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Abstract

In productivity analysis an important issue is to detect how external (environmen-

tal) factors, exogenous to the production process and not under the control of the pro-

ducer, might influence the production process and the resulting efficiency of the firms.

Most of the traditional approaches proposed in the literature have serious drawbacks.

An alternative approach is to describe the production process as being conditioned by

a given value of the environmental variables (Cazals, Florens and Simar, 2002, Daraio

and Simar, 2005). This defines conditional efficiency measures where the production

set in the input × output space may depend on the value of the external variables.

The statistical properties of nonparametric estimators of these conditional measures

are now established (Jeong, Park and Simar, 2008). These involve the estimation of

a nonstandard conditional distribution function which requires the specification of a

smoothing parameter (a bandwidth). So far, only the asymptotic optimal order of this

bandwidth has been established. This is of little interest for the practitioner. In this

paper we fill this gap and we propose a data-driven technique for selecting this param-

eter in practice. The approach, based on a Least Squares Cross Validation procedure

(LSCV), provides an optimal bandwidth that minimizes an appropriate (weighted) in-

tegrated Squared Error (ISE). The method is carefully described and exemplified with

some simulated data with univariate and multivariate environmental factors. An ap-

plication on real data (performances of Mutual Funds) illustrates how this new optimal

method of bandwidth selection works in practice.

Keywords: nonparametric efficiency estimation, conditional efficiency measures, environ-

mental factors, conditional distribution function, bandwidth.

JEL Classification: C14, C40, C60, D20



1 Introduction

The efficiency analysis literature was originally developed towards ranking the economic pro-

ducers with respect to their technical efficiency scores rather than explaining the differences

in the performances of the analyzed units. During the last decades, the efficiency literature

has become more concerned with connecting the efficiency measures to environmental factors

that cannot be controlled by the producers, but might influence the production process.

So far, two main approaches have been proposed by the efficiency literature. The tradi-

tional one-stage approach (see e.g. Banker and Morey, 1986,Reinhard, Lovell and Thijssen,

2000), is based on including the environmental factors (denoted below by Z) either as (non-

discretionary) inputs or outputs in the model, providing an “augmented” attainable set.

This approach has the shortcomings that first, it requires the a priori specification of the

role of these exogenous factors, favorable (as a free disposal input) or unfavorable (as an

undesired free disposal output) and second, that this influence is in the same direction for

all values of Z. In addition, restrictive assumptions on the free disposability and on the con-

vexity of the resulting augmented attainable set are also required. Finally, the appropriate

linear programs used to estimate the resulting efficiency scores depend also on the returns

to scale assumption made on this non-discretionary input or output. This makes a lot of

assumptions or restrictions when often, at the start, the researcher has not a clear view on

the influence of Z on the production process.

The other traditional approach is a two-stage procedure, where the efficiency scores are

nonparametrically estimated in a first stage, in the input-output space. Then, in a second

stage the estimated efficiency scores are regressed (mainly using parametric models) on the

environmental variables (see Simar and Wilson, 2007 and the dozens of references quoted

there and even more recently McDonald, 2008). However, as pointed out by Simar and

Wilson (2007), usual inference on the obtained estimates of the regression coefficients is

not available in this framework and if used, it is wrong. So, they propose a bootstrap-

based procedure to obtain more reliable results. Recently, Park, Simar and Zelenyuk (2008),

suggested to use a nonparametric model for the second stage regression. Still, these two-stage

approaches require a restrictive separability condition between the input-output space and

the space of external, environmental factors, assuming that these factors have no influence

on the attainable set, affecting only the probability of being more or less efficient. This is

often unrealistic.

A more general and appealing approach is to consider the probabilistic formulation of

the production process proposed by Cazals, Florens and Simar (2002). Here the production

set is the support of some probability measure in the input-output space and the traditional

1



Debreu–Farrell efficiency scores can be defined in terms of some nonstandard conditional

distribution function (see details below). This approach allows to extend quite naturally

the model in the presence of environmental factors leading to conditional Debreu–Farrell

efficiency scores. Nonparametric estimators are then easily obtained by estimating, at some

stage, a nonstandard conditional distribution and so providing conditional FDH estimators

(Free Disposal Hull) as in Daraio and Simar (2005) or conditional DEA estimators (Data

Envelopment Analysis), as in Daraio and Simar (2007b). Asymptotic properties of these

estimators are now established (see Jeong, Park and Simar, 2008) and both estimators

require smoothing techniques for the environmental variables (i.e., using a kernel function

and a bandwidth). So far only the asymptotic order of this bandwidth has been determined

(see below) but this result is of little interest for practitioners who only handle finite samples

whereas it is well known that the choice of the bandwidth may be crucial for the quality of

the resulting estimates.

Daraio and Simar (2005, 2007a), pointing that the bandwidth selection is an open issue in

this context, suggest to use bandwidth selection methods for the kernel density estimation of

the external variables Z, such as cross-validation and plug-in rules. However, these methods

do not take into account the influence of the environmental variables on the production

process while determining the window size, since they are based on marginal properties of

Z. So there is certainly room for improving the method.

This paper is intended to fill this gap by proposing a data driven method for selecting an

optimal bandwidth in practice, where optimality will be defined with respect to an integrated

squared error criterion. We propose to adapt the procedure based on the theoretical results

from Hall, Racine and Li (2004) on estimation of conditional probability density function

(pdf) and those of Li and Racine (2007, 2008) for conditional cumulative distribution function

(cdf) to our particular setup of a production process. The procedure is also useful to identify

external variables components that have no influence on the production process.

The paper is organized as follows. Section 2 summarizes the theoretical results available

so far on conditional efficiency measures and their nonparametric estimates. Section 3 is our

main contribution: we describe the method for selecting an optimal bandwidth. Section 4

is dedicated to numerical examples. We consider simulation scenarios already used in the

literature and we also exemplify our methodology on real data using the same sample of US

Mutual Funds. These examples illustrate the superiority of our optimal method for selecting

the bandwidth over the former methods based as in Daraio and Simar (2005) on marginal

characteristics of Z. A last section concludes.
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2 Conditional Efficiency Scores

and Nonparametric Estimators

According to Cazals et al. (2002), the production process can be described by the joint

distribution of the input-output pairs (X, Y ) on R
p
+×R

q
+, whose support is Ψ, the attainable

set. For the presentation, to save space, we only focus on the output orientation and on the

FDH version of the estimators, but of course, the same could be done for the input orientation

and for the DEA version of the estimators (as proposed in Daraio and Simar, 2007b), since in

all the cases, the problem rests on the estimation of a nonstandard conditional distribution

function.

2.1 Conditional efficiency scores

An output-oriented technical efficiency for a fixed point (x, y) ∈ Ψ can be defined in terms

of the support of the q-variate survival function SY |X(y|x) = Prob(Y ≥ y|X ≤ x). This

support can indeed be interpreted as the attainable set of output values Y for a producer

using the input level x. For instance, if q = 1, for any given x, the upper boundary of this

support provides the production (frontier) function:

ϕ(x) = sup{y | SY |X(y|x) > 0}. (1)

When q ≥ 1, we can use (as in the Debreu–Farrell approach), radial distances to evaluate

the efficiency level of a point of interest. So, the (radial) output measure of efficiency of a

unit operating at the level (x, y) is the maximal radial expansion of y that is attainable:

λ(x, y) = sup{λ | SY |X(λy|x) > 0}. (2)

Under free disposability of the inputs and of the outputs, Cazals et al. (2002) have shown

that this is equivalent to the Debreu-Farrell output efficiency score. Moreover, if we consider

the probability of dominating a unit operating at level (x, y)

H(x, y) = Prob(X ≤ x, Y ≥ y), (3)

then the following decomposition is possible:

H(x, y) = Prob(Y ≥ y | X ≤ x) Prob(X ≤ x) = SY |X(y|x)FX(x), (4)

where FX(x) = Prob(X ≤ x) is the marginal cdf of X. Consequently, for all x with FX(x) >

0, the output oriented technical efficiency measure admits also the following representation:

λ(x, y) = sup{λ | H(x, λy) > 0}. (5)
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This probabilistic formulation of the production process allows to introduce quite easily

external, environmental factors, which are exogenous to the production process itself, but

may influence the process. Denote by Z ∈ R
r these factors. When an environmental

variable is generated, we include the random variable Z in the model and consider the triple

(X, Y, Z) ∈ R
p
+ × R

q
+ × R

r. For instance the following distribution function H(x, y, z) =

Prob(X ≤ x, Y ≥ y, Z ≤ z) completely characterizes the process. In fact, for defining

conditional measures, conditional to a level z of the external factors Z, we are mainly

interested in:

H(x, y|z) = Prob(X ≤ x, Y ≥ y|Z = z) =
∂zH(x, y, z)

∂zH(∞, 0, z)
,

where ∂z denotes the operator of derivative with respect to z: ∂z = ∂/∂z. Note that here

also we have the following decomposition:

H(x, y|z) = Prob(Y ≥ y | X ≤ x, Z = z) Prob(X ≤ x|Z = z)

= SY |X,Z(y | x, z)FX|Z(x|z),

where SY |X,Z(y|x, z) = H(x, y|z)/H(x, 0|z). Daraio and Simar (2005), by analogy with the

output Farrell efficiency score, define the conditional output efficiency measure:

λ(x, y|z) = sup{λ | SY |X,Z(λy|x, z) > 0} = sup{λ | H(x, λy|z) > 0}. (6)

2.2 Nonparametric estimators

For sake of simplicity, we will first introduce the estimators for univariate Z, then we will

summarize the main features for the multivariate case. From a random sample of i.i.d.

observations X = {(Xi, Yi, Zi) | i = 1, . . . , n}, natural nonparametric estimators of the

conditional survival functions introduced above are given by

ŜY |X(y|x) =

∑n
i=1 1I(Yi ≥ y, Xi ≤ x)∑n

i=1 1I(Xi ≤ x)
, (7)

ŜY |X,Z(y|x, z) =

∑n
i=1 1I(Yi ≥ y, Xi ≤ x)Kh(Zi, z)∑n

i=1 1I(Xi ≤ x)Kh(Zi, z)
, (8)

where Kh(Zi, z) = h−1K
(
(Zi − z)/h

)
with K(·) being an univariate kernel defined on a

compact support and h is the bandwidth. Note that it is the equality in the conditioning on

Z that requires some smoothing techniques, whereas for inputs and outputs only inequalities

are involved.

The nonparametric estimators λ̂n(x, y) and λ̂n(x, y|z) are then obtained by plugging

ŜY |X(y|x) and ŜY |X,Z(y|x, z) in the formulas (2) and (6) above. So, we have for instance

λ̂n(x, y) = sup{λ|ŜY |X(λy|x) > 0}. (9)
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As pointed by Cazals et al. (2002), this estimator coincides with the FDH estimator:

λ̂FDH(x, y) = maxi|Xi≤x

{
minj=1,...,q

Y j
i

yj

}
, where aj denotes the jth component of a vec-

tor a. Following the same lines, the conditional output efficiency estimator, suggested by

Daraio and Simar (2005) is defined as:

λ̂n(x, y|z) = sup{λ|ŜY |X,Z(λy|x, z) > 0} = max
{i|Xi≤x,|Zi−z|≤h}

{
min

j=1,...,q

Y j
i

yj

}
. (10)

Looking carefully to (10) we see that the conditional efficiency scores heavily depend on the

value of the bandwidth h. As noted in Daraio and Simar (2005) only kernel functions with

compact support can be used.

The multivariate case

For multivariate environmental variables Z, we must select a kernel function K(u) where

u ∈ R
r, such that K(u) ≥ 0 and

∫
Rr K(u) du = 1. Then we have to select a bandwidth matrix

H that has to be a (r × r) symmetric positive definite matrix. The scaled kernel function

can then be written as KH(u) = |H|−1K(H−1u) where |H| stands for the determinant of

the matrix H . In our setup here (remember we need kernels with compact support), two

possibilities will be considered: (i) As described in Daraio and Simar (2007a, Section 5.3.2),

a multivariate Gaussian kernel truncated on a sphere of radius one and rescaled in order to

obtain a continuous density over R
r, with a bandwidth matrix H scaled by S, the empirical

covariance matrix of the r components of Z and (ii) a product kernel of r univariate kernel

functions each with its own bandwidth.

For determining optimal bandwidths, we prefer to focus on the second approach1 which

requires more computational effort (optimization in r components in place of only one) but

which has, as described in Hall et al. (2004), the merit of producing asymptotically optimal

smoothing for the relevant components of Z having the appropriate rate, while eliminating

irrelevant components by oversmoothing (the bandwidths for these irrelevant components

converge to infinity).

We define the product kernel as K(u) =
∏r

j=1 Kj(uj) and H = diag(h1, . . . , hr), where the

Kj(uj) are univariate kernels with compact support and hj are the individual bandwidths.

The advantage here is that we can select an optimal bandwidth for each component of Z

and so, as explained in the next section, detect irrelevant components in Z.

The conditional output efficiency estimator is computed by:

λ̂n(x, y|z) = sup{λ|ŜY |X,Z(λy|x, z) > 0} = max
{i|Xi≤x,||Zi−z||≤h}

{
min

j=1,...,q

Y j
i

yj

}
, (11)

1We thank two anonymous referees who stressed the main advantages of using multivariate bandwidths

for Z.
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where ||Zi − z|| ≤ h has to be understood component by component |Zj
i − zj | ≤ hj for the

product kernel with H = diag(h1, . . . , hr).

Detecting the effect of Z on the production process

Daraio and Simar (2005) developed a useful methodology allowing to detect the effect

(positive or negative) of these environmental factors on the performance of the firms. The

idea is to analyze the behavior of the ratio of the conditional efficiency scores over the un-

conditional scores as a function of the conditioning factor Z. They show that the shape of

a nonparametric regression of these ratios over the conditioning factor allows to detect pos-

itive, negative, neutral or even variable effect of the environmental factor on the production

process. We will illustrate this tool in the examples below.

3 Bandwidth Selection: an optimal data driven method

The statistical properties of the nonparametric estimators are well known, see Park, Simar

and Weiner (2000) for the FDH efficiency scores, Kneip, Simar and Wilson (2008) for the

DEA scores and Jeong et al. (2008) for their conditional versions. To summarize, the es-

timators are consistent estimators (they converge to the corresponding unknown measures

when the sample size n → ∞), the sampling distribution of the (appropriated scaled) error of

estimation converges to some nondegenerate distribution but the rate of convergence is dete-

riorated as the dimension in the input/output space increases (the “curse of dimensionality”

of most of the nonparametric estimators).

For instance for the FDH case, with an univariate baseline bandwidth h, we have
(
λ̂n(x, y)−

λ(x, y)
)

= Op

(
n−1/(p+q)

)
and

(
λ̂n(x, y|z) − λ(x, y|z)

)
= Op

(
(nhr)−1/(p+q)

)
, as far as h → 0

with nhr → ∞ when n → ∞. We will see below that the optimal order for h is n−1/(r+4),

so that, as pointed by Jeong et al. (2008), the rate of convergence of the FDH conditional

efficiency estimators is deteriorated to (n4/(r+4))−1/(p+q). This was expected since for condi-

tional measures, smoothing in r dimensions is required. Similar results exist for the DEA

version of the estimators. For details, see the references above.

The optimal order of the bandwidths for estimating the conditional survival function

SY |X,Z(y|x, z) with the kernel estimate ŜY |X,Z(y|x, z) is hj ≈ n−1/(r+4) (see Li and Racine,

2007, p.186). Still, for practical purposes, in finite samples, this does not help to select the

bandwidths. Daraio and Simar (2005, 2007a) suggest a cross-validation rule based on the

estimation of the marginal density of Z, using some nearest-neighbor method. This provides

a bandwidth of appropriate order, but with no particular optimality properties in finite

samples. In addition, it does not take into account the way Z may influence the behavior of
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Y given that X ≤ x. So, we would prefer an adaptive data-driven method which optimizes

the estimation of the conditional cdf (survival) S(y|x, z), where the dependence between Y

and Z, for X ≤ x is implicit.

We will adapt the approach developed in Hall et al. (2004) and Li and Racine (2007, 2008)

who suggest for continuous Y to use Least Squares Cross Validation (LSCV) for selecting

the best bandwidth when estimating the conditional pdf of Y given that X ≤ x and Z = z.

We define this density as g(y|X ≤ x, z) = f(y, X ≤ x, z)/m(X ≤ x, z) where f and m are

densities in y and z that can be defined as

f(y, X ≤ x, z) =
∂(q+1)

∂y ∂z
H(x, y, z) (12)

m(X ≤ x, z) =
∂

∂z
H(x, 0, z). (13)

Since we are now estimating the pdf of Y we also have to smooth the Y variables using

an appropriate kernel and a bandwidth vector hy. The estimate of the conditional density

could then be written as

ĝ(y|X ≤ x, Z = z) =
f̂(y, X ≤ x, z)

m̂(X ≤ x, z)

=
n−1

∑n
i=1 1I(Xi ≤ x)Kh(Zi, z)Lhy

(Yi, y)

n−1
∑n

i=1 1I(Xi ≤ x)Kh(Zi, z)
, (14)

where

Lhy
(Yi, y) =

q∏

j=1

1

hyj

L

(
Yij − yj

hyj

)
, (15)

L(·) being a univariate kernel. We use here, to simplify the presentation, a product kernel

for the Y s but any other multivariate kernel could be used. The idea is to find by LSCV the

optimal values for (hy, h), even if we will not use the resulting values of hy when estimating

the conditional cdf S(y|x, z). Our final objective is indeed to find only a reasonable value

for h, where h is the vector of bandwidths h = (h1, . . . , hr).

Remark 1. Conditionally on X ≤ x, we are exactly in the same situation as in Li and

Racine (2007, 2008) and Hall et al. (2004), but the number of observations really used in

the estimation above is in fact Nx =
∑n

i=1 1I(Xi ≤ x), i.e. the number of observations in

the sample such that Xi ≤ x. We know that Nx = nF̂X(x) will converge to infinity when

n → ∞, but in practice, and as for the FDH estimator, we will lose accuracy for small values

of x, because Nx will be small. So clearly in all what follows, the results and the selected

bandwidths will depend on the current value of x, but to avoid the notational complexity we

will keep the notation (hy, h) for denoting the bandwidths, even if they are determined for a

specific value of x.

7



The criterion is thus based on a weighted integrated squared error (ISE). We have:

ISE =

∫
{ĝ(y|X ≤ x, Z = z) − g(y|X ≤ x, Z = z)}2m(X ≤ x, z)dW (z)dy, (16)

where the integral is over (y, z). Note that, as pointed in Hall et al. (2004), the presence

of dW (z) serves only to avoid difficulties caused by dividing by 0, or by numbers close to

0, in the ratio f̂(y, X ≤ x, z)/m̂(X ≤ x, z) in (14), since we are dealing with continuous Z.

By straightforward developments, it can be seen that the part of ISE that depends on the

bandwidths (hy, h) can be expressed as I1n − 2I2n where:

I1n =

∫
ĝ2(y|X ≤ x, Z = z)m(X ≤ x, z)dW (z)dy, (17)

I2n =

∫
ĝ(y|X ≤ x, Z = z)f(y, X ≤ x, z)dW (z)dy. (18)

We observe that

I1n =

∫
Ĝ(x, z)

m(X ≤ x, z)

m̂2(X ≤ x, z)
dW (z), (19)

where Ĝ(x, z) =
∫

f̂ 2(y, X ≤ x, z)dy can be expressed as

Ĝ(x, z) =
1

n2

n∑

i1=1

n∑

i2=1

Kh(Zi1 , z)Kh(Zi2 , z)1I(Xi1 ≤ x)1I(Xi2 ≤ x)

∫
Lhy

(Yi1, y)Lhy
(Yi2 , y)dy. (20)

Finally, the cross-validation approximations Î1n and Î2n are obtained by

Î1n =
1

n

n∑

i=1

Ĝ(i)(x, Zi)1I(Xi ≤ x)w(Zi)

m̂2
(i)(X ≤ x, Zi)

(21)

Î2n =
1

n

n∑

i=1

f̂(i)(Yi, X ≤ x, Zi)1I(Xi ≤ x)w(Zi)

m̂(i)(X ≤ x, Zi)
(22)

where the subscript (i) indicates that the respective quantity is computed based on a sample

of (n − 1) observations obtained from {(X1, Y1, Z1), . . . , (Xn, Yn, Zn)} by deleting the ith

observation (Xi, Yi, Zi) (leave-one-out). Here w(Zi) is a weight function that could be set

equal to 1 unless Zi is such that m̂(i)(X ≤ x, Zi) is close to 0, in which case, w(Zi) = 0.

Note that in the computation of Ĝ(x, z), the integral can be solved analytically, since
∫

Lhy
(Yi1 , y)Lhy

(Yi2, y)dy is the convolution of Lhy
(Yi1, y) with itself (see Silverman, 1986,

page 50).
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Remark 2. If we choose for Y a product kernel as in (15), then we have for each component

of y (we drop the component index for notational convenience, so the integrals in the next

equalities are univariate):
∫

Lhy
(Yi1, y)Lhy

(Yi2, y)dy =
1

h2
y

∫
L
(Yi1 − y

hy

)
L
(y − Yi2

hy

)
dy

=
1

hy

∫
L(h−1

y Yi1 − u)L(u − h−1
y Yi2)du

=
1

hy

∫
L(h−1

y (Yi1 − Yi2) − v)L(v)dv

=
1

hy
L(2)

(Yi1 − Yi2

hy

)
,

where L(2) is the convolution of L with itself. If L(·) is the standard normal, L(2)(·) will be

a normal with mean 0 and variance equal to 2.

Coming back to the full multivariate integral with Gaussian product kernels we have:
∫

Lhy
(Yi1, y)Lhy

(Yi2, y)dy = (2π)−q/2|Σ|−1/2 exp

{
−

1

2
(Yi1 − Yi2)

′Σ−1(Yi1 − Yi2)

}
, (23)

where Σ = 2diag(h2
y1

, . . . , h2
yq

). This is the density of a multivariate normal of dimension q

with mean 0 and covariance matrix Σ, evaluated at the point (Yi1 − Yi2). The same kind of

result would be obtained with more general multivariate gaussian kernels.

The cross-validation criterion CV is obtained by computing2 for the current value of x

(generally this is done for the observed values of Xi) and for selected values of (hy, h),

CV (hy, h) = Î1n − 2Î2n. (24)

We look for minimal value of CV . As recommended in Hall et al. (2004), if there are two

or more local minima, we select the second smallest of these turning points, instead of the

smallest, to prevent of using too small bandwidths.

It is shown in Hall et al. (2004) and Li and Racine (2007, 2008) that this criterion (LSCV)

leads to bandwidths of optimal size for the relevant components of Z. In addition, if some

components of Z are irrelevant, Hall et al. (2004) show that the corresponding asymptotic

value of hj converges to infinity. In practical situations with finite samples, this will result in

appropriate smoothing for the relevant components of Z and oversmoothing for the eventual

irrelevant components. This will be illustrated in the next section.

At the end, as pointed in Li and Racine (2007, page 183)3, we have also to correct the

resulting h by an appropriate scaling factor, because we are considering the estimation of

2See the Appendix for more details on the practical implementation.
3We thank Qi Li and Jeff Racine for helping us in correcting a typo in the correction factor given in their

book on page 183, where, in their notations, the factor n
(5+q)/(4+q) has to be read n

−
1

(5+q)(4+q) .

9



the conditional (survival) cdf and not the pdf. This scaling factor would be n
− q

(4+q+r)(4+r) in

our case, where q is the dimension of Y and r is the dimension of Z.

4 Numerical Illustrations

In this section we present some examples using simulated and real data, to illustrate the

proposed method. For the Monte Carlo simulations, we considered one output-oriented

model of production process with multiple inputs and multiple outputs already used in

the literature. We introduce the dependency on the environmental factor Z and we study

the cases with univariate Z and with bivariate Z. The section ends with an application

on a sample of 129 US Mutual Funds analyzing a cross-section of US Aggressive-Growth

(AG) Mutual Funds. These are mutual funds that may invest in emerging market growth

companies, focusing on growth of capital gains and not so much on size of dividends paid.

Daraio and Simar (2005) suggest a procedure bringing light on the effect of the environ-

mental factors on the efficiencies. They propose to analyze how the ratio of the conditional

measure over the unconditional measure behaves as a function of Z . From a practical point

of view, they use nonparametric smoothed regression of the ratios Q̂z =
bλn(x,y|z)
bλn(x,y)

over the

values of z to investigate the effect of Z on the efficiencies. This regression is estimated from

the observed ratios at the data point (Xi, Yi, Zi) , for i = 1, . . . , n. Of course in this regres-

sion, we eliminate the data points with spurious one for Q̂z i.e. corresponding to original

FDH-efficient points. Indeed if λ̂n(x, y) = 1, by construction, λ̂n(x, y|z) cannot be different

from one. These data points do not bring any information on how Z may affect the efficiency.

As explained and illustrated in Daraio and Simar (2005, 2007a), for an output oriented

case, a decreasing regression line indicates an average negative effect of the variable Z on

the performances (as if Z would act as an undesired output), an increasing regression would

indicate an average positive effect (as if Z would act as an additional free disposal input)

and an horizontal line would indicate a neutral effect. For an input oriented case, as in the

Mutual Funds example below, it is just the contrary.

In all the examples we used for Z a multiplicative quartic kernel with a vector of band-

widths h = (h1, . . . , hr). Since we are less interested in the smoothing for Y , we used for Y

product gaussian kernels with an univariate baseline bandwidth h0 with hy = h0sy, sy being

the vector of empirical standard deviations of Y .
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4.1 Simulated examples

We simulate our data according to a convex technology with p = q = 2 and with additive

output, described in Park et al. (2000) and further adapted in Simar (2007) and Daraio and

Simar (2007a). Here, the efficient frontier can be described by:

y(2) = 1.0845(x(1))0.3(x(2))0.4 − y(1) (25)

where y(1), y(2), and x(1), x(2) denote the components of y and x, respectively. We generate

independent uniform random variables X
(j)
i ∼ U(1, 2) and also independent Ỹ

(j)
i ∼ U(0.2, 5)

for j = 1, 2.

The output efficient random points on the frontier can be defined by:

Y
(1)
i,eff =

1.0845(X
(1)
i )0.3(X

(2)
i )0.4

Si + 1
(26)

Y
(2)
i,eff = 1.0845(X

(1)
i )0.3(X

(2)
i )0.4 − Y

(1)
i,eff . (27)

where Si = Ỹ
(2)
i /Ỹ

(1)
i represent the slopes which characterize the generated random rays in

the output space for j = 1, 2.

The efficiencies are then simulated according to exp(−Ui) and finally, the output variables

are defined by Yi = Yi,eff ∗ exp(−Ui). We generated Ui ∼ Expo(mean = 1/3) in the case of

univariate Z and Ui ∼ Expo(mean = 1/2) in the multivariate case.

4.1.1 Univariate Z

In this first example we introduce an environmental factor Z generated from the Uniform

distribution, Z ∼ U(1, 4) independently of X and Y so, with no influence on the production

process. We simulate a sample of n = 100 observations according to the following scenario:

Y
(1)
i = Y

(1)
i,eff ∗ exp(−Ui) (28)

Y
(2)
i = Y

(2)
i,eff ∗ exp(−Ui). (29)

Table 1 presents the FDH and conditional FDH measures of efficiency computed on this

simulated data set for 10 randomly selected units. For the nonparametric estimation, we

used a quartic kernel but we noted that the results remain stable when other kernels with

compact support are used. As it appears by inspecting the column with the value of h in

Table 1, the data-driven method we propose in this paper is able to detect the non-influence

of Z by providing very large values of h (the 3 quartiles of the values of h over the 100

observations are 16.28, 17.57 and 18.61 well beyond the range of Z, which varies between 1

and 4). Thus the method allows to identify Z as irrelevant external factor by oversmoothing.

11



The neutral effect of Z on the production process is confirmed when looking to Figure 1

that depicts the ratios of conditional to unconditional FDH efficiency scores with the non-

parametric regression of the observed scores on the values of Z. As expected the estimated

regression (top panel) and the estimate of the derivative of the ratios with respect to z

(bottom panel) are both, as they should be, absolutely flat.
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Figure 1: Simulated example with univariate Z. Scatterplot and smoothed nonparametric

regression of the ratios Qz = λ̂n(x, y|z)/λ̂n(x, y) on z (top panel) and the estimate of the

derivative of Qz with respect to z (bottom panel).

4.1.2 Multivariate Z

For the second example we generated two independent uniform variables Zj ∼ U(1, 4) to

build the bivariate variable Z = (Z1, Z2). The influence of Z on the production process is

described by:

Y
(1)
i = (1 + 2 ∗ |Z1 − 2.5|3) ∗ Y

(1)
i,eff ∗ exp(−Ui)

Y
(2)
i = (1 + 2 ∗ |Z1 − 2.5|3) ∗ Y

(2)
i,eff ∗ exp(−Ui).

Here we see that Z1 pushes the efficient frontier above when far from 2.5, in both directions,

with a cubic effect, while Z2 has no effect on the frontier and so is irrelevant for the conditional

measures. Note that there is no interaction between Z1 and Z2, the two variables being

independent.
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Units ND λ̂n(x, y) λ̂n(x, y|z) Nz h

4 4 1.2204 1.2204 48 16.8015

12 2 1.1491 1.1491 7 18.7554

21 0 1.0000 1.0000 1 0.2878

25 1 1.1310 1.1310 5 19.1195

36 0 1.0000 1.0000 14 18.0273

45 6 1.2743 1.2743 57 2547.9574

67 0 1.0000 1.0000 43 16.9074

79 7 2.0093 2.0093 12 6871.8840

91 6 1.5215 1.5215 14 2.6379

98 1 1.0724 1.0724 14 18.0270

mean 1.6 1.1367 1.1367 25.3 823.5181

Table 1: Results for 10 selected units from the simulated data in the case of univariate Z.

ND is the number of observations dominating the corresponding unit and Nz represents the

number points used to estimate the conditional distribution given Z = z.

Again, we simulate n = 100 observations according to this scenario. The mean value of

the unconditional measure is 3.3032 compared to 1.6065, the mean value of the conditional

output oriented measure, i.e. as expected, a global increase in efficiency.

The following Table summarizes the distribution of the obtained optimal bandwidths,

the min, the 3 quartiles and the max values. Clearly, as expected, most of the values for h2

produce oversmoothing (the range of Z2 is between 1 and 4).

hj min(hj) Q1(hj) Q2(hj) Q3(hj) max(hj)

h1 0.1366 0.5051 0.7209 0.8819 260.07

h2 0.1319 2.6744 5.8308 1862.5 6925.4

Table 2: Distribution of the optimal bandwidths.

Figure 2 provides an even more detailed information on the impact of Z on the production

process. It plots the ratios λ̂n(x, y|z)/λ̂n(x, y) against z1 and z2. As we expected, we see

a positive cubic effect of |Z1 − 2.5| and a flat behavior of the surface with respect to Z2.

The marginal effects can better be viewed in Figure 3 which shows the preceding surface

regression evaluated at the observations (Xi, Yi, Zi) but viewed marginally as a function of

each component Z1 and Z2 separately: here the cubic effect for Z1 and the neutral effect for

Z2 clearly appears. The lines in the picture represent just a local average line of the points

to stress the global effect.
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Figure 2: Simulated example with multivariate Z. Smoothed nonparametric surface regres-

sion of λ̂n(x, y|z)/λ̂n(x, y) on Z1 and Z2.
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Figure 3: Simulated example with multivariate Z. Marginal views of the surface regression

of λ̂n(x, y|z)/λ̂n(x, y) on z at the observed points (Xi, Yi, Zi), viewed as a function of Z1 (top

panel) and as a function of Z2 (bottom panel).
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4.2 An illustration on real data

In the following we illustrate the performances of our method on real data consisting of a

sample of 129 US Aggressive-Growth (AG) Mutual Funds for the year 2002. As in previous

studies, Daraio and Simar (2005, 2006) and Jeong et al. (2008), an input oriented analysis

was performed in order to evaluate the performance of Mutual Funds in terms of their risk

(as expressed by standard deviation of Return) and transaction costs (measured in terms of

Expense Ratio, Loads and Turnover) management. The traditional output to be considered

in this framework is the Total Return of funds (the annual return expressed in percentage

terms). In our illustration we use the Market Risks as environmental variable, to investigate

its effect on our data, i.e. if it is favorable or unfavorable to the performance of mutual funds

over the period under analysis. Hence, our analysis uses 3 inputs, 1 output, 1 environmental

factor and 129 observations.

As far as the individual results are concerned, the bandwidths here are much smaller than

those obtained in the previous studies. Of course, here we use a quartic kernel without any

scaling. In the previous studies (using truncated Gaussian kernel), the bandwidths should

be multiplied by the standard deviation of Z (=0.157) to make things comparable. For

instance, the median value of the optimal bandwidth computed with truncated Gaussian

kernel is 0.0591 (slightly smaller than the non-optimal value in Jeong et al, 2008). In our

case here with quartic kernel we obtain a median value of 0.0117. The average value over

the 129 observations of the input efficiency scores is 0.6083; for the conditional measures we

reach the average value of 0.9595 (0.8442 in Jeong et al. , 2008). Table 3 gives a view of the

distribution of the resulting optimal bandwidths.

hj min(hj) Q1(hj) Q2(hj) Q3(hj) max(hj)

h 0.0056 0.0093 0.0117 0.0305 6.0525

Table 3: Distribution of the optimal bandwidths for the Mutual Funds example.

Except for very few isolated data points, the optimal bandwidths are indeed very small

with respect to the range of Z (Zi ∈ [0.0573, 0.9962]), indicating certainly an influence of Z

on the production process.

In order to detect a direction of the effect of the risk factor Z on the performance of the

Mutual Funds we analyze again the observed values of the ratios λ̂n(Xi, Yi|Zi)/λ̂n(Xi, Yi)

against Zi. Figure 4 illustrates the influence of Z on the production process showing a global

slight positive effect of the risk factor Z on the performance of mutual funds (remember here

we are in an input orientation). We notice that this impact is more clear than the one
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detected in Daraio and Simar (2005) and Jeong et al. (2008), where the regression line

was rather flat or even slightly increasing for small values of Z. By choosing an optimal

bandwidth by the method proposed in this paper, we are able to detect a slight positive

effect for all the values of Z, even if, all of this has to be taken with caution because the

number of observations is too small to have definite conclusions (we have only 129 data points

starting from a space of p + q + d = 5 dimensions). This is also more in accordance with

traditional approaches where Market Risk is used as an input, underlying that the effect of

market risks is conducive for mutual funds performance (Sengupta, 2000). The big difference

here is that we do not impose such behavior by a priori assumptions, but it appears as a

result from our methodology. Of course, the investigation on the statistical significance of

this slight positive effect as it appears from Figure 4 is still an open question and stress the

need for tools allowing inference and tests of hypothesis in this framework.
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Figure 4: Aggressive Growth US Mutual Funds. Scatterplot and smoothed nonparametric

regression of the ratios Qz = λ̂n(x, y|z)/λ̂n(x, y) on z (top panel) and the estimate of the

derivative of Qz with respect to z (bottom panel).

5 Conclusions

Conditional efficiency measures are very important for the analysis of the influence of exter-

nal, environmental factors on the production process. As Daraio and Simar (2005, 2007a)

and Jeong et al. (2008) pointed out, the selection of the bandwidth in this complex frame-
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work is a relevant open issue. In this paper we fill this gap in the literature and we propose a

procedure for selecting the optimal bandwidth involved in the estimation of a non-standard

distribution function on which nonparametric conditional efficiency estimates are based. The

method is based on the extension of theoretical results obtained by Hall et al. (2004) and Li

and Racine (2007, 2008) to the estimation of non-standard conditional distributions defining

the conditional efficiency scores. The procedure allows separating the influential from the

irrelevant factors, by assigning to the irrelevant ones large smoothing parameters.

We considered in this paper only the case where the environmental variables Z are contin-

uous. The extension to the case of vectors Z having categorical and continuous components

is straightforward and left as an exercise for the readers. The only difference is the use of

appropriate kernels handling either ordered discrete variables or qualitative variables, the

formula for computing the Least Squares Cross Validation criterion being the same as above.

All the details on these special kernels can be found in Hall et al. (2004), Li and Racine

(2007, 2008). As shown in our illustration with real data, a relevant direction for future

research would be to develop tools for testing if some factors are significantly influential

or not. This would involve bootstrapping procedures. We know that for FDH estimators

subsampling is a consistent bootstrap procedure (see Jeong and Simar, 2006), but so far no

data-driven procedures have been established to select the appropriate subsample size in this

particular setup.
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Appendix: Practical Implementation

In this appendix we provide a Matlab routine that evaluates the LSCV criterion (CV as

given in equation (24)). For the computation of the convolution involved in the estimation of

Ĝ(x, z), we used Gaussian product kernels for Y . For the Z variable we use the multiplicative

quartic kernel with a vector h = (h1, . . . , hr) of bandwidths, as described above. To avoid the

computational burden, since optimal smoothing for Y is not of central interest, we suggest

to define the bandwidths for the components in Y according to hyj
= h0syj

, where syj
is

the empirical standard deviation of the jth component of Y , and h0 is a baseline bandwidth

to select. This would simplify the search of the optimal bandwidths (hy, h) to a (1 + r)-

dimensional search: (h0, h). We present below the output oriented version, the notation in

the routine is self-explanatory.

function CV=Ker_LSCV_OUT(h,x,X,Y,Z,n,q,d)

%

% Evaluate the LSCV criterion for estimating a conditional pdf

% of (y |X<=x, Z=z) for baseline bandwidths hby and vector hz

% OUTPUT ORIENTATION

%

hby=h(1);

hy=hby*std(Y); % this is a (1 x q) vector but hby is one-dimensional

wz=ones(n,1);

Q2x=zeros(n,1);

Q1x=zeros(n,1);

Cst1=(4*pi)^(q/2)* prod(hy);

Cst=1/Cst1;

Yh=Y*diag(ones(1,q)./hy);

YY=Yh*Yh’;

DYY=diag(YY);

DYY1=kron(DYY,ones(1,n));

Convol=Cst*exp(-(1/4) * (DYY1 + DYY1’ - 2*YY));

Xv=ones(n,1)*x;FlagXv=(X <= Xv);FlagX=all(FlagXv,2);
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xv=ones(n-1,1)*x;

for i=1:n

zi=Z(i,:);

yi=Y(i,:);

% leave-one out sample

Xi=X([(1:i-1)’; (i+1:n)’],:);

Yi=Y([(1:i-1)’; (i+1:n)’],:);

Zi=Z([(1:i-1)’; (i+1:n)’],:);

flagx=(Xi<=xv);flagx1=all(flagx,2);

tempz=(Zi-repmat(zi,n-1,1)); % this is a (n-1) x d matrix

tempy=(Yi-repmat(yi,n-1,1)); % this is a (n-1) x q matrix

tempyh=tempy*diag(ones(1,q)./hy);

keryi=(exp(-(tempyh.^2)/2)/sqrt(2*pi))*diag(ones(1,q)./hy);% Individual Gaussian Kernel

kery=prod(keryi,2); % Gaussian product kernel: kery is a (n-1) x 1 vector

hz=h(2:d+1);

tempzh=tempz*diag(ones(1,d)./(hz’));

kerzi=(15/16)*((ones(size(Zi))-tempzh.^2).^2).*(abs(tempzh)<=1)*diag(ones(1,d)./(hz’));%

kerz=prod(kerzi,2); % Quartic product kernel: (n-1) x 1 vector

mxzi=mean(flagx1.*kerz);

fyxzi=mean(flagx1.*kerz.*kery);

if(mxzi <= 1.0e-06);

Q2x(i)=0; Q1x(i)=0;

else

Q2x(i)= fyxzi*wz(i)/mxzi;

integ=Convol([(1:i-1)’; (i+1:n)’],[(1:i-1)’; (i+1:n)’]);

Bigi1i2=kron(flagx1,flagx1’).*kron(kerz,kerz’).*integ;

Gxzi=mean(mean(Bigi1i2));

Q1x(i)=Gxzi*wz(i)/(mxzi^2);

end

end

I1x=mean(Q1x.*FlagX);

I2x=mean(Q2x.*FlagX);

CV=I1x - 2*I2x ;
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