and the potential bias from self-selection into exports.

In order to instrument for the FC dummy, in the absence of firm level variables allowing to identify exogenous variation in firm level access to credit, we follow a common approach in the empirical literature on Italy, originally proposed in Guiso et al. (2004, 2006). The core idea is to resort to historical development of the regulation of the Italian banking services to identify exogenous changes in the geographical distribution of credit availability at the level of Italian provinces. The underlying rationale is to exploit exogenous variation in provincial credit supply determined by the progressive removal, during the 1990s, of a series of restrictions to banking services. As explained in detail in Guiso et al. (2004, 2006), until the 1990s the distribution of banks and bank branches across Italian provinces came about in compliance with the rules implemented by the regulatory authorities

\(^{11}\)We mainly use employment since this variable is less collinear than sales with other regressors.

\(^{12}\)Export values as well as controls are deflated with appropriate sectoral price indexes computed by ISTAT. Complete deflator series are available only at the 2-digit industry level, so we deflate at this level of sectoral aggregation, with base year 2000.
Table 2: Descriptive statistics, 2003

<table>
<thead>
<tr>
<th></th>
<th>Our sample - Averages (1)</th>
<th>Difference between FC and non-FC firms (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A - All firms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of employees</td>
<td>26.17</td>
<td>-0.863*** (0.011)</td>
</tr>
<tr>
<td>Sales</td>
<td>5,441</td>
<td>-1.301*** (0.016)</td>
</tr>
<tr>
<td>Age</td>
<td>14.56</td>
<td>-0.569*** (0.008)</td>
</tr>
<tr>
<td>Total Assets</td>
<td>5,539</td>
<td>-1.054*** (0.014)</td>
</tr>
<tr>
<td>Gross operating margin</td>
<td>493.1</td>
<td>-2.106*** (0.019)</td>
</tr>
<tr>
<td>Panel B - Exporters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of employees</td>
<td>48.82</td>
<td>-0.874*** (0.022)</td>
</tr>
<tr>
<td>Sales</td>
<td>11,312</td>
<td>-1.152*** (0.026)</td>
</tr>
<tr>
<td>Age</td>
<td>18.51</td>
<td>-0.644*** (0.015)</td>
</tr>
<tr>
<td>Total Assets</td>
<td>11,255</td>
<td>-0.868*** (0.025)</td>
</tr>
<tr>
<td>Gross operating margin</td>
<td>996.9</td>
<td>-2.295*** (0.042)</td>
</tr>
<tr>
<td>Exports</td>
<td>3,775</td>
<td>-1.369*** (0.042)</td>
</tr>
<tr>
<td>Number of observations</td>
<td>112,441</td>
<td></td>
</tr>
<tr>
<td></td>
<td>46,492</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Column 1: averages in 2003 computed across all firms (Panel A) and all exporters (Panel B) in the sample. Monetary variables in thousands of Euros, deflated. Column 2: difference in means between constrained and unconstrained firms in the entire sample (Panel A) and within the exporters (Panel B), obtained via log-OLS regressions of firms’ characteristics on the FC dummy, controlling for 3-digit industries. Robust standard error in parenthesis. ***: significant at the 1% level; **: significant at the 5% level; *: significant at the 10% level.

in 1936. That regulation was fixing limits to the number of bank affiliates per each province, in a way essentially unrelated to the structural characteristics and the level of economic development of the provinces themselves. The removal of these restrictions during the 1990s liberalized the credit market, giving the possibility to open new affiliates within and across provinces. This exogenous change had differentiated impact across provinces, also in relation to the fact the deregulation was more or less deep depending on the type of bank involved (cooperative vs. saving banks, in particular) and that such different entities were unevenly spread across provinces at the time of deregulation.

Exploiting such historical patterns, to generate the instrument $IVFC_f$ we use the 1990-1999 difference in the number of bank branches (per 1,000 inhabitants) in each province. Minetti and Zhu (2011) apply a similar methodology to instrument their survey-based measure of firm-level financial constraints. Key for identification is to clarify the link between the chosen instrumental variable and the CB rating. In general, we expect more favorable credit ratings in provinces where we observe a higher number of 1990-1999 newly created bank branches. Indeed, a closer spatial proximity between firms and banks allow the latter to gather more and more precise information on firms, which should in turn get reflected in the soft data defining the CB index. This stands on two assumptions. First, an important part of banks’ knowledge of potential borrowing firms cannot be easily codified or trans-
Figure 2: Relationship between the 1990-1999 difference in the number of bank branches and the share of FC firms by province in 2003.

ferred, and therefore it is only available locally, close to the place where a firm is located. Conversely, with less branches and thus less information, firms look more opaque, and the typical reaction by the banking system is a more conservative and distrustfully approach to evaluation of potential borrowers, an attitude that in turn translates into attaching worse ratings to firms. Second, physical proximity between banks and firms, by itself, reduces opacity and increases the overall level of trust, for instance through repeated interactions. As a result, banks become more prone to accept potential borrowers’ requests in local areas with a more widespread presence of bank branches, and this should translate into better rating scores by banks and other credit institutions. Eventually, we expect the instrument to capture the variation in the ability of banks to collect more and more precise information on firms, in turn positively affecting credit ratings and thus reducing financial constraints. By contrast the same variation is exogenous, in the sense that it is not expected to directly impact neither on firm export behavior nor on unobserved firm characteristics that determine export behavior.

Figure 2 provides empirical support to the validity of the instrument. It shows that the 1990-1999 difference in the number of branches in each province is indeed highly correlated with the share of FC firms in that province in 2003, with the expected negative sign. OLS and Least Absolute Deviation estimates of the slope of the relationship gives a coefficient of -0.516 (standard error 0.052) and -0.520 (standard error 0.067), respectively, and results are comparable in the other years in the sample period.

A further instrument that we need is a proxy for the sunk costs of exports, meeting the exclusion restriction required to cope with selection bias. We define this proxy starting from the concept of Local Labour Systems (LLSs). These are geographical aggregations of municipalities defined by the Italian Statistical Office according to the degree of connectivity of the local labour market within the aggregations itself, and thus identifying local areas where production-labour relationships are tight. Tight connections at the local level are likely characterized by activities such as sharing same trade

13 See Petersen and Rajan (1995); Bonaccorsi di Patti and Gobbi (2001); Carling and Lundberg (2005); Alessandrini et al. (2009) for further details on the role of distance on credit dynamics.
services, accessing pools of established distribution networks, or exploiting neighbors’ experience in dealing with foreign contracts and foreign legislation. These and possibly other factors tend to facilitate the entry into foreign markets, in turn reducing the sunk costs of exporting. Following Bernard and Jensen (2004) and Bernard et al. (2013), for each firm \(f \), we define a proxy for the sunk cost of entry into exports (\(ExpCost_f \)) computed as the minimum between export entry and exit rates computed within the LLS wherein a firm is located. Higher rates of entry into or exit from export markets indicate lower sunk costs of exporting.\(^{14}\) There is substantial variation in the \(ExpCost \) variable across LLSs and over time. In 2000, the median value of the variable is about 13% with a variance of 0.02, and it equals 9% and 21% for the 25th and 75th percentile, respectively. The over time variance across years within each LSS ranges from a minimum of 0.01 to a maximum of 0.25.

4 Results

Operationally, a consistent estimate of the FC dummy coefficient \(\gamma \) in our baseline regression (1) is obtained with the following steps:

Procedure 1

1. generate the instrument \(IV_{f,t-1}^{FC} \) as the fitted probability from a Probit regression of the binary indicator \(FC \) against the provincial level instrument for credit conditions (i.e. the 1990-1999 difference in the number of bank branches per 1,000 inhabitants in each province), the controls in \(Z_f \) (that is, the firm-level characteristics mentioned above) and their time averages;

2. obtain the inverse Mills ratio \(\hat{\lambda}_{f,t} \) from a Probit estimate of equation (3) augmented with the time averages of the generated instrument \(IV_{f,t-1}^{FC} \) from Step 1, and with time averages of the controls in \(W_f \) (that is, of the firm-level characteristics plus \(ExpCost \));

3. estimate via pooled 2SLS-IV equation (2) augmented with the time averages of the generated instrument \(IV_{f,t-1}^{FC} \), with the time averages of the explanatories in \(Z_f \), and with the inverse Mills ratio \(\hat{\lambda}_{f,t} \) obtained in Step 2 together with its interactions with time dummies; use \(Z_f, IV_{f,t}^{FC}, \) all the time averages and \(\hat{\lambda}_{f,t} \) as instruments;

4. obtain analytic standard errors via the sandwich estimator provided in Semykina and Wooldridge (2010).\(^{15}\)

As specified in Wooldridge (2010) there are several nice features of this IV estimator: it is robust to mis-specification of the Probit model, it is more efficient than directly including the number of branches in 1990-99 as an instrument into an IV procedure and, finally, it does not require to adjust the 2SLS-IV standard errors. However, standard weak instrument diagnostics are known to fail in this

\(^{14}\)We use the ISTAT definition of LLS in 2001, amounting to 683 areas.

\(^{15}\)We generally report standard errors clustered at the firm level to allow for serial correlation of the error terms of a given firm. However, since the instrument used to generate \(IV_{f,t-1}^{FC} \) vary at the province level, we also run all the regressions clustering standard errors by province. Results are robust to this alternative treatment of the error terms.
Table 3: Financial Constraints and Total Exports - Main estimates

<table>
<thead>
<tr>
<th></th>
<th>ln $Exports_{f,t}$</th>
<th>ln $Exports_{f,t}$</th>
<th>ln $Exports_{f,t}$</th>
<th>ln $Exports_{f,t}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>POLS Procedure 1</td>
<td>FE Procedure 1</td>
<td>Procedure 1</td>
<td>Procedure 1</td>
</tr>
<tr>
<td>$FC_{f,t-1}$</td>
<td>-0.134***</td>
<td>-0.091***</td>
<td>-1.674**</td>
<td>-1.548**</td>
</tr>
<tr>
<td></td>
<td>(0.027)</td>
<td>(0.028)</td>
<td>(0.699)</td>
<td>(0.663)</td>
</tr>
<tr>
<td>ln $Empl_{f,t-1}$</td>
<td>0.208***</td>
<td>0.124***</td>
<td>-0.031</td>
<td>-0.031</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.019)</td>
<td>(0.029)</td>
<td>(0.029)</td>
</tr>
<tr>
<td>ln $Sales_{f,t-1}$</td>
<td></td>
<td></td>
<td></td>
<td>0.128***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.055)</td>
</tr>
<tr>
<td>ln $Age_{f,t}$</td>
<td>-0.126***</td>
<td>-0.049</td>
<td>0.308***</td>
<td>0.467***</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.075)</td>
<td>(0.095)</td>
<td>(0.098)</td>
</tr>
<tr>
<td>ln $ASSETS_{f,t-1}$</td>
<td>0.947***</td>
<td>0.479***</td>
<td>0.392***</td>
<td>0.489***</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.031)</td>
<td>(0.028)</td>
<td>(0.051)</td>
</tr>
<tr>
<td>ln $GOM_{f,t-1}$</td>
<td>0.071***</td>
<td>0.022***</td>
<td>-0.043</td>
<td>-0.043*</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.004)</td>
<td>(0.029)</td>
<td>(0.024)</td>
</tr>
<tr>
<td>$\hat{\lambda}_{f,t}$</td>
<td></td>
<td></td>
<td>0.505***</td>
<td>0.136*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.097)</td>
<td>(0.067)</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm FE</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.463</td>
<td>0.910</td>
<td>0.387</td>
<td>0.413</td>
</tr>
<tr>
<td>N.Observations</td>
<td>124,759</td>
<td>124,759</td>
<td>124,759</td>
<td>124,759</td>
</tr>
</tbody>
</table>

Notes: The dependent variable is firm value of exports (in log). $FC_{f,t-1}$ is a dummy for financially constrained firms. All the regressions include a constant term. POLS regression in Column 1 also includes sector (3-digit) and province fixed effects. Column 4 use sales in place of employees as a control for size. Robust standard errors clustered at firm level are reported in parenthesis below the coefficients. Asterisks denote significance levels (***: p < 1%; **: p < 5%; *: p < 10%).

Compared to previous studies, our explicit control for unobserved heterogeneity in both the selection and the primary equation gives additional confidence of proper identification of the key parameters. Estimation of the coefficient on the FC dummy indeed exploits within firm variation over time, allowing to quantify how within firm changes of FC status affect within firm changes in export values. For completeness, columns 1-2 of Table 3 report more standard pooled OLS (POLS) and Fixed Effects (FE) estimates of Equation (1). POLS imply identification of the role of financial constraints by comparing constrained vs. unconstrained firms. The FE estimates look at within firm variation, but without controlling for selection and endogeneity. The results support that financial constraints associate with a reduction in foreign sales. The coefficient of the FC dummy in the FE specification is significantly smaller in absolute value than in the POLS estimates. This suggests a negative correlation between omitted variables and assignment to the FC class, as it is indeed expected for unmeasured factors such as managerial ability or quality, for instance.

In column 3 we report our main estimates, addressing unobserved heterogeneity jointly with selection and endogeneity bias through Procedure 1. The term $\hat{\lambda}_{f,t}$ is the inverse Mills ratio estimated in Step 2 of the Procedure: the observed statistical significance of the corresponding coefficient confirms that selection is indeed an issue. We also notice that the relevance and the validity of the instrument for FC, i.e. the Probit fitted probabilities IV^{FC}, are confirmed in the preliminary Probit from Step 1 of the procedure (see Table 5 in Appendix), where the coefficient on the 1990-1999 difference in the
number of bank branches (per 1,000 inhabitants) in each province is statistically significant \((p\text{-value} 0.002)\) and with the expected negative sign \((-0.510)\).

The estimates confirm that financial constraints induce a significant reduction in the value of exports. The effect is sizable: the point estimate is \(-1.674\) with a 95\% confidence interval between -0.297 and -3.051, implying that financial constraints reduce exports by more than 35\%, \textit{ceteris paribus}. This is a sensibly smaller effect than in Minetti and Zhu (2011).\(^1\) Of course part of the difference comes from their lack of control for firm fixed effects, due to the cross-sectional nature of their data, in addition to differences in the definition of FC firms and their coverage of a smaller Italian sample. Conversely, compared to other studies, our estimated effect seems to be larger in magnitude, although a direct comparison cannot be established due to different measures of financial constraints and differences in the adopted empirical models.\(^2\)

It is also remarkable that the hampering effect of FCs is stronger than what we can infer from the simple FE estimates in column 2. The latter are upward biased (smaller FC coefficient in absolute value), suggesting that the endogenous component of our FC classification associates with an underestimation of the true detrimental effect of being constrained on exporting activities. Concerning the controls, and limiting to the more reliable selection-endogeneity corrected estimates in column 3, we find that age and collateral have a positive and strongly significant coefficient. The elasticity of exports to size and internal resources are not significant.\(^3\) In column 4 we check if there are differences when using sales in place of employment as a proxy for size. This helps to focus on the relative importance of foreign sales over total sales, rather than simply controlling for the scale of operation via employment figures. Results remain unchanged.\(^4\)

Robustness checks

We explore the robustness of the negative effect of FCs on exports through a series of additional exercises. Table 4 presents the results. All the reported estimates are obtained through application of Procedure 1, and are therefore informative about within firm changes of FC status corrected for

\(^1\)Secchi et al. (2013) report a series of alternative assessment of the goodness of fit of the first step Probit, further supporting the validity of the instrument.

\(^2\)When they use their more restrictive version of their FC proxy, the point estimate is -3.043 with a 95\% confidence interval between -0.489 and -5.597.

\(^3\)For Belgian firms Muuls (2008) observes that a one unit increase in the credit score (i.e. a reduction in financial constraints in her case) increases exports by 8.8\%. Li and Yu (2009) find that the elasticity of exports of Chinese firms to interest expenses is close to unitary. Damijan et al. (2010) analysis of Slovenian firms reveals that the coefficient between lagged debt-to-asset ratio and export intensity is positive and significant for both small and large firms, and equal to 0.054 and 0.142, respectively. Finally, Wagner (2012) notices that his estimates of a fractional logit model, exploiting a credit score as a measure of FCs for German firms, cannot be interpreted in a straightforward way in terms of elasticity or effect of unit changes on export values.

\(^4\)Endogeneity of controls might still be an issue, although variables are taken with a lag in the models. However, GMM estimators are not an option given the time span available.

\(^5\)As mentioned, sales create collinearity problems with other regressors, and with total assets in particular, as revealed by standard Variance Inflation Factors test from OLS estimates of the main Equation. We therefore keep employment as the size proxy in the rest of the paper. We also experimented with a different measure of collateral, taking the ratio between Fixed Tangible Assets and Total Assets. The conclusions on the FC coefficient remains valid, although Fixed Assets in the CB data present problems: they are gross of depreciation (and we do not have investment figures to apply perpetual inventory methods) and also present several zeros and missing values, considerably reducing the sample.
First, we enrich our baseline regression model to include a firm-level proxy of unit costs among the regressors. If financial constraints are associated to higher unit costs, possibly due to inefficiency of constrained firms, then one wants to disentangle this aspect from a pure FCs effect. Seeking to capture this cost-efficiency channel, we include the (log of) the unit cost of labour, obtained as the ratio between total labour expenses and number of employees. We try in this way to account for possible distortions related to the failure to directly measure productivity effects. The results (column 1) confirm that financial constraints reduce a firms’ exports. The point estimate of the FC coefficient is smaller (-1.499) but not statistically different from the baseline estimate in Table 3 within a 1-standard error confidence interval. The coefficient on unit cost of labour is negative and significant: more costly labour reduces exports, confirming the cost-efficiency interpretation of this variable.

Second, we exclude from the analysis firms that start exporting during the time-span considered. Indeed, credit constraints might also affect entry into export markets, and if more recent export market entrants are even more credit constrained than incumbents, this might bias the results. In column 2, we only consider continuous exporters and use as the control group those firms that never serve foreign markets within the sample period. Our conclusions about the role of financial constraints remain unchanged: the estimated coefficient is larger, but not statistically different from the baseline estimate within a 1-standard error confidence band.

Third, we re-estimate the model after excluding Italian multinational companies (MNCs), which are known to have quite specific export dynamics (see column 3). Our baseline findings are not affected: the point estimate of γ_1 is smaller, but equal to the full sample results within a 1 standard error confidence band.

Next, we test the robustness with respect to a different definition of the FC group (column 4). We include in the FC class also the firms with a CB rating of 7, thus posing a less restrictive threshold to identify firms facing inelastic credit supply. We observe a reduction in the estimated FC dummy coefficient as compared to the baseline results. This is expected given the less stringent definition of FC firms. However, once again, the difference in the estimated FC effect compared to the main results is not statistically significant within 1 standard deviation confidence interval.

Finally, in columns 5-6, we address potential weaknesses affecting the instrument for the FC

21Note that for each robustness check, the Probit used to build the instrument $IV_{FC,f,t-1}$ is correspondingly adapted. Results and related goodness of fit tests are available upon request.

22Unit costs of labour can be seen as the inverse of labour productivity in a model with only labour inputs. We have also experimented with including a TFP measure, in place of labour costs. We computed TFP via the IV-GMM modified Levinsohn-Petrin production function estimation proposed in Wooldridge (2009), with value added as output proxy, employment and Fixed Tangible Assets as labour and capital inputs, respectively, and materials as instrument. The estimated FC coefficient turned out as not statistically different from our baseline estimates. We did not use TFP further in the study, however, since the exercise suffers from the mentioned issues with the capital variable (Fixed Tangible Assets), and from imprecise GMM estimation of production functions due to the short time period available.

23Also notice that, compared to the baseline results, the inclusion of labour costs makes the “selection term” not statistically significant ($\hat{\lambda}_{f,t} = 0.013$). This might suggest that this experiment absorbs part of the self-selection into exports.

24Following Greenaway et al. (2007) we define as “continuous exporters” those firms that export in all the years in which they are present in the sample and, analogously as “never exporters” those that have never exported within our period.
Table 4: Firm Financial Constraints and Total Exports - Robustness

<table>
<thead>
<tr>
<th></th>
<th>$\ln \text{Exports}_{f,t}$</th>
<th>$\ln \text{Exports}_{f,t}$</th>
<th>$\ln \text{Exports}_{f,t}$</th>
<th>$\ln \text{Exports}_{f,t}$</th>
<th>$\ln \text{Exports}_{f,t}$</th>
<th>$\ln \text{Exports}_{f,t}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>$FC_{f,t-1}$</td>
<td>-1.499**</td>
<td>-1.987***</td>
<td>-1.433**</td>
<td>-1.554**</td>
<td>-1.418**</td>
<td>-1.656**</td>
</tr>
<tr>
<td></td>
<td>(0.642)</td>
<td>(0.452)</td>
<td>(0.627)</td>
<td>(0.699)</td>
<td>(0.670)</td>
<td>(0.691)</td>
</tr>
<tr>
<td>$\ln \text{Empl}_{f,t-1}$</td>
<td>-0.031</td>
<td>0.071***</td>
<td>0.007</td>
<td>-0.027</td>
<td>-0.026</td>
<td>-0.031</td>
</tr>
<tr>
<td></td>
<td>(0.034)</td>
<td>(0.022)</td>
<td>(0.026)</td>
<td>(0.030)</td>
<td>(0.029)</td>
<td>(0.029)</td>
</tr>
<tr>
<td>$\ln \text{Age}_{f,t}$</td>
<td>0.247**</td>
<td>-0.105</td>
<td>0.233**</td>
<td>0.406***</td>
<td>0.334***</td>
<td>0.308***</td>
</tr>
<tr>
<td></td>
<td>(0.099)</td>
<td>(0.092)</td>
<td>(0.100)</td>
<td>(0.103)</td>
<td>(0.094)</td>
<td>(0.095)</td>
</tr>
<tr>
<td>$\ln \text{ASSETS}_{f,t-1}$</td>
<td>0.589***</td>
<td>0.493***</td>
<td>0.591***</td>
<td>0.497***</td>
<td>0.388***</td>
<td>0.392***</td>
</tr>
<tr>
<td></td>
<td>(0.037)</td>
<td>(0.026)</td>
<td>(0.035)</td>
<td>(0.027)</td>
<td>(0.027)</td>
<td>(0.028)</td>
</tr>
<tr>
<td>$\ln \text{GOM}_{f,t-1}$</td>
<td>-0.034</td>
<td>-0.048***</td>
<td>-0.031</td>
<td>-0.053</td>
<td>-0.032</td>
<td>-0.042</td>
</tr>
<tr>
<td></td>
<td>(0.026)</td>
<td>(0.017)</td>
<td>(0.025)</td>
<td>(0.027)</td>
<td>(0.028)</td>
<td>(0.029)</td>
</tr>
<tr>
<td>$\ln \text{UnitLaborCosts}_{f,t-1}$</td>
<td>-0.069**</td>
<td>(0.028)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\lambda}_{f,t}$</td>
<td>0.013</td>
<td>0.367***</td>
<td>0.243**</td>
<td>0.435***</td>
<td>0.420***</td>
<td>0.508***</td>
</tr>
<tr>
<td></td>
<td>(0.098)</td>
<td>(0.066)</td>
<td>(0.109)</td>
<td>(0.097)</td>
<td>(0.091)</td>
<td>(0.097)</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.388</td>
<td>0.400</td>
<td>0.369</td>
<td>0.387</td>
<td>0.397</td>
<td>0.388</td>
</tr>
<tr>
<td>N.Observations</td>
<td>120,352</td>
<td>99,459</td>
<td>115,735</td>
<td>124,759</td>
<td>124,759</td>
<td>124,759</td>
</tr>
</tbody>
</table>

Notes: The dependent variable is firm value of exports (in log). $FC_{f,t-1}$ is a dummy for financially constrained firms. All the regressions include a constant term and are estimated via Procedure 1. Column 1: regression including unit cost of labour. Column 2: only continuous and never exporters. Column 3: Italian multinational firms are excluded. Column 4: estimates with a different definition of the FC dummy, including firms rated as 7. Column 5: additional provincial controls are added, i.e. (log of) value added, (log of) population and an index for the level of infrastructure. Column 6: we use as instrument the 1990-1999 difference in the number of branches (per 1,000 inhabitants) divided by the number of branches (per 1,000 inhabitants) in 1990. Robust standard errors in parenthesis below the coefficients, clustered at firm level. Asterisks denote significance levels (**: p<1%; *: p<5%; *:p<10%).
dummy. First, a potential violation of the exclusion restriction on this instrument may arise from correlation between the instrument itself and idiosyncratic province-level components of the error term that are in turn related to export decisions of firms. An effective way to check for this potential problem is to re-estimate our baseline model including additional provincial-level variables proxying for factors which may affect a firm’s exports and at the same time correlate with the level of development of the banking sector. In column 5, we add the (log of) value added and population at provincial level (provided by the Italian Statistical Office), and an index of infrastructural development of Italian provinces (jointly produced by the Association of Italian Chambers of Commerce in collaboration with the “Guglielmo Tagliacarne” Institute). The main conclusion is unaffected: the estimated FC dummy coefficient is still negative and statistically significant, and it does not differ from the the baseline estimates within a 1-standard error band. Further, in column 6, we control for the level of financial development of the province at the beginning of the deregulation period, by normalizing the instrument for the number of branches in 1990. Also in this case the main result of a negative and significant FC effect is preserved, and the magnitude is statistically comparable to the baseline regression.25

5 Concluding Remarks

We exploit information on a credit rating internal to the Italian banking system to provide a reassessment of the causal effect of firm-level financial constraints on the export performance of a large panel of Italian firms. Our empirical strategy allows to control for unobserved firm characteristics both in the selection and in the main equation, at the same time curing potential endogeneity of financial constraints via an instrumental variable approach. The few previous attempts to get rid of self-selection into exports and endogeneity fail to control for firm heterogeneity. This implies that, net of selection and endogeneity bias, they can only assess differences in export performance across constrained vs. unconstrained firms, while our article is the first estimating the effect of a within-firm change in credit conditions on a firm’s exports. As a result, we can be more confident that our findings provide a valid contribution to the debate on the importance of credit constraints for the performance of exporters.

Our key result is that, conditional on entry into international markets, financial constraints cause firms to export less in value. This within-firm, selection-endogeneity corrected effect of financial constraints is large, in general terms. And, in particular, it is larger than the FCs effect we obtain from pooled OLS estimates comparing constrained vs. unconstrained firms, and also larger than the within-firm effect obtained without correcting for selection and endogeneity. Moreover, it tends to be larger than what suggested by most previous studies, although different samples, countries and empirical methodologies do not allow for precise comparisons. Our conclusion proves robust to a series of sensitivity analyses.

The estimated contraction in the intensive margin due to financing problems corroborates theoret-
ical predictions that financial constraints do not only matter to cover costs related to entering foreign markets in the first place, but they are also relevant to cover variable costs of exporting. The finding has also relevant policy implications, particularly if read as a lesson for understanding possible consequences of the recent crisis. Indeed, the credit crunch may end up selecting firms on the basis of their deep pockets, rather than their productivity, with negative effects on the overall competitiveness of the economic system. Given the magnitude of the FCs effect resulting from our study, a careful evaluation of the complex interactions between firm heterogeneity, financial frictions, and aggregate dynamics appears crucial for designing appropriate policy interventions.
Appendix

In implementing Procedure 1, we follow Wooldridge (2010) and use as instrument the fitted probability $IV_{f,t-1}^{FC}$ from a Probit of our binary indicator FC on: (a) the provincial level instrument capturing exogenous variation in credit conditions (i.e. the 1990-1999 difference in the number of bank branches per 1,000 inhabitants in each province); (b) on the firm-level controls in Z_f; and (c) on their time averages.

Table 5 reports the results of this Probit. As expected, the coefficient on the FC dummy is negative and strongly significant, confirming the validity of the instrument. Controls have also the expected negative sign, when significant.

Table 5: First Step Probit Estimates

<table>
<thead>
<tr>
<th></th>
<th>$FC_{f,t-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990-1999 Difference in # of bank branches</td>
<td>-0.510***</td>
</tr>
<tr>
<td>$\ln \text{Empl}_{f,t-1}$</td>
<td>-0.048***</td>
</tr>
<tr>
<td>$\ln \text{Age}_{f,t}$</td>
<td>0.067</td>
</tr>
<tr>
<td>$\ln \text{ASSETS}_{f,t-1}$</td>
<td>-0.091***</td>
</tr>
<tr>
<td>$\ln \text{GOM}_{f,t-1}$</td>
<td>-0.014***</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Yes</td>
</tr>
<tr>
<td>Pseudo R-squared</td>
<td>0.209</td>
</tr>
<tr>
<td>N.Observations</td>
<td>274,181</td>
</tr>
</tbody>
</table>

Notes: The dependent variable is a dummy FC. Robust standard errors in parenthesis below the coefficients, clustered at province level. Asterisks denote significance levels (***/p<1%; **/p<5%; */p<10%).

Acknowledgments

The present work has been possible thanks to a research agreement between the Italian Statistical Office (ISTAT) and the Scuola Superiore Sant’Anna. Angelo Secchi gratefully acknowledges the Paris School of Economics for granting him a 'Residence de Recherche’ for the period 2012-2013. Chiara Tomasi gratefully acknowledges financial support by the Marie Curie Program Grant CO-FUND Provincia Autonoma di Trento. We also acknowledge financial support from the Institute for New Economic Thinking, INET inaugural grant #220.

References

