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Abstract
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number of strong relationships, thus hinting to a core-periphery structure. Also, better-
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highly-interconnected trade clusters. Furthermore, rich countries display more intense
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1 Introduction

This paper employs network analysis to study the statistical properties of the web of trade

relationships among a large set of world countries in the period 1981-2000. We employ data on

import and export flows to build, in each year, a network of links between pairs of countries,

where each link is weighted by some proxy of the amount of trade flow that it carries. This

enables us to apply novel statistical techniques developed in the framework of weighted network

analysis and to characterize some robust stylized facts of international trade patterns.

In the last decades, a large body of empirical contributions have increasingly addressed

the study of socio-economic systems in the framework of network analysis.1 A network is a

mathematical description of the state of a system at a given point in time in terms of nodes

and links.

The idea that real-world socio-economic systems can be described as networks is not new in

the academic literature (Wasserman and Faust, 1994). Indeed, sociologists and psychologists

have been employing social network analysis since the beginning of the last century to explore

the patterns of interactions established among people or groups (Freeman, 1996; Scott, 2000).2

More recently, however, the empirical study of networks has flourished thanks to the consid-

erable contribution stemming from physics and computer science. Scholars from such academic

disciplines have begun to extensively explore the statistical properties of technological, bio-

logical and information networks with new and more powerful statistical tools (Albert and

Barabási, 2002; Dorogovtsev and Mendes, 2003; Newman, 2003; Pastos-Satorras and Vespig-

nani, 2004). Fields of application here include – among others – the Internet and the WWW,

peer-to-peer networks, power grids, train routes and airline connections, electronic circuits,

neural networks, metabolism and protein interactions, and so on.

These new methods have been subsequently applied to social and economic systems (Watts,

1999). As a result, the idea that systems like markets, industries, or the world economy, might

be considered as networked structures has become increasingly accepted also among empirical

economists.

1A survey of this enormous literature is beyond the scope of this paper. The interested reader is referred to
Scott (2000), Barabási (2003), Watts (2003), Carrington, Scott, and Wasserman (2005), among others.

2Well-known examples of such studies include networks of friendship and social acquaintances (Rapoport and
Horvath, 1961; Milgram, 1967), marriages (Padgett and Ansell, 1993), and job-market interactions (Granovetter,
1974).
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Furthermore, a network approach has been more recently employed to study international

trade (Serrano and Boguñá, 2003; Li, Jin, and Chen, 2003; Garlaschelli and Loffredo, 2004a,

2005; Kastelle, Steen, and Liesch, 2005). Here the idea is to depict the web of trade relations

as a network where countries play the role of nodes and a link describes the presence of an

import/export relation between any two countries (and possibly the intensity of that flow).

What can a network approach add to our understanding of international trade? Standard

statistical techniques treat import/export flows as features of single countries. By doing that,

country exports or imports are considered the same way as other country-specific variables,

like GDP, consumption or investment. However, import/export flows have to do with both

the origin and the target country. A network approach is indeed able to disentangle variables

related to how commodities and money flow across countries (through links) from those related

to country-specific features. This allows one to recover the whole structure of the web of

trade interactions among countries and to explore connections, paths and circuits. Once this

world trade web (WTW) has been constructed, it is easy to apply standard network analysis

techniques to assess the underlying topological properties of the WTW, its fine structure and

the existing correlations between statistical distribution of flows and characteristics of nodes

(countries). While standard statistics are only able to recover first-order trade relationships

(e.g., import/exports between any two countries), network analysis permits to analyze second-

and higher-order trade relationships. For example, one can study trade flows between any two

(or more) countries that trade with a given one (i.e., trade relationships which are two-steps

away) and to assess the length of trade chains occurring among set of countries.

Knowledge of such topological properties is not only important per se (e.g., because it

enhances our descriptive knowledge of the stylized facts pertaining to the WTW), but it may

also be relevant to better explain macroeconomic dynamics. As shown in Kali and Reyes

(2007), the statistical properties of the world-trade networks are able to explain the dynamics

of macroeconomic variables related to globalization, growth and financial contagion.

In this paper, we present a detailed study of the WTW for the period 1981-2000 using a

weighted network approach. More precisely, from a purely descriptive perspective, we attempt

to single out some robust stylized facts pertaining to trade relationships and their evolution

over time. We are interested in answering the following questions: Are rich countries more
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connected than poor ones, in terms of the number and intensity of their trade relationships?

Do well-connected countries entertain trade relationships with partners that are well-connected

as well (i.e. have many and intense trade relationships)? How large is the likelihood that rich

countries tend to trade with countries that preferentially trade only among them? Or, in other

words, how large is the probability to find groups of rich countries that form trade clusters?

Have the structural properties of the WTW been changing across time? Is the WTW more

connected today than in the past (both in terms of number of connections and trade flows)?

What has all that to do with the would-be process of globalization?

From a methodological point of view, we employ novel techniques that allow us to study

the WTW as a weighted network.3 Almost all the relevant literature on international trade

networks has indeed studied a binary version of the WTW, where each directed link from

country i to country j is either in place or not according to whether the trade flow from i to j

is larger than a given threshold. On the contrary, we weight the importance of each directed

link by using actual trade flows and GDPs.

As our results show, a weighted network analysis allows one to obtain very different conclu-

sions as compared to a binary-network framework. Furthermore, our weighted-network results

do not depend on the particular procedure and variables that one employs to weight the links.

More specifically, we find that the WTW is a strongly symmetric network, where the ma-

jority of trade relationships (and their intensities) are reciprocated. This implies that one can

safely study the WTW as it were an undirected network (i.e., where the direction of links

does not matter). Our weighted analysis indicates that weak trade relationships dominate for

the vast majority of countries; yet, there exists a group of countries (identifying the core of

the network) featuring a large number of strong relationships, thus hinting to a core-periphery

structure. Furthermore, we show that better-connected countries tend to trade with poorly-

connected ones but are also involved in relatively highly-interconnected trade triples. In addi-

tion, rich countries (in terms of their per capita GDP) tend to form more intense trade links

and to be more clustered. These cliques are built along the lines of both connectivity and

richness and can be seen as a sign of the persistent relevance of local relationships. However,

3The analysis of weighted networks was introduced in Barrat, Barthélemy, Pastor-Satorras, and Vespignani
(2004); Barrat, Barthélemy, and Vespignani (2005); Barthélemy, Barrat, Pastor-Satorras, and Vespignani (2005),
and further developed in Dall’Asta, Barrat, Barthélemy, and Vespignani (2006); Saramaki, Kivelä, Onnela,
Kaski, and Kertész (2006); Onnela, Saramaki, Kertész, and Kaski (2005); DeMontis, Barthélemy, Chessa, and
Vespignani (2005).
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the growing importance of global links is testified by the disassortative feature of WTW: poorly

connected nodes tend to connect to central ones and use them as hubs to access the rest of

the network. Finally, all structural properties of the WTW display a remarkable stationarity

across the years. The stability of the WTW structure suggests that international goods market

integration has not increased dramatically over the last 20 years or, viewed from a different

vantage point, that despite increased economic integration the core of the WTW has remained

mostly unaffected.

The paper is organized as follows. In Section 2 we briefly introduce in a rather informal way

the main concepts related to the empirical analysis of networks (more details are contained in

Appendix A). Section 3 briefly surveys the relevant literature on international trade networks.

Data are described in Section 4. We report our main results in Section 5. Finally, Section 6

concludes and discusses future work.

2 An Introduction to the Statistical Analysis of Weighted

Networks

A socio-economic network is usually described by means of a graph, that is a collection of N

nodes, possibly connected by a set of links.4

The simplest type of graph is binary and undirected. This means that any two nodes

can be either connected by a link or not, and link directions do not count. If two nodes

are connected, we say that they are “partners” or “nearest neighbors”. Thus, links can be

represented bi-directional arcs or edges, without arrows denoting the directions of flows. To

formally characterize such type of networks, it is sufficient to provide the so-called adjacency

matrix, i.e. a symmetric N ×N binary matrix A whose generic entry aij = aji = 1 if and only

if a link between node i and j exists (and zero otherwise).5

If the researcher has good reasons to justify her/his empirical analysis by using binary undi-

rected networks (BUNs), the most immediate statistics is the node-degree (ND) distribution

(and its moments). ND is simply defined as the number of links that a given node has estab-

4We refer the reader to Appendix A for more formal definitions and notation.
5Self-loops, i.e. links connecting i with itself are not typically considered. This means that aii = 0, for all i.
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lished (i.e., how many connections it holds).6 The shape of the ND distribution can convey

a lot of information on the structural properties of a network. For example, BUNs that are

created totally at random have unimodal, bell-shaped ND distributions.7 On the contrary, the

so-called scale-free networks (Barabási, 2003) are characterized by right-skewed (power-law)

distributions, with a majority of small-ND nodes and a minority of large-ND nodes (i.e., the

hubs).

If one is instead interested in a graph-wide measure of the degree of connectivity of the

network, a simple way to proceed is to compute the density of the graph. The latter is defined

as the total number of links that are actually in place divided by the maximum number of links

that there can exist in an undirected graph with N nodes.8.

The ND statistic only counts nodes that are directly linked with the one under analysis.

However, any two nodes with the same ND can acquire a different importance in the network

to the extent their partners are themselves connected in the network, i.e. if they also have a

high ND. To measure how much the partners of node i are themselves very connected in the

network, one may compute the average nearest-neighbor degree (ANND), that is the average

of ND of all partners of i. Nodes with the largest degree and ANND are typically the ones

holding the most intense interaction relationships.

A third important feature of network structure concerns the extent to which a given node is

clustered, that is how much the partners of a node are themselves partners.9 This property can

be measured by the clustering coefficient (Watts and Strogatz, 1998; Szabó, Alava, and Kertész,

2005), that is the percentage of pairs of i’s nearest neighbors that are themselves partners10.

Node clustering is very important, as highly-clustered networks are typically characterized by a

strong geographical structure, where short-distance links count more than long-distance ones.

So far, we have only considered binary networks, i.e. graphs where what counts is the

mere presence or absence of an interaction between any two nodes. Many researchers have

6ND can be also also considered as a measure of centrality of a node in the network, as it can be maintained
that the more connections a link has established, the more central it is in the network. More on that below.

7In random networks each link is in place with a certain given probability, independently on all the others.
8That is: one half the sum of all node degrees over N(N − 1)/2
9Network clustering is a well-known concept in sociology, where notions such as “cliques” and “transitive

triads” have been widely employed (Wasserman and Faust, 1994; Scott, 2000). For example, friendship networks
are typically highly clustered (i.e. they display high cliquishness) because any two friends of a person are very
likely to be friends.

10More formally, the clustering coefficient of i is given by the ratio between the number of triangles in the
network with i as one vertex and the number of all possible triangles that i could have formed. If i has di

nearest neighbors, this number is equal to di(di − 1)/2.
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argued, however, that the majority of socio-economic relationships also involve an assessment

of how intense is an interaction between two nodes (if any). If one studies such relationships

using a BUN approach, it is likely that a lot of important information will be disregarded

(see Barrat, Barthélemy, Pastor-Satorras, and Vespignani, 2004, for an introduction). For

example, the marriage network (Padgett and Ansell, 1993) can be reasonably studied in a

BUN framework. Conversely, in many other networks like the internet, airline traffic, scientific

citations, or the WTW, links are characterized by a non-reducible heterogeneity, due to the fact

that different links can carry very different interaction flows (e.g., in terms of bytes exchanged,

airline passengers, number of citations, export/import value, etc.). If we use a BUN, we run

the risk of considering the same way links that instead carry very weak or very strong flows.

In those cases, we need to move from a BUN perspective to a weighted (undirected) network

(WUN) approach. A WUN is simply defined by means of a symmetric N ×N “weight” matrix

W , whose generic entry wij = wji > 0 measures the intensity of the interaction between the

two nodes (and it is zero if no link exists between i and j).11

The three statistics above (degree, ANND, and clustering) can be easily extended to a

WUN approach. For instance, ND can be replaced by node strength (NS) defined as the sum of

weights associated to the links held by any given node. The larger the NS of a node, the higher

the intensity of interactions mediated by that node. It is easy to see that, given the same ND,

any two nodes can be associated to very different NS levels.

Since strength is only an aggregate measure of the interaction intensity mediated by a

node, one can also measure the extent to which a node holds links associated with a very

dispersed (resp. concentrated) weight profile. To do that, each node i can be associated with

the Herfindahl strength concentration index, i.e. the standard Herfindahl concentration index

applied to (normalized) weights associated to i’s links. The index increases the more a node

maintains many low-weight links together with a few high-weight links, i.e. the more across-

weight disparity there exists.

One might assess how much the partners of a node are themselves characterized by a high

strength by computing either the weighted average of nearest-neighbor node degrees (WANND,

see Barthélemy, Barrat, Pastor-Satorras, and Vespignani, 2005) or the arithmetic average of

11Weights are often renormalized to meet the condition that wij ∈ [0, 1], e.g. by dividing all original weights
by max{wij}.
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nearest-neighbor strengths (ANNS). Once again, any two nodes with the same ANND can end

up having very different levels of ANNS or WANND.

Furthermore, one can straightforwardly compute a weighted clustering coefficient by suitably

weighting each triangle using weights wij associated to its three edges (see Appendix A, and

Fagiolo, 2007).

Another important notion in network analysis concerns the extent to which a given node

is “central” in the graph. However, the meaning of “centrality of a node” is rather vague and

has consequently generated many competing concepts and indicators (Scott, 2000). The two

most commonly employed definitions of centrality refer to a local notion (a node is central if it

has a large number of connections) or to a global notion (a node is central if it has a position

of strategic significance in the overall structure of the network). Local centrality can be easily

measured by node degree (in BUNs) or node strength (in WUNs). As far as global centrality

in BUNs is concerned, the most used indicator is node betweenness centrality (BC), defined as

the proportion of all shortest paths between any two nodes that pass through a given node.

BC thus measures how much a given node acts as intermediary or gatekeeper in the network.

It is easy to see that low-ND nodes, which are not locally central, can have a large BC, and

therefore be globally central.

Despite its importance, BC is not straightforwardly extendable to WUNs. Therefore, in

this paper, we build on recent works by Newman (2005) and Fisher and Vega-Redondo (2006),

who have put forward a notion of centrality that nicely fits both BUN and WUN analyses. In

a nutshell, they develop an index called random walk betweenness centrality (RWBC), which

easily captures the effects of the magnitude of the relationships that each node has with its

partners as well as the degree of the node in question. Newman (2005) offers an intuitive

explanation of this centrality measure. Assume that a source node sends a message to a target

node. The message is transmitted initially to a neighboring node and then the message follows

a link from that vertex, chosen randomly, and continues in a similar fashion until it reaches the

target node. The probabilities assigned to outgoing links can be either all equal (as in BUNs)

or can depend on the intensity of the relationship (i.e., link weights in WUNs), so that links

representing stronger ties will be chosen with higher probability.

Finally, notice that the “undirected” nature of both BUNs and WUNs approaches requires

8



the matrices A and W to be symmetric. This implies that it is reasonable to assume that

binary or weighted relationships are bilateral or reciprocal. However, the majority of interac-

tion relationships that can be captured in network analyses are in principle directed (i.e., not

necessary symmetric or reciprocal). For example, the presence/intensity of i’s citations of j’s

work can be very different from j’s citations of i’s work. Similarly, exports from country i to

country j in a given year (e.g., as a share of i’s GDP) can be substantially higher or lower than

exports from country j to country i (e.g., as a share of j’s GDP). As discussed in Fagiolo (2006),

deciding whether one should treat the observed network as directed or not is an empirical is-

sue. The point is that if the network is “sufficiently” directed, one has to apply statistics that

take into account not only the binary/weighted dimension, but also the direction of flows. As

this analysis can often become more convoluted, one ought to decide whether the “amount of

directedness” of the observed network justifies the use of a more complicated machinery. There

can be several ways to empirically assess if the observed network is sufficiently symmetric or

not (cf. Appendix A, and Garlaschelli and Loffredo, 2004b; Fagiolo, 2006). In many cases,

networks that can be thought to be asymmetric turn out to appear sufficiently symmetric to

justify a BUN/WUN approach (see also below for the WTW). If this happens, the common

practice is to symmetrize the original observed network. In the case of BUNs, this means that

every aij is replaced by max{aij, aji}, while in WUNs one replaces wij with 0.5(wij + wji), see

De Nooy, Mrvar, and Batagelj (2005).

3 Related Literature

The idea that international trade flows among countries can be conceptualized by means of a

network has been originally put forth in sociology and political sciences. Most of this litera-

ture, however, did not address the study of trade networks by using a strategy rooted in the

statistical analysis discussed in Section 2. Nevertheless, since the seminal paper by Snyder and

Kick (1979), an increasing number of scholars have argued that relational variables are more

relevant than (or at least as relevant as) individual country characteristics in explaining the

macroeconomic dynamics ensuing from import-export patterns.

This strand of trade-network studies has been deeply influenced by the so-called “world

system” or “dependency” theories, i.e. the notion that one can distinguish between core and
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peripheral countries.12 In this view, core countries can appropriate most of the surplus value

added produced by peripheral ones, which are thus prevented from developing.

For example, Snyder and Kick (1979) study the BUN stemming from aggregate data on

trade relationships among 118 countries in 1965 and employ a core-periphery setup to classify

countries in three groups (core, semi-core, and periphery). They obtain a clear-cut three-

tiered structure for the network, with core countries nearly identified with OECD members.

Regression analyses show that the position of a country in the network is able to explain GNP

growth, a result interpreted as a sort of confirmation of dependency theories. The importance

of network position in explaining growth and development from a core-periphery approach is

also stressed by Nemeth and Smith (1985), who apply their analysis to 1970 data of trade

flows disaggregated over 5 distinct product classes.13 A similar approach is followed by Breiger

(1981), who studies the composition of trade flows in 1972. Notably, he shows that country

classification into blocks is not robust to the introduction of weighted links: if one employs

a WUN, where link weights are defined as total trade flows (depurated by average imports

and exports for that product class in order to account for size effects), two competing blocks

emerge. The first one is dominated by the US (and comprises Canada and Japan), while the

second accounts for the (then young and small) European Community. More recently, Smith

and White (1992) explore in a dynamic framework the core-periphery approach to network

analysis by comparing results in three different years (1965, 1970 and 1980). They document

an enlargement of the core over time, a reduction of within-core variability, and a progressive

marginalization of very peripheral countries. A binary, directed approach is instead followed

by Kim and Shin (2002), who study three snapshots of trade flows (1959, 1975 and 1996)

disaggregated over a large set of commodities for 105 countries. They employ 1m and 10m

dollars cutoffs to decide if a directed link is present or not. Interestingly, they find that both

the density of the network and the variance of ND distributions have increased through time, a

result which is associated by Kim and Shin to the globalization process. Moreover, the creation

of new links does not appear to be evenly distributed. Core countries are more likely to create

outward links (i.e., to initiate an export link), while peripheral countries are more likely to

create an inward link (i.e., to receive it), with Asian countries accounting for the majority of

12See also Schott (1986) for an application of the gravity model to the trade network.
13Sacks, Ventresca, and Uzzi (2001) build a measure of country position in the network based on the concept

of “structural autonomy” and show that it has a positive effect on country’s per capita GDP.
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newly created links.14 The effects of globalization are further explored by Kastelle, Steen, and

Liesch (2005) who perform a binary network analysis on IMF data to test baseline hypotheses

on the dynamics of the topological properties of the WTW. They study the period 1938-2003

and find that the evolution of the international trade network has not reached any steady state

implying a fully-globalized pattern. Rather, the WTW has been slowly changing and seems to

have the potential to continue to do so in the future.

The study of international trade as a relational network has been recently revived in the

field of econophysics, where a number of contributions have explored the (notionally) complex

nature of the WTW. The common goal of these studies – well in line with the strategy described

in Section 2 – is to empirically analyze the mechanics of the international trade network and its

topological properties, by abstracting from any social and economic causal relationships that

might underlie them (i.e., a sort of quest for theory-free stylized facts). For instance, Serrano

and Boguñá (2003) and Garlaschelli and Loffredo (2004a) study the WTW using binary undi-

rected and directed graphs for a few snapshots taken from Gleditsch (2002) international-trade

database. They show that the WTW is characterized by a disassortative pattern: countries

with many trade partners (i.e., high NDs) are on average connected with countries with few

partners (i.e., low ANNDs). Furthermore, partners of well connected countries are less inter-

connected than those of poorly connected ones, implying some hierarchical arrangements. In

other words, a negative correlation emerges between CC and ND distributions. Remarkably,

Garlaschelli and Loffredo (2005) show that this evidence is quite stable over time. This casts

some doubts on whether economic integration (globalization) has really increased in the last

20 years. Furthermore, the ND distribution appears to be very skewed. This implies the co-

existence of few countries with many partners and many countries with only a few partners.

Serrano and Boguñá (2003) on one side and Garlaschelli and Loffredo (2004a, 2005) on the

other investigate the ND distribution in more details, but while the former report evidence in

favor of a power-law (and thus of some degree of complexity), the latter show that this is not

actually the case, due to the presence of a sharp cutoff on the right tail of the distribution. Quite

interestingly, Garlaschelli and Loffredo (2004a) also find evidence in favor of a hidden-variable

model, according to which the topological properties of the WTW can be well explained by a

14Very similar results are obtained by Mahutga (2006), who shows that the globalization process has induced
structural heterogeneity and thus inequality.
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single node-characteristics (in this case country GDP) controlling for the potential ability of a

node to be connected.

Both the sociology and the econophysics wave of contributions have had a little impact

in the economics arena so far. The main skepticism resided in the fact that the majority of

existing works have only aimed at providing another (albeit more powerful) way of describing

trade patterns, but they have not succeeded in showing how these descriptions can help in

explaining macroeconomics dynamics. To respond to this critique, a recent paper (Kali and

Reyes, 2007) has shown that a country’s position in the trade network (e.g., in terms of its node

degree) has indeed substantial implications for economic growth and, also, has a good potential

for explaining episodes of financial contagion. Furthermore, network position appears to be a

substitute for physical capital but a complement for human capital. On the descriptive side, Kali

and Reyes (2007) analyze the trade BUN using data from the COMTRADE-UN database and

present evidence showing that global trade is still hierarchically structured, with a remarkable

core-periphery structure, notwithstanding a recent increase in the degree of integration of small

countries. Globalization and regionalization seem therefore to coexist, as trade patterns remain

strongly determined by geographical proximity.

4 Data

From a methodological perspective, almost all contributions discussed above share two com-

mon key ingredients. First, the empirical analysis of the WTW is carried out using a binary

approach. In other words, a link is either present or not according to whether the trade flow

that it carries is larger than a given lower threshold.15 To our knowledge, the only attempt to

provide a weighted analysis is in Li, Jin, and Chen (2003).16 They study a directed version

of the WTW where each country is characterized by inward and outward strengths, equal to

total imports and exports (as a share of world imports and exports). They explore the shape

of such strength distributions, finding evidence in favor of a power-law form. However, the fine

15There is no agreement whatsoever on the way this threshold should be chosen. For example, Kim and Shin
(2002) use cutoff values of US$ 1 million and 10 million. Kastelle, Steen, and Liesch (2005) endogenously set
a cutoff so as to have, in each year, a connected graph. Kali and Reyes (2005) experiment with different lower
thresholds defined as shares of country’s total exports. On the contrary, other papers (Serrano and Boguñá,
2003; Garlaschelli and Loffredo, 2004a, 2005; Kali and Reyes, 2007) straightforwardly define a link whenever a
non-zero trade flow occurs.

16See also Breiger (1981).
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properties of the weighted network are not further investigated.

Second, the directed or undirected nature of the observed networks is not thoroughly ad-

dressed. In other words, a directed (or undirected) analysis is pursued without statistically

assessing the underlying observed nature of the WTW. An exception is the paper by Gar-

laschelli and Loffredo (2005), who explore the conditions under which one can recover the

directed character of a network from its undirected description. However, they fall short from

providing a directed analysis using ad-hoc indicators (see for example Fagiolo, 2007).

In this paper, we address these two points in much greater detail. We employ international

trade data provided by Gleditsch (2002) to build a sequence of weighted directed networks from

1981 to 2000. Original data report imports and exports from/to a large set of world countries

for the period 1950-2000. The choice of the subperiod to be used in the study is driven by three

related considerations. First, data for small countries suffer from many missing values, both

on trade flow and GDP/population. Second, the number of countries for which we have trade

data increases over the years. This might be a problem if one wants to analyze the dynamics

of the topological properties of the WTW. Third, the country sample size must be as large as

possible to achieve statistical significance. As a result, we decided to build a balanced panel

by focussing on T = 20 years (1981-2000) and N = 159 countries (see Appendix B for more

details).

For each country and year, data report trade flows in current US dollars. Whenever exports

from country i to j do not match imports of j from i, we averaged the two figures. To build

adjacency and weight matrices, we followed the flow of goods. This means that rows represent

exporting countries, whereas columns stand for importing countries.

As to link weighting, we proceed as follows. First, in order to avoid any ambiguity stemming

from the choice of a particular lower threshold, we define a “trade relationship” by setting the

generic entry of the adjacency (binary) matrix ãt
ij = 1 if and only if exports from country i

to country j (labeled by et
ij) are strictly positive in year t. Second, we note that the usual

justification as to why one should not employ weighted trade links is that “it is not clear

how these weights should be assigned” (Serrano and Boguñá, 2003). We therefore decided

to experiment with a number of economically-meaningful weighting systems and explore the

robustness of our results to these alternatives. Our baseline results will refer to weights defined
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as w̃t
ij = et

ij/GDP t
i , i.e. exports over GDP of the exporting country. This weighting procedure

allows us to control for exporter country’s size and tells us how economy i depends on economy

j as a buyer (as j is buying from i). Furthermore, we check if our results change when we

divide et
ij by the importing country’s output (GDP t

i ). This can provide information on how

economy j depends on economy i as a seller. Finally, we study what happens when we do not

scale exports by GDPs and we just weight a link from i to j with exports et
ij.

17

For any particular choice of the weighting setup, we end up with a sequence of N × N

adjacency and weight matrices {Ãt, W̃ t}, t = 1981, ..., 2000, which fully describe the evolution

of the WTW from a binary and weighted directed perspective.18

5 Results

5.1 Global Properties of the WTW

We begin with a quick overview of some global properties of the WTW. From a binary per-

spective, the WTW appears to be a highly connected network, with an extremely high density,

which has been slightly increasing over the years (cf. Figure 1). If one looks at the WTW as

a binary directed network (BDN), it is easy to see that the majority of links are reciprocated.

For instance, in the second half of the 90’s, almost all countries export to partners that in turn

export to them.

The almost-symmetric pattern of the WTW is statistically detected also by the S index

studied in Fagiolo (2006), which for all years stays very close to zero for both the binary and

the weighted version of the WTW, thus strongly testifying in favor of symmetry.19 If any, the

WTW seems to have become more symmetric during the years. This evidence indicates that

a directed analysis is not necessary. Therefore, in what follows, we will explore the statistical

properties of symmetrized versions of the WTW. This means that, in the binary case, any entry

aij of the new adjacency matrix A is set to 1 if and only if either ãij = 1 or ãji = 1 (and zero

otherwise). Accordingly, the generic entry of the new weight matrix W , originally defined as

17Notice that for a few small countries total exports are larger than GDP due to re-exports. In those cases
we scale by total exports since some of the indicators we adopt require weights to lie in the unit interval.

18Of course, adjacency matrices Ãt can be recovered from the weight matrices W̃ t by simply setting to one
all non-zero elements of W̃ t.

19See Appendix A for the technical details. Note that the corresponding standardized index takes values at
least 10 standard deviations below zero.
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w̃t
ij = et

ij/GDP t
i , is replaced by:20

wt
ij =

1

2
(w̃t

ij + w̃t
ji) =

1

2
(

et
ij

GDP t
i

+
et

ji

GDP t
j

). (1)

In order to have well-behaved weights, we also employ the convention of dividing all entries in

W by their maximum value. This does not introduce any biases in our analysis and ensures

that wt
ij ∈ [0, 1] for all (i, j) and t (Onnela, Saramaki, Kertész, and Kaski, 2005).

5.2 Connectivity

The first issue we address concerns the study of the shape of the degree and strength distribu-

tions. More specifically, we explore the extent to which countries are more or less connected

(i.e., if they are more or less central in the WTW) both in terms of number of partners (ND)

and interaction intensity (NS), and whether these patterns have changed through time.

To begin with, we note that ND distributions do not appear to be as skewed as expected

(see Figure 2). In fact, they can hardly be proxied by lognormal or Pareto distributions.

A power-law behavior is detected only in the middle of the distribution, as the sharp cutoff

reported by Garlaschelli and Loffredo (2005) is present. Remarkably, ND distributions display

some bimodality: beside a modal value of 50-100 partners, there is a large group of countries

that trade with almost everyone else (hence a second peak around 150). This evidence is more

pronounced in the middle of the period. Note also that the shape of the ND distribution

remains quite stable over time. Figure 3 displays the time evolution of the first four moments

of the ND distribution: average ND has slightly increased over the years, meaning that trade

relationships have been weakly but steadily growing during the observed time frame. Moreover,

the standard deviation has remained stable, which suggests that integration has increased rather

evenly, without resulting in any rise in the heterogeneity of NDs. This conclusion is reinforced

by the reduction in both skewness and kurtosis that characterizes the last few years in the

sample: the ND distribution has thus become more symmetric and the tails have thinned out

to signify that fewer countries now display extreme ND values.

The picture substantially changes when we measure connectivity and centrality in the

20Due to the extreme symmetry of the network, results do not change if one symmetrizes the export matrix
first and then divides by the GDP of the exporting country.
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weighted undirected version of the network (i.e., when links are associated to their weight

wt
ij, see eq. 1). The distribution of NS among countries is now much more lognormal than

before, see Figure 4, even though in the right tail (high strengths) there seems to be many

more countries than a lognormal model would predict. Furthermore, bimodality disappears:

strength distributions are more left-skewed, with the majority of countries holding weak trade

relationships.

The structural difference between degree and strength distributions can be better appre-

ciated by looking at how the degree-strength correlation varies through time. As Figure 5

(left) shows, this correlation is significantly larger than zero and quite stable around 0.5. This

means that on average countries with many trade partners tend to hold also more intense trade

relationships. However, as shown by the degree-strength scatter plot for 2000, the strength

variability for any given degree level is quite high (Figure 5, right). This implies that only a

subset of those countries holding many trade relationships (high ND) actually have a very high

strength.21 This is confirmed by average node disparity (i.e. Herfindhal concentration index),

which is relatively high for high-degree nodes (not shown). Notice also that the weak increase

in ND is not matched by a similar behavior for average NS, which remains quite stable in the

period 1981-2000 (Figure 6, left panel). Interestingly, average strength is relatively low (at least

in a [0,1] scale) as compared to the relatively high average degree. Finally, the observed drop of

skewness and kurtosis of ND distributions does not have a counterpart as far as NS is concerned

(compare Figure 3 and 6, right panels). Since this phenomenon is mainly concentrated in the

1990s, it seems to suggest that the recent wave of globalization resulted in an increased number

of connections, but did not have any sizable effect on their magnitude. In terms of NS there are

many more countries in the tails (namely the left tail) of the distribution, which is also much

more skewed than in the case of ND.

This first set of results allows us to make an important methodological point (more on that

below). If the study of the WTW is carried out from a BUN perspective, thus loosing a lot

of information, one runs the risk of getting a misleading picture of the underlying relational

patterns. A weighted network perspective, instead, allows one to better appreciate how the

intensity of the interaction structure is distributed across the population.

21As the right panel of Figure 5 shows, there seems to be a subset of countries featuring low ND and relatively
high strength.
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5.3 Assortativity

The foregoing results suggest that the WTW, if viewed as a BUN, is a relatively strongly

connected and dense network. On the contrary, if we give weights to these trade links, the

picture changes completely: the WTW, now viewed as a WUN, is characterized by relatively

weak and more dispersed trades.

Degree and strength statistics, however, are only first-order indicators. In other words, they

just take into account links to one-step-away partners and do not convey any information on the

finer structure of the WTW. Indeed, it may well happen that countries holding many links only

trade with poorly-connected countries (we call such a network “disassortative”). Conversely, it

may be the case that better connected countries also tend to trade with other well-connected

countries (i.e., an “assortative” network).

In order to explore assortativity in the WTW, let us begin with a BUN perspective and

study the behavior of average nearest-neighbor degree (ANND), and how it correlates with other

network statistics. As expected, ANND is very high and quite stable in the period considered

(Figure 7, left). Average ANND weakly increases from 110 to 120 and stays always above the

average degree. However, the degree-ANND correlation pattern clearly indicates a strongly

disassortative network: correlation figures are very close to -1 and their magnitude increases

over time (Figure 7, right). In the WTW viewed as a BUN, countries that hold many trade

relationships definitely trade with poorly-connected countries. This results confirms previous

findings by Serrano and Boguñá (2003) and Garlaschelli and Loffredo (2004a).

If the WTW is now studied as a WUN, its disassortative nature remains evident but results

are much weaker. As Figure 8 shows, population-averages of both weighted average nearest-

neighbor degree (WANND) and average nearest-neighbor strength (ANNS) are quite stable over

time and mimic the behavior of degree and strength. However, their correlation with degree

and strength is still negative but weaker in magnitude in all years (Figure 9). This means that

countries holding a lot of trade relationships do not tend to establish very intense trade links

with all their partners. Again, the study of the WTW from a WUN perspective is able to offer

a more insightful picture.

The disassortative nature of the WTW implies that countries that are less and more weakly

connected tend to form trade relationships with well and more intensively connected countries
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(i.e., the hubs). This feature is relevant, since it suggests that the WTW has a core-periphery

structure not only in terms of existing links, but also in terms of their intensity (as measured

by their weights).

To further investigate this property, we plot correlation patterns of ANND, WANND and

ANNS vs. node degree and strength. As Figure 10 shows for year 2000, the ANND-ND cor-

relation presents a very limited variability. Conversely, both the WANND-ND and the ANNS-

NS scatter plots are characterized by a much more dispersed cloud of points. In particular,

there seems to exist a not negligible number of medium/high-degree or medium/high-strength

countries that, despite the overall disassortativity, tend to trade with countries that are them-

selves more and better connected. This seems to support the hypothesis that, within the core-

periphery structure of the WTW, there exists an intermediate periphery that is well connected

to high degrees nodes (and trades heavily with them).

5.4 Clustering

We now turn to exploring clustering patterns, and their relations with connectivity. This entails

asking whether more and better connected countries tend to build trade relationships with pairs

of countries that themselves trade with each other (they are partners and/or they hold more

intense relations).

Figure 11 (left) shows the behavior of the average CC for the BUN description of the WTW.

Average CC is very high in all years. Furthermore, it is always larger than network density (cf.

Figure 1). Since in a completely random graph the expected CC is equal to network density, this

result implies that the WTW (viewed as a BUN) is statistically more clustered than if it were

random. Therefore, countries tend to form – on average – trade relationships with partners that

also trade with each other. This sort of “cliquishness” suggests that regional or local ties still

play a very relevant role, where localism does not not necessarily have a geographic meaning,

but can very well be read as a tendency to interact with traditional partners.22 These can be

members of a regional group, countries with similar degree of development, or simply partners

that are historically close.

Does this result hold also when we take into account that trade relationships may be very

22This interpretation is further corroborated by the fact that typically highly-clustered networks are charac-
terized by a strong “geographical” structure whereby short-distance links count more than long-distance ones.
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heterogeneous in their intensity? The answer is no. Indeed, the weighted version of the CC,

albeit quite stable over time, is very low. Moreover, it is significantly smaller (from a statistical

point of view) than its average value in a random graph, see Figure 11 (right).23 Thus, from a

weighted perspective, the WTW is poorly clustered on average. Out of the network jargon, this

implies that there is some heterogeneity within each group or clique of countries, consistently

with the idea of the existence of a prominent center acting as an hub.

If one looks at the correlation between clustering and degree/strength, a similar mismatch-

ing emerges. Indeed, as found also by Serrano and Boguñá (2003) and Garlaschelli and Loffredo

(2005), countries that hold more trade partners (high degree) are less clustered than those hold-

ing few partners. The correlation is very strong and negative, as it is close to −0.96 throughout

the whole period (Figure 12, left panels). From a BUN perspective, thus, a core-periphery,

star-shaped trade network seems to be in place. Countries that hold a small number of trade

relationships do not trade with each other but are connected to the hubs. Again, if one takes

into account the actual trade intensities associated to these connections, the conclusion is re-

versed (Figure 12, right panels). The correlation between the weighted CC and strength is

now positive, statistically-significant, and sharply increasing across time. Therefore, countries

with high-intensity trade relationships are typically involved in highly-interconnected triples,

a pattern that somewhat reminds the “rich club phenomenon” (where “richness” is now in-

terpreted in terms of intensity of trade relationships). Although the overall clustering level is

not significantly larger than zero, the fact the the magnitude of the CC-strength correlation is

increasing through time suggests that the “rich club phenomenon” continues to be an issue for

international trade.

5.5 WTW Properties and Country Wealth

An interesting issue to explore concerns the extent to which network-specific indicators corre-

late with country wealth. For example, do countries with a higher per-capita GDP (pcGDP)

maintain more and stronger trade relationships? Are the rich more clustered? To answer these

questions, we study the correlation patterns existing between our network-specific measures

(degree, strength, clustering coefficients) and country pcGDP.

23In a random graph the expected value of weighted clustering equals 27
48 of network density; see Appendix

A for the details.
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As far as degree and strength are concerned, the outcomes are very clear: there seems to

be a relatively high and persistent positive correlation between connectivity levels and pcGDP

(Figure 13). This is generally true both in terms of the number of trade partners a country

holds and in terms of the intensity of its trade interactions. However, the correlation strength-

pcGDP appears to be stronger than the degree-pcGDP one.24 Therefore, richer countries tend

to hold more, and more intense, trade relationships.

Results for clustering-pcGDP correlations mimic instead those obtained for the correlation

between clustering and degree/strength. Richer countries tend to be less clustered from a

BUN point of view, while they are more clustered (and increasingly so over the years) from a

weighted perspective (Figure 14). This result seems to support the “rich club phenomenon”

interpretation discussed above. The fact that this correlation is increasing over the years

suggests that cliquishness among richer countries has been augmenting such that, as long as

the strength of trade relations is concerned, further integration for the overall network can be

attributed to stronger ties among advanced countries.

5.6 Centrality

So far we have treated nodes as if they were anonymous, not considering which countries display

higher or lower network properties. Now we address the role each country plays in the WTW

by means of a measure of centrality. By doing so, we will be able to explicitly characterize

the core and the periphery of the network, whose existence is hinted at by our results, and to

compare them.

We compute random walk betweenness centrality (RWBC, see Section 2 and Appendix A)

for each of the countries in the sample and use the results to classify them as part of the core

and or of the periphery. It turns out that – due to the high density that characterizes the

WTW – the binary version of RWBC is almost perfectly correlated with ND25: as a result, in

what follows we will focus only on the weighted version of RWBC. A second reason to look at

weighted RWBC only is that so far weighted indicators seem to give a better representation of

the network structure, and in particular to hint more directly to a core-periphery structure.

24Also the shape of the underlying relation is different. While degree seems to be linearly related to pcGDP,
a log-log relation holds between strength and pcGDP. This means that pcGDP influences more heavily strength
than it does with degree.

25The correlation between the two indicators is not statistically different from 1.
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Figure 15 presents the distribution of weighted RWBC for 1981, 1990, and 2000. The

observed patterns have not changed over time and are indeed very similar to those characterizing

node strength (see Figure 4): the distributions are heavily skewed to the right, confirming the

hypothesis of a clear-cut core-periphery structure. To identify the countries actually belonging

to the core we (arbitrarily) impose a threshold at the 95th percentile of RWBC: hence, only

countries with a value of centrality within the top 5% are considered core.26 Table 2 displays

the 8 countries forming the core between 1981 and 2000. Interestingly, this simple information

turns out to be very powerful in describing the evolution of international trade integration in

the last two decades of the XXth century, and can actually trace a number of relevant economic

episodes. For instance, unification allows Germany to overcome Japan in this special ranking

and gain the second place, whereas the dissolution of Soviet Union marked the exit from the

core, as Russia (which took its place in the sample) never comes close to reaching the first 5%

of the sample. Moreover, the 1981 peak in oil prices that followed the second shock and the

beginning of the Iran –Iraq war results in Saudi Arabia being briefly included into the core,

though it drops quickly out of it and further away in the following years as the price of crude

oil drops down.

More recently, the increasing importance acquired by Asian countries - most notably China,

but also South Korea - in international trade is captured by our centrality index. Both countries

have become part of the core in 2000, after having been close to achieve this already in 1995.

Other Asian countries such as Malaysia, India and (above all) Thailand have experienced

a remarkable increase in their RWBC over the last twenty years. On the contrary, Latin

American countries (i.e., another classical group of emerging markets) did not manage to climb

the ranking as fast as their Asian counterparts. For instance, Brazil displays a very stable

measure of centrality, whereas Mexico and Argentina are characterized by wide fluctuations

both in the absolute value of the RWBC index and in the relative position in the ranking.

Among Latin American countries only Chile and, to a lesser extent, Colombia do appear to

improve their status within the WTW network, although they have remained quite peripheral.

Finally, the analysis of the correlation between per capita GDP and node betweenness

centrality reveals a similar pattern to that observed for the relationship between node strength

26A very similar result is obtained if one attributes the core status to those countries displaying values of
RWBC above the mean plus one standard deviation.
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and pcGDP.27 Figure 16 shows that the relation between RWBC and pcGDP is very stable

over time and attains values around 0.50.

5.7 Robustness

All results obtained so far refer to a particular weighting procedure. To recall, each directed

link from node i to j is weighted by total exports of country i to country j and then divided by

the country i’s GDP (i.e., the exporter country). Such a weighting setup allows one to measure

how much economy i depends on economy j as a buyer.

Are our findings robust to alternative weighting schemes? To address this issue, we consider

the two alternative setups discussed in Section 4. In the first setup, we still remove size effects

from trade flows, but we now divide by the GDP of the importer country (j’s GDP, in the

above example). In the second setup, we retain the size effect and we simply define the weight

of link (i, j) as total exports from i to j.

All our main results are surprisingly robust to all these alternatives.28 This is an important

point, as a weighted graph analysis might in principle be sensible to the particular choice of

the weighting procedure.

As an illustration, Figure 17 reports the correlation structure between ANNS, clustering,

node strength and pcGDP across years.29 Left panels refer to the first alternative weighting

scheme (exports scaled by importer GDP) whereas right panels shows what happens under the

second alternative setup (no GDP scaling at all). All previous results are confirmed. Notice that

if we do not scale exports, an even stronger correlation emerges in all years between weighted

clustering and strength.

6 Concluding Remarks

In this paper, we have begun to explore the statistical properties of the world trade web

(WTW) in the framework of empirical network analysis. Following a stream of recent literature

27This is expected since one of the interpretations of node strength is related to the degree of influence that
a given node has on the network or to what extent other nodes depend on a given node; also, the correlation
between RWBC and NS is very high.

28As mentioned, we have also experimented with another weighting scheme where we have symmetrized the
graph before dividing by exporter (or importer) GDP. All these alternatives did not result in any significant
change of our main findings.

29More detailed results are available from the authors upon request.
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we have conceptualized the web of trade relationships across world countries as a weighted

network where countries play the role of nodes, and trade flows are represented by links between

nodes. To that end, we have studied imports/exports flows between all pairs formed out of 159

countries, from 1981 to 2000.

From a methodological point of view, our paper is the first one – to our best knowledge

– to address a thorough empirical investigation of the statistical properties of the WTW as a

weighted network. This means that instead of accounting for the mere presence/absence of a

trade relationship between any two countries, we estimate the intensity of any trade relationship

by some function of the value of import/export flow carried by that link. Our results show

that a weighted analysis can deliver more precise insights as far as the topological structure

and statistical properties of the WTW are concerned. Indeed, many findings obtained by only

looking at the number of trade relationships that any country maintains are completely reversed

if one takes into account the relative intensity of trade links. Furthermore, we show that all

our main results do not dramatically change if one experiments with different link weighting

schemes.

From a descriptive point of view, this paper can be considered as an attempt to single out

some robust stylized facts pertaining to the evolution of the WTW topological structure. As

compared to standard international-trade statistical investigations, network analysis allows the

researcher to explore not only first-order phenomena associated to import-export patterns of

any given country (e.g., the degree of openness to trade) but also second- and higher-order

empirical facts concerning, for example, the extent to which highly connected countries tend to

trade with highly connected countries, the likelihood that trade partners of highly connected

countries are themselves parters, and so on.

Our statistical exercises show that the WTW is an extremely symmetric network, where

almost all trade relationships tend to be reciprocated with similar intensities. This allows one

to study the WTW as if it were a weighted undirected network.

Notwithstanding a very high density, the average strength of nodes is rather poor. Indeed

the majority of countries holds mainly weak relationships, whereas only a selected core on nodes

combine high degree and high strength. This hints to a core-periphery (scale-free) structure

for the weighted WTW. This insight is confirmed by the finding regarding the “disassortative”
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nature of the WTW: our data show that countries holding many (and more intense) trade

relationships preferably trade with poorly-connected countries.

Furthermore, while the average number of trade relationships has increased through time,

their average intensity has remained quite stable. More generally, all structural properties of

the WTW display a remarkable stationarity across the years. This stability implies that trade

integration has not increased dramatically over the last 20 years or, in other words, that its

change has not had a significant impact on the structure of the WTW. A possible explanation

is that trade integration has been steadily growing since the 1950s and the bulk of it had been

achieved before the period under consideration here.

We also find that the WTW, viewed as a binary directed network, is highly clustered.

Moreover, countries that hold more trade partners (high degree) are less clustered than those

holding few partners. These conclusions are completely different when we account for the

importance of each link. Indeed, the weighted version of the WTW displays a very weak

clustering level and countries with high-intensity trade relationships are typically involved in

highly-interconnected trade triples.

Finally, we have studied the relationships between network properties and country wealth.

We have shown that richer countries tend to form more (and more intense) trade links and to

be more clustered (and increasingly so over the years).

As mentioned, this work is an admittedly preliminary step towards a better understand-

ing of the topological properties of the WTW and its dynamics. The agenda of interesting

issues to address in the future is therefore quite rich. Firstly, one would like to explore in

more details the topological properties of the WTW, both cross-sectionally and time-series.

Meaningful questions here concern the role of geographical proximity in shaping the structure

of international trade, the degree of fragility of the network, and so on. Furthermore, trade

flows could be disaggregated across product classes to explore how trade composition affects

network properties.

Secondly, one could abstract from aggregate statistical properties and analyze at a finer

level the role of single countries in the network structure. For instance, how does the dynamics

of degree, strength, clustering, etc. behave for single relevant countries in different World

regions? Do country-specific network indicators display the same time-stationarity of their
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aggregate counterparts?

Finally, more in line with Kali and Reyes (2007), one can ask whether the topological

properties of the WTW, viewed as a weighted network, are able to explain the macroeconomic

dynamics of growth and development.
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Appendix A: Statistical Analysis of Binary and Weighted

Networks

Preliminaries

In this appendix, we present some more formal definitions of the statistics introduced in Section
2 for both binary and weighted networks, and we provide a compact matrix-notation useful
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to compute them (see also Albert and Barabási, 2002; Newman, 2003; Fagiolo, 2007, for an
introduction).

Consider a notionally-directed and possibly weighted network composed of N nodes. Let
W̃ = {w̃ij} be a N × N weight matrix (not necessarily symmetric), where w̃ij ∈ [0, 1] and
w̃ii = 0 for all i. The binary case will imply that w̃ij ∈ {0, 1}. We assume that a directed
link from i to j exists if and only if w̃ij > 0. The adjacency N × N matrix Ã = {ãij}, where
ãij ∈ {0, 1}, is thus defined from W̃ by letting ãij = 1 iff w̃ij > 0 (and zero otherwise).

In what follows, we will also define X(i) as the i-th row of matrix X; X [k] as the matrix

obtained from X by raising to k each entry; and {u}
{v} as the vector obtained by dividing the two

vectors entry by entry.

Checking for Symmetry

To check if an empirically-observed weighted network W is sufficiently symmetric to justify
an undirected analysis, we employ the index developed in Fagiolo (2006). The index is based
on the following idea. If a network is symmetric then any norm of the (suitably normalized)
difference between W̃ and W̃ T (i.e., its transpose) should vanish.

To build the index, define, without loss of generality:

Q = {qij} = W̃ − (1− W̃ )IN , (2)

where IN is the N × N identity matrix. Notice that qij = w̃ij for all i 6= j, while now qii = 1
for all i30.

Consider then the square of the Frobenius (or Hilbert-Schmidt) norm:

‖Q‖2
F =

∑
i

∑
j

q2
ij = N +

∑
i

∑

j 6=i

q2
ij, (3)

where all sums (also in what follows) span from 1 to N . The index used to check for symmetry
is defined as:

S̃(Q) =
‖Q−QT‖2

F

‖Q‖2
F + ‖QT‖2

F

=
‖Q−QT‖2

F

2‖Q‖2
F

=
1

2

[‖Q−QT‖F

‖Q‖F

]2

. (4)

It is easy to see that:

S̃(Q) = 1−
∑

i

∑
j qijqji∑

i

∑
j q2

ij

. (5)

Furthermore, the scaled version of S̃(Q)

S(Q) =
N + 1

N − 1
S̃(Q), (6)

ranges from 0 (full symmetry) to 1 (full asymmetry). In order to use the index as a statistically-
sound check for symmetry, let us suppose that entries in W̃ are independently and identically
distributed as a uniform random variable defined in the unit interval. In that case, one can
find coefficients (mB(N), sB(N)), which depend both on N and on the binary (B) vs. weighted
(W) nature of the underlying graph (i.e. of W̃ ), such that

30The need for recovering self-loops is only required to have an index which is strictly increasing in the degree
of asymmetry of the underlying graph, see Fagiolo (2006) for details.
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SB(Q) =
S(Q)−mB(N)

sB(N)
(7)

SW (Q) =
S(Q)−mW (N)

sW (N)
(8)

are distributed as a standardized Normal random variable. This can help one in assessing the
extent to which an empirically-observed binary/weighted graph is directed or not. Positive
(respectively, negative) values of the standardized index (e.g., k = 1, 2, ... standard deviations
away from zero) would suggest that the graph is directed (respectively, undirected).

Notice that, in the case the notionally-directed graph W̃ turns out to “look” as an undirected
graph, common practice calls for a symmetrization of binary/weighted links. In the case of
binary graph, we will let:

A = {aij} = max{ãij, ãji}, (9)

whereas if the graph is weighted we define:

W = {wij} =
1

2
(w̃ij + w̃ji). (10)

Binary Undirected Networks, BUNs

Let us suppose that the underlying graph is binary and undirected and let A be its adjacency
matrix.

The degree of node i (or node degee, ND) is defined as

di =
∑

j

aij = A(i)1, (11)

where 1 is the N -vector made of all ones.
Similarly, the average nearest-neighbor degree (ANND) of node i reads:

anndi = d−1
i

∑
j

aijdj = d−1
i

∑
j

∑

h

aijajh =
A(i)A1

A(i)1
. (12)

Finally, node i’s clustering coefficient (CC), defined as the ratio of the number of triangles
with i as one vertex, to the maximum number of triangles that node i could have formed given
its degree (Fagiolo, 2007), is equal to:

Ci(A) =
1
2

∑
j 6=i

∑
h6=(i,j) aijaihajh

1
2
di(di − 1)

=
(A3)ii

di(di − 1)
. (13)

Notice that in a random graph where links are in place, independently of each other, with a
probability p > 0, the expected value for the CC is equal to p.

Weighted Undirected Networks, WUNs

Let us now assume that the underlying graph is weighted and undirected and let W be its
weight matrix.
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Firstly, node strength of i is defined as :

si =
∑

j

wij = W(i)1. (14)

Furthermore, the average nearest-neighbor strength (ANNS) of i is computed as the arithmetic
mean of strengths of i’s neighbors as follows:

annsi = d−1
i

∑
j

aijsj = d−1
i

∑
j

∑

h

aijwjh =
A(i)W1

A(i)1
. (15)

Similarly, the weighted average of nearest-neighbor degrees (WANND) of i reads:

wanndi = s−1
i

∑
j

wijdj = s−1
i

∑
j

∑

h

wijajh =
W(i)A1

W(i)1
. (16)

Sometimes, it is also useful to define “node disparity” among (concentration of) i’s weights as
follows:

hi =
(N − 1)

∑
j

(
wij

si

)2

− 1

N − 2
=

(N − 1) 1
s2
i

∑
j w2

ij − 1

N − 2
=

(N − 1)
W

[2]
(i)

1

(W(i)1)2
− 1

N − 2
(17)

As far as the weighted version of the CC for WUNs is concerned, we focus here on the extension
of the CC to WUNs originally introduced in Onnela, Saramaki, Kertész, and Kaski (2005):

C̃i(W ) =
1
2

∑
j 6=i

∑
h6=(i,j) w

1
3
ijw

1
3
ihw

1
3
jh

1
2
di(di − 1)

=
(W [ 1

3 ])3
ii

di(di − 1)
, (18)

where we define W [ 1
k ] = {w

1
k
ij}, i.e. the matrix obtained from W by taking the k-th root of

each entry. As discussed in Saramaki, Kivelä, Onnela, Kaski, and Kertész (2006), the index
C̃i ranges in [0, 1] and reduces to Ci when weights become binary. Furthermore, it takes into
account weights of all edges in a triangle (but does not consider weights not participating in
any triangle) and is invariant to weight permutation for one triangle. The expected value of
the weighted CC in a random graph where links are in place, independently of each other, with
a probability p > 0, is equal to (3

4
)3p.

Random-Walk Betweenness Centrality (RWBC)

Suppose the underlying graph, interpreted as a current circuit, is a weighted undirected network
and let W be its weight matrix and s the N×1 strength vector. Following Newman (2005) and
Fisher and Vega-Redondo (2006), consider a generic node i for which we want to compute the
RWBC and an impulse generated from node h (the source) and working its way to node k (the
target). Let f(h, k) be the “source” N × 1-vector such that fi(h, k) = 1 if i = h, fi(h, k) = −1
if i = k, and 0 otherwise. Define by v(h, k) the N × 1-vector of node voltages. Newman (2005)
shows that Kirchoff’s law of current conservation implies that:

v(h, k) = [D −W ]−1f(h, k), (19)

where D = diag(s), where s is the node-strength vector, and [D−W ]−1 is computed using the
Moore-Penrose pseudo-inverse.

This in turn implies that the current (i.e. intensity of interaction) flowing through node i,
originated from h and getting to k, is given by:
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Ii(h, k) = W · |v(h, k)− 1vi(h, k)|, (20)

where W is the weight matrix, Ih(h, k) = Ik(h, k) = 1, and 1 is the conformable unit vector.
It is then straightforward to define node-i RWBC as:

RWBCi =

∑
h

∑
k 6=h Ii(h, k)

N(N − 1)
. (21)

Appendix B: Countries in the Balanced Panel (1981-2000)

The dataset provided by Gleditsch (2002) includes 196 countries for which there are data on
trade flows from 1948 to 2000. However, trade data contain many missing (or badly reported)
values before 1970. In addition, there are some countries with zero total exports in some years.

Notice also that our analysis requires to match trade data with real GDP (both in levels and
per capita). This is because: (i) weights are defined as exports divided by GDP; (ii) one wants
to cross-sectionally correlate network measures with country-specific variables like per-capita
GDP.

We have therefore selected countries in such a way to have: (i) a time horizon and a country
sample size as long as possible; (ii) no missing values in trade data and GDP (both in levels
and per capita); (iii) non-zero total exports.

By applying conditions (i) and (ii) we get only 83 countries from 1960-2000. This number
becomes 138 for the period 1970-2000; 152 for the period 1970-2000; 163 for the period 1981-
2000; and 168 for the period 1990-2000. We thus decided to select the time interval 1981-2000
using 163 countries. However, 4 of them (San Marino, Andorra, Liechtenstein, Monaco) have
total exports equal to zero in some years. This leaves us with N=159 countries, whose list is in
Table 1.
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Table 2: Countries in the core

1981 1985 1990 1995 2000
USA USA USA USA USA
Japan Japan Germany Germany Germany
Germany† Germany† Japan Japan Japan
UK UK France France France
France France UK UK UK
USSR USSR Italy Italy China
Italy Italy USSR Belgium Italy
Saudi Arabia Netherlands Netherlands Netherlands Korea
† Up to 1989 data refers to West Germany only.
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Figure 1: Global network indicators vs. years. Top-left: Network density. Top-right: Percentage of bilateral
links. Bottom-left: S index (not standardized) for BUNs. Bottom-right: S index (not standardized) for WUNs.

34



F
ig

ur
e

2:
T

he
W

T
W

as
a

B
U

N
.

D
eg

re
e

di
st

ri
bu

ti
on

s
in

19
81

,
19

90
,

20
00

.
T
op

pa
ne

ls
:

Si
ze

-r
an

k
pl

ot
s

(d
as

he
d

lin
e:

lo
gn

or
m

al
fit

).
B

ot
to

m
pa

ne
ls

:
K

er
ne

l
de

ns
it
y

es
ti

m
at

es
.

2.
5

3
3.

5
4

4.
5

5
5.

5

−
5

−
4

−
3

−
2

−
10

Lo
g(

D
eg

re
e)

Log(Rank)

19
81

 

 

D
eg

re
e

Lo
gN

or
m

al
 F

it

2.
5

3
3.

5
4

4.
5

5
5.

5

−
5

−
4

−
3

−
2

−
10

Lo
g(

D
eg

re
e)

Log(Rank)

19
90

 

 

D
eg

re
e

Lo
gN

or
m

al
 F

it

2.
5

3
3.

5
4

4.
5

5
5.

5

−
5

−
4

−
3

−
2

−
10

Lo
g(

D
eg

re
e)

Log(Rank)

20
00

 

 

D
eg

re
e

Lo
gN

or
m

al
 F

it

0
50

10
0

15
0

0

0.
00

2

0.
00

4

0.
00

6

0.
00

8

0.
01

D
eg

re
e

Kernel Density

19
81

0
50

10
0

15
0

0

0.
00

2

0.
00

4

0.
00

6

0.
00

8

0.
01

D
eg

re
e

Kernel Density

20
00

0
50

10
0

15
0

0

0.
00

2

0.
00

4

0.
00

6

0.
00

8

0.
01

0.
01

2

D
eg

re
e

Kernel Density

19
90

N
ot

e.
S
iz

e-
ra

n
k

p
lo

ts
.

X
-a

x
is

:
lo

g
of

d
eg

re
e.

Y
-a

x
is

:
L
og

of
ra

n
k

of
x
-a

x
is

ob
se

rv
at

io
n
.

35



1985 1990 1995 2000
0

20

40

60

80

100

120

140

160

Year

N
od

e−
D

eg
re

e 
S

ta
tis

tic
s

 

 

Average
StdDev

1980 1985 1990 1995 2000
1.95

2

2.05

2.1

2.15

2.2

K
u

rt
o

si
s

Years

−0.2

−0.1

0

0.1

0.2

0.3

S
ke

w
n

e
ss

Figure 3: The WTW as a BUN. Left panel: Average and standard deviation of degree distributions. Right
panel: kurtosis (circles) and skewness (asterisks) of degree distributions.
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Figure 5: BUN vs. WUN. Left panel: Degree-strength correlation vs. years (dashed lines: 5% and 95%
confidence intervals). Right panel: Degree-strength scatterplot in 2000.
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Figure 6: The WTW as a WUN. Left panel: Average and standard deviation of strength distributions. Right
panel: kurtosis (circles) and skewness (asterisks) of strength distributions.
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Figure 7: Average Nearest-neighbor degree (ANND). Left: Population average vs. years. Right: Correlation
between (ANND) and degree vs. years. Dashed lines: 5% and 95% confidence intervals.
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Figure 8: Left: Population-average of weighted average nearest-neighbor degree (WANND) vs. years. Right:
Population-average of average nearest-neighbor strength (ANNS) vs. years. Dashed lines: 5% and 95% confi-
dence intervals.
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Figure 9: Left: WANND-degree correlation vs. years. Right: ANNS-strength correlation vs. years. Dashed
lines: confidence intervals.
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plot. Year: 2000.
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Figure 11: Left: Average of BUN (binary) clustering coefficient vs. years. Right: Average of WUN (weighted)
clustering coefficient vs. years. Dashed lines: 5% and 95% confidence intervals.
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Figure 12: Top-left: Correlation between (binary) clustering coefficient and degree vs. years. Top-right:
Correlation between (weighted) clustering coefficient and strength vs. years. Dashed lines: 5% and 95%
confidence intervals. Bottom-left: Scatter plot of (binary) clustering coefficient and degree in year 2000. Bottom-
right: Scatter plot of (weighted) clustering coefficient and strength in year 2000.

1985 1990 1995 2000
0

0.2

0.4

0.6

0.8

1

Year

D
eg

re
e 

vs
−

 p
cG

D
P

 C
or

re
la

tio
n

1982 1984 1986 1988 1990 1992 1994 1996 1998 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Year

S
tr

en
gt

h 
vs

−
 p

cG
D

P
 C

or
re

la
tio

n

Figure 13: Correlation between degree-pcGDP and strength-pcGDP vs. years. Dashed lines: 5% and 95%
confidence intervals.
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Figure 14: Left: Correlation between clustering and pcGDP in a BUN vs. years. Right: Correlation between
clustering and pcGDP in a WUN vs. years. Dashed lines: 5% and 95% confidence intervals.
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Figure 16: Correlation between Random Walk Betweenness Centrality and pcGDP. Dashed lines: 5% and 95%
confidence intervals.
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Figure 17: Alternative weighting schemes. Left panels: Exports divided by importer country GDP. Right
panels: Exports not scaled by any country size measure. Top: Correlation between strength and ANNS vs.
years. Mid: Correlation between clustering and strength vs. years. Bottom: Correlation between strength and
pcGDP. Dashed lines: 5% and 95% confidence intervals.
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