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Abstract

This work explores some distributional properties of aggregate output growth-rate
time series. We show that, in the majority of OECD countries, output growth-rate
distributions are well-approximated by symmetric exponential-power densities with
tails much fatter than those of a Gaussian. Fat tails robustly emerge in output
growth rates independently of: (i) the way we measure aggregate output; (ii) the
family of densities employed in the estimation; (iii) the length of time lags used
to compute growth rates. We also show that fat tails still characterize output
growth-rate distributions even after one washes away outliers, autocorrelation and
heteroscedasticity.
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1 Introduction

This work investigates the statistical properties of output growth-rate time-series distri-

butions. In each given country, we consider the time series of aggregate output growth

rates and we study the shape of the resulting distribution. More precisely, we follow

a parametric approach and we fit growth-rate distributions with the exponential power

(EP) family of densities (Subbotin, 1923), which includes as special cases the Gaussian

and the Laplace.

Our main finding is that in the U.S., and in many other OECD countries, growth-rate

distributions display tails much fatter than those of a normal distribution. This implies

that output growth patterns tend to be quite lumpy: large growth events, either positive

or negative, seem to be more frequent than what a Gaussian model would predict1.

We show that this result is robust to a series of alternative specifications of the analysis.

First, our findings are not affected by the way we measure aggregate output (e.g., GDP

or industrial production index). Second, fat tails in growth rates still emerge if one

removes from the original time series outliers, autocorrelation and heteroscedasticity (if

any), and then studies the shape of the ensuing distribution of residuals. Third, the

existence of super-normal tails (i.e. tails fatter than Gaussian ones) is confirmed even

if one employs alternative heavy-tailed density families, such as the Levy-Stable (Nolan,

2006), the Cauchy and the Student-t. However, the EP density turns out to be the family

that best fits the data for the majority of countries.

We also show that growth-rate distributions do not display any significant evidence

for skewness. This implies that positive and negative large growth events have almost the

same likelihood, thus confirming recent results on symmetry of the magnitude of GDP

fluctuations (McKay and Reis, 2006). Finally, fat tails still emerge even if one computes

growth rates using longer time-lags.

Our work is motivated by two, seemingly unrelated, streams of literature. On the one

hand, we refer to the rich body of contributions that in the last twenty years have been

1Fat-tailed distributions arise in many empirical contexts. Applications areas, apart from economics
and finance, include engineering, computer science, social networks, physics, astronomy, etc.: see Adler
et al. (1998) and Embrechts et al. (1997) for an introduction.
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attempting to single out robust statistical properties of within-country output dynamics

(cf., among others, Nelson and Plosser, 1982; Cochrane, 1988; Brock and Sayers, 1988;

Rudebusch, 1993; Cochrane, 1994; Potter, 1999; Murray and Nelson, 2000). For example,

as far as the U.S. are concerned, output growth-rate time series was found to be pos-

itively autocorrelated over short horizons and to have a weak negative autocorrelation

over longer horizons. Moreover, still unsettled debates have focused on the questions

whether U.S. GNP is characterized by a deterministic or a stochastic trend and whether

output dynamics is better captured by linear or nonlinear models. Following this line of

research, our study suggests that super-normal tails in the distributions of growth rates

and their residuals may be considered as a candidate to become an additional stylized

fact of within-country output dynamics.

On the other hand, the quest for stylized facts of aggregate output dynamics has been

more recently revived by a new body of contributions investigating the properties of cross-

country output growth-rate distributions. The main findings of these studies was indeed

that GDP growth rates tend to cross-sectionally distribute according to densities that

display tails fatter than Gaussian ones (Canning et al., 1998; Lee et al., 1998; Castaldi and

Dosi, 2004)2. The basic exercise performed in these studies, however, has been focusing

only on cross-section distributions, i.e. across all countries at a given year, possibly

pooling all cross-section distributions together under the assumption of stationarity of

moments. In this paper, on the contrary, we show that fat-tailed distributions also emerge

across time within a single country.

Therefore, by studying the shape of within-country growth-rate distributions, we at-

tempt to bridge earlier studies focusing on the statistical properties of within-country

output dynamics to the new stream of research on cross-sectional growth-rate distribu-

tional properties.

Our analysis differs from previous, similar ones (Canning et al., 1998; Lee et al., 1998;

Castaldi and Dosi, 2004) in many respects. First, we depart from the common practice of

2Interestingly, similar results were also found for cross-section firm and industry growth rates (see
Stanley et al., 1996; Lee et al., 1998; Amaral et al., 1997; Bottazzi and Secchi, 2003a,b; Castaldi and
Dosi, 2004; Fu et al., 2005; Sapio and Thoma, 2006). Hence, super-normal tails cross-sectionally emerge
no matter the level of aggregation.
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using annual data to build output growth-rate distributions. We instead employ monthly

and quarterly data. This allows us to get longer series and better appreciate their business

cycle features. Second, as mentioned above, we double-check the results obtained with

the EP by fitting output growth-rate distributions with a number of alternative fat-tailed

densities (Levy-Stable, Cauchy, Student-t). In the case of the EP, the Student-t, and

the Levy-Stable, one can actually measure how far empirical growth-rate distributions

are from the Normal benchmark. Third, we perform a detailed goodness-of-fit analysis in

order to check if our data are well proxied by theoretical densities. Finally, we ask whether

our findings are robust to controlling for the presence of outliers, autocorrelation and

heteroscedasticity in output growth-rate dynamics, and we test for possible asymmetries

in growth-rate distributions.

The emergence of fat tails in country-level output growth rates has several theoretical

and empirical implications. First of all, it calls for theoretical models that are able to

reproduce and explain this candidate new stylized fact of output dynamics. At the same

time, theoretical models might employ this new evidence in their set of assumptions so

as to possibly improve their performance. In fact, it has been shown that, in many cases,

economic models failing to account for fat tails in their data generating process can deliver

invalid implications (Ibragimov, 2005). Furthermore, gaining empirical knowledge on the

shape of some important economic variables (like output growth rates) may shed some

light on the properties of the processes that have generated them (with all the caveats

discussed in Brock, 1999). For example, the fact that fat tails characterize not only

growth-rate distributions of countries (both time-series and cross-sectionally), but also

of industries and firms, hints to the existence of some common forces operating at very

different aggregation levels (Lee et al., 1998). In addition, if one thinks to the growth

of country output as the outcome of the aggregation of firm- and industry-level growth

profiles, the emergence of fat tails in country-level growth rates seems to strongly reject

the hypothesis that some form of “central limit theorem” (CLT) is at work (Castaldi and

Dosi, 2004).

The paper is organized as follows. In Section 2 we describe the data and the method-
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ology we employ in our analysis. Empirical results on growth-rate distributions for the

U.S. and other OECD countries are presented in Section 3. Robustness checks are dis-

cussed in Section 4. Section 5 discusses the implications of our results in the light of

the existing theoretical and empirical literature on output dynamics in macroeconomics.

Finally, Section 6 concludes.

2 Data and Methodology

The main objects of our analysis are output growth rates g(t), defined as:

g(t) =
Y (t)− Y (t− 1)

Y (t− 1)
∼= y(t)− y(t− 1) = (1− L)y(t), (1)

where Y (t) is the output level (GDP or IP) at time t in a given country, y(t) = log[Y (t)]

and L is the lag operator.

We exploit two sources of (seasonally adjusted) data. As far as the U.S. are concerned,

we employ the FRED database. We consider two output growth-rate series: (i) quarterly

real GDP, ranging from 1947Q1 to 2005Q3 (GDP , 235 observations); (ii) monthly IP,

ranging from 1921M1 to 2005M10 (IP1921, 1018 observations). Moreover, in order to

better compare the IP growth-rate distribution with the GDP one, we also carry out

an investigation on the post WWII period only, using IP observations from 1947 to 2005

(IP1947, 702 observations). The analyses for the other OECD countries are performed by

relying on monthly IP data drawn from the “OECD Historical Indicators for Industry and

Services” database (1975M1− 1998M12, 287 observations)3. Notice that, by focusing on

IP as a measure of aggregate activity, we can study a longer time span and thus improve

our estimates. IP is typically a good proxy of output levels, as it tracks very closely GDP

series. In fact, as Figure 1 shows, the GDP-IP cross-correlation profile mimics from time

t− 6 to time t + 6 the GDP auto-correlation profile.

Let Tn = {t1, ..., tn} be the time interval over which we observe growth rates. We

3We study growth-rate distributions of the following countries: Canada, Japan, Austria, Belgium,
Denmark, France, Germany, Italy, the Netherlands, Spain, Sweden and the U.K.
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define the within-country, time-series distribution of output growth rates as

GTn = {g(t), t ∈ Tn}. (2)

We study the shape of GTn following a parametric approach. We begin by fitting growth

rates with the exponential-power (EP) family of densities, also known as Subbotin distri-

bution4, whose functional form reads:

f(x; b, a, m) =
1

2ab
1
b Γ(1 + 1

b
)
e−

1
b
|x−m

a
|b , (3)

where a > 0, b > 0 and Γ(·) is the Gamma function. The EP distribution is thus

characterized by three parameters: a location parameter m, a scale parameter a and a

shape parameter b. The location parameter controls for the mean of the distribution,

whereas the scale parameter is proportional to the standard deviation.

The shape parameter is the crucial one for our analysis: the larger b, the thinner

are the tails. In fact, the EP density encompasses both the Laplace and the Gaussian

distributions: if b = 1 the distribution reduces to a Laplace, whereas for b = 2 we recover

a Gaussian. Values of b smaller than one indicate super-Laplace tails (see Figure 2 for

an illustration). This property is the value-added of the EP density, as it allows one to

precisely measure how far the empirical distribution is from the Normal benchmark and

how close is instead to the Laplace one5.

In the exercises that follow, we fit empirical distributions GTN
with the EP density

(3) by jointly estimating the three parameters via maximum likelihood (ML). ML esti-

mation of EP parameters is not an easy task. For theoretical and computational issues,

we refer to Agrò (1995) and Bottazzi and Secchi (2006b). In what follows, we perform es-

timation by employing the package SUBBOTOOLS6. Notice that, despite ML estimators

are asymptotically unbiased and are always unique for n > 100, some upward bias may

4More on fitting EP distributions to economic data is in Bottazzi and Secchi (2003a,b).
5Notice that we are not claiming here that the EP distribution is the unique distribution that can fit

growth-rate data. In Section 4.2 we shall come back to a comparison of how alternative density families
perform in fitting our data.

6Available online at http://cafim.sssup.it/∼giulio/software/subbotools/. See Bottazzi
(2004) for details.
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emerge in the estimation of the shape coefficient for small samples. However, Montecarlo

studies (available from the Authors on request) show that, for sample sizes similar to

those considered in this work, ML estimators of EP parameters are nearly unbiased and

are characterized by a reasonably small variance. This confirms results obtained by Agrò

(1995), who also shows that estimation of b is not affected by the values of (a,m).

3 Fitting the EP Density: Parameter Estimation and

Goodness of Fit

In this section, we report the results of EP fits. We begin with a detailed analysis of U.S.

growth-rate distributions and we then check whether the main findings of the analysis

hold also for the other OECD countries under study.

3.1 U.S. Growth-Rate Distributions

Let us start by some descriptive statistics on U.S. output growth rates. Table 1 reports the

first four moments of U.S. time series, together with a battery of normality tests for the

null hypothesis that series come from a Gaussian distribution with unknown parameters.

Notice first that skewness levels are quite small. This justifies using a symmetric

theoretical density like (3) to fit the data7. The relatively large figures for kurtosis suggest

however that output growth-rate distributions display fat tails. Indeed, all normality

tests reject the hypothesis that U.S. series are normally distributed. This is confirmed

by Anscombe-Glynn’s test (Anscombe and Glynn, 1983), which clearly detects that non-

normality is due to excess kurtosis.

In order to better explore this evidence, we fit U.S. output growth-rate distributions

with the EP density (see eq. 3). Maximum likelihood estimates, together with standard

errors (in parentheses), Cramer-Rao confidence intervals, and hypothesis testing results

are reported in Table 2.

7In Section 4.3 we will explore in details departures from symmetry and we will check whether
asymmetric EP densities might perform better than the symmetric one.
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Estimates indicate that, as expected, all three growth-rate time series are markedly

non normal. Growth rates seem instead to distribute according to a Laplace for GDP

(̂b very close to one). Furthermore, they display tails even fatter than Laplace ones for

IP1921 (̂b smaller than one), whereas the estimated coefficient for IP1947 goes back to a

value close to one8.

These results are statistically substantiated by Cramer-Rao confidence intervals (CI),

which show that b = 1 lies in both GDP and IP1947 CIs. Conversely, the CI for IP1921

spans entirely on the left of b = 1. Of course, b = 2 does not belong to any CIs. Since

these CIs are only valid asymptotically, we also estimate exact p-values – via a standard

bootstrap procedure – for two hypothesis tests: (i) H0: b=1 vs. H1: b 6=1; (ii) H0: b=2

vs. H1: b<2. Estimated p-values indicate that normality is strongly rejected for all three

time series. For both GDP and IP1947 it is not possible to reject the Laplace hypothesis,

whereas for IP1921 the coefficient is statistically smaller than one.

We turn now to a battery of goodness-of-fit tests to explore the performance of the

above EP estimates. Indeed, point estimates and parameter testing suggest that U.S.

growth-rate distributions are fat-tailed. But how good is the EP fit for the U.S.? A first

visual assessment is contained in Figures 3–5, where we plot the binned empirical density

against the ML fitted one (in semi-log scale): the EP seems to nicely describe growth-rate

distributions, especially when tails turn out to be super-Laplacian.

As Table 3 suggests, the above graphical evidence is corroborated by standard goodness-

of-fit (GoF) tests (see D’Agostino and Stephens, 1986, for details). In fact, no GoF test

rejects the null hypothesis that data come from the fitted distributions. Moreover, both

GDP and IP1947 seem to come from a Laplace distribution, whereas IP1921 appears to

be well approximated by an EP with super-Laplace tails.

Similar findings are obtained if one performs generalized likelihood-ratio tests (LRTs).

Table 4 reports LRTs for the null hypotheses that data come from a Laplace or a Normal

distribution. Again, normality is rejected in favor of Laplace for GDP and IP1947, and

in favor of a super-Laplace distribution for IP1921.

8This suggests that super-Laplace tails could be due to the turmoils of the Great Depression.
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3.2 Do Fat Tails Emerge Also in Other OECD Countries?

The above findings for the U.S. are replicated to a large extent also in a large sample of

other OECD countries. Descriptive statistics indicate that, in half of the countries under

scrutiny, the distributions of IP growth rates seem to be slightly right-skewed, whereas in

the other half they appear to be slightly left-skewed (see Table 5; more on that in Section

4.3). Normality tests show that almost all growth-rate distributions are markedly non

normal due to excess kurtosis (cf. the Anscombe-Glynn’s test). The only two exceptions

are Canada and Belgium. In Canada the evidence from normality tests is mixed, while

Belgium exhibits a relatively large skewness. In both cases, however, the p-values for the

kurtosis tests are close to 5%, suggesting the presence of fat tails.

EP fits confirm this evidence, see Table 6. All estimated shape coefficients are signif-

icantly smaller than two (at 5%, cf. last column). The only exception is again Canada,

where the null hypothesis of normality cannot be rejected (although the p-value is very

close to 5%). A quick inspection of p-values for the null hypothesis b = 1 (see column

before the last one) shows that Spain is the only clear-cut case of a growth-rate distribu-

tion with tails fatter than a Gaussian but thinner than a Laplace. Austria, France and

the Netherlands seem to have tails slightly thinner than a Laplace (p-values smaller than

– or close to – 5% but larger than 1%). Conversely, Japan, Belgium, Denmark, Germany,

Italy, Sweden and the U.K. display Laplace tails.

Overall, the ML fit performs well in describing the data. Apart from the case of

Denmark, GoF tests do not reject the hypothesis that data come from the ML fitted EP

distribution (cf. Table 7, top panel). Moreover, as the bottom panel of Table 7 shows,

GoF tests do not reject the Laplace null hypothesis in almost all countries.

To further check the robustness of the results in Table 6, we turn to likelihood ratio

tests. Table 8 confirms that apart from Canada (which have almost normal tails) and

Spain (with tails fatter than a normal but thinner than a Laplace), growth-rate distribu-

tions of all remaining countries are well approximated by a Laplace density.
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4 Robustness Checks

The foregoing discussion has pointed out that within-country output growth-rate distri-

butions are markedly non-Gaussian. The evidence in favor of Laplace (or super-Laplace)

densities robustly arises in the majority of OECD countries, it does not depend on the

way we measure output (GDP or IP), and it emerges also at frequencies more amenable

for the study of business cycles dynamics (i.e. quarterly and monthly). As a consequence,

along the time dimension, country-level growth rates display tails fatter than those char-

acterizing the normal density. In other words, large growth events are more likely than

what one should expect.

Nevertheless, this striking evidence in favor of fat tails can be biased by at least four

problems. First, growth-rate series may contain outliers, some autocorrelation structure,

and be possibly characterized by heteroscedasticity. This may generate spurious results

due to an inappropriate pooling of time-series observations. Second, the emergence of fat

tails may depend on the particular type of density employed in our fitting exercises (i.e.

the EP one). Third, while data exhibit some (very mild) evidence for skewness in growth-

rate distributions, we have fitted a symmetric EP. What happens when one allows for

asymmetric EP densities? Finally, super-normal tails in the IP growth-rate distributions,

both for the U.S. and for the other OECD countries we have analyzed, may depend on

the relatively high (monthly) frequency of IP output observations. How do estimated

shape coefficients behave when growth rates are computed over longer time lags? In the

remainder of this section, we will discuss these issues in more detail.

4.1 Outliers, Autocorrelation, and Heteroscedasticity

A first explanation for the presence of lumpiness in growth-rate time series might refer

to the presence of outliers in the raw series (Chen and Liu, 1993). Moreover, our time-

series analysis relies on pooling together growth-rate observations over time. Therefore,

the observations contained in GT should come from i.i.d. random variables. If growth-

rate time series exhibit (as they typically do) autocorrelation and/or heteroscedasticity,

the process is no longer i.i.d. and fat tails may emerge as a spurious result due to an
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inappropriate pooling procedure.

To control for these notional problems, we subsequently removed from our original se-

ries outliers, autocorrelation and heteroscedasticity (whenever detected). We performed

identification and correction of outliers by employing standard procedures available in

TRAMO (Gómez and Maravall, 2001) on original output growth-rate series. We then fit-

ted a battery of ARMA specifications to outliers-free series and selected the best model via

the Box and Jenkins’s procedure. Finally, we checked for the presence of heteroscedasticity

on ARMA residuals by running Ljung-Box and Engle’s ARCH tests. If heteroscedastic-

ity was detected, we fitted the best GARCH specification to obtain an outlier-free series

without autocorrelation and heteroscedasticity (i.e. “fully depurated” series).

Table 9 reports summary statistics and normality tests for U.S. series depurated from

outliers only and for “fully depurated” series9. Normality is still rejected in all series (due

to high kurtosis). Notice also that the standard deviation of “fully depurated” IP series

substantially increases.

We then fit an EP density to outlier-free and “fully depurated” U.S. series. Notwith-

standing outliers and “structure” have been washed away, fat tails still emerge (see Table

10) in the distributions of residuals. While all estimated shape coefficients are now larger

than one, the null hypothesis of normality is strongly rejected (see last row). According to

our tests, the distributions of GDP growth-rate residuals are still close to a Laplace (the

p-values for H0: b = 1 are slightly larger than 5% for the outlier-free series, but smaller

than 5% for the “fully depurated” one). Outlier-free IP1921 growth-rate series display

now a coefficient which is clearly equal to one. Although Cramer-Rao confidence intervals

indicate to reject a Laplace distribution, estimated exact p-values suggest instead not to

reject H0: b = 1. In all other cases, coefficients are significantly larger than one (but

smaller than two). GoF and likelihood-ratio tests confirm these results: see Figure 6 as

an illustration of our EP fit to the outlier-free (left) to the “fully depurated” GDP growth

series.

9Incidentally, the best model for GDP series is an AR(1) without drift, while for IP1921 and IP1947
we employed an ARMA(1,1) and a GARCH(1,1) with an additional seasonal component in order to
account for residual seasonality.
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Similar findings are obtained also for the other OECD countries. Table 11 reports the

results for “fully-depurated” series only10. Although estimated shape coefficients typically

increase as compared to the non-depurated ones (Cf. Table 6), in all cases (but Japan) the

distributions of residuals display tails statistically thinner than the a Laplace but much

fatter than a normal density. Notice that Canada’s growth-rate distribution is now back

to a Laplace, while Japan’s one strikingly exhibits super-Laplace tails.

This evidence suggests that fat tails still characterize our series even when growth resid-

uals are considered as the object of analysis, i.e. after one washes away from the growth

process outliers and any structure possibly due to autocorrelation and heteroscedasticity.

4.2 Fitting Alternative Fat-Tailed Densities

Another possible weakness of the above analysis resides in the fact that it relies on a

particular type of (fat-tailed) density. The use of an EP family is justified by its extreme

flexibility: if the goal is to understand not only if fat tails do emerge, but also how far

they are from those of a normal (or of a Laplace) distribution, the EP density turns out to

be very useful. There are however other well-known examples of densities which are well-

suited to fit fat- and medium-tailed distributions (for a review of theoretical underpinnings

and economic applications, see Embrechts et al., 1997).

In this section we ask whether the emergence of fat tails is confirmed when alternative

densities are fitted to our data. We shall firstly employ the Student-t distribution, whose

density reads:

t(x; λ, θ, ν) =
Γ(ν+1

2
)

θΓ(ν
2
)
√

νπ

[
1 + ν−1

(
x− λ

θ

)2
]− ν+1

2

, (4)

where λ is a location parameter, θ is a scale parameter and ν controls for the heaviness

of tails (i.e., the degrees of freedom). Notice that the larger ν, the thinner are the tails.

In fact, as ν →∞ tails converge (but slowly) to those of a Gaussian.

We shall also fit our data with the Cauchy distribution:

10Best models are as follows. Austria∗, Spain∗, Sweden: AR(2); Japan: AR(4) w/ drift;
France, Germany, Italy: MA(1); UK: ARMA(3,1); Canada: ARMA(3,1)+GARCH(1,1); Belgium∗:
MA(1)+GARCH(1,1). (∗): Seasonal Component.
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C(x; ρ, ϕ) =
1

ϕπ

[
1 +

(
x− ρ

ϕ

)2
]−1

, (5)

where again ρ is a location parameter and ϕ is a scale parameter. Since we have that:

t(x; λ, θ, 1) = C(x; λ, θ), (6)

it turns out that the Cauchy can be considered as a special case of a Student-t (with

extreme heavy tails).

Finally, we employ the family of Levy-Stable (or simply ‘Stable’) distributions, popu-

larized by Nolan (2006). The Levy-Stable is a 4-parameter family of distributions, i.e.:

S(x; α, β, γ, δ). (7)

The only condition that a random variable must obey to be a stable one is that its shape

must be preserved under addition, up to scale and shift. Two important remarks are in

order. First, the stable distribution is the only possible non-trivial limit of a normalized

sum of independent, identically distributed terms. This result is known as the ‘generalized’

central limit theorem (GCLT), because it extends the standard CLT by dropping the

finite-variance assumption. Second, the density of a stable random variable cannot be

generally given in closed-form. Exceptions are the Gaussian and the Cauchy distributions,

which belong to the stable family. In fact, it can be shown that the parameter α works in

the same way b does for the EP distribution: if α = 2 we recover the Gaussian distribution,

while if α = 1 the stable family boils down to a Cauchy. Unfortunately, the Laplace is

not a stable distribution. This prevents us to thoroughly compare stable fits with EP

ones. Moreover, the parameter β controls for the skewness: the distribution is symmetric

if β = 0. Finally, δ controls for location and γ for the scale.

Tables 12, 13 and 14 report the results of our fitting exercises. Given the robustness

results obtained above, we go back to our original growth-rate series and we estimate

density parameters via ML11. Furthermore, we perform GoF tests and we estimate p-

11To fit stable densities, we employed the package provided by John Nolan, see
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values by bootstrapping the GoF test statistics under the null hypothesis that data come

from the fitted distribution.

It is easy to see (Table 12) that, according to GoF tests, the Student-t distribution does

not satisfactorily fit the data, especially as far as OECD IP growth rates are concerned.

However, the estimates for the ‘degrees of freedom’ parameter ν̂ are quite small, suggesting

the presence of fat tails. The Student-t is on the contrary a good choice for U.S. GDP

and, to some extent, for the IP1921 series. This evidence is confirmed by the results

obtained by fitting a Cauchy distribution, see Table 13. Again, GoF p-values are overall

poor (apart from U.S. GDP and IP1921), suggesting that the Student-t parametrization

ν̂ = 1 is not a good one to fit our data.

Finally, Table 14 reports the results from stable fits. Notice firstly that GoF tests

slightly improves, indicating that the Levy-Stable distribution does a better job as com-

pared to the Cauchy and the Student-t. Nevertheless, the Levy-Stable seems to be out-

performed by the EP12. Some slight evidence in favor of asymmetry is detected, cf. the

estimates for β. More importantly, values of α̂ are always between 1 and 2, strongly

indicating the presence of medium-tails in all distributions. This implication is further

supported by standard errors of estimates (in parentheses), which are quite small for all

four parameters.

We can then confidently conclude that fat-tails robustly arise independently of the

particular density employed. Yet, the EP seems to out-perform all the other three density

families in describing our growth-rate data.

4.3 Skewness and Asymmetric EP Fits

Both descriptive statistics and estimates of the symmetry parameter (β) for the stable

density have suggested the presence of some skewness in growth-rate distributions. In

our previous analyses, conversely, we have always employed a symmetric EP (eq. 3). In

what follows, we then turn to test whether our results are robust to fitting asymmetric

http://academic2.american.edu/∼jpnolan/stable/stable.html.
12This casts serious doubts on whether some sort of GCLT is in place. We shall come back to this

point in Section 5.
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EP densities, whenever significant skewness in the data is detected.

We begin by performing D’Agostino skewness test (D’Agostino, 1970) on both U.S.

and OECD data13. As Table 15 shows, only three series display statistically significant

skewness levels: U.S. IP1921, U.S. IP1947, and Belgium. It must be noted that this

evidence in favor of an overall absence of skewness is in line with recent results showing

some symmetry in the magnitude of expansions and recessions of business cycles, see

McKay and Reis (2006).

We fit the data of the three skewed series with an asymmetric EP distribution (Bottazzi

and Secchi, 2006b), whose density is given by:

g(x; al, ar, bl, br,m) =





K−1e
− 1

bl
|x−u

al
|bl

, x < u

K−1e−
1
br
|x−u

ar
|br

, x ≥ u
, (8)

where K = alb
1/bl

l Γ(1 + 1/bl) + arb
1/br
r Γ(1 + 1/br). Notice that in the asymmetric EP

density the parameters bl and br allow for different tail fatness levels on the right and on

the left of the mean u, respectively. Right and left scaling is instead controlled by the

parameters al and ar.

As Table 15 reports, estimates of bl and br seem actually to differ. In the case of U.S.

IP1921, both coefficients indicate super-Laplacian tails, but positive growth events seem

to be more likely than negative ones. After WWII, on the contrary, IP growth becomes

almost Laplacian as far as negative jumps are concerned, whereas positive growth rates

seem to be super-Laplacian. A different story holds for Belgium, where negative growth

large events are far more likely than positive ones.

In order to further explore the robustness of the evidence conveyed by the analysis of

parameter estimates, we performed likelihood-ratio tests to check for the null hypothesis

that data come from an asymmetric EP that has been forced to have symmetric param-

eters, the latter being equal to those obtained in our symmetric EP exercises14. Table

13The D’Agostino skewness test performs quite well in detecting departures from symmetry for given
values of kurtosis, even if the distribution is not Gaussian.

14More precisely, we compute the likelihood of an asymmetric density (8) with a null hypothesis given
by: b̂l = b̂r = b̂, âl = âr = â and û = m̂, i.e. we force the shape and scale parameters of the asymmetric
EP to be equal to the corresponding ML estimate of the symmetric distribution.
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15 (last two columns) shows that, despite estimates of the shape coefficients differ, there

is no gain whatsoever in fitting an asymmetric density to our data. This happens in all

three cases where the D’Agostino skewness test detected some asymmetry in growth-rate

distributions. Indeed, the improvement in the goodness of fit does not counterbalance

neither the larger degrees of freedom, nor the ensuing increase in the standard deviation

of estimates, both implied by an asymmetric fit.

4.4 Increasing Growth-Rate Time Lags

As mentioned above, our work departs from existing ones also because we employ monthly

and quarterly data. While this choice might allow to better appreciate the business-cycle

features of growth-rate distributions, it might also generate a potential problem. Indeed,

lumpiness in growth events might simply depend on the fact that we have considered

output data at a too high frequency. The question then becomes: What happens when

one computes growth rates at different (increasing) time lags?

To explore this issue, we inspect the distribution of output growth rates where the

latter are now defined as:

gτ (t) =
Y (t)− Y (t− τ)

Y (t− τ)
∼= y(t)− y(t− τ) = (1− Lτ )y(t), (9)

where τ = 1, 2, ..., 6 when GDP (quarterly) series is employed, and τ = 1, 2, ..., 12 when

IP (monthly) series is under study.

In line with the results that Bottazzi and Secchi (2006a) report for firm growth rates,

we find that the shape parameter estimated on GDP data becomes higher as τ increases

(cf. for the U.S. case the left panel of Fig. 7). When we consider U.S. IP1947 series, b̂ first

falls and then starts rising (see the right panel of Fig. 7). Therefore, as the “growth lag”

increases, tails become slightly thinner: see Silva et al. (2004) for similar evidence in the

contest of stock returns. Nevertheless, estimated shape coefficients remain significantly

smaller than 2, especially for the IP1947 series. Interestingly, the lag-4 IP growth-rate

distribution exhibits super-Laplacian tails. This means that, even if one considers longer

time spans, big growth events remain more likely than what a Gaussian model would
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predict.

5 Implications

The foregoing evidence brings strong support to the claim that fat tails are an extremely

robust stylized fact characterizing the time series of aggregate output in most indus-

trialized economies. This has several implications, both from an empirical and from a

theoretical perspective.

From an empirical perspective, the emergence of fat-tailed distributions for within-

country time series of both growth rates and residuals (see section 4.1) can be interpreted

as a candidate new stylized fact on within-country output dynamics, to be possibly added

to the long list of its other known statistical properties. Furthermore, this finding confirms

from a time-series point of view what it seems to be a general property of cross-section

growth-rate distributions. As mentioned, fat tails have been indeed discovered to be the

case not only for cross-sections of countries, but also for plants, firms and industries in

many countries (see Stanley et al., 1996; Lee et al., 1998; Amaral et al., 1997; Bottazzi and

Secchi, 2003a,b; Castaldi and Dosi, 2004; Fu et al., 2005; Sapio and Thoma, 2006, among

others). In other words, the general hint coming from this stream of literature is in favor

of an increasingly “non-Gaussian” economics and econometrics. A consequence of this

suggestion is that we should be very careful in using econometric testing procedures that

are heavily sensible to normality of residuals. On the contrary, testing procedures that

are robust to non-Gaussian errors and/or tests based on heavy-tailed errors should be em-

ployed when necessary. Examples of applications here range from Gibrat-like regressions

for the dependence of firm growth on size (Sutton, 1997) to cross-section country growth

rates analyses (cf. e.g. Barro and Sala-i Martin, 1992).

From a theoretical perspective, our findings may pose both an opportunity and a

challenge to modelers. On the one hand, fat-tailed growth-rate distributions might be

embodied in economic models to replace the standard assumption of normality of growth

shocks – typically employed in the literature of e.g. real business cycle (King and Rebelo,

1999). This might be an important step forward, because, as Ibragimov (2005) shows, the
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implications of many models in economics and finance are very sensitive to the thickness

of the tails of the distributions involved in their assumptions. On the other hand, the

widespread presence of fat tails in growth shocks signals that moments of output dynamics

higher than the second do matter. The emergence of excess kurtosis in growth data thus

suggests to go for models that are able to replicate not only the first two moments of

output growth distributions, but also higher ones.

Furthermore, gaining some knowledge on the shape of the country-level output growth-

rate distributions may provide some hints on its generating process. For instance, the fact

that fat tails characterize the shape of growth-rate distributions, both cross-sectionally

and time-series, at very different aggregation levels (e.g., firms, industries, countries),

corroborates the “intriguing possibility that similar mechanisms are responsible for the

observed growth dynamics of, at least, two complex organizations: firms and countries”

[Lee et al., 1998, p. 3275]15.

A fascinating challenge involves the attempt to shed more light on those common

mechanisms. It must be stressed, however, that such distributional findings relate to “un-

conditional” distributions (Brock, 1999). Therefore, making inference on the generating

mechanism responsible for fat tails at different aggregation levels is not easy at all: many

data generation processes can generate such distributions in the limit. Yet, since not

every data generation process is compatible with Laplace-distributed growth shocks, our

finding might place a first restriction on the set of possible models. This may hopefully

help one to discriminate among different theories (e.g., business cycle ones).

For example, suppose to interpret the country-level output growth rate in a certain

time period as the result of the aggregation of microeconomic (firm-level) growth shocks

across all firms and industries in the same time period. The emergence of non-Gaussian

distributions at the country-level strongly militates against the idea that country growth

shocks are simply the result of aggregation of independent microeconomic shocks. In

other words, the CLT does not seem to be at work. In addition, our evidence shows that

a Levy-stable density is not in general a good proxy of country growth-rate distributions

15And, in fact, industries as well, see Sapio and Thoma (2006).
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(see Section 4.2). This implies that not even a generalized version of the CLT (where

the finiteness of the variance of shocks is dropped) seems to governs aggregation in our

data. Therefore, some strong correlating mechanism linking in a similar way, at every

level of aggregation, the units to be aggregated appears to be in place (more on that is

in Castaldi and Dosi, 2004). This interpretation is in line with the one proposed by Lee

et al. (1998) and Amaral et al. (1998), who see the widespread presence of fat tails as

an indicator of the overall “complexity” of any growth process, mainly due to the strong

inner inter-relatedness of the economic organizations under study.

6 Concluding Remarks

In this paper, we have investigated the statistical properties of GDP and industrial pro-

duction (IP) growth-rate distributions in OECD countries by employing monthly and

quarterly time-series data.

We have found that such distributions appear to be well-approximated by a symmetric

exponential-power (EP) distribution, with tails much fatter than Gaussian ones. Hence,

in the last century, large “growth events” have been more likely than what one should

have expected. We have shown that lumpiness of growth patterns robustly emerges in-

dependently of: (i) the way we measure output (GDP or IP); (ii) the family of density

employed in the ML estimation; and (iii) the length of time lags used to compute growth

rates. Furthermore, we show that fat tails characterize growth rates even after one washes

away outliers, autocorrelation and heteroscedasticity (if any). Finally, we did not find any

strong evidence in favor of asymmetric growth-rate distributions.

Our work can be extended in at least two ways. First, our study intrinsically assumes

time invariance of the underlying generating mechanism governing output dynamics. Con-

versely, many studies indicate some evidence towards rejecting the assumption of temporal

homogeneity of per capita GDP time series over long time spans (Balke and Fomby, 1991;

Gaffeo et al., 2005). Studying more carefully the robustness of fat tails in growth-rate

distributions over distinct time spans could contribute to a better understanding of the

(non) stationarity nature of the GDP generating processes.
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Second, one might check whether applying different detrending filters on output growth-

rate distributions may change the results. As pointed out by Canova (1998), different de-

trending methods do indeed affect business-cycle stylized facts. One could then apply to

the output time series the most common filters employed in the business cycle literature

(e.g. the Hodrick-Prescott and bandpass filters) and study the ensuing output growth-

rate distributions. Similarly, one could employ the bandpass filter to isolate different

frequency bands directly in growth-rate time series, and then investigate which frequency

intervals are more conducive to fat tails and which are not.
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Table 1: U.S. output growth-rate time series: summary statistics and p-values of normality and kurtosis
tests.

Series
GDP IP1921 IP1947

Statistic Value
Obs 234 1017 702
Mean 0.0084 0.0031 0.0028
Std. Dev. 0.0099 0.0193 0.0098
Skewness -0.0891 0.3495 0.3295
Kurtosis 4.2816 14.3074 8.1588
Normality Test p-Value
Anderson-Darling 0.0019 0.0000 0.0000
Adj Jarque Bera LM 0.0000 0.0000 0.0000
Adj Jarque Bera ALM 0.0000 0.0000 0.0000
Cramer Von-Mises 0.0020 0.0002 0.0000
Lilliefors 0.0279 0.0000 0.0000
D’Agostino 0.0120 0.0000 0.0000
Shapiro-Wilk 0.0038 0.0000 0.0000
Shapiro-Francia 0.0023 0.0000 0.0000
Kurtosis Test p-Value
Anscombe-Glynn 0.0036 0.0000 0.0000

Table 2: U.S. output growth-rate distributions: estimated EP parameters.

GDP IP1921 IP1947
m̂ 0.0082 (0.0006) 0.0031 (0.0002) 0.0030 (0.0003)
â 0.0078 (0.0006) 0.0091 (0.0004) 0.0068 (0.0003)
b̂ 1.1771 (0.1484) 0.6215 (0.0331) 0.9940 (0.0700)

[̂b− 2σ(̂b), b̂ + 2σ(̂b)] [0.8803,1.4739] [0.5553,0.6877] [0.8540,1.1340]
p-value for H0: b=1 H1:b6=1 0.1071 1.0000 0.5268
p-value for H0: b=2 H1:b<2 0.0001 0.0000 0.0000

Note: Standard errors of estimates σ(̂·) in parentheses. b̂ ± 2σ(̂b) are Cramer-Rao confidence intervals.
P-values in the last two rows computed by bootstrapping the distribution of b̂ under H0 and econometric
sample sizes equal to those of the empirical time series. Bootstrap sample size: M = 10000.
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Table 3: Goodness of fit tests. Test statistics and estimated exact p-values.

H0: b=b̂, H1: b 6= b̂
GDP IP1921 IP1947

GoF Test Statistic p-value Statistic p-value Statistic p-value
KSM 0.6772 0.7354 1.1744 0.1303 0.7907 0.5540
KUI 0.8971 0.9155 0.2711 0.1928 1.2742 0.4209

CVM 0.0410 0.9166 0.2090 0.2519 0.1100 0.5301
AD2 0.2934 0.9427 0.9905 0.3637 0.7471 0.5186

H0: b = 1, H1: b 6= 1
GDP IP1921 IP1947

GoF Test Statistic p-value Statistic p-value Statistic p-value
KSM 0.6069 0.8450 1.6195 0.0042 0.7847 0.5659
KUI 0.9998 0.8083 2.1735 0.0028 1.2643 0.4391

CVM 0.0409 0.9134 0.5025 0.0397 0.1083 0.5421
AD2 0.3697 0.8724 5.6816 0.0015 0.7351 0.5261

Note: KSM=Kolmogorow-Smirnov (D) test; KUI=Kuiper (V ) test; CVM: Cramer-VonMises (W 2) test;
AD2: Anderson-Darling quadratic (A2) test. Test statistics adjusted for small-sample bias according
to D’Agostino and Stephens (1986, Table 4.2, p.105). Exact p-values estimated by bootstrapping the
distribution of the test statistics under the null hypothesis H0, with econometric sample sizes equal to
those of the empirical time series and (a,m) = (â, m̂). Bootstrap sample size: M = 10000.

Table 4: Likelihood ratio tests.

GDP IP1921 IP1947

LL(̂b) 755.844 2822.742 2314.933
LL(b = 1) 755.099 2801.059 2314.928
LL(b = 2) 747.978 2570.602 2249.369

H0: b = 1, (a,m) = (a∗1, b
∗
1); H1: b 6= 1

Statistics 1.490 43.365 0.010
p-value 0.685 0.000 1.000

H0: b = 2, (a,m) = (a∗2, b
∗
2); H1: b < 2

Statistics 15.731 504.279 131.128
p-value 0.001 0.000 0.000

Note: LL(̂b)= Log likelihood associated to ML estimates (̂b, â, m̂). LL(b = 1): Log likelihood associated
to (a∗1,m

∗
1), i.e. ML estimates of (a,m) subject to b = 1. LL(b = 2): Log likelihood associated to (a∗2, m

∗
2),

i.e. ML estimates of (a,m) subject to b = 2. Test statistics: −2·∆LLT (b = b0) = −2[LL(b = b0)−LL(̂b)],
for b0 = 1, 2. P-values are computed using the fact that −2 ·∆LLT (b = b0) → χ2(3).
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Table 7: Goodness of fit tests for OECD countries. Test statistics and estimated exact p-values.

GoF Test
KSM KUI CVM AD2

Country Statistic p-value Statistic p-value Statistic p-value Statistic p-value
H0: b=b̂, H1: b 6= b̂

Canada 0.6527 0.7766 1.0328 0.7679 0.0545 0.8378 0.3166 0.9251
Japan 0.4406 0.9864 0.8068 0.9694 0.0295 0.9717 0.3681 0.8773

Austria 0.6426 0.7987 0.9574 0.8578 0.0589 0.8099 0.5408 0.7071
Belgium 1.0041 0.2631 1.4815 0.1899 0.1231 0.4773 0.7552 0.5185

Denmark 1.7276 0.0041 2.2713 0.0009 0.3687 0.0844 1.9317 0.0997
France 1.2595 0.0804 2.2097 0.0022 0.1013 0.5552 0.5205 0.7183

Germany 0.5857 0.8764 1.0035 0.8106 0.0481 0.8815 0.4603 0.7879
Italy 0.6566 0.7784 1.3115 0.3716 0.0503 0.8642 0.3096 0.9270

Netherlands 1.3145 0.0647 2.3895 0.0004 0.1737 0.3141 1.0135 0.3453
Spain 0.5622 0.9040 1.0095 0.7963 0.0452 0.8933 0.3572 0.8853

Sweden 1.0848 0.1826 1.4733 0.1911 0.1287 0.4461 0.8782 0.4141
UK 0.8382 0.4802 1.2528 0.4470 0.0721 0.7307 0.7476 0.5155

H0: b = 1, H1: b 6= 1
Canada 0.7307 0.6551 1.4641 0.2034 0.1547 0.3760 1.5626 0.1648

Japan 0.5475 0.9165 1.0153 0.7919 0.0402 0.9238 0.7433 0.5262
Austria 0.8943 0.3974 1.2702 0.4203 0.0855 0.6540 0.8876 0.4239

Belgium 1.0107 0.2528 1.5065 0.1701 0.1261 0.4638 0.7689 0.5055
Denmark 1.7276 0.0054 2.2140 0.0021 0.3882 0.0805 2.1346 0.0811

France 1.1990 0.1098 2.2097 0.0026 0.0967 0.5923 0.6522 0.6036
Germany 0.5755 0.8915 0.9835 0.8299 0.0454 0.8912 0.4435 0.8013

Italy 0.6678 0.7556 1.3231 0.3522 0.0574 0.8231 0.3754 0.8745
Netherlands 1.3861 0.0419 2.5051 0.0000 0.2186 0.2310 1.4519 0.1885

Spain 0.7280 0.6649 1.4188 0.2477 0.0765 0.7115 1.0192 0.3521
Sweden 1.0312 0.2351 1.2939 0.3912 0.1115 0.5232 0.6802 0.5728

UK 0.9394 0.3314 1.3881 0.2745 0.0822 0.6726 0.8632 0.4390

Note: KSM=Kolmogorow-Smirnov (D) test; KUI=Kuiper (V ) test; CVM: Cramer-VonMises (W 2) test;
AD2: Anderson-Darling Quadratic (A2) test. Test statistics adjusted for small-sample bias according
to D’Agostino and Stephens (1986, Table 4.2, p.105). Exact p-values estimated by bootstrapping the
distribution of the test statistics under the null hypothesis H0, with econometric sample sizes equal to
those of the empirical time series and (a,m) = (â, m̂). Bootstrap sample size: M = 10000.
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Table 8: Likelihood ratio tests for OECD countries.

H0 : b = 1, H0 : b = 2,
(a,m) = (a∗1, b

∗
1) (a,m) = (a∗2, b

∗
2)

H1: b 6= 1 H1: b < 2
Country LL(̂b) LL(b = 1) LL(b = 2) Statistic p-value Statistic p-value
Canada 878.7356 870.3870 877.4225 16.6971 0.0008 2.6262 0.4529

Japan 540.4682 539.3700 512.0700 2.1963 0.5327 56.7963 0.0000
Austria 655.4767 653.5069 645.3409 3.9396 0.2681 20.2717 0.0001

Belgium 537.1539 537.1403 514.0219 0.0274 0.9988 46.2641 0.0000
Denmark 587.7118 586.7298 561.1264 1.9640 0.5799 53.1708 0.0000

France 842.6275 841.8152 836.8383 1.6247 0.6538 11.5784 0.0090
Germany 725.8727 725.8421 695.7202 0.0612 0.9960 60.3050 0.0000

Italy 594.9010 594.6809 577.7194 0.4400 0.9319 34.3631 0.0000
Netherlands 626.4250 624.5917 612.1028 3.6666 0.2998 28.6443 0.0000

Spain 517.4279 512.9920 514.1326 8.8718 0.0310 6.5907 0.0862
Sweden 668.3535 667.2673 595.3823 2.1726 0.5374 145.9425 0.0000

UK 834.9834 834.5914 814.9782 0.7839 0.8533 40.0103 0.0000

Note: LL(̂b)= Log likelihood associated to ML estimates (̂b, â, m̂). LL(b = 1): Log likelihood associated
to (a∗1,m

∗
1), i.e. ML estimates of (a,m) subject to b = 1. LL(b = 2): Log likelihood associated to (a∗2, m

∗
2),

i.e. ML estimates of (a,m) subject to b = 2. Test statistics: −2·∆LLT (b = b0) = −2[LL(b = b0)−LL(̂b)],
for b0 = 1, 2. P-values are computed using the fact that −2 ·∆LLT (b = b0) → χ2(3).
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Table 9: Controlling for outliers, autocorrelation and heteroscedasticity. U.S. output growth-rate time
series: summary statistics and p-values of normality and kurtosis tests.

Series
Outliers only “Fully Depurated” Series

GDP IP1921 IP1947 GDP † IP1921‡ IP1947‡

Statistic Value
Mean 0.0000 0.0019 0.0023 -0.0001 -0.0444 -0.0104
Std. Dev. 0.0091 0.0129 0.0084 0.0087 0.9957 1.0021
Skewness -0.1636 -0.3911 -0.1015 -0.0692 -0.1858 0.1156
Kurtosis 3.7148 4.6464 4.4879 3.9990 4.6179 4.0278
Normality Test p-Value
Anderson-Darling 0.0035 0.0000 0.0000 0.0042 0.0000 0.0001
Adj Jarque Bera LM 0.0400 0.0000 0.0000 0.0100 0.0000 0.0000
Adj Jarque Bera ALM 0.0400 0.0000 0.0000 0.0100 0.0000 0.0000
Cramer Von-Mises 0.0027 0.0000 0.0000 0.0081 0.0000 0.0002
Lilliefors 0.0147 0.0000 0.0000 0.0493 0.0000 0.0081
D’Agostino 0.0697 0.0000 0.0000 0.0366 0.0000 0.0001
Shapiro-Wilk 0.0243 0.0000 0.0000 0.0066 0.0000 0.0001
Shapiro-Francia 0.0148 0.0000 0.0000 0.0040 0.0000 0.0001
Kurtosis Test p-Value
Anscombe-Glynn 0.0402 0.0000 0.0000 0.0114 0.0000 0.0001

Note: Columns 1-3 refer to original series depurated of outliers only. Columns 4-6 (“fully depurated”
series) refer to original series depurated from outliers, autocorrelation and possibly heteroscedasticity.
Outlier removal performed using TRAMO (Gómez and Maravall, 2001). ARMA fitting performed by
selecting the best ARMA model using a Box-Jenkins selection procedure on outlier-free residuals. Best
GARCH filtering applied if both Ljiung-Box and Engle’s ARCH heteroscedasticity tests (on ARMA
residuals) were rejected. (†) residuals from ARMA only; (‡) residuals from ARMA + GARCH.
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(â
,m̂

).
B

oo
ts

tr
ap

sa
m

pl
e

si
ze

:
M

=
10

00
0.

30



T
ab

le
11

:
C

on
tr

ol
lin

g
fo

r
ou

tl
ie

rs
,
au

to
co

rr
el

at
io

n
an

d
he

te
ro

sc
ed

as
ti

ci
ty

.
O

ut
pu

t
gr

ow
th

-r
at

e
di

st
ri

bu
ti

on
s

of
O

E
C

D
co

un
tr

ie
s:

es
ti

m
at

ed
E

P
pa

ra
m

et
er

s.

p-
va

lu
e

fo
r

p-
va

lu
e

fo
r

H
0
:b

=
1

H
0
:b

=
2

m̂
â
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Table 15: Checking for asymmetry in growth-rate distributions. D’Agostino skewness test, asymmetric
EP fits and likelihood ratio tests.

D’Agostino Skewness Test Likelihood Ratio Test
Series Statistic p-value b̂l b̂r Statistic p-value

US GDP -0.3770 0.7062 - - - -
US IP 1921 2.9369 0.0033 0.7441 (0.0490) 0.6639 (0.0423) 7.6122 0.1789
US IP 1947 2.3147 0.0206 1.1372 (0.1101) 0.8549 (0.0810) 6.5632 0.2552

Canada -1.0673 0.2858 - - - -
Japan -1.0370 0.2997 - - - -

Austria 0.7905 0.4292 - - - -
Belgium -2.4857 0.0129 0.7427 (0.0993) 1.3424 (0.2042) 7.4858 0.1869

Denmark 0.5642 0.5726 - - - -
France 0.7073 0.4794 - - - -

Germany 0.0458 0.9635 - - - -
Italy 0.2110 0.8329 - - - -

Netherlands -0.1630 0.8705 - - - -
Spain 1.1755 0.2398 - - - -

Sweden -1.3512 0.1766 - - - -
UK -0.7560 0.4497 - - - -

Note: D’Agostino skewness test (D’Agostino, 1970) rejected only for US IP1921, US IP1947, and Belgium.
Asymmetric EP fits: standard errors of estimates σ(̂bl) and σ(̂br) in parentheses. Likelihood ratio tests
(LRT) refer to the null hypothesis that data come from an asymmetric EP density (see eq. 8) wherein
parameters are restricted to be homogeneous and equal to maximum-likelihood estimates computed for
symmetric EP fits (see Tables 2 and 6), i.e. b̂l = b̂r = b̂, âl = âr = â and û = m̂. P-values for the LRT
are computed using the fact that LRT → χ2(5).
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Figure 1: GDP auto-correlation vs. GDP-IP cross-correlations for U.S. FRED data. Circles: GDP
auto-correlation. Asterisks: GDP-IP cross-correlations.
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Figure 2: The exponential-power (EP) density for m = 0, a = 1 and different shape parameter values:
(i) b = 2: Gaussian density; (ii) b = 1: Laplace density; (iii) b = 0.5: EP with super-Laplace tails. Note:
Log scale on the y-axis.
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Figure 3: Binned empirical densities of U.S.
GDP growth rates vs. EP fit.
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Figure 4: Binned empirical densities of U.S.
IP1921 growth rates vs. EP fit.
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Figure 5: Binned empirical densities of U.S.
IP1921 growth rates vs. EP fit.
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Figure 6: Controlling for outliers and autocorrelation in U.S. GDP growth rates. Binned empirical
densities vs. EP fit. Left: residuals after removing outliers only. Right: residuals after removing outliers
and autocorrelation (‘fully depurated series’). Outlier removal performed using TRAMO (Gómez and
Maravall, 2001). Autocorrelation removal performed by fitting an ARMA model to outlier-free residuals.
No evidence for heteroscedasticity detected.
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Figure 7: Increasing the time lag in the computation of growth rates. Estimates of the shape coefficient
(b). Left: US GDP. Right: US IP1947. Bars represent Cramer-Rao intervals (̂b± 2σ(̂b)).
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