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Abstract

In this paper we develop on a geometric model of social choice
among bundles of interdependent elements (objects). Social choice
can be seen as a process of search for optima in a complex multi-
dimensional space and objects determine a decomposition of such a
space into subspaces. We present a series of numerical and proba-
bilistic results which show that such decompositions in objects can
greatly increase decidability, as new kind of optima (called local and
u-local) are very likely to appear also in cases in which no generalized
Condorcet winner exists in the original search space.
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1 Introduction

Social choice theory usually assumes that agents are confronted with a set
of exogenously given and mutually exclusive alternatives. These alternatives
are given in the sense that the pre-choice process through which they are
constructed is not analyzed. Moreover, these alternatives are “simple”, in
the sense that they are one-dimensional objects or, even when they are mul-
tidimensional, they are simply points in some portion of the homogeneous
R™ space and they lack any internal structure that limits the set of possible
alternatives.

Many choices in real life situations depart substantially from this simple
setting. Choices are often made among bundles of interdependent elements.
Those bundles may be formed in a variety of ways, which in turn affect the
selection process of a social outcome. Let us consider, for instance, a typical
textbook example of social choice, i.e. the case of a group of friends decid-
ing how to spend the evening by democratic and sincere pairwise majority
voting. The textbook would start from a given and predefined choice set as
X ={A,B,C,D,...} where A,B,C, D, ... could stand for movie, concert,
restaurant, dinner at home, etc. At closer scrutiny, these alternatives are
neither primitive nor exogenously given. Going to the movies or to a restau-
rant are labels for bundles of elements (e.g. with whom, where, when, movie
genre, director, type of food, etc.) and everyone’s preference is unlikely to
be expressed before these labels are specified in their constituting elements.

Moving on, to more serious examples, candidates and parties in political
elections stand for complex bundles of interdependent policies and person-
ality traits. Committees and boards are called to decide upon packages of
policies, e.g. a recruitment package that a university governing board has
to approve. In principle, any combination of elements (subject to a bud-
get or some other feasibility constraint) could be considered and compared
(e.g. through majority voting) with any other, but in reality only a relatively
small number of packages undergo examination. Typically, the bundling of
elements serves the purpose of reducing the number of alternatives to be
examined, by decomposing the whole space of alternatives into smaller sub-



spaces.

In Marengo and Pasquali (2011), Marengo and Settepanella (2012), Amen-
dola and Settepanella (2012) some of us have developed present a model of
social choice among bundles of elements, called objects. This model is in-
dependent from the aggregation method, as it applies equally to any social
choice rule, and introduces two non-standard features that objects are likely
to have. First, generally objects are not simply aggregations of primitive
components but have an internal structure that is likely to determine inter-
dependencies and non-separabilities in individual preferences. In the “what
shall we do tonight?” choice setting, my preferences on the with whom ele-
ment is likely to be highly interdependent with the other elements, as I may
well find a given person a perfect companion for an evening at the movies but
relatively dislike her or his company if we finally decide to go to a restaurant.
On the same token I may prefer Italian food as instantiation of the type of
food item if dinner at home is chosen but French cuisine if we opt for going
to the restaurant and the where item takes the value “Paris”.

Second, objects provide structure to the choice problem. Consider again
the “what shall we do tonight?” case. A possible reply to their point on
bundles would be that the choice set X is underspecified and that we should
start from a choice set formed by all possible combinations of the elements,
i.e. that the set X should be properly built in such a way as to include the
exhaustive list of all mutually exclusive alternatives. However, for obvious
combinatorial arguments, this set, even in this simple example, would be so
large that any exhaustive choice procedure, e.g. pairwise majority voting,
could not be completed in a feasible time span. Indeed, objects decompose
the search space into quasi-separable subspaces (see also Simon (1982)) and
simplify the computational task of collective choice, making decisions possi-
ble.

There is also another way in which objects can contribute to making the
determination of a social outcome easier. By appropriate object construction,
intransitive cycles that often characterize social decisions can almost always
be eliminated (Marengo and Settepanella, 2012). In general, coarse objects,
i.e. those made of many elements, tend to produce many cycles, whereas fine
objects made of one or few elements do not. However finer objects do so by
increasing the number of locally stable social optima and thereby making the
social outcome more manipulable through the control of object construction,
initial conditions and agendas.

In the classical social choice model, whereby choice takes place among



an exhaustive set of unstructured and primitive alternatives by searching for
a generalized Condorcet winner, decidability tends to be low, both because
the likelihood of encountering an intransitive cycle is very high and because
an exhaustive comparison among alternatives may take too long. In our
framework instead social choice is among structured bundles of elements
(called objects). The space of alternatives is decomposed and many social
optima (called local and u-local optima) are generated, while the likelihood
of intransitive cycles is sharply reduced. Thus decidability increases sharply,
but also the possibility to manipulate the social outcome grows in parallel.

In this paper, we provide a more general set of results. We exploit a prob-
abilistic approach and we develop some numerical calculations that allow us
to show that the introduction of objects strictly increases the probability
to get a social optimum and that an authority who has the power to con-
struct objects (and choose how elements are described) may obtain a desired
outcome even when the latter is freely chosen in a democratic process.

The paper is organized as follows. In section 2 we briefly discuss the simi-
larities and differences between our approach and those already existing in the
literature. In section 3 we provide a simplified algebraic and geometric ver-
sion of the the mathematical model introduced in Marengo and Settepanella
(2012), Amendola and Settepanella (2012) that we also illustrate by means
of a series of examples.

Sections 4 and 5 present our novel results obtained, respectively, with
numerical and probabilistic approaches. Notably, section 4 introduces a series
of numerical simulations that show how decidability is greatly enhanced in
our model, as new kind of social optima (that we call local and u-local) tend
to appear also in case in which no Condorcet winner exists in the classical
model.

Section 5, presents a further elaboration by means of probabilistic tools.
Here we prove that the probability to obtain at least a local optimum when
each element (called feature) has two possible outcomes (the yes/no or 0/1
case) is always greater than 60%, i.e. the decidability in this case is always
very high.

From the methodological point of view, we believe that an important
contribution of our paper is to show how algebraic (graphs), geometric (hy-
perplanes arrangements), numerical (combinatorial) and probabilistic ap-
proaches can converge in a general framework.

Finally, in Section 6 we draw some conclusions.



2 Relation to Literature

To our knowledge, the issue of object construction has not been dealt with
by economic models before the recent contributions of Marengo and Pasquali
(2011), Marengo and Settepanella (2012), Amendola and Settepanella (2012).
In the first paper the notion of object construction power is presented and
discussed by way of examples and agent based simulations. In the second
one a mathematical model is given. In the third one the problem is tackled
using tournament theory and an efficient algorithm that finds local optima
is presented.

The literature on multidimensional voting models (Kramer, 1972; Shep-
sle, 1979; Denzau and Mackay, 1981; Enelow and Hinich, 1983) is relatively
close to the perspective of this paper. In particular, Shepsle (1979) presents
a model of majority voting in which institutions play a similar role to the one
objects have in the model considered in this paper, i.e. that of limiting the
set of outcomes that undergo examination. Two institutional mechanisms
are analyzed: jurisdictional restrictions — especially those induced by decen-
tralization and division of labour among decision making units — and agenda
limitations with respect to the possible amendments to the status quo. Both
limit the set of attainable outcomes and equilibria (called structure-induced
equilibria) and can rule out cycles. There are at least two important dif-
ferences between this stream of literature and our work. First, the problem
tackled by all these papers is essentially the one arising from the sequential
interdependency of voting: how we settle an issue today may change how
we prefer to settle a related issue tomorrow. Enelow and Hinich (1983) also
consider a similar multi-issue case in which each issue is voted sequentially
and the agenda induces path-dependency, which might be mitigated by the
agents’ forecasting abilities. In our approach, we instead focus on interde-
pendencies generated by how elements interact within the particular objects
we are deliberating upon. Second, in Shepsle (1979), restrictions on attain-
able outcomes are placed by legal and organizational rules, that limit the set
of allowed amendments. Instead, in our approach restrictions are placed by
the object construction process exerted by some agent or institution: once an
object has been defined, all its instances are always admissible and compared.

Our model paper presents some instances of a wide family of aggrega-
tion paradoxes in voting. Saari and Sieberg (2001) discuss the links between
aggregation paradoxes in voting and similar aggregation paradoxes arising
in statistics such as the so-called Simpson’s paradox. Logrolling models



(Buchanan and Tullock, 1962) discuss some of these paradoxes which are
similar to those analyzed in the present paper. Bernholz (1974) shows that
logrolling implies cycles, therefore our result proving that cycles may be bro-
ken or created by appropriate object construction also extends to logrolling.
Let us remark that our approach is strongly related to the existence of cy-
cles, that is the existence of aggregation paradoxes in the multidimensional
voting. But it does not analyze the aggregation paradoxes themselves since
it assumes that an aggregation rule, i.e. a social decision rule, is given and
the results of aggregation are already known.

Brams, Kilgour, and Zwicker (1998) analyze the aggregation paradox that
occurs in the context of multiple elections, in which voters may not know the
result of one election before they vote in another. In particular they study the
case when votes are aggregated separately for each proposition (proposition
aggregation), and they compare it to the case when votes are aggregated by
combination (combination aggregation). An interesting connection between
theirs and our model could be to study what happens when an aggregation
is employed that puts together more than one but less than all the proposi-
tions, i.e. to generalize their results to all possible proposition aggregations,
analogously to what our object construction does.

Our work is also closely related to Lang (2007). Indeed the sequential
voting rules introduced by Lang corresponds to the model considered here
in the particular case where each object is made of only one feature. In this
context not only our model is a generalization of Lang’s approach to the
problem of voting in combinatorial domains, but it also casts some new light
on the results presented in his paper and it answers some questions left open
in that model. In the appendix we give a purely combinatorial description
of the model described in section 3. This description should help understand
the relation between our paper, Lang (2007) and the related literature on
tournaments.

Indeed, even if the model in Marengo and Settepanella (2012) and Amen-
dola and Settepanella (2012) is more complete, since it is described from both
an algebraic (and hence, graphic and combinatorial) and a geometric (and
hence topological) point of view, it can be easily reduced to any of these lan-
guages. This is a strong point of this approach: many different mathematical
tools are involved that can be used not only for a better understanding of
the phenomenon, but also for a deeper study.

Our paper is also related to recent literature that has begun to analyze
decision-making when agents group states of the world into coarse categories



(Mullainathan, 2000; Fryer and Jackson, 2008). These papers show, among
other things, that in these circumstances agents may be persuaded, meaning
that uninformative messages may influence their decisions (Mullainathan,
Schwartzstein, and Shleifer, 2008). Our perspective is different and com-
plementary: our objects are not categories based on similarities among the
states of the world, but are bundles of different and separate elements with
an internal structure of interdependencies and not sets of states of the world
that agents cannot distinguish from each other.

Context-dependent voting has also been analyzed by some papers (as,
for instance, in Callander and Wilson (2006)). In these papers context-
dependency refers to the violation of the axiom of Independence of Irrelevant
Alternatives (ITA), i.e. the assumption that the preference expressed by an
agent between two outcomes x and y does not depend on the presence or
absence of other outcomes in the choice set. Psychologists and marketing
scholars have observed systematic violations of IIA (Kahneman and Tversky,
2000). In the model presented in this paper, authors assume a different form
of context dependency, meaning that preferences between two instantiations
of an element (feature in our terminology) in general depend on the value
taken by other traits.

Our results are also related to the literature which addresses the ques-
tion of designing some principles for selecting a set of best alternatives when
choosing from a tournament. These tournament solutions include the top
cycle set (Schwartz, 1972; Miller, 1977), the uncovered set (Miller, 1980), the
Banks set (Banks, 1985), the minimal covering set (Dutta, 1988), the tourna-
ment equilibrium set (Schwartz, 1990), and others. In Fey (2008) and Scott
and Fey (2012) it is proven that, with probability approaching one, the top
cycle set, the uncovered set, the Banks set and the minimal covering set are
the entire set of alternatives in a randomly chosen large tournament. That
is to say, each of these tournament solutions almost never rule out any of the
alternatives under consideration. On the contrary, our results show that if
we define the set of best alternatives as the local optima set then this set is
always a proper subset of the set of alternatives. The problem is that this
set could be empty, but the results in section 5 show that, if we consider the
yes/no case, then, in a randomly chosen large tournament, the set of best
alternatives is not empty with high probability (greater than t0.6). Hence,
differently from all other sets of best alternatives, it is a proper non-empty
subset of the set of alternatives with high probability.



3 Choices among bundle of elements

3.1 Social decision rules and Tournaments

Social decision rules Consider a population of v agents. Each agent i is
characterized by a system of transitive preferences »=; over the set of social
outcomes X. The set of systems of transitive preferences > is denoted by P.
A social decision rule R is a function:

R: P — P
(ila sy EV) — i'R(tly---ytu)

which determines a system of social preferences or social rule =g(-,, . )
from the preferences of v individual agents. With P we denote the set of
systems of social preferences. As well known, the social rule =g, . -, is
not, in general, transitive, even when all individuals have indeed transitive
preferences.

If A is the diagonal of the cartesian product X x X, the element =r€ P
defines a subset

Vign ={(z,y) e X x X\ A |z =g y}
and the set of relevant social outcomes

y07tR = {$ c X | \V/y € X, (ZE,?/) S yl,i'R or (y,fL‘) € yl,i’R}'

If Yo~ is the whole X, the social rule is said to be complete. If the two
conditions * =% y and y =x x are mutually exclusive, the social rule is
said to be strict. For the sake of simplicity we will focus on complete and
strict social preferences >, generalization to weak preferences is almost al-
ways straightforward.

Graphs and tournaments The sets )V, and ). are, respectively, the
sets of nodes and arcs of a oriented graph Y. = (Y, V1.~). Two nodes x
and y in )y .- are connected by an arc if (z,y) € Vi . or (y,z) € Y ., directed
from x to y in the former case and from y to x in the latter. Notice that the
assumption on preferences (completeness and strictness) guarantees that we
will deal only with complete directed graphs, that is with tournaments. For
the sake of simplicity, we will use letters such as = for the nodes of ). and
pairs (z,y) for its arcs.



We recall here very few basic notions on tournament theory, for a more
complete discussion we refer the reader to Chartrand and Lesniak (2005) and
Moon (1968).

A cycle

(xlaxQ)a (1’2, {Eg), B (xhaxl)
in the tournament ). corresponds to a cycle d la Condorcet-Arrow (Con-
dorcet de Caritat, 1785; Arrow, 1951), i.e. to the sequence

Ty = Tog = > Tp = Xq.

The probability Prob (M) that a tournament with M nodes is irreducible,
i.e. each pair of nodes is contained in a cycle, can be computed recursively
by the formula:

Prob (M) =1 — z_: <J\Z4)Pr07b(z)’ with Prob (1) = 1.

9i(M—1)
i=1

The values of Prob (M) for M < 16 are given in Figure 1. In general,
Prob (M) ~ 1 — and as M tends to infinity, Prob (M) — 1.

QM =2

100% ==
80% 1 |-
60% 1 |

50%H |
20%-H M LR R R B Trreducible

1% s 1 1 Y U A O O L I O Non-irreducible

30% |-
20% |-
10%H |-
0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of social outcomes

Figure 1: The probability that a tournament be irreducible.



3.2 Features and decisions

Features Let ' = {fi,...,f.} be a bundle of elements, called features,
the i-th of which takes m; values, i.e. {0,1,2,...,m; — 1}, withi=1,... n.
Denote by m = (my,...,m,) the multi-index of the numbers of values of
the features. From now on, a social outcome (or configuration) will be an
n-sequence vy - - - v, of values such that 0 < v; < m;. The set of all social
outcomes will be denoted by X. The cardinality of X is []\_, m; and will be
denoted by M.

The decision process We suppose that the social choice proceeds along
the following steps:

e select an ordered set A whose elements are subsets of F' such that their
union is the set F,

e start from a status quo social outcome,

e take the first element in A, i.e. a subset of features, and find the most
preferred configuration keeping constant all the values of the features
not in this element,

e repeat for all elements in A,

e repeat until either a cycle is encountered or a configuration that is the
most preferred of any subset in A (an optimum) is reached.

3.3 Two illustrative examples

Let us now go back to the “what shall we do tonight?” example. If the friends
have simply to decide upon where and when to go, we get, for instance, the
following two-dimensional case, where we consider only two features (Where
and When) and we code as follows the values that each feature can take:

Where? movie (0), restaurant (1), pub (2) First feature f;
When? 20:00 (0), 22:00 (1) Second feature fo
There are 3 x 2 = 6 possibilities and each alternative is a bundle of

interdependent elements. So, for instance, if “movie at 20:00” is preferred to
“pub at 22:007”, this preference is denoted by 00 > 21.

10



22:00

20:00

movie restaurant pub

Figure 2: The graph associated to the 2d social rule.

If all preferences are expressed, one obtains the associated graph, which
states the aggregated preferences of the group. In Figure 2 an example of
such a graph is shown. In order to refer to this example later on, we will call
it the 2d social rule.

In Figure 3 instead we present an hypothetical graph associated to a social
rule with three features, each with two sub-alternatives. In order to make the
graph readable, we draw only the main edges, i.e. the ones that determine,
in our framework, optima and cycles irrespectively of the direction of the
remaining edges. The reader is free to draw the remaining edges as she or he
likes (and she or he should do it in order to have a complete oriented graph
and hence a complete social rule). We will call this example the 3d social
rule.

Example 3.1. Consider now the following decision processes in the 2d social
rule:

o 10 %3 11 5% 21 stop,
e 10 f# 00 stop,

e 01 EAS] stop;

see Figure 4. (In this and the following figures we draw the relevant arcs
with two arrows.) In any of the three cases the last configuration cannot be
improved anymore by considering each feature separately from the other.

11



011 11

—_

001 101
=
010) 110
000 (100

Figure 3: The graph associated to the 3d social rule.

Figure 4: The decision processes in example 3.1.

The classical theory of social choice would correspond in our approach
to the case in which only one object is considered which contains all the
features. When compared to the standard one, our approach has advantages
in terms of decidability, e.g. we can find an “optimum” more often than
a generalized Condorcet winner, but in general there will be more and one
optimum and therefore the social outcome will be subject to manipulability.
An authority who has the power to decide how features are bundled together
into objects, the order in which objects are examined, and the status quo
which the choice process starts from will be enjoy a vast power to determine
the final social outcome.

Example 3.2 (New kinds of optima). In the 2d social rule the social out-
comes 00 and 21 are “optima”, i.e. there are decision processes that end in

12



Figure 5: In the 2d social rule the social outcomes 00 and 21 are not generalized
Condorcet winners.

them. However, none of them is a generalized Condorcet winner, because
they are contained in a cycle, as shown in Figure 5.

3.4 Hyperplanes and social choice

In this section we present a formalization of the social choice problem outlined
above which is based upon hyperplane arrangements.

The hyperplane arrangement In the n-dimensionale space R™, an hyper-
plane H is a flat subset of dimension n—1. Any hyperplane can be given in co-
ordinates as the zero locus of a single degree-1 polynomial ay € R[Aq, ..., A\,].
An hyperplane arrangement is a finite set of hyperplanes.

Consider the hyperplane arrangement defined by

Amm - {HZ’J ‘ OéHi’j - )\Z B j}ogiiﬁfﬂ
Note that the hyperplanes H; . correspond to the i-th feature, and they are
one less than the number of values taken by the i-th feature.
The complement of an hyperplane arrangement A is defined as the whole
space minus the hyperplanes in A, i.e.

R"\ | J H.
HeA

The complement of A is disconnected. It is made up of separate pieces (called
chambers) each of which may be either bounded or unbounded. There is a
correspondence (Marengo and Settepanella, 2012) between the set X of social

13



Figure 6: The hyperplane arrangement corresponding to the 2d social rule.

outcomes and the set of the chambers of the hyperplane arrangement A, ,,,.
Namely, © = v - - - v, corresponds to the chamber that contains the set

{()\1,...,)\,1) GR”|’UJ‘—1 <)‘j < vy, jzl,,n}
Example 3.3. The hyperplane arrangement
A27(3,2) = {H1,07 H1,17 HQ,O}

corresponding to the 2d social rule is shown in Figure 6. Each chamber
corresponds to a vertex (i.e. a social outcome), and vice versa. Moreover,
each vertex is connected to any other by an arc that crosses one or more
hyperplanes.

Objects schemes Given a non-empty subset I C {1,...,n}, the object A;
is the subset

-AI = {Hi,j} iel

0<j<m;—1

of the hyperplane arrangement A, ,,, i.e. the subset made up of the hy-
perplanes corresponding to the features belonging to I. The complemental
set of a set I in {1,...,n} will be denoted by I¢, and corresponds to the
complemental hyperplane arrangement A = A, ,,, \ As of the hyperplane
arrangement A; in A, .

An objects scheme is a set of objects A = {Ay,..., A} such that
U?Zl I; = {1,...,n}. Note that the sets I; may have non-empty intersec-
tions. From now on, unless explicitly stated, A will always denote an objects

scheme {A;,,..., A}

14



Example 3.4. In the 2d social rule there are three objects (see Figure 6):

A{l} - {HLOv H1,1}> A{z} = {H2,0}> A{1,2} = {Hl,Oa Hy 1, HQ,O}-

The sets

{Apy, Ayt {Apat and {Apy, Apyd

are three different objects schemes.

Agenda An agenda o on an objects scheme A is an ordered t-uple of indices
(hi,...,hy) with ¢ > k such that {hy,...,h} = {1,...,k}. An agenda «
states the order in which the objects A, are decided upon. The ordered
t-uple of objects (A[hl, e 7A[ht> is denoted by A,. The set of all possible
agendas of A is denoted by A(A). Note that repetitions, in general, are
allowed.

Domination path A domination path DP(z,y, A) through an objects
scheme A is a sequence of social outcomes

T=x9g —=>T1 > " —>Ts =1

such that z; is the optimum among the social outcomes that lie on the same
side of the hyperplanes in Az as ;1. The social outcome z; is called the
best neighbor of x; 1 with reszpect to the object A, . Note that a social
outcome z;_; can be the best neighbor of itself, i.e. it is the preferred choice
among the social outcomes that lie on the same side of itself when we consider
the hyperplanes in the complement of the object A;, . The domination path
is said to end in z, if it can be indefinitely extended to

Tg—> Ty —> > Ty —> e —> T

by considering all the objects in A at least once, or equivalently if x, is
the best neighbor of itself with respect to each object in A. Note that no
assumption on the order of the objects Aj, is made.

Example 3.5. In the 2d social rule consider the objects scheme A = { Ay, A}
The sequence of social outcomes

10 — 11 — 21

15



Figure 7: The arcs yielding the domination path 000 — 110 — 111 — 011 for the
3d social rule.

is a domination path through A. Indeed, the social outcome 11 is the best
neighbor of 10 with respect to the object Ay (because 11 dominates 10),
and the social outcome 21 is the best neighbor of 11 with respect to the
object Ay, because 21 dominates 01 and 11 (see Figure 4). Moreover, this
domination path ends in the social outcome 21.

Example 3.6. In the 3d social rule consider the objects scheme A = { A 2y, Aq23y, Az }-
The sequence of social outcomes

000 — 110 — 111 — 011

is a domination path through A. Indeed (see Figure 7), the social outcome
110 is the best neighbor of 000 with respect to the object Ay 2y (because 110
dominates 000, 010 and 100), the social outcome 111 is the best neighbor of
110 with respect to the object Aysy (because 111 dominates 110), and the
social outcome 011 is the best neighbor of 111 with respect to the object
Ag1,2) (because 011 dominates 001, 101 and 111).

Note however that the social outcome 011 admits a best neighbor, 000,
with respect to the object Ay 3y, so the domination path does not end in
011.

Let « = (hy,...,h) be an agenda of an objects scheme A. A domination

16



Figure 8: In the 2d social rule the social outcome 00 is a local optimum for the
objects scheme A = {Ay, Aqay}-

path through A
T=Xy —=>T1—>' " =Ty =YY

is said to be ordered along o if the order of the objects Ay, is given by «,
i.e. if x; is the best neighbor of x; ; with respect to the object .Ath ., Where
hg is the remainder of the division of ¢ — 1 by ¢. Such a domination path will

be denoted by DP(x,y, A,).

Example 3.7. The domination path described in Example 3.5 is ordered
along the agenda (2,1). The domination path described in Example 3.6 is
ordered along the agenda (1,3, 1,2).

Local optima A local optimum for an objects scheme A is a social outcome
such that at least one domination path through A ends in it.

In general, more than one domination path ends in a local optimum and
there may be more than one local optimum.

Example 3.8. It is easy to show that in the 2d social rule there are two
different local optima for the objects scheme A = { Ay, Az }: 00 and 21.
For instance, Figure 8 shows that 00 is a local optimum.

Example 3.9. In the 3d social rule the domination path
000 — 110 — 111 — 011 — 000

of the objects scheme A = { A2y, Aq2,33, Agsy} ordered along the agenda
such that A, is (Ap9y, Ay Ag2), Agesy) is a cycle (see Figure 9).

17



Figure 10: In the 2d social rule the basin of attraction of the social outcome 21
with respect to the objects scheme A = { Ay, Aggy} is {10, 20, 01, 11, 21}.

Basin of attraction The basin of attraction V(z, A) of a local optimum
x with respect to an objects scheme A is the set of the social outcomes y for
which there exists a domination path DP(y,z, A) that ends in x.

Example 3.10. In the 2d social rule the basin of attraction of the so-
cial outcome 21 with respect to the objects scheme A = {Agqy, Ag} is
{10, 20, 01, 11, 21} (see Figure 10). Indeed, the following domination paths
end in 21:

1121, 10—11-—21, 01—21, 20— 2l
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Global optima A global optimum of an objects scheme A is a social
outcome z whose basin of attraction is the whole set of social outcomes,
ie U(z,A) = X.

Remark 3.11. A generalized Condorcet winner is a global optimum with
respect to the objects scheme

A = {A{Lm,}} )

Example 3.12. In the 2d social rule there is no global optimum.

Local and global optima strictly depend on the choice of the objects
scheme A. If an individual has the right to construct the objects, he or she
will enjoy a power of influencing the outcome of the social choice. This is
called “object construction power” (Marengo and Pasquali, 2011; Marengo
and Settepanella, 2012).

To show this let us call prominent distance dy(z,y) between two social
outcomes x and y the number of features for which x and y differ. The
following result holds.

Theorem 3.13 (Marengo and Settepanella (2012)). Let z be a social out-
come. There exists an objects scheme A, for which z is a local optimum if
and only if the inequality d,(w,z) > 1 holds for any social outcome w with
w > Z.

Universal basin of attraction The universal basin of attraction of a so-
cial outcome z is the union of the basins of attraction of z with respect to
each objects scheme, i.e. the set

U = |J (4,

Aell(An,m)
where II(A,, ,,,) is the set of all possible objects schemes in A, ,.

Example 3.14. In the 2d social rule the universal basin of attraction of the
social outcome 21 is {10, 20, 01, 11, 21}.
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Figure 11: In the 3d social rule the social outcome 101 is a local optimum.

U-local optima A social outcome z is said to be a u-local optimum if its
universal basin of attraction W(z) is the whole set of social outcomes X.

Remark 3.15. A generalized Condorcet winner is a global optimum that
is necessarily a u-local optimum, and a u-local optimum is necessarily a
local optimum for at least one objects scheme. In other words, the most
demanding (and therefore the least likely to exist) notion of social optimum
is the generalized Condorcet winner, followed by the global optimum, by the
u-local optimum and, finally, by the local optimum, which on the contrary is
the least demanding and the most likely to exist.

Example 3.16. In the 3d social rule there are no generalized Condorcet
winners, but we can find global optima, u-local optima and local optima.
Let us describe all the kinds of optima in details:

e The social outcome 101 is a local optimum for the objects scheme
A= {A{l}, Aqay, A{g}}. Recall that Apy = {Hipo}, Ay = {Hapo}
and Ay = {Hsp} and see Figure 11.

e The social outcome 011 is a global optimum for any agenda of the
objects scheme A = {A{l,g}, A{g}}. Recall that A 2y = {Hio, Hap}
and Ay = {Hsp} and see Figure 12.

20



4

In the classical framework of the search for a Condorcet winner, a given
social outcome z is an optimum if and only if it dominates all the other
social outcomes. Therefore, the probability P(z) that a given social outcome
z is a generalized Condorcet winner for a social rule on M social outcomes
given by the ratio between the number of graphs with M — 1 nodes and

18

Figure 12: In the 3d social rule the social outcome 011 is a global optimum.

e The social outcome 000 is a u-local optimum. Recall that we can
consider different objects schemes and see Figure 13. For the two-arrow
arcs that have 000 as an endpoint we have used the objects (with two
hyperplanes) Ay 3; and Ay 3y. For the other two-arrow arcs we have
used the objects (with one hyperplane) Ay, and Aygsy. Note that in
the latter case we have to add another object, say Ay 3y, in order to

have an objects scheme.

e Finally, in this social decision rule there is no generalized Condorcet
winner. Indeed there is a cycle (the two-arrow arcs in Figure 14), and
the three remaining social outcomes, which do not belong to this cycle,

are dominated (as also shown in Figure 14).

Decidability
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Figure 13: In the 3d social rule the social outcome 000 is a u-local optimum.

Figure 14: In the 3d social rule there is no generalized Condorcet winner.
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the number of graphs with M nodes, i.e.

2(1»12—1) ]
P(Z) = 2(1;1) = oM—1° (1)

In our model, global optima play the role of generalized Condorcet win-
ners, but also a local optimum can be an optimum if the agents vote starting
from a particular social outcome. The probability Prob,, (z) that a randomly
chosen 2 is a local optimum, when the number of features is n, is given by the
ratio between the number of the graphs with M nodes and with > " m; —n
fixed arcs, and the number of all graphs with M nodes, i.e.

M n
2( 2 )—(Z¢:1 m;—n) 1 2™
PI'Obn (Z) = 2(1;[) = 22?:1 mi;—n - 22?:1 m; <2)

It is clear that, if n is greater than 1, the probability that z be a local
optimum is far greater than the probability that z be a generalized Condorcet
winner. Let us define a function ' : N* — Q, depending onn, M = [, m;
and o = > m;, as the ratio between the probability of a social outcome
to be a generalized Condorcet winner and that to be a local optimum in the
new model, i.e.

27’L

2M71 — 2n+M7(071).
D iy M

F(n,M,o) =

Clearly F(n,M,o) > 1 if and only if n > 1.

The function F' provides a precise characterization of the improvement
on decidability from the generalized-Condorcet framework to the new model.
Obviously the non uniqueness of local optima and their dependence from the
chosen objects scheme introduce a manipulability issue that we are going to
analyze in greater detail below.

The algorithm ComputeUniversalBasin It is worth noting that finding
optima (or, equivalently, basins of attraction) is not straightforward. Given
the combinatorial nature of our problem, the number of possible objects and
agendas is in general very high and a simple brute-force algorithm would take
far more than exponential time.

The algorithm COMPUTEUNIVERSALBASIN (Amendola and Settepanella,
2012) computes the universal basin of attraction of a social outcome z for
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a social rule . If the social rule > is defined on M social outcomes, the
algorithm COMPUTEUNIVERSALBASIN computes the universal basin of at-
traction of z in O(M3log M) time. The algorithm has been implemented in
the computer program FOSoR (Amendola, 2011a). FOSoR reads a social rule
and

e computes the universal basin of attractions,
e checks whether a social outcome is a local (or an u-local) optimum,

e checks whether a social outcome is in the universal basin of attraction
of another one,

e checks whether there is a local (or an u-local) optimum,
e finds the number of local (or u-local) optima,

e given two social outcomes, finds an objects scheme (if any) for which
there is a domination path from one to the other.

4.1 Numerical results

In this section we will give numerical results obtained by means of the com-
puter program FOSoRStat (Amendola, 2011b), which repeatedly (in this case
1,000,000 times) generates a random social rule and applies the algorithm
COMPUTEUNIVERSALBASIN to find all optima.

The generalized Condorcet winner We start by showing in Figure 15
the likelihood that a generalized Condorcet winner exists. This can be com-

puted with the formula
M

2M—1'

The figure shows that the probability of finding a generalized Condorcet
winner quickly vanishes as the number of social outcomes increases and that
for as little as 10 social outcomes it is already practically zero.
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Figure 15: The probability that a social rule has a generalized Condorcet winner.
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Figure 16: The probability that a social rule with two features has a given number
of local optima.
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Figure 17: The probability that a social rule with two features has a generalized
Condorcet winner.

Social rules with two features In Figure 16 we show the probability
that a social rule with two features has a given number of local optima.
Compare it with Figure 17, where the probability that a social rule with the
same number of social outcomes has a generalized Condorcet winner. We
can deduce that local optima are much more likely to exist but in general
there may exist more than one of them (we counted up to four of them).

In Figure 18 we show the probability that a social rule with two features
has a given number of u-local optima.

Binary features An important case is when we consider only binary fea-
tures, that could for instance model cases in which agents must take a set of
interrelated yes/no decisions. In Figure 19 we plot the probability that a so-
cial rule with binary features has a given number of local optima, depending
on the number of features. We point out that the number of social outcomes,
that is 2", grows very fast as the number n of features increases. The proba-
bility of finding local optima is of course one if there is only one feature (and
therefore 2 social outcomes) and decreases slowly as the number of features
increases, and seemingly stabilizes just above 60%. Up to 9 different local
optima may be found with 9 binary features.

An analogous behaviour occurs in the case of u-local optima, as shown in
Figure 20.
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Figure 18: The probability that a social rule with two features has a given number
of u-local optima.
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Figure 19: The probability that a social rule with binary features has a given
number of local optima, depending on the number of features.
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Figure 20: The probability that a social rule with binary features has a given
number of u-local optima, depending on the number of features.

We have not shown what happens for generalized Condorcet winners be-
cause, as shown in Figure 15, if the number of features is greater than 4 (and
hence the number of social outcomes is greater that 2* = 16) the probability
that a social rule has a generalized Condorcet winner is almost zero.

Objects schemes Figure 21 plots the probability that a social rule with
6 binary features (hence, with 2¢ = 64 social outcomes) has a given number
of local optima, depending on how such features are bundled together into
different objects schemes. In particular, we consider the case in which, respec-
tively, there is only one object of 6 features (i.e. the generalized-Condorcet
case), two objects of 3 features each, three objects of 2 features each, or,
finally, six objects of 1 feature each. Note that if the number of objects
increases (and hence the number of features in each object decreases) the
number of local optima increases up to 7.

Cardinality of features Figure 21 can be regarded as the plot of the prob-
ability that a social rule defined on 64 social outcomes has a given number of
local optima, depending on how they are represented by more or less features
taking a smaller or larger number of values. In particular, we consider the
case in which, respectively, there is only one feature taking 64 different values
(i.e. the generalized-Condorcet case), two features taking 8 values each, three
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Figure 21: The probability that a social rule with 6 binary features has a given
number of local optima, depending on the objects scheme.

features taking 4 values each, or, finally, six binary features.

In Figure 22 we do the same for the case of u-local optima. Although
the notion of u-local optimum is more restrictive than that of local optimum,
also in this case if the number of features increases (and hence the number of
values taken by each feature decreases) the probability that a social rule has
a fixed number of u-local optima increases. Moreover, we have found cases
with up to 6 different u-local optima.

5 Probability of Local Optima

In this section we compute the probability to finds local optima in the binary
case. We will prove that a local optimum is actually reached in more than
60% of the cases, even for a large number of alternatives, as already shown
numerically in the previous section. Thus in our model the social choice
process converges to some “acceptable”, though manipulable, choice in the
majority of cases even for decisions involving a considerable number of social
outcomes, whereas — we have already shown — the probability of finding a
Condorcet winner quckly vanishes in such cases.

Recall that Prob, (z) is the probability that a randomly chosen z is a
local optimum, when the number of features is n. Similarly, we indicate with
Prob,, (z A w) the probability that two randomly chosen social outcomes z
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Figure 22: The probability that a social rule defined on 64 social outcomes has a
fixed number of u-local optima, depending on the subdivision in features.

and w, with z # w, are simultaneously local optima, and with Prob,, (z | w)
the probability that z is a local optimum if w is.

Lemma 5.1. Suppose that each feature can assume only two values, i.e. m; =
2 for each i =1,...,n. Let z and w, with z # w, be two randomly chosen
social outcomes. The following holds:

Prob,, (z A w)

li =1
n"350 Prob,, (2) - Prob,, (w)

Proof. First of all, note that, by means of Equation (2), the unconditional
probability Prob,, (z) in the binary case is

1
Prob, (z) = o (3)
Write Prob,, (2 A w) as
Prob,, (z A w) = Prob,, (z | w) - Prob,, (w).

The probability that z is a local optimum, given that w is a local optimum,
is easily decomposed as

1
Prob,, (z | w) = 0 - Prob,, (d, (z,w) = 1) + o Prob,, (d, (z,w) > 1),
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where the coefficients, 0 and 2%, follow from Theorem 3.13. Namely, either

the prominent distance between two social outcomes is 1 so z cannot be
a local optimum (since w is), or the prominent distance between two social
outcomes is greater than 1 so the fact that z is a local optimum is independent
from the fact that w is.

Note that the number of pairs of social outcomes with prominent dis-
tance equal to 1 is obtained by summing n (the total number of prominent
neighbors for each social outcome) for 2" times (the total number of social
outcomes) and dividing the final result by two (every arc is counted twice).
Considering that the total number of pairs of social outcomes (or the total

2n—1)

number of edges of the complete graph) is 2@l

5 we obtain:

Prob,, (d, (z,w) >1) = 1—Prob,(d,(z,w)=1)=

n2"
_ 2 _
= l-gep=
2
n
= 1- — 1
on — 1

Hence we have
Prob,, (z | w) ~ Prob,, (2),

SO
Prob,, (z A w) ~ Prob,, (z) - Prob,, (w),

which is our thesis. O

The above lemma essentially proves that the events “z is a local optimum”
and “w is a local optimum” are asymptotically independent.
We can now state and prove the theorem that formalizes our main result:

Theorem 5.2. Suppose that each feature can assume only two values, i.e. m; =
2 for eachi=1,...,n. Let K (M) denote the number of local-optima. Then
for each k =0,1,... we have

lim Prob (K (M) =k) =e™* L

(4)
In particular, the probability to have at least one local optimum converges to

lim Prob (K (M) > 1) = 1 — + ~ 63.2%. (5)

n— 00 e
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Proof. Let R be a random binary variable such that R = 1 represents the
success to be a local optimum and R = 0 the corresponding failure, with the
success probability

p=Prob (R =1)

For Lemma 5.1 we have that if M is large enough or, more precisely,
when k£ < #X = M, the events R = 1 are close to being independent and
therefore the total number of local optima is binomially distributed:

Prob (KO = 1) = () )o#(0 = 91"+ = By ()

As M goes to infinity the probability p goes accordingly to zero and the
product A = p M remains constant and equal to 1. Hence by the law of small
numbers (Theorem 2 of Arratia, Goldstein, and Gordon, 1989; Falk, Hii,
and Reiss, 2004) the binomial distribution of K (M) converges to a Poisson
distribution with mean A = 1 in (4), that is

1
. -1
Alfl_r}I;OB(M,p)(/{I)ZG o k=0,1,....
p-M=1

It follows that

1
lim Prob (K (M) =k)=1— lim Prob(K(M)=0)=1—— (6)
n—o00 n—00 e
which is our thesis. O

The result stated above confirms the asymptotical behavior of the numer-
ical results described in Figure 19.

Remark 5.3. By Theorem 2 of Arratia, Goldstein, and Gordon (1989) it
can be shown that

1 2
Prob (K (M) = 0) - - < anl

for all n > 1. Hence for n > 10, a locally optimal outcome is actually reached
in more than 60% of the cases.
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Moreover, by the numerical results shown in Figure 20, the above result
seems to apply also to u-local optima. A remarkable consequence of this
would be that the decision in a group is independent from the status quo.
Indeed an agent who has the power to choose the objects scheme has the
power to achieve his or her preferred local optimum independently of the
status quo, just by changing the objects scheme according to the status quo.

6 Conclusions

In this paper we have shown that in the more general framework of choice
among bundles of interdependent elements less stringent kinds of optima (u-
local and, even more, local optima) than the generalized Condorcet winners
are much more likely to exist. But since, in general, there exists a multiplicity
of such optima, it will be possible for an authority to select one of them by
changing the way features are bundled together in what we call the objects
of choice, or by controlling the initial condition and/or the agenda.

This model is meant to be a first step in the direction of modeling social
choice when the alternatives are not given a priori, but the model explicitly
addresses the fundamental pre-choice problem of the construction of alterna-
tives. Our paper shows that such a construction process faces a fundamental
trade off between decidability and manipulability: if many features are bun-
dled together social optima are unlikely to exist, and even when they do
exist a concrete choice procedure (e.g. pairwise majority voting) will indeed
locate them but with an unrealistically large number of operations. On the
contrary, if features are considered separately or in small bundles contain-
ing only few of them, the likelihood of finding a social optimum (local or
u-local) sharply increases and the time required to find it sharply decreases,
but a problem of multiplicity of optima, and therefore of manipulability of
the entire process, arises. In particular, an authority who has the power to
determine the bundles, the order with which they are examined and the ini-
tial status quo, will enjoy a considerable power of making the social choice
process converge to a preferred outcome. Somehow we can say that in our
framework decidability can only be assured by introducing manipulability
and power.

Although quite general, an important limitation of our model is that
it does not allow for strategic misrepresentation of preferences. A further
generalization of our model which accounts for the latter is left to future
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investigation.

Finally, as already pointed out in the introduction, it could be interesting
to apply a similar argument to aggregation paradoxes such as the paradox
of multiple elections introduced by Brams, Kilgour, and Zwicker (1998), and
to compare in the general case (with m; > 2) the set of local optima with
existing best sets, studying also how rapidly it goes to the empty set.

A Appendix

In this appendix we reproduce the model described in Section 3 in a purely
algebraic way, as preferences on combinatorial domains.

Preferences on combinatorial domains A feature f; can be defined as
an element {0,...,m; — 1} of the non-negative integers. The set {fi,..., fu}
of features is denoted by F'. The combinatorial domain X = f; x ... X f, is
the set of all social outcomes and = = (x4, ..., x,) denotes an element in X.
Let us remark that, with this notation, we totally loose the spacial structure
of R"™ and the utility of thinking of x € X as a point in the real n-dimensional
space.

A tournament 7' = (X, >) is an orientation of a complete graph on X in
which case > can equivalently be seen as a complete and asymmetric relation
on X.

A social outcome x € X is said to be a generalized Condorcet winner of a
tournament 7' = (X, ) if z > y for all y distinct from z. The probability that
a randomly chosen social outcome in X is a generalized Condorcet winner is
given in equation (1).

Every subset of features {f;}icr, with I C {1,...,n}, induces an equiv-
alence relation ~; over X such that for all elements x = (zy,...,z,) and

Y= (ylv"'7yn) n X7
(1, vxn) ~1 (Y1s-- -5 Un) if and only if  x; =y, forall j & I.

For each € X and each subset of features { f;}ics, the equivalence relation
~ induces an equivalence class

(2], ={y e X 12~ y}.
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Given a tournament 7' = (X, >), for each subset of features {f;};c; and each
x € X one can associate, if it exists, the maximum element in [z].,, i.e.

mfux([x]w) ={y €z, 1y = zforall z € [z]., \ {y}}.
Observe that, since > is asymmetric, the cardinality of max, ([x;].,) is either
0 or 1 and that, if I = {1,...,n}, this maximum coincides, if it exists, with
the generalized Condorcet winner.

With the above notations, we have the following:

e an objects scheme is a set A = {{fi}ielj of subsets of features

}1§j§k
such that Ui<j<xl; = {1,...,n}, i.e. all features are considered at least

once;
e an agenda « is an order, with repetitions, of the indices j € {1,...,k};

e the process starting from an initial element xy € X determines a sub-
graph Ty, a0 of T' = (X, >) that depends from 2, € X, the objects
scheme and the fixed agenda.

An element x € X is a local optimum for the objects scheme A if it
exists an o € X and an agenda « such that z is the generalized Condorcet
winner in the subgraph T, 4. Marengo and Settepanella (2012) show that
the fact that x is the generalized Condorcet winner in a subgraph 715, 4, is
independent of zy and «, that is, if z is a local optimum then it is a local
optimum for 7T}, 4, for any agenda a and that, given an agenda « there is
always an element y € X such that x is the generalized Condorcet winner in
the subgraph T} 4 ,. Moreover they noticed that a necessary and sufficient
condition for z € X to be local optimum for at least an objects scheme A is
that

T = m}ax([az]N{i}) forall 7 € {1,...,n},

i.e. x is the generalized Condorcet winner in each subtournament ([z]~ )
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