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Abstract

Estimating the response of hours worked to technology shocks is often considered as a
crucial step for evaluating the applicability of macroeconomic models to reality. In par-
ticular, Galí [1999] has considered the conditional correlation between employment and
productivity as a key tool for building an empirical evaluation of Real Business Cycle
theories and New-Keynesian models. Impulse-response functions are often identified by
means of Structural Vector AutoRegressive models. However, a structural Moving Aver-
age model of the economy cannot be estimated by VAR techniques whenever the agents’
information space is larger than the econometrician’s one, that is when we face a problem
of nonfundamentalness. We consider how factor models can be seen as an alternative to
VAR for assessing the validity of an economic model without having to deal with the
problem of nonfundamentalness. We apply this method to the well known business cycle
model by Galí [1999], which originally was estimated using a VAR, and retrieve alterna-
tive nonfundamental representations of the relation between technology shocks and hours
worked. Such representations always yield a positive correlation between productivity
and hours worked when conditioning on a technology shock. This result is more robust
than the results by Christiano et al. [2004], because it is independent of the transforma-
tion used for hours worked and moreover is perfectly consistent with the unconditional
correlation observed between the common components of the variables considered.
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1 Introduction

We find a positive conditional correlation between hours worked and labour productivity when
estimating the impulse responses to a technology shock using a dynamic factor model. A pos-
itive correlation is found also when conditioning on a nontechnology shock. This result is
independent of the transformation used for hours worked and is perfectly consistent with the
positive unconditional correlation observed between the common components of the variables
considered, as obtained by factor decomposition. If we consider the idiosyncratic (i.e. residual)
component as a simple measurement error, then the relation between common components is
the one we should be interested in for policy making. Our results are in contrast with those
obtained by Galí [1999] and are more robust with respect to those obtained by Christiano
et al. [2004] using VAR. The difference is imputable to the presence of nonfundamental rep-
resentations of the model considered.

We typically face the problem of nonfundamentalness when dealing with structural models
of the economy. Such a problem arises when the agents’ information space is larger than
the econometrician’s one. Therefore, it is impossible for the latter to use standard econo-
metric techniques, as Vector Autoregression (VAR), to estimate economic models. In this
paper, we restate the conditions under which it is possible to invert a Moving Average (MA)
representation in order to get a VAR. We then consider how factor models can be seen as
an alternative to VAR for assessing the validity of an economic model without having to
deal with the problem of nonfundamentalness. We apply this new method to the well known
business cycle model by Galí [1999], which originally was estimated by means of a VAR model.

Galí proposes a model of the economy with sticky prices that is the benchmark of all the
successive macroeconomic models aimed at explaining business cycle fluctuations. The main
motivation of Galí is to provide a theory able to replicate the almost null observed uncondi-
tional correlation between labour productivity and labour input growth rates. Real-business-
cycle (RBC) theorists assume a positive correlation when conditioning on a technology shock.
In order to replicate these empirical findings, RBC models necessitate another shock (e.g. on
government purchases or on preferences). The results on US data and the model by Galí
instead point towards a negative correlation when conditioning on a technology shock and a
positive one when conditioning on a nontechnology (monetary) shock. These results seem to
be robust for different proxies of labour input. Namely, Galí considers hours per worker differ-
entiated or not and total labour force always differentiated. However, more recently Christiano
et al. [2004] show contradictory results for the impulse response of hours per worker to a tech-
nology shock. Differences appear when estimating the original VAR using hours per worker
differentiated or in levels. The impulse response has a negative impact coefficient if we differ-
entiate, while the impact coefficient is positive if we take levels.

In the next section we state the definition of fundamentalness in square systems. In sec-
tion 3 we consider factor models as the tools for identifying economic shocks in structural
models and we show how with this approach the problem of nonfundamentalness becomes
nongeneric. In section 4 we present a method for estimating impulse response functions when
using the factor models. In section 5 we review the results by Galí [1999] and Christiano et al.
[2004], when considering the response of labour input to a technology shock. These results
are compared with those obtained when using factor models. In section 6 we give some ideas
for possible future developments of this work.
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2 Nonfundamentalness and VAR models

When estimating structural models, we must always take into account the possibility of having
a problem of nonfundamentalness, that is of representations that cannot be identified by the
econometrician by means of VAR techniques. Consider an n-dimensional covariance stationary
zero-mean vector stochastic process xt of observable variables, driven by a q-dimensional
unobservable vector process ut of structural (i.e. with economic meaning) shocks. We can
always write

xt = B(L)ut , (1)

where B(L) =
∑

∞

k=0
BkL

k is a one-sided polynomial in the lag operator L, in principle of
infinite order. The shocks are orthogonal white noises: ut ∼ w.n.(0,Γu

0
), with Γu

0
diagonal. In

all what follows we assume that xt has rational spectral density and therefore the entries of
B(L) are rational functions of L. We define the k-th lag impulse response of the variable xit to
the shock ujt as the (i, j)-th element of the matrix Bk. Whenever ut ∈ span {xt−k, k ≥ 0}, we
say that ut is fundamental with respect to xt. If n < q then it is almost impossible to obtain
ut from the present and past values of observed data, since we observe fewer series than the
shocks we want to recover. Thus a necessary condition for fundamentalness is n ≥ q.

We start by considering the square systems (in which the number of shocks is equal to the
number of observed variables) and we provide the sufficient condition for fundamentalness.

Definition 1 (Fundamentalness in square systems) Given a covariance stationary vec-

tor process xt, the representation xt = B(L)ut is fundamental if

1. ut is a white noise vector;

2. B(L) has no poles of modulus less or equal than unity, i.e. it has no poles inside the

unit disc;

3. detB(z) has no roots of modulus less than unity, i.e. all its roots are outside the unit

disc

detB(z) �= 0 ∀ z ∈ C s.t. |z| < 1 .

If the roots of detB(z) are outside the unit disc, we have invertibility in the past (i.e. the
inverse representation of (1) depends only on nonnegative powers of L) and we have funda-
mentalness. We can thus estimate a VAR for xt and the residuals, once identified, are the real
economic shocks we are looking for. However, if at least one of the roots of detB(z) is inside
the unit disc, we still have invertibility, and we also have nonfundamentalness. Since in this
case the inverse representation of (1) depends also on negative powers of L, we can speak of
invertibility in the future, and we thus cannot use standard techniques as VAR to identify the
model. Finally, if there is one root on the unit circle, the representation is still fundamental
but it is not invertible.

Nonfundamentalness appears in the literature in two ways: endogenously or exogenously. In
the first case the model is by definition nonfundamental, this is the case of permanent income
models (see Blanchard and Quah [1993] and Fernandez-Villaverde et al. [2007]) and rational
expectations (see Hansen and Sargent [1980]). While in the exogenous case it is the way in
which the dynamics of exogenous variables is specified which makes the model fundamental or
not. An example of this latter case is in the debate between Blanchard and Quah [1989] and
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Lippi and Reichlin [1993]. For a survey of the literature on nonfundamentalness, see Alessi
et al. [2007].

3 Nonfundamentalness and factor models

Although the literature often considers nonfundamentalness as a minor problem at least in
all practical cases, ruling out nonfundamental representations might hide the econometrician
a large number of alternative possible meaningful representations of a given model. Typical
models used by central banks, such as Dynamic Stochastic General Equilibrium (DSGE) mod-
els, involve expectations and are therefore potentially nonfundamental. When validating these
models by means of VAR, there is a serious problem of identification of the structural shocks.
We would like to find econometric models that do not have to bother with the problem of
nonfundamentalness, but still are able to achieve identification of structural shocks. Dynamic
factor models are a good tool for this latter purpose. In this section we outline how these
models are built and how they deal with nonfundamentalness.

From the linearization of structural models, as for example DSGE models, we usually come
up with a state space form for the observable variables xt and the unobservable state-variables
Ft:

xt = ΛFt ,

(2)

A(L)Ft = Hut .

The dimension of Ft is r × 1. The static rank of the system (i.e. the rank of the covariance
of xt) is at most r and it depends on the size of the vector of exogenous shocks ut, which
is q, and on the number of lags for each shock included in the model, which is s, the order
of A(L). Therefore, the static rank depends on the structure of the economy. Empirically,
we find reduced static rank, i.e. r < n, in the form of common cycles and, for this reason,
it is assumed in most DSGE models. We can invert the second of (2) to obtain its MA
representation

xt = Λ(I − A(L))−1Hut = B(L)ut . (3)

From this equation we see that the dynamic rank of xt (i.e. the rank of its spectral density
matrix Σx(θ)) is q, it therefore depends on the number of exogenous forces. In general, for
macroeconomic datasets q < n, which means that there is collinearity among the n variables.
About the ranks notice that

Σx(θ) = B(e−iθ)Γu
0
B(eiθ)′ ,

and since rankB(L) = q the dynamic rank is q, while

Γx
0

= ΛFtF
′

tΛ
′ .

Therefore the maximum static rank is r. The reduced static and dynamic ranks are restric-
tions that come from the theory and that could be tested.

In principle we could now estimate the VAR D(L)xt = εt where εt = Hut. However, to
estimate this VAR we need r = n in order to invert Γx

0
, which is almost never the case. Thus

VAR estimation is not possible due to the reduced static rank of macroeconomic datasets.
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There are two alternatives: either estimating a VAR only on blocks of r variables, or adding
measurement errors. In the latter case we eliminate the collinearity among variables and we
can estimate the full system, thus either we estimate a VARMA on the whole system, or
we estimate a dynamic factor model. The last case is the one that we are interested in (see
Giannone et al. [2006] for details on this and the other cases).

When adding orthogonal measurement errors ξt, we lose the collinearity of the variables and
we can write (3) as a dynamic factor model

xt = B(L)ut + ξt = χt + ξt , (4)

where ut is the q-dimensional vector of common shocks. The usual assumptions hold, therefore
ut ∼ w.n.(0, Iq), and ξt is an idiosyncratic n-dimensional process of measurement errors s.t.
ξit−k is orthogonal to ujt for any i, j, and k. Moreover, the q largest eigenvalues of the spectral
density matrix of xt diverge as n goes to infinity, while the (q + 1)-th is bounded almost
everywhere for θ ∈ [−π, π]. These assumptions are reasonable since measurement errors are
supposed to vanish when considering linear combinations of many collinear variables. As a
consequence, the common component χt has reduced dynamic rank q < n, while ξt has full
dynamic rank: this is how we break collinearity. Notice that the need of large cross sections
to apply the factor model is perfectly consistent with the standard practice of central banks,
which use all the available information when making decisions.
We can also add measurement errors to the state space form (2)

xt = ΛFt + ξt ,

(5)

A(L)Ft = Hut .

Once again, given the previous assumptions, we have a common part with reduced static rank
and an idiosyncratic part with asymptotically vanishing covariance that has full static rank.
Therefore, when dealing with large cross sections we still have asymptotically reduced dynamic
and static rank of the whole dataset xt. Hereafter we call Ft the static factors while ut are the
dynamic factors that correspond to the structural shocks of the economy. We want to identify
ut and the impulse responses that they generate.

What about nonfundamentalness? We can show that actually this is no more a generic prob-
lem in factor models and, under reasonable assumptions, we can always guarantee that the
dynamic factors ut are fundamental for xt (see Forni et al. [2007]). In factor models we always
have n > q, therefore we first need a definition of nonfundamentalness that generalizes defini-
tion 1 to the case of singular systems. It is indeed the singularity of dynamic factor models
that makes the property of nonfundamentalness non generic.

Definition 2 (Fundamentalness in singular systems) Given a covariance stationary vec-

tor process xt, the representation xt = B(L)ut is fundamental if:

1. ut is a white noise vector;

2. B(L) has no poles of modulus less or equal than unity, i.e. it has no poles inside the

unit disc;
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3. B(L) has full rank inside the unit disc

rank B(z) = q ∀ z ∈ C s.t. |z| < 1 .

Alternatively, we can restate this last condition in terms of the roots of det B(z). We ask that

the determinants of all the q × q submatrices of B(z) have no common roots inside the unit

disc. More precisely, if we call Bj(L) the submatrices contained in B(L) and we define the set

of indexes I =
{

j ∈ N s.t. j = 1, . . . ,
(

n
q

)

}

, the definition of nonfundamentalness requires that

∄ z ∈ C s.t.

⎧

⎨

⎩

|z| < 1

detBj(z) = 0 ∀ j ∈ I .

As an example, consider the case q = 1. If n = 1 we are back to definition 1 and for fundamen-
talness we require that no root of B(z) is smaller than one in modulus. If instead n > 1 we
have n polynomials Bj(z) and from definition 2 the representation is nonfundamental if they
have a common root inside the unit disc. Thus, if n = q, nonfundamentalness is generic since
if it holds in a point then, for continuity of the roots of B(z), it holds also in its neighborhood.
While if n > q nonfundamentalness is nongeneric because to have a common root we must
satisfy

(

n
q

)

− 1 equality constraints. In singular models we usually have highly heterogeneous
impulse responses of the variables to the few structural shocks, therefore it is highly improb-
able to have a common root for all of them, although it is not unlikely to have common roots
for some submatrices Bj(L). Roughly speaking, although in principle the econometrician has
a smaller information set than the agents’ one (i.e. there is nonfundamentalness), he can
supply the lack of information by observing additional series, and, if dynamic heterogeneity
is guaranteed, then these series contain useful information. In macroeconomic datasets this is
very likely to happen, thus fundamentalness in factor models is a reasonable property.

Summing up, the advantages of factor models, when we want to identify structural models of
the economy, are mainly two.

1. Factor models are a natural representation of structural models as DSGE. xt contains
the observed variables of the model and some proxies of the state variables which are
often unobserved and can be estimated as the latent static factors Ft. Indeed, the typical
macroeconomic variables included in the panel are indicators of economic activity built
by aggregation, which can be seen as linear combinations of unobserved state variables
(and their lags) plus some measurement errors. It is possible to impose structural rela-
tions between the observed xt and the unobserved Ft, i.e. to impose restrictions on Λ.
This is the approach used for example by Boivin and Giannoni [2006].

2. Structural models like DSGE make often use of expectations therefore their linearized
state space form may suffer of the problem of nonfundamentalness. Factor models sup-
ply the econometrician with the information needed to achieve identification even of
nonfundamental representations. This is possible thanks to the large cross section and
heterogeneity in the responses of the variables to the structural shocks. Nonfundamen-
talness becomes then a nongeneric problem so that we do not need to be concerned
about it anymore.
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4 Estimation of impulse responses

Consider a large dataset xt of dimension n × T , containing the variables of interest for some
economic model and other variables correlated with them. We can assume a factor structure
written in the usual state-space form

xt = ΛFt + ξt

(6)

Ft = AFt−1 + Hut .

The q-dimensional vector ut is the vector of structural shocks we want to identify. We know
from Stock and Watson [2006] that a consistent estimate F̂t of the r static factors is given
by the static principal components of the observed variables, i.e. they are the projection of
xt on the eigenvectors S of the estimated covariance matrix. Following Giannone et al. [2004]
and Forni et al. [2007], we obtain the estimates for the parameters of the model, the dynamic
factors and their loadings as in the following:

Λ̂ = S′ ,

Â = S′Γ̂x
1
S(S′Γ̂x

0
S)−1 ,

Γ̂Hu
0

= S′Γ̂x
0
S − ÂS′Γ̂x

0
SÂ′ = HH′ = MΦM′ ,

Ĥ = MΦ1/2 ,

ût = Φ−1/2M′(Ir − ÂL)F̂t ,

B̂(L) = Λ̂(Ir − ÂL)−1Ĥ ,

where for a generic variable y the matrices Γ̂
y
0

and Γ̂
y
1

represent respectively the contempora-
neous and lagged estimated covariance matrices.

In practice we truncate the MA(∞) representation of the last equation and we obtain a
dynamic model for the common component χt = B̂(L)ût. None of the terms on the right
hand side is identified unless we impose q(q−1)/2 restrictions. Imposing restrictions is equiv-
alent to fix a rotation matrix Ω. A typical restriction is long-run neutrality of one of the shocks.

As an example consider the case with q = 2, we thus need only one restriction to achieve
identification. We impose neutrality of the second shock on the first variable. The required
restriction can be restated as an equation for the rotation angle ϑ of the matrix

Ω =

[

cos ϑ sin ϑ
− sin ϑ cos ϑ

]

.

If we call Ĉ(L) the structural impulse responses then Ĉ(L) = B̂(L)ΩΩ′ût, and the rotation
angle satisfies

tg θ = −

[

B̂12(1)

B̂11(1)

]

.
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Once the impulse responses are identified, we can compare the result with a simple VAR by
taking only the rows of B̂(L)Ω corresponding to the variables of interest. In this way we
restrict to a squared system analogous to the one obtained with a VAR. However, the way in
which these functions are estimated implies that possible nonfundamental representations are
taken into consideration.

With the method illustrated in this section we do not have to invert a VAR of observable
variables in order to get impulse responses. In fact, we invert a VAR also in this case, but for
static factors (i.e. the second equation of (6)). However, we know from Forni et al. [2007] that
fundamentalness of dynamic factors with respect to static ones is a justifiable assumption pro-
vided that we have enough heterogeneity in the impulse responses. Indeed this fact translates
into the assumption that in factor models the fundamentalness of shocks for the whole panel
xt is innocuous, as shown in the previous section, while nonfundamentalness for subpanels is
still possible. Thus it may be the case that the squared subsystem that we interested in has
a determinant with roots inside the unit disc.

5 The response of labour to a technology shock

We look at the impulse response of labour input to a technology shock when using total em-
ployment (always differentiated), hours per worker differentiated and in levels. All the three
series of labour input are downloaded from the US Bureau of Labor and Statistics, namely as
total employment we take Total Civil Labour Force over 16 years old, while as hours worked
we take the Index of Weekly Hours, and hours per worker are computed as hours worked
divided by total employment.1 We add to the original two variables a US macroeconomic
dataset containing 135 monthly series (simlar to the ones used in factor model papers, e.g.
Giannone et al. [2004]) and the series of quarterly GDP. We transform all monthly data in
quarterly data, and the sample period chosen is from 1964:Q1 to 2006:Q12. The logarithm of
the series of labour input and the logarithm of GDP are indicated respectively as lt and yt.
The corresponding logarithm of labour productivity is computed as πt = yt − lt. All variables
are transformed to achieve stationarity, except for lt when measured as hours per worker,
which is taken either in levels or in first differences. In all three cases the criterion for the
number of dynamic factors by Hallin and Liška [2007] suggests the presence of two common
shocks, in agreement with the hypothesis made by Galí. The number of static factors r is, as
usual, a more controversial issue, however results are robust for r = 6, . . . , 18. We report here
results only for the case r = 10, which corresponds to the hypothesis that each dynamic factor
is loaded by the observable series with 4 lags (i.e. one year). The variance explained by the
common component is 79% and 68% for the series of hours worked in levels and differentiated
respectively, while is just 31% for total employment. We thus concentrate mainly on the re-
sults obtained when using hours worked as labour input. We then apply to the whole dataset
the estimation technique explained in previous section with the identification restriction of a
vanishing long-run impulse response of productivity to the nontechnological shock.

1These series are not exactly the same used by Galí, due to unavailability of the original data. However,
they are very similar. Moreover, the sample chosen is more recent, but, for a theory to be general enough, its
predictions should hold for different sample periods.
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Figure 1: Evidence of nonfundamental representations.
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(a) Technology shock.
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(b) Nontechnology shock.

Figure 2: Evidence of dynamic heterogeneity in the impulse responses. Industrial production
series: blue. Price series: red.

In figure 1 we plot the roots of det Ĉ(z) once that identification is achieved.2 In both cases at
least one root always lies inside the unit disc. Different results from the ones in Galí [1999]
and Christiano et al. [2004] can only be due to the presence of nonfundamental representations
that can be identified thanks to the additional information coming from the other series in the
panel. To show the dynamic heterogeneity in the responses of the observed variables to the
structural shocks, we plot in figure 2 the impulse responses for two groups of variables: indus-
trial production and price indexes. Within a group a variables the responses are similar, while
between groups they differ. When we concentrate on the impulse responses of labour input to
a technology shock we find interesting differences between our estimation method and the re-
sults obtained with a standard VAR. Indeed, when using factor models, the impact response of
labour to a technology shock is always positive, while with VAR we obtain a negative response
both when using employment and when using hours in first difference, and a positive response

2Notice that identification is not a necessary step to determine if the roots are inside the unit disc. Indeed if a
representation is nonfundamental before applying the orthogonal transformation Ω it is still nonfundamental
after. A fundamental representation can be obtained from a nonfundamental one (and viceversa) only by
applying more complex transformations called Blaschke matrices, as for example in Lippi and Reichlin [1993].
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(a) Hours in difference.

0 5 10 15 20

0

lag

(b) Hours in levels.
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(c) Employment.

Figure 3: Impulse responses to a technology shock. Factor model: blue. VAR: red. VAR on
idiosyncratic component: green.

when using hours in levels. This result is well known in VAR literature (see Christiano et al.
[2004]). Figure 3 shows the impulse responses, where we plot also those obtained by a VAR
on the idiosyncratic components. Galí always finds a negative correlation in growth rates
between labour productivity and labour input when conditioning on the technology shock. He
explains the observed very small correlation between growth rates by introducing a monetary
shock such that, when conditioning on it, we have positive correlation between the variables.
Unconditional correlations are computed always on growth rates: corr(∆yt, ∆lt). Correlations
conditional on the i-th shock are computed as in Galí [1999]. If the estimated impulse response
matrix is Ĉ(L) =

∑K
j=0

ĈjL
j , for a given maximum truncation lag K, then the conditional

correlations are

corr(∆yt, ∆lt|i) =

∑K
j=0

Ĉj,1iĈj,2i
√

∑K
j=0

(Ĉj,1i)2
∑K

j=0
(Ĉj,2i)2

.
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We can also infer a theoretical correlation between the two variables defined as 3

corr(∆yt, ∆lt) =

∑K
j=0

Ĉj,11Ĉj,21 +
∑K

j=0
Ĉj,12Ĉj,22

√

∑K
j=0

((Ĉj,11)2 + (Ĉj,12)2)
∑K

j=0
((Ĉj,21)2 + (Ĉj,22)2)

.

When using factor models, we always find positive correlation when conditioning on the tech-
nology shock, which cannot be explained by the model of Galí. It seems that the results
obtained with VAR estimation are mainly due to idiosyncratic components. Notice that when
using hours in levels for the VAR we do not find the original result by Galí but the more recent
result by Christiano et al. [2004]. This is a controversial issue raised in recent literature where
the differentiation or not of hours leads to opposite conclusions when looking at the impact of
technology on labour. If hours are taken in differences the negative conditional correlations
point towards New Keynesian models with sticky prices, while if hours are taken in levels
real-business-cycle seems to be the right paradigm for the positive conditional correlation.
We confirm the result of previous literature concerning the response to a monetary shock,
but we find a different result for the response to a technology shock. Our results seem to
be at odds with the observed unconditional correlation between growth rates of the whole
series. However, if we consider the unconditional correlation between the estimated common
components, we find a positive correlation. This happens when using as labour input hours
per worker both in level or differentiated, while our model fails to explain the negative corre-
lation between common components when using employment. The reason lies in a good factor
decomposition when using hours per worker, and a bad decomposition when using total em-
ployment (only 30% of explained variance). Thus the issue is: are we interested in the impulse
responses for the whole series or just for the common components? The answer depends on
the meaning we attach to the idiosyncratic parts. When estimating a VAR on these latter,
the conditional correlations are those observed in the literature. Table 1 summarizes all the
results on correlations.

Our main result is: independently of the transformation used, a technology shock creates
a positive correlation between hours per worker and productivity growth rates. Moreover,
with factor models we replicate the unconditional correlation between common components,
while with a VAR on idiosyncratic components we replicate the unconditional correlation be-
tween the whole series, as it happens with the traditional VAR by Galí. If we believe in the
factor decomposition, the real indicator of the variable is given by its common part, while
the idiosyncratic part is just noise or measurement error. We think that economic models
should be aimed at studying the dynamics of the common component separated from the
idiosyncratic one.

6 Further research

The results provided are only preliminary. We need now to check the significance of the cor-
relation coefficients and to compute confidence intervals for the impulse response functions.
Very often, models that apparently lead to completely different responses turn out to be sta-
tistically equivalent due to very large confidence bands. This fact again suggests the necessity
of discussing the utility of VAR and impulse responses in general for discriminating between

3When using hours in levels the estimated impulse response is not relative to the labour input growth rate,
thus first we transform the impulse response and then we compute the conditional correlation.
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Unconditional Conditional on Unconditional

empirical technology theoretical

Labour input

xt χt VAR Factor VAR Factor idio

Hours Difference -0.02 0.41 -0.45 0.71 -0.02 0.72 -0.35
Hours Levels -0.02 0.33 0.27 0.33 -0.15 0.14 -0.29
Employment -0.29 -0.13 -0.77 0.20 -0.16 0.96 -0.36

Table 1: Unconditional and conditional correlations.

different models. We believe in factor decomposition given that it seems to be the most nat-
ural theory-free representation of macroeconomic data, usually it does not to bother with
the problem of nonfundamentalness, and allows to use all the available information. In the
empirical exercise presented above, the presence of nonfundamental representations seems to
be the reason for finding new impulse responses which cannot be retrieved when using VAR.
However, the direct relation between nonfundamental representations and different shapes of
impulse responses is still in progress and is the main subject of our future research in this
field.
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