Laboratory of Economics and Management
Sant’Anna School of Advanced Studies
Piazza Martiri della Liberta, 33 - 56127 PISA (ltaly)

Tel. +39-050-883-343 Fax +39-050-883-344
Email: lem@sssup.it Web Page: http://www.lem.sssup.it/

LEM
Working Paper Series

Dragging developers towards the core:

How the Free/Libre/Open Source Software community
enhances developers’ contribution

Francesco Rullani*

*Sant’ Anna School of Advanced Studies, Pisa, Italy

an
IVS — Copenhagen Business School

2006/22 September 2006

ISSN (online) 2284-0400

Dragging developers towards the core
How the Free/Libre/Open Source Software community enhances developers’ contribution

Francesco Rullani

LEM - Sant'Anna School of Advanced Studies
IVS — Copenhagen Business School

This version: January, 2006

“Hackers produce more than software,
they produce hackers”
Lars Risan'

Abstract

The paper presents a dynamic perspective on the landscape of Free/Libre/Open Source Software
(FLOSS) developers’ motivations and tries to isolate mechanisms sustaining developers’
contribution over time. The first part of the paper uses data gathered by the empirical studies
relative to the FLOSS case to judge the relative importance of each group of incentives detected by
the literature. In the second part of the paper, the same data are used to further characterize
developers’ motivations in dynamics terms, showing how the relative importance of different
incentives changes over time. Drawing inspiration from these results, the third part of the paper
identifies a specific mechanism fostering developers’ contribution to the community activities,
namely that: “Independently of developers’ exogenous preferences, the more their exposure to the
FLOSS community social environment, the more their contribution to the community activities”.
The key point of this hypothesis is that, if the exposure to the FLOSS community social
environment is able to foster developers’ contribution beyond the level granted by their
predetermined preferences, this leads directly to the evidence that the FLOSS community is
provided with a mechanism sustaining and enhancing developers’ incentives to produce and diffuse
code. In the last part of the paper, data relative to 14,497 developers working on SourceForge.net
during two years (2001-2002) are employed to estimate a model testing the aforementioned
hypothesis. Endogeneity problems are explicitly accounted for, and robustness checks are
performed in order to make sure that the observed confirmation of the hypothesis is actually an
empirically grounded result.

Acknowledgements: [am grateful to Alfonso Gambardella, Paul David, Bronwyn Hall, Paola Giuri, Salvatore Torrisi,
Alessandro Nuvolari, Matteo Ploner, Gaia Rocchetti, Francesco Rentocchini and all the participants to the LEM, and
CESPRI seminars, to the DIME workshop on “Motivations and Incentives” (Lisbon, WP 1.1), to the CCC Conference
(Lausanne) and to the workshop “Mediterranean Research on Free/Libre and Open Source Sofiware” (Venice). I thank
the SourceForge.net staff for having provided our group with the data and the Italian developers of SF.net who helped
us in interpreting the data. I also acknowledge the financial support of the project “Economic Change: the micro
foundations of institutional and organisational change: EconChange”, CE, DGXII, FP V. The usual disclaimers apply.

Reference address: Francesco Rullani, Laboratory of Economics and Management, Sant'Anna School of Advanced
Studies, Piazza dei Martiri della liberta, 33, 56127 Pisa, Italy (rullani@sssup.it) and 1VS, Copenhagen Business
School, Kilevej 144, 2000, Frederiksberg, Denmark, (fr.ivs@cbs.dk).

Keywords: Free/Libre/Open Source Software, incentives to innovate, dynamics of motivations, cooperation, community.

JEL classification: O31, L§6

! See http://folk.uio.no/lrisan/Linux/Identity _games/

1. Introduction

In recent years, new institutional and organizational forms have emerged. Knowledge-based
communities, where knowledge is produced and shared among the community members have
moved to the center of the social and economic scene, and open organizations have become
increasingly object of a wide range of studies (David and Foray, 2003). These organizations have
the peculiarity of widening the division of the innovative labor providing their members with
significant incentives to innovate and to diffuse the produced knowledge. As Arrow showed (1962),
the se two conditions are not naturally coupled. Their contemporaneous realization is instead
reached by means of “artificial” and peculiar structures such as Science and Technology (David and
Dasgupta, 1987, 1994) or Hierarchy (Williamson, 1975), or determined by specific contingencies
directly changing the terms of actors’ payoff functions (temporarily), as it is the case for Collective
Inventions (Allen, 1983; Nuvolari, 2005, 2004). In order to understand how these organizations
really work and the extent at which their model is applicable to other domains of knowledge
production the main question economists need to answer is then: how do these organizations
overcome Arrow’s contradiction? What sustains individuals’ incentives to innovate even in an
“open environment”.

The study undertaken here contributes in building an answer to this question analyzing the
Free/Libre/Open Source (FLOSS) model of production. FLOSS is produced by a community of
developers spread worldwide, who do not directly gain any monetary reward from their activity and
nonetheless keep producing software and diffusing it on the internet for free. Thus, FLOSS
represents one of the most interesting examples of knowledge-based communities.

In particular, the present paper tries to scan the landscape of FLOSS developers’ incentives to
isolate the principles able to sustain developers’ contribution over time.

The first part of the paper argues that data gathered by other empirical studies show that developers’
motivations do change over time. On this basis, part two identifies the “exposure to the community
social environment” as the mechanism behind this change. If this mechanism is actually able to
foster developers’ contribution independently of developers’ pre-determined preferences, then it is
possible to state that the FLOSS community is provided with a mechanism solving the contradiction
between knowledge production and diffusion pointed out by Arrow. The econometric analysis
developed in part three supports precisely this argument.

2. The context and the purpose of the paper

2.1. Institutions and production of knowledge

Knowledge contains a contradiction. It is intrinsically cumulative, so that its dissemination should
enable a wider and faster production of new knowledge. At the same time, the incentive to produce
it is inhibited by its non-rivalry and (partial) non-excludability, and because, once codified,
nowadays it can be replicated and transferred at virtually no costs. These properties limit to a set of
special cases the production of rents springing directly from the innovation and aimed at
compensating the innovators for the (sunk) costs and risks they bore in the first place, during the
research activity. Thus, while knowledge features call for a collective mode of production, the same
features cause a “pure” market solution to usually fail as a coordination mechanism (Arrow, 1962).

Dasgupta and David (1987, 1994) showed that Science and Technology emerged as institutions able
to solve the contradiction. Similarly, Williamson’s (1975) conceptual description of the firm
pictures an institutional structure able to provide researchers with the incentive to innovate and
share the results within the company (even if with the caveats highlighted by the Agency Theory):
hierarchy. Even in the absence of these structures, Collective Inventions, where economic agents
share knowledge freely and openly, occasionally (and temporary) occur (Allen, 1983; Nuvolari,
2005, 2004). Arrow’s intuition (1962) creates then a dichotomous conceptualization of knowledge

2

production. On one side, the institutions and circumstances sketched above, enabling the collective
production of knowledge. On the other side, environments where such conditions are not realized
and the consequent “pure-market-like situation” results in the innovators’ lack of incentives in
investing in the research activity.

2.2. What is FLOSS community and why should we focus on it?

In recent years, the advent of the information society and the diffusion of the Information and
Communication Technologies (ICT) created the conditions for a wider division of the innovative
labor. A high number of dispersed individuals can be mobilized through the internet, enabling the
system to reach the necessary critical mass to effectively produce knowledge collectively. At the
same time, codified knowledge can be highly modularized and new knowledge can be easily
matched with the existing one thanks to the improvements in the interfaces (e.g. the concurrent
versioning system, CVS, for software production). These changes created room for the emergence
of knowledge-based communities (David and Foray, 2003), where agents collectively produce and
“freely” exchange knowledge without a formal and central authority, without IPR or state
intervention.

These changes were particularly evident in the software industry. From the fifties to the seventies,
software was produced in scientific-research like way. During the eighties, however, many
companies and developers started to apply for patents and copyright for their code, or “closed” the
source code of their programs in order to be able to extract monetary rents from it (Benussi, 2005;
Nuvolari, 2005). The source code is the interface between the Machine, which reads binary
information, and the Man, who understands natural-language-like instructions. If the source code of
a program is attached to the program itself, it can be red by other developers, who can also act on it
and improve the program. If, on the contrary, the code is kept secret, the structure of the program
can be revealed only through costly (and often illegal) practices as reverse engineering. Closing the
code, thus, means blocking the diffusion of the knowledge embodied in the program, and assigning
de facto to the original developer the complete control on the innovation. In opposition to this entry
in the “Technology realm”, Richard Stallman, a researcher at MIT, designed the General Public
License (GPL), and released the software he produced under its terms. The GPL enables other
developers to copy and distribute the software, to access the source code of the program, to modify
it and to redistribute it. At the same time, it requires that the resulting software is distributed under
the same terms of the original one. Many other developers improved the original Stallman’s
software and applied to their own original code the GPL or a similar -sometimes less restrictive-
licenses®.

In few years the FLOSS community, i.e. the community of users and developers of software
licensed under an Open Source license (see http://www.opensource.org/), grew and spread
worldwide thanks to the diffusion of the ICT, to the modularity of the production process (Giuri et
al., 2005) and to the flexible modularity of the code architecture (Narduzzo and Rossi, 2004).
Nowadays, about 70% of web servers on the internet run Apache, a software distributed under a
specific Open Source license (the “Apache web license”), and Linux is seriously threatening the
incumbents on market for desktops. This candidates the FLOSS community as one of the most
successful cases of the knowledge-based communities described by David and Foray (2003).

2.3. The aim of the research

The situation depicted above is at odds with the specific license regime under which FLOSS
products are released. FLOSS can be freely copied and redistributed, and the majority of the
developers do not extract a direct monetary rent from the innovation they produce. This should

% See Giuri et al., 2002; Gambardella and Hall, 2006; Lerner and Tirole, 2005; for a discussion on the effects of GPL
and of the different degrees of openness of the other licenses used by the FLOSS community.

3

result in a low rate of innovation, and eventually in the disappearance of the cooperative regime.
But -by now- it does not. How is this possible? What is the mechanism the FLOSS community puts
forward to enhance its developers’ contribution and thus solve Arrow’s contradiction?

The aim of the present paper is trying to answer these questions. In doing so, it also helps to shed
light on the mechanisms behind the knowledge-based communities David and Foray (2003) place at
the basis of a knowledge-based society.

The managerial and economic literature has assessed several dimensions of the FLOSS model. In
order to understand how the FLOSS community solves the contradiction between incentives to
innovate and knowledge diffusion, the focus has to be placed on the agents’ motivations to create
and diffuse software. Besides few exceptions (e.g. Shah, 2006; Bagozzi and Dholakia, 2006; von
Krogh et al., 2003a; Ghosh et al., 2002), the literature on this topic usually treats developers’
incentives as static. However, "future research should explain [...] the motives of joiners and how
they change over time as they work their way into the project. This will help get a more complete
picture of those factors enabling growth and continuation of projects." (von Krogh et al., 2003b, p.
1235).

Thus, the first section of the paper elaborates on empirical literature about FLOSS to explore the
dynamic structure of developers’ incentives and to stress that motivations do change over time.

As a further step, the paper tries to identify a possible “engine” behind these changes. In the second
section the observed evolution of the incentive scheme is analyzed to identify the mechanism
driving the transformation of developers’ preferences. In particular, what emerges is that -
independently of developers’ exogenously determined preferences- the more developers’ exposure
to the FLOSS community social environment, the more their contribution to the community
activities.

The last contribution of the paper, developed in the third sections, is a test of this hypothesis by
means of regression analysis. The confirmation of the hypothesis puts forward the need to reframe
in a dynamic fashion the motivational sets used by the literature to explain FLOSS existence. It also
sheds light on the FLOSS model and thus helps to understand a series of related issues, such as the
sustainability of FLOSS as a model for innovation.

3. What drives developers’ effort and cooperation

3.1. How a user becomes a developer

Mateos Garcia and Steinmueller (2003) and von Krogh et al. (2003b) notice that the process by
which members of the community are recruited and accepted plays a central role in shaping the
evolution of the community itself, and in determining its capabilities to survive and grow.

This process seems to begin with a period of "gestation" through which FLOSS users can move
from the outer circles toward the core of the community becoming developers. This is the period
when the user /earns about the community rules, habits, language and "vision", and when the
community examines the user, evaluating her capabilities, reliability and trustworthiness. In
particular, analyzing the case of Freenet, von Krogh et al. (2003a; 2003b) show that would-be
developers usually approach the community social environment initially "lurking" at the mailing
lists of the project. This way, they gather information on the community social environment, on the
topics developed in the community debate, as well on the software architecture. At a certain point,
if they find something interesting for them and -in their opinion- useful to the community, they
provide a feedback posting comments and/or code to the mailing list. At this point users begin a
dialog with the community members by which the latter can evaluate the former’s ideas and
software contributions. The provision of software is a fundamental moment of the joining process,
because it gives the community the possibility to evaluate the actual skills of the user. And in fact
"[The interview with developer #405] shows the developer favors hand-on solutions to technical
problem, and that demonstration of technical knowledge in the form of software code submission

4

matters more than signaling of interest and experience" (von Krogh et al., 2003b; p. 1229). If the
would-be developer behaves as described, her admission to the "inner" circles of development (e.g.
getting access to the CVS) is more likely (von Krogh et al., 2003b). A similar result is obtained by
David and Rullani (2006), who find that developers active in the long-run are also those who
become active after a first period of lurking.

Thus, on the one hand, the participation of the user into a process of “regulated” interaction is a
fundamental tool to let community members judge her real skills, commitment, vision of the project
and willingness to absorb and respect the rules of the community. On the other hand, the exposition
to the community enables the newcomer to understand what the social structure and the technical
needs of the community are, and to relate them to her interests and potentials.

3.2.

Having described the process by which a user becomes a developer, a study of the motivations
driving that process is needed. The empirical and the theoretical literature have highlighted four
main “fields” of incentives at work in FLOSS case, summarized in table 1.

Static and dynamic assessments of developers’ incentives sets

Table 1. Developers’ motivations as described by the literature.

Motivation Literature Category
1 monetary rewards, carrier concerns and signaling3 , Lerner and Tirole, 2002; Ghosh, 1998; Economic
when individuals decide to produce code and Roberts et al., 2006. incentives
freely distribute it in order to signal their
capabilities to the job market or because they have
some form of monetary gains (e.g. they run or are
employed in a FLOSS-based firm).
2 own-use, when a specific software is realized to von Hippel, 2002; von Hippel and von Own-use
answer the particular needs of its creator and Krogh, 2003; Shah, 2006; Ghosh, 1998;
distributed in order to exploit the economies of Weber, 2000; Jeppesen and Frederiksen,
scale derived by the collective work (the “cooking ~ 2006; Lakhani and von Hippel, 2003;
pot” defined by Ghosh, 1998) or to influence the von Krogh et al., 2003a.
trajectory of the product development.
3 learning, when developers interact to participate in ~ Ghosh 2003a; von Hippel and von Learning
a social environment where they can acquire new Krogh, 2003; Bonaccorsi and Rossi,
skills and where new problems and new solutions 2006; Lakhani and von Hippel, 2003;
are discussed and implemented. von Krogh et al., 2003a.
4 agroup of physiological motivations -such as fun Torvalds and Diamond, 2001; Lakhani Social and
or creativity- and social motivations -such as group and Wolf, 2005; Weber, 2000, 2004; psychological
kinship or identity, hacker culture, ideology or the Osterloh and Rota, 2004; Bitzer et al., incentives

need for reciprocation, reputation and peers’
regard, enhancing one’s “ego”, seeking a higher

status in the community-.

2004; Lerner and Tirole, 2002; Dalle and
David, 2005; Dalle ef al., 2004; Bagozzi
and Dholakia, 2006; Frederiksen, 2006;

Bonaccorsi and Rossi, 2006; Shah, 2006;
Himanen et al., 2001. Hertel et al., 2003;
Zeitlyn, 2003; Raymond, 1998.

Following the classification represented in the table, FLOSS developers can be moved by the need
to signal their skills to a wide community in order to reach a better position in the labor market, or
simply by the fact that FLOSS is a means to earn money (Lerner and Tirole, 2002; Roberts et al.,

? Lerner and Tirole (2002) label “signaling” any activity undertaken for the purpose of acquiring reputation, both among
peers (peers’ regard) and on the job market (career concerns). For the purposes of the present study, these two factors
have to be conceived as belonging to different realms of developers’ motivations (social and psychological incentives
and economic incentives, respectively). The label “signaling” is here attached only to the economic side of the
reputation concerns.

2006). At the same time, firms’ difficulties in identifying and matching each developer’s needs and
the disproportion between the small cost of free revealing and the high revenue of gathering other
developers adopting and possibly working on the software one needs creates the incentive for lead
users to engage in the FLOSS production (Franke and von Hippel, 2003). Besides these “economic”
explanations, also the social (Bagozzi and Dholakia, 2006) and psychological (Lakhani and Wolf,
2005) sides of developers’ incentives have been proved to be crucial in determining individuals’
active participation in FLOSS projects. Eventually, both theoretical (e.g. von Hippel and von
Krogh, 2003; von Krogh et al., 2003a; 2003b) and empirical literature (Ghosh ef al., 2002; David et
al., 2003, Lakhani et al., 2002) highlighted the importance of learning opportunities the FLOSS
offers to those who actively contribute to its construction.

As shown above, in their initial experience of FLOSS developers were basically FLOSS users. The
time dimension of this period gives a clear proof of its importance. Among the responders to the
FLOSS-US survey (David ef al., 2003) only 19.8% of the developers used FLOSS for about six
months before starting to develop the software. The rest of the responders (80.2%) declared a longer
period of FLOSS usage, oscillating between "about a year" and "more than 3 years". Notice that the
most numerous group (29.2%) answered "about 2-3 years". The survey also assesses developers’
reasons to approach FLOSS. Even if the question provides answers only related to two specific
environments (leisure or work time), it is interesting to notice that “for recreation” was marked by a
substantial number of users. In this period, when developers are not part of the community yet, the
users approached FLOSS not only because they needed to use it in their workplace (own-use) but
also for recreation.

The previous phase ends when the user becomes a developer. In this transformation, the role of
“fun” or “own-use” is less important. In the FLOSS-US survey out of 12 possible motivations to
start developing FLOSS the answers clearly related to fun and creativity ("I liked the challenge of
fixing bugs and problems in existing software") or own-use of software ("I needed to fix bugs in
existing software" and "I needed to perform tasks that could only be done with modified versions of
existing software") are “very important” and “important” only for a small subset of individuals, so
that they rank only eleventh, tenth and eighth, respectively. Notice also that the work-related option,
“My employer wanted me to collaborate in open source development”, ranks last.

This means motivations have changed. Once the developer has approached the community, the
interaction with this new environment enriches her set of motivations, and assigns more weight to
new “items”. This can be clearly seen when considering the social side of user/developers’
motivations. In fact, "As a developer of free software, I wanted to give something back to the
community", which is clearly a product of the user’s interaction with the community, and "I wanted
to interact with like-minded programmers" rank second and seventh. Notice that the answers "I
thought it was the best way for software to be developed" and "I thought we should all be free to
modify the software we use" rank fourth and first, respectively. Thus ideological as well as
technological reasons enter the picture. Eventually, consider that also learning opportunities become
crucial: the option “I saw it as a way to become a better programmer” ranks third".

In nuce, there seems to be a dynamic process developing along the relationship between the
individual and the community, which eventually result in a change of the motivations driving the
former’s entry into the "inner" circle of the developers.

Consider now figure 1 obtained from the FLOSS-EU survey (Ghosh et al., 2002). The motivations
driving developers' contribution to the activity of the community in the first place (red bars) are
mainly centered on learning and social leverages. In this case, also own-use has a significant effect,
while signaling and economic incentives have only a marginal role.

* Notice that in the specific question of the FLOSS-US we are considering now is not provided an answer clearly and
univocally related to monetary opportunities or signaling.

Figure 1. Developers' motivations at the beginning and now ordered by their difference.

Remembering the time you started developing and/or distributing OS/F'S, what was the reason for this? And for what
reason(s) do you go on with developing and/or distributing OS/FS? (max 4 answers)

212
to learn and develop new skills :— 1923
= 171
to solve a problem that could not be done by proprietary software % 724

719
- L
to distribute not marketable software
243
to participate in new forms of cooperation a04

to get a reputation in the OS/FS developers' scene 221292 maore impomlt
af fhe beginning
to get help in realizing a good idea for a software product 581655 @ Difference
=) 863

=
=
g
- to participate in the O5/FS scene m Freguence
g atthe beginning
2 to improve my job opportunities 582 724 oOFrequence

to improve OS/FS products of other developers 821 OET

more imporiant
i] 735
because | think that software should not be a proprietary product 919 How
192
to make money il 02 299
to limit the power of large software companies 453 701
: A7 1215
ta share my knowledge and skills 1632

[

Frequence of each answer
Source: FLOSS survey (Ghosh et al., 2002).

Having described what drives users’ transformation into developers, we need to focus now on the
evolution of their involvement into the community. The relative importance of each motivational
field can be assessed in an evolving context thanks precisely to figure 1. In figure 1 motivations
have been ranked according to the difference between the number of responders who marked them
in the two moments in time "today" and "at the time you started developing and/or distributing
OS/FS". Consequently, the motivations placed at the top of the figure have to be considered more
important at the beginning, while the incentives listed in the bottom part of the figure are those
which acquire more importance over time.

First of all, notice that there is a change in the importance of each incentive over time. Motivations,
as said, are not given at the beginning, "once and forever". On the contrary from figure 1 built on
the FLOSS-EU survey data collected by Ghosh ef al. (2002) and from the discussion in their report
and in Glott et al. (2004) we derive the strong feeling that the structure of motivations evolves,
changing the weight of the factors in agents' payoff functions.

Secondly, own-use related answers are generally important, but they do not seem to become more
relevant over time. The frequencies related to this incentive field such as “to solve a problem that
could not be done by proprietary software” or “to get help in realizing a good idea for a software
product” do not change much from the first to the current developers’ involvement. Learning has a
similar behavior, inasmuch as it is generally important but does not acquire significance over time.
On the contrary, it gradually becomes less central. Economic incentives, represented by answers
such as "to improve my job opportunities", "To make money" and "To get a reputation in the OS/FS
developers' scene", remain largely peripheral along the whole time scale. There is an increase in the
number of developers marking some of these answers, but in absolute terms they remain marginal.
On the contrary, social and psychological incentives are always crucial, and increase their relevance
over time. This result is consistent with the empirical observations gathered by Shah (2006), where

> The answer "I do not know", which was given by 46 responders with respect to their first contributions and by 37 with
respect to their current involvement, is not included in the figure.

7

developers initially contributing just to satisfy a need gradually change the set of their motivations
so that, once the needs are fulfilled, they keep contributing basically as hobbyists.

Moving now to a finer-grain analysis, it is possible to search for the mechanisms behind this
evolution.

3.3. Gradually identifying what “learning” really means

Learning is and remains the most important driver of participation. However, it figure 1 states it
loses relevance over time. However, this result is at odds with other empirical evidence that showed
the increasing importance of skill-improvements opportunities offered by FLOSS collaboration
(Glott et al., 2004; Ghosh and Glott, 2005). An explanation for this can be given considering that
learning is a complex object. It can be considered per se as well as considered an instrument to
satisfy any of the other incentives discussed above. For example, learning enhances career
opportunities (Ghosh and Glott, 2005) as well as the possibility for developers to create precisely
the features they need, and it is at the same time a social and psychological process acting on the
intrinsic motivations side. Thus, when developers enter the community and learning becomes an
everyday activity, their experience of the community social environment increases their capability
to better define the basic motivations behind their decision to mark "learning" in the first place.

The message this delivers is that entering the community, developers enter a social environment
where there are a lot of opportunities related to social interaction, fun, own-use, reputation and
signaling. The "blossoming" of a wide range of different (unexpected) opportunities pushes
developers to consider the possibility to easily acquire a minimum quantity of each one of these
different "motivational goods". A proof of this can again be found in figure 1 taking into account
the number of answers given by the developers in the two considered time periods. Developers
where allowed to mark up to four answers describing initial and current motivations behind their
contribution to FLOSS. As figure 1 shows, the same number of developers® marked 9,176 answers
with respect to the beginning of their experience in FLOSS, and 10,629 answers (15% more) when
they are asked to evaluate their current motivations’. As said, such an evolution makes clear that the
number of opportunities each developer began to face during her work in the FLOSS increased.
Notice that these opportunities have to be considered as unexpected, otherwise they could have
been treated as expectations and embodied in the motivations “at the beginning”, generating the
same series of answers in the two time periods.

3.4. Expectations of monetary rewards and the role of job opportunities

In the previous picture, economic incentives seem to have only a marginal role. Only few
developers referring both to their first and to their current involvement state that their behavior was
led by expected job opportunities or career concerns. When considering the each motivation
variation over time as a percentage of the initial frequency, the results are however different, as
table 2 shows.

® The survey reports for the initial period 2438 answers from 2774 insertions, and for the current period 2428 answers
from 2774 insertions.

" There is a bias connected to the fact that some of the answers could have been given just for one of the two cases
(initial/current), e.g. because for some developers the current project is actually the first one. Nonetheless, since the
numbers of the responders is fairly equal for the two questions, it is plausible to assume that the possible error is very
small, and that the qualitative results are not influenced by it.

8

Table 2. Developers’ motivations (variation between the frequencies at the beginning and now)

Remembering the time you started developing and/or distributing OS/FS, what was Y ariation:
the reason for this? And for what reason(s) do you go on with developing and/or F,-F, J
distributing OS/FS? (max 4 answers) F,
to make money 179%
to limit the power of large software companies 51%
to share my knowledge and skills 34%
to get a reputation in the OS/FS developers scene 32%
because I think that software should not be a proprietary product 25%
to improve my job opportunities 24%
to improve OS/FS products of other developers 18%
to participate in the OS/FS scene 16%
to get help in realizing a good idea for a software product 13%
to distribute not marketable software 12%
to participate in new forms of cooperation 7%
to solve a problem that could not be done by proprietary software -1%
to learn and develop new skills -11%

Source: FLOSS survey (Ghosh et al., 2002). Notation: Fy,= frequency at the beginning, F,= frequency now.
In the table above, opportunities to "make money" or signal one’s own skills through FLOSS
development acquire the greatest importance over time. In other words, monetary and signaling-
related motivations are the most elastic with respect to time. They are able to "attract" a number of
developers which is smaller than other motivations in absolute terms, but greater in relative terms.
Why?
In the FLOSS-US (David et al., 2003) survey to the question "How important were the following
factors when you first started developing open source/free software?" the answer "My employer
wanted me to collaborate in open source development" is the last in terms of importance,
consistently with the FLOSS-EU survey (see figure 1 and Ghosh et al., 2002). Thus, at the
beginning, career concerns and expectations of monetary rewards seem to be not relevant.
FLOSS-US data, however, state that firms' financial support for FLOSS projects increased over
time (question 30 and 31), which means that opportunities to receive monetary rewards for FLOSS
development increased. This can be related to the developers' expectations presented again in the
FLOSS-US survey. When the survey was launched (January 28, 2003), most of the developers were
already part of the community (85% of them first started participating in open source/free software
development in 2001 or before). After at least one year spent working on FLOSS, they expected not
only to work for business enterprises based on FLOSS, but also to leave the position of employees
to acquire managerial roles or become autonomous consultants.
Thus, the importance of monetary rewards increases with agents' involvement in the community
because developers become aware of the actual earning possibilities they begin to face.

A similar interpretation can be given to the results reported by Ghosh (2003b), where earnings
opportunities are compared with the actual earnings obtained by each developer. While politically
and socially motivated developers do not expect to get paid from their development (and in fact
most of them do not earn a lot of money either directly nor indirectly, Ghosh, 2003b), and while
"those who report career and monetary motives get what they want", it is interesting noticing that
"although those with purely product-related motives [...] are less likely to earn money from FLOSS
than other groups, they earn the most, on average" (Ghosh, 2003b, p. 19-20). So, as long as we talk

¥ Notice that the categories used by Ghosh (2003b) to construct the clusters of developers are very peculiar. As the
author reports: "while many developers express social or community-related motives, only those who also express
career concerns were included in the second category, while only those who also express political views were placed in

9

about own-use motivated developers, they face in fact unexpected earning opportunities which at
the end result in a higher income.

The "economies of scope" embodied into the communitarian environment put under another light
the growing importance of monetary rewards and career concerns. As for learning, their dynamic
evolution should be conceptualized as the results of an unexpected "income effect", enabling
developers to acquire a greater amount of “motivational goods”.

3.5. Own-use incentives: conditio sine qua non or dynamic drivers?

The previous analysis clearly shows that own-use based motivations and learning have a relevant
role at the beginning. On the contrary, when elasticity with respect to time is taken into account
(table 2), it is easy to see that the change of their importance over time is limited. Thus they seem to
be mainly environmental conditions, in the sense that they are a set of pre-determined preferences
enabling the FLOSS community to exist. In other words, they provide developers with a substantial
and constant “endowment” of motivation, but they are unable to increase their level of participation
to the community over time. However, this is just a superficial observation. If developers are
stimulated to participate in the community production of software to fulfill their exogenously
determined necessities, they should experience a decrease in their interest when the software they
needed is actually created and diffused. This is precisely the result found by Shah (2006). However,
figure 1 shows that own-use motivations remain crucial over time. Thus, the “income effect”
described before has to be at work also on this side of developers’ motivations. In particular, it is
plausible to think that interacting with other members developers discover new opportunities of
consumption. They can recognize new possible adaptations of the software they are interested in, or
new needs they were not aware of before. The result is that the community continually feeds the set
of developers’ needs. Again, the exposure to the community social environment has the property to
make developers aware of (unexpected) opportunities.

3.6. The social and psychological dimensions of the community

Several theories have been applied to the FLOSS case in order to unfold the social and
psychological side of developers’ incentives (Bagozzi and Dholakia, 2006; Hertel et al., 2003). The
comparison with societies based on gifts exchange (Raymond, 1998) or on peer regard (Dalle et al.
2004) has been used to describe the FLOSS community. It has been also recognized often as a
community of practice or an epistemic community (Cohendet et al. 2000; Lin, 2004; Edwards,
2001). In a related work I tried to show that the social and psychological dimension of the
relationship between the developer and the community can be related to the ‘reflexive mechanisms’
described by Giddens (1991). In particular the concept of ‘reflexive identity’ (Lindgren and Wéhlin,
2001; Rullani, 2006) is particularly useful in this context. The reflexive identity process is based on
the continuous interaction between the debate underpinning the community social environment and
members’ identities. In particular, this process is very close to the one described by the community-
of-practice theory (Wenger, 1998). The contradiction between the vision of the world the
community embodies and its members’ identities results in a certain amount of individual
dissonance. The need to reduce the dissonance forces each developer to choose between
internalizing the rules of the community and accumulating a certain level of conflict. In the latter
case, depending on the extent of the conflict, the consequence can be a revolution, changing the
vision of the world embodied by the community, or the splitting and/or dissolution of the
community itself. In the first case, the social environment of the community gradually enters the
psychological dimension of the individual, and makes her internalize the community rules, habits,
and vision of the world (Kuran, 1989, 1995, 1998; Kirman and Teschl, 2006). It is easy to see how

the third category. The last category is necessarily small since it comprises those who expressed only product-related
motives (participating in the developer community to improve a software product, say). Of course, there are many ways
of forming these categories and how one forms them would change how they correlate to other variables".

10

this principle can be placed as the basis of the dynamics of developers’ incentives, linking together
the interaction typical of the FLOSS community and the social motivations of its members.

The same principle can also be related to “creativity”, “fun” and the other categories of intrinsic
motivations the literature has recognized as fundamental in software development (Luthiger, 2005;
Osterloh and Rota, 2004; Bitzer et al., 2004; Lakhani and Wolf, 2005). The link is based on the idea
that intrinsic motivation is enhanced by the exposure to a lively social environment, where new
challenges are continuously elaborated and spread between members. In other words, a
communicative community is able to produce the ‘raw material’ to constantly feed its members’
intrinsic motivations.

4. Exposure to the community social environment and contribution: the hypothesis to test

4.1. The nature of the determinants of developers’ contribution

The previous analysis has shown that the individual and the community engage in a relationship
which becomes "thicker and thicker". Being exposed to the community social environment,
developers acquire information on new job as well as new consumption opportunities the
participation in the FLOSS construction offers them. At the same time they identify more precisely
where the acquisition of a wider and deeper set of skills can lead them, and can better specify the
direction of their involvement in the community activities. Moreover, the exposure to the
community environment continually renews the set of challenges they can face to “have fun” or
“feel creative” and triggers a series of social processes able to tie each developer to the community,
to make her feel as a part of a social entity based on duties and rights, rules and psychological and
social gains and punishments.

This evolution of developers’ motivations is coupled to a precise dynamics of their involvement
into the community activity. The FLOSS-US survey shows that “developers tend to play more roles
in their OS/FS projects, and perhaps more leadership oriented roles, as their careers progress. |[...]
Respondents play every role more commonly in their most recent projects than in their first
projects” (David et al., 2003, p 33). The community reception of developer's contributions also
changes. The longer the developer's experience in the community, the more the amount of her
submitted code included in a project version, while the less the time for that code to be included.
Moreover, consider that the average hours per week developers spend in contributing to FLOSS
increases with the duration of their participation, and that a similar results have been found for the
distributions of the maximum amount of hours per day and for the pattern of the hours spent coding
during the most intense period of work. In the Boston Consulting Group survey (Lakhani et al.,
2002), 28.6% of the responders said "On average, | spend more time than when I first started",
while "The time I spend has stayed about the same" was the answer of 14.3%, "On average, I spend
less time than when [first started" of the 19.3%, and "My involvement is completely variable" of
the 37.4%. Eventually, and likely as a consequence, the projects in which developers are involved
reach maturity faster (again FLOSS-US).

Thus, as the exposure to the community social environment increases and changes the set of
members’ motivations, developers enter the inner circles of the community and increase their
participation, contribution and commitment.

4.2. The hypothesis

Notice that what has been described since now is a dynamic structure. Developers’ initial
distribution among the different typologies of incentives is taken as the baseline, so that the
described relationship between developers’ motivations and contribution has been derived
independently of developers’ pre-determined preferences. In other words, the messages we get from
the previous analysis is that, whatever is the set of motivations leading the developer to join the

11

community and contribute to it in the first place (black arrows in figure 2), the exposure to the
community social environment results in the amplification of certain motivational sets and
eventually in an increase of the level of her participation and contribution (red arrows in figure 2).

Figure 2. Determinants of developers' contribution to the community.

’EER.IEHERY
. — , . FLOSS community
~ s . developer
M ;D‘IéE) .

: contribution due to
predetermined preferences

. contribution due to)
exposure to the community

ol

=N
\ —
In order to uncover the causal relationships implicit in the previous discussion, the preceding
observation is expressed as a hypothesis to be tested:

Hypothesis: independently of their pre-determined preferences, the more the developers’ exposure
to the FLOSS community social environment, the more their contribution to the community
activities.

Next section is aimed precisely at testing this statement.
5. Data and variables

5.1. The dataset

To test this hypothesis, I can rely on data provided by Sourceforge.net (SF.net henceforth), the
largest repository for FLOSS projects, and relative to the activity of 544,669 developers along 840
days from September 2000 to December 2002.

Developed and maintained by VA Software (former VA Linux), one of the most successful
companies acting in the FLOSS scenario, SF.net (http://soureceforge.net) is an on-line platform for
software development enabling users and developers to coordinate their activities, and to host and
distribute the code they produce. On SF.net, registered developers can contribute in a wide range of
different forms. They can join the teams of existing projects or found their own projects and then
recruit other developers, they can report bugs, send patches, signal features which could be
developed, or, when they gain the access to the software basis of a project, directly change the code
produced by other developers through the Concurrent Versioning System’ (CVS). The platform
provides also instruments to organize the team work, such as spaces where project members can list
the jobs they ask help for, or for the distribution of on-line surveys or file releases, and tools to
facilitate the communication among participants (forums, mailing lists, news reports, forms to
manage support requests, etc.). Each one of these activity is recorded and stored in the dataset'’.

5.2. The sample

Several studies have shown that FLOSS production is characterized by a large number of “passive”
lurkers (i.e. observers), registering to SF.net but not participating in any form. Most of these

° When a developer connects to the software basis of a project, the Concurrent Versions System synchronizes the code
on the developer’s computer and the code stored in SF.net, in order to avoid the emergence of different versions of the
same program.

' Howison and Crowston (2004) and Comino et al. (2005) have identified some problems connected to the use of this
dataset. The version I am using here is the same used in Giuri et al. (2005) and David and Rullani (2006), to which the
reader can refer to understand how the aforementioned problems have been solved.

12

developers are likely not even lurkers, and visit the web site of the platform only rarely. They
cannot be considered as part of the community. In order to construct a meaningful sample, only the
those developers who were at least once part of a project team (even if only for few moments or
submitting a project that was rejected by the SF.net staff) were selected. Moreover, I could follow
developers’ activity in detail only from September 2000, so I decided to exclude those individuals
who registered earlier to the platform in order to be able to account for the whole history of each
one of the included developer. The sample reduced then to 71,728 individuals.

A further reduction of the sample had to be performed in order to account for the properties of the
employed estimation models, namely negative binomial and logistic regression models, both
specified within a fixed effect panel structure. In order to use these models I have to rely only on
developers granting a certain variability of the dependent variable over the time periods. If a
developer does not satisfy this condition, her contribution to the estimate is irrelevant. Thus, these
observations are simply dropped, and the sample size is then reduced to 14,497. Tables 6a-6b
enable the comparison of means, standard deviations, minimum and maximum of both groups
across the employed variables.

Eventually, consider that each developer’s activity on SF.net was observed for 28 thirty-days long
periods from September 2000 to December 2002. But the focus here is on the evolution of
developers’ participation from their entry in SF.net to the last observable period. Thus, in the
analysis, the time dimension of each variable obtained this way was changed from “real months” to
developers’ periods of experience in SF.net. What is referred to as ‘the first period’ is not
September 2000, but each developer’s first 30 days after her registration to SF.net. Notice that,
since the last period stored in the dataset is December 2002, the emerging panel structure is
unbalanced.

5.3. The dependant variable

The level of developers’ contribution can be captured by several variables. In the database, the main
dimension of developers’ activity, i.e. the number and the magnitude of the changes to the code
basis of each project they have acted on, is missing. However, information on whether developers
have founded a new project, and when, can be retrieved after having cleaned the dataset as
explained in David and Rullani (2006).

Founding a new project is a costly investment for a developer. The time and the effort needed to
prepare the proposal to be submitted to the SF.nef maintainers are just the first step. If the project is
accepted, the founder has to manage all the main aspects relative to the projects, and if it is able to
attract other developers, she has to manage and direct the whole development activity. At the same
time, it is a risky activity, because the borne costs are sunk costs, and if the project fails, or becomes
too successful and can be managed only increasing the effort, or if it eventually becomes something
different from what the founder wanted, these costs will not produce any gain. Thus, when a
developer decides to found new projects, this can be seen as a signal of a high propensity to
contribute.

And precisely because what is relevant here is developers’ propensity to contribute to the
community activity, I am not interested in the number of accepted or successful projects among
those proposed by each developer. Instead, I will focus simply on the number of projects the
developer has founded per period, whatever is their fate.

In addition to this measure, other proxies for developers’ contribution can be built.

Each developer’s role into existing projects can be proxied by the number of news and job requests
she has posted. Posting the news relative to a specific project or uploading a list of tasks the
development team asks help for are activities signaling the central role of the developer who
undertakes them. Moreover, SF.net provides also a specific tool, the tracker system, to manage bug
reports, patches, support and new feature requests. Developers belonging to a project are not likely
to use these instruments to signal to the other members the problems they have found. They can

13

directly act on the software basis of the project, or simply embody the suggestions and the lines of
code in messages sent directly to the other team members. What this variable captures, then, is
mainly the developer’s contribution to projects she does not belong to. These three variables can be
coupled with the first one to represent the whole spectrum of activities a developer can undertake in
SF.net as founder of a new projects, member of existing projects, or contributor of projects she does
not belong to. Thus, in order to study developers’ contribution to the community, two main
variables are employed:

Table 3. Dependant variables.

Variable Description
FOUNDED_PRJ; Number of founded projects by developer i at time ¢.
CONTRIBUT; A dummy variable taking value 1 if FOUNDED PRJ,>0 or if at least one of the

following variables is positive at time 7 (i.e. it equals 1 if developer i has founded a
new group, or posted job requests or news on a project website, or sent a contribution
through the tracker system):

- DEVEL JOBS; Number of jobs required by developer i at time 7.

-DEVEL NEWS, Number of messages posted by the developer i to the section “news” on a project’s
website at time 7.

-DEVEL TRACK; Number of trackers (defined as “bugs”, “patches” and “feature requests
developer i to the tracker system of a project at time ¢.

a1l

) posted by

5.4. The main regressors

The hypothesis to be tested highlights the positive effect of the community social environment
developer i is exposed to on i’s contribution. What has to be captured by the main regressors, then,
is the level of the community social environment around each developer and independently of its
participation and communicative attitude.

The database provides data relative to the messages sent to each project’s forums, and to the
surveys promoted by a single project or by SF.net maintainers and answered by each developer. On
this basis, the following variables have been built:

Table 4. Main regressors.

Variable Description

COLLEAGUE_MSG, Number of the projects developer i does NOT belong to to which her colleagues
(member of i‘s projects) have sent forum messages at time .

COLLEAGUE_SURV Number of surveys answered by developer i‘s colleagues (member of i‘s projects) at
time 7.

These two variables have been chosen because they are likely correlated to the level of
communication surrounding each developer. This assumption is based on the idea that they
represent the propensity to communicate of those developers who work at the same projects of i,
here called “colleagues”™'?. The more the colleagues’ propensity to communicate, the more their use
of forums and the higher the number of the surveys they answer to. Notice that, as I will discuss
later, the variables have been built in such a way that they minimize the influence developer i can
have on the environmental communication around her. This will help in solving the problem of
endogeneity.

As table 7b shows, the correlation between the two variables is not so high as one could expect
(0.3596 and significant at a 5% level). This is due the fact that they both capture the same
phenomenon, i.e. developer i’s colleagues’ communicative attitude, but in different forms. Forums
allow for continuous communication, and can contain whatever type of messages. Surveys are

' <Support Requests’ was excluded, so that the new variable is much more effective in capturing only valuable

contributions.
' For a wide description of the communication in a virtual community of innovative users see Frederiksen (2006) and,
for the specific case of FLOSS, Krishnamurthy (2002) and Kuk (2006).

14

instead specific instruments used only in particular context to acquire precise information on a
relevant topic (ranging from judgments on an on-going project to ideas about the FLOSS movement
as a whole). Moreover, they allow only for a limited expression of developers’ opinions. The
difference between the two instruments can then be red as a difference in the nature of the
communication they represent. On the one hand, forum messages can be assimilated to informal
communication, where the timing, the level and the content of the interaction can vary according to
each participant interests and wishes. On the other hand, surveys responses are much closer to
formal communication, being structured in terms of the treated topics and of the timing of
communication.

Eventually, notice that COLLEAGUE MSG, has been chosen after having evaluated the reliability of
the data relative to forum messages. Forums are not always controlled by team members or by the
SF.net staff, and sometimes they are subjected to disturbances or spam, or to double posting. The
scan of a random sample of messages showed that these phenomena are limited and seem randomly
distributed. However, since in the following analysis forum messages will be used to build one of
the main regressors, the data should be as reliable as possible. Being impossible to scan each single
message to check its validity, the strategy that has been used was to reduce the variability of each
project’s number of messages collapsing all the messages sent by each i’s colleague to a group i
does not belong to into only one unit and then adding them up to obtain COLLEAGUE _MSG,. A
variable relative to the number of messages has also been built and used to check for the robustness
of the results obtained with COLLEAGUE_MSG,,. It substantially confirms them, even if at a lower
degree of stability, as expected.

5.5. The controls

The dataset allows capturing the main characteristics of developers’ participation in SF.net and their
evolution over time. This, coupled with the capability of the panel estimation to account for
developers’ time-invariant traits, is useful to “cut out” developer i’s characteristics from the effect
of the exposure to the community social environment on her contribution. In particular, as I will
explain in the next section, introducing these controls helps in avoiding endogeneity, so that the
results of the regression become effective in testing the hypothesis.

The dimensions I can control for are reported in table 5, together with the description of the
variables used in the regression.

Table 5. Controls.

Variable Description Dimension

Developer’s

DEVEL MSGS; Number of messages sent by developer 7 to the forums at time ¢. L .
- communicative attitude

Number of messages posted by the developer i to the section

%
DEVEL_NEWSi “news” on a project’s website at time 7.

Developer’s participation

DEVEL PRJ _IN; Number of projects developer i belongs to at time ¢.
i i i i Developer’s membershi,
DEVEL PRJ 1, A d.ummy .varlable taking vglue 1if devel.oper i b?longs to p p
- = project 1 (i.e. the SF.net maintenance project) at time .
DEVEL EXPER; M 30-day period from developer i’s entry in SF.net. Developer’s experience

Number of colleagues, i.e. other members of the projects
PRJ COLLEAGUES;, developer i belongs to at time ¢ without repetition and without
counting developer i.
Average registration period of the projects the developer i

PRJ AGE, belongs to at time ¢ Characteristics of the
. . . projects the developer
PRJ GPL, Number of projects the developer 7 belongs to at time # that have belongs o

chosen the General Public License as their first license.

Each project’s average number of links is computed as the mean
PRJ _LINKS; number of projects participated by its members. This value is
here averaged over the projects developer 7 belongs to at time ¢

15

Performance of the
projects the developer
belongs to

Average number of file releases of the projects developer i

PRI_FILE_RELy belongs to at time ¢.

* The variable is dropped when considering CONTRIBUT;, as the dependent variable.

Notice that variables such as PRJ COLLEAGUES, and DEVEL PRJ IN, are crucial in normalizing the
measures of the main regressors. The more the number of projects a developer is member of and/or
the more the number of her colleagues, the more the surveys and the forum messages surrounding
the developer. Even if this is precisely the phenomenon I want to address the analysis to, it must be
“cleaned” from every possible scale effect not directly connected to the communication side of the
community social environment. PRJ COLLEAGUES, and DEVEL PRJ IN, control precisely for this
dimensions and point COLLEAGUE MSG, and COLLEAGUE SURV; directly to community
communication.

Eventually, consider that the position of the developer in the network structure of the community is
taken into account not only by PRJ COLLEAGUES, and DEVEL PRJ IN,, but also through a specific
control: PRJ LINKS,. To obtain this variable I first calculated for each project the average number of
projects participated by its members (including 7). Then I averaged this value over the projects i
belongs to at time ¢. The result is the number of projects participated by the average user populating
the average projects i belongs to. Thus, this variable, coupled with PRJ COLLEAGUES, and
DEVEL PRJ IN;, helps in controlling for developer i’s position in the network of the SF.net
community.

Tables 6a-6b and 7a-7b presented in the appendix report the main statistics concerning the variables
describe since now and their correlations matrixes.

6. Estimation strategy

6.1. The model

The first regressions are relative to the influence of the level of communication each developer i is
exposed to (and proxied by COLLEAGUE_MSG,, COLLEAGUE_SURV;) on the number of new founded
projects (FOUNDED_PRJ;). In this case, the final model presented in table 8 is a negative binomial
regression model that exploits the panel structure of the data through fixed effects. This choice has
been driven by the fact that the dependent variable FOUNDED PRJ, is a count variable and by a
series of observations and tests selecting the negative binomial model with fixed effect as the best
option."

A second measure of developers’ participation in the community is also applied. CONTRIBUT; is a
dummy variable taking value 1 if the developer has at least founded a new project, posted a job
request or a news message, or sent a contribution to the tracker system. A logistic model is then
estimated, and its results compared to the previous analysis.'* In particular, the individual effects

1 To estimate the model I used the command xtnbreg, fe in STATA. This command includes the fixed effect in the
overdispersion parameter. To account for a more intuitive definition of the fixed effect, I run the regressions also using
a Poisson specification (command: xtpoisson, fe)where overdispersion is excluded by definition and the fixed
effect is defined as usual. The results are identical in every respect. Going back to the negative binomial specification,
to control at the same time for overdispersion and excess of zeros -but expecting much less precision because of the
necessity to pool the data- I used a zero-inflate negative binomial model both with and without the clustering of the
standard errors’ robust estimation around each developer’s group of observations (i.e. I used the command: zinb with
and without the option robust cluster (developer id)). The analysis confirms the results, even if at a lower
level of precision and strength, as expected.

' DEVEL NEWS, is used here to “clean” the effect of the community social environment on the foundation activity of the
developer from the influence her effort in other typologies of her activities. Notice that this variable will not be used in
the estimation of the logit model. In this case, I am interested in capturing as much as possible dimensions of
developers’ activities, and thus DEVEL_NEWS, enters directly the definition of the dependant variable CONTRIBUT;, . Thus
it cannot be used as a regressor. In the negative binomial model also the other variables used to construct CONTRIBUT,

16

are considered as fixed, given the fact that the Hausman test rejects the hypothesis that the
regressors are not correlated to the errors.

Notice that all the excluded models (pooled, Poisson, random effects) have also been estimated to
check for the robustness of the results.

6.2. Accounting for independence of developers’ predetermined preferences

The hypothesis requires independency of developers’ predetermined preferences. Thus, the
equations must contain a control able to account for the basic traits of the developers. This control
has been introduced through the use of fixed effects, where time-invariant characteristics are
accounted for and absorbed by individual specific variables. The panel structure of the data, in other
words, allows estimations focused on the dynamics of the process, so that predetermined
preferences, i.e. the basic traits of the developers, are controlled for and do not affect the
coefficients of the main regressors. This can be seen considering the following example. Imagine
two developers with a different set of predetermined preferences. Developer i is very sensitive to
the ideological side of the “free regime” of FLOSS, while developer j instead is more concerned
with the satisfaction of her needs through the usage, and improvements, of FLOSS. This difference
in the two developers’ predetermined preferences is likely to generate a different mean level of
contribution. This is what the fixed effect captures. As a consequence, the introduction of fixed
effects allows an estimation “free” of the developers’ predetermined preferences and instead
focused on the dynamics of their contributions, i.e. on when, how -and especially as consequence of
what- these contributions depart from the average levels due to their predetermined preferences.

6.3. Accounting for endogeneity

The introduction of the fixed effects moves the attention onto the dynamics of the process. In this
realm, however, the problem of endogeneity emerges clearly. The main sources of endogeneity are
basically three, i.e. increasingly active developers could increasingly 1) attract more
communicative developers or 2) stimulate the communication around them or 3) move to projects
composed by more communicative developers.

The “links” that have to be broken are then three:

1) attract: more communicative developers could be increasingly attracted by more productive
developers. This could be due, for example, to their intention to establish themselves as crucial
knots into the network of the community even if they are not very skilled or very committed to
programming. In this case communicating more and moving closer to productive developers could
be a suitable strategy to obtain a similar result. It is obvious that this is a source of endogeneity. The
intrinsic rigidity of the dynamic structure of this mechanism can be used to rule it out. In order for
communicative developers to detect the productive ones, the former have to observe first the
activity of the latter. Moreover, if the increase in the level of communication surrounding a
productive developer is just a consequence of her level of contribution, when other communicative
developers join her, this should not affect her level of contribution. Given this, lagging the
independent variables assures that this process cannot be at work, because in this case a positive
coefficient of COLLEAGUE MSG;, or COLLEAGUE SURV, represents a positive effect of today
communicative environment on the future developers’ level of activity. The endogeneity
mechanism described above works the other way round, and can then be ruled out.

2) stimulate: it could be that increasingly productive developers become also more communicative,
and thus increasingly stimulate the communication surrounding them. In order to take this into
account, the main regressors have been built trying to reduce as much as possible the influence of

have been used as controls, namely DEVEL JOBS, and DEVEL TRACK,, but they were less significant than DEVEL NEWS,,
i.e. less effective in detecting the action of developer i’s degree of activity on the number of new projects she founds.

17

developer i on the level of the surrounding communication. Moreover, the effect of the
communication surrounding developers on the level of their activity has been “freed” by the effect
of their own communicative attitude.

These effects have been obtained through the following techniques.

First of all, developer i’s colleagues’ communicative attitude represented by COLLEAGUE MSG, has
been obtained considering only the messages they have sent to projects developer i does not belong
to. In a previous version of the paper this distinction was not made, and the variable contained all
the messages sent by the developer’s colleagues to every project they belonged to. In this case the
endogeneity was given by the fact that in those projects where the developer and her colleagues
worked together, the former could have been the stimulus, the cause, of the communication. Thus,
the use of COLLEAGUE MSG, removes this source of endogeneity.

A similar argument can be stated for the second regressor: COLLEAGUE_SURV,. Surveys are
produced and diffused by developers who have organizational roles in the community. They can be
SF.net maintainers or the managers of specific projects. The public the surveys are directed to
changes consequently. It can be the whole SF.net community or the developers of a specific project,
respectively. The dataset does not allow for the detection of the source of each survey. However,
the observation of other data relative to the activity on the SF.net website suggests that most of the
surveys are carried out by SF.net maintains. Only few developers can directly affect SF.net
maintainers’ decisions. Given the high number of observations, the influence of this effect should
be irrelevant. Moreover, DEVEL PRJ 1, has been introduced to control precisely for this. The
variable is a dummy variable taking value 1 if developer i belongs to project 1, the SF.net
maintenance project. If developer i is part of it, she has direct access to the group of SF.net
maintainers, can talk to them and may influence their decisions on the launch of new surveys.
Introducing DEVEL PRJ 1, in the regression controls for this effect. When the survey is carried out
by projects leaders, endogeneity comes again into play, because developer i could have influenced
the project leader’s decision to create and diffuse a survey, or she can even be the project leader
herself. As said, these cases should be only few. Moreover, even when this happens, the discussion
on the opportunity to implement the survey and the questions constituting it are inevitably taken by
a group of developers which is different from the set of respondents. Thus, endogeneity remains a
problem only for the developers who participated in the production and diffusion of the surveys,
and instead it takes precisely the causal direction I am interested in for those who received the
survey. Since the number of the respondents who did not have any role in the construction of the
survey should be much higher than the number of developers promoting it, the number of surveys
answered by developer i’s colleagues should be basically independent of her influence.

Second, even if the peculiar construction of the regressors has excluded the direct influence of
developer i on the social environment represented by the projects she belongs to, any possible
residual influence of developer i’s change in her propensity to communicate on the environment has
been ruled out introducing the variable DEVEL MSG;, the number of messages sent by developer i to
the forums of any project at time ¢.

3) move: the last source of endogeneity is due to the possibility that increasingly productive
developers choose the most communicative projects.

To begin with, notice that if developers increase their contributions or launch new projects first, and
then join other communicative projects (for example to advertise their own new projects) the lagged
structure explained at point 1 assures that this is does not affect the estimates of the coefficients of
COLLEAGUE MSG,, and COLLEAGUE SURV,. Our analysis, in fact, related foday exposure to a
communicative environment to future contributions.

Thus, we need to focus on the case in which developers whose propensity to contribute has begun to
rise increase their future contribution thanks to the fact that in the past they have strategically
chosen projects whose specific characteristics (related to communication) allowed them to
“realize”, to “put into practice”, their augmented propensity to contribute. An efficient way to

18

control for this mechanism is to introduce the past levels of projects’ characteristics that a)
developers could consider “instruments” they can use to increase their contribution and that b) are
correlated to the communicative level of the projects.

To identify the main controls to be introduced with this purpose, I can rely on the definition of
developers’ incentives described in table 1. Consider first that developers whose propensity to
contribute is increases can search for more visible (i.e. central in the network), large and productive
projects to give higher diffusion to their work and to send stronger and more visible signals into the
labor market. Second, they could search for more productive projects because they look for
collaborators to work on the software they need for their own use. They could also search for
productive projects because they want to learn from other developers and ask questions on the
specific problems they need to solve to increase their contribution. Eventually, their choices could
be driven by more “ideological” reasons, so that they are willing to contribute mainly to projects
which are committed to a specific view of the FLOSS phenomenon, or simply by their willingness
to “have fun” programming with other productive developers.

As it is easy to see, all these mechanisms are positively correlated to the communicative level of the
projects, and thus could be a possible source of endogeneity. Fortunately, the dataset is wide enough
to account for all the characteristics of the projects upon which these mechanisms are based, as a
comparison between table 5 and the previous description of the mechanisms can easily show. As
illustrative examples, consider just the case of learning and ideology. Developers can search for
productive projects because they want to learn form other developers. To control for this, I used the
variables PRJ_FILE REL,, accounting for the productivity of the projects, PR/ COLLEAGUES,, roughly
counting the number members of the projects, and DEVEL MSGS,, representing the number of
messages the developer sends to the forums, which can also be considered a proxy for the
developers’ request of information. In the case of ideology, another control is introduced, PR/ GPL,,
in order to use the number of projects the developer belongs to which have chosen as their first
license the GPL as a proxy for the ideological level of the environment surrounding the developer.

To conclude, all the three sources of endogeneity detected at the beginning have been answered in
the best possible way, so that the results can be consider reliable enough to actually verify or reject
the hypothesis.

7. Results and robustness checks

Table 8 reports the results of the regressions in terms of incidence rate ratios (IRR) for the negative
binomial regression models and odds ratios (OR) for the logistic regression models. All the results
are larger than 1 (i.e. the effect is positive) and strongly significant. However, significance has to be
judge not only in statistical terms, but also in economic terms.

To do that, consider first the nature of the phenomenon under analysis. The FLOSS production
process is a self-organizing processes, so that it shares with the other systems in this class the
characteristic of being dissipative (David and Rullani, 2006; Rullani, 2006). Such systems have to
mobilize much more resources than what they really use to reach the outcome. This because the
organization of the process is not centrally led, but each resource follows its own path through the
process. Most of the resources are then lost during the process, which works as a “selection
machinery” retaining only the resources which better fit the specificities of the process itself. Also
the FLOSS production model can be conceived as a dissipative process because the community has
to mobilize lots of developers to be able to involve just few of them. The huge amount of inactive
projects and the skewness of the distributions of developers’ productivity and participation in the
discussions (Krishnamurthy, 2002) are clear manifestations of a system which needs to “burn” lots
of resources (i.e. developers) to select in those who will eventually participate. In the context of the
present paper this observation leads to the same conclusion as in David and Rullani (2006): the
signals of activity have to be highlighted and magnified, because their magnitude is decreased by
the large amount of resources lost in the process.

19

Keeping this in mind, consider now the Incidence Rate Ratios (IRR) and Odds Ratio (OR) shown in
table 8. An increase in COLLEAGUE MSG, induces a change of 13.1% - 15.5% in the expected
number of founded projects and of 3.9% - 8.2% in the odds of a contribution. A similar computation
for the variable COLLEAGUE _SURYV,, shows that the percentages reported above are 4.8% - 6.7% for
FOUNDED PRJ, and 10.3% - 11% for CONTRIBUT,. These estimated effects can then be considered
fairly relevant. Interestingly enough, the two kinds of communication have different effects: while
formal communication seems to be connected to a higher level of generic contribution, informal
communication seems to be more effective in stimulating developers’ willingness to create new
projects.

It is then possible to state that the exposure to the community social environment does increase
developers’ contribution to the community activity independently of their pre-determined
preferences.

Notice that this result is consistent with the positive relationship found by Kuk (2006) between
knowledge sharing and the level of ‘conversational interactivity’, i.e. “The reciprocities, the
interlinkages and penetrations among interdependent messages [posted on the KDE project
developers’ mailing list ...]. The more diverse the views and ideas expressed in a discussion thread,
the higher the level of conversational interactivity is” (Kuk, 2006, p. 1034). Thus, this construct can
be directly linked to the richness of the community social environment studied here. The interesting
result is that “conversational interactivity [is] positively related to knowledge sharing” (Kuk, 2006,
p. 1034), confirming that a lively community environment increases developers’ contribution.

A closer look at the models and the data allows a series of robustness checks.

As said, many different variables and models were used. Poisson, Negative binomial and zero-
inflated negative binomial regression models, pooled regressions, random and fixed effects were
combined and applied to a set of variables comprehending modifications of the ones described
above. For example, COLLEAGUE MSG, has been substitute by the number of messages sent by i’s
collogues to the projects i does not belong to, and by the number of messages received by the
projects developer i belongs to.

In a previous version of the paper the effect of the last variable has been estimated also through
OLS with a first difference structure and applying a wider set of controls. Using those variables, a
logarithmic transformation of the regressors was also considered, in order to linearize the
exponential structure of their effect on the number of founded projects.

The sample used to produce the results presented in table 8 has been selected considering the
observations falling in the intersection between the sample needed to implement the negative
binomial and the logistic regressions, both as panel estimations with fixed effect. In order to check
for the robustness of the results, the same models were also estimated for the widest possible
sample. For example, in the case of random effects the sample was enlarged to comprehend 69,474
individuals (968,999 observations), almost as wide as the whole population of 71,728 developers.
Other configurations of the models in table 8 were also checked. Projects’ performance has been
controlled using the number of CVS commits and downloads, and using a different definition of file
releases. The results obtained without controlling for this dimensions were also taken into account.
The definition of developers’ contribution has been “enlarged” including all the trackers sent to the
SF.net projects (including also ‘Support Requests’) into the variable DEVEL TRACK, and also
“restricted” excluding DEVEL JOBS, and DEVEL NEWS, from CONTRIBUT, contemporarily and one at
a time. Eventually, another series of regressions has been run considering different subsamples, i.e.
including only developers’ actions up to May 2002, or only those developers who registered after
March 2001.

All the described robustness checks confirmed the hypothesis, and only in few cases the level of
significance of some results was higher than 10% or the coefficient less relevant in economic terms.

20

In the last robustness checks described, the effect of the main regressors on the dependant variable
was sometimes even stronger than the one reported in the paper.

A closer look to the behavior of the dependant variables created room for a further robustness
check. Figure 3 reports the average number of founded projects by the 71,728 developers in the
whole sample (left-hand axis) and the number of developers observed for each period (right-hand
axis).

Figure 3. Developers' motivations at the beginning and now ordered by the difference between them.

80000

0.4 fq\ﬁ\\\\m\ _
‘\ \ 70000
60000

\ \\Number of registered developers
0.25 \ \\ 50000

o
w
]

o
©w

o
)

\\\“‘\g\u 40000
‘\“\\k\h\ 30000
20000

0.05 1 N Mean number of founded projects \\ 10000

————e . _ P
12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 35 26 27 28
developers' experience (30-days periods from each developers' registration date)

[=]
=
w

o
—

Mean number of founded projects
Number of registered developers

As it possible to see, the first two periods of developers’ experience in SF.net report a much higher
number of founded projects. This means that there is a sort of “entry behavior”. Participation as a
contributor or a lurker (i.e. observer) is not a necessary condition to be registered. It is then likely
that some developers decide to register to SF.net only when they decides to exploit SF.net facilities
to create their own projects. After these two periods, the foundation activity becomes an almost
constant activity (see David and Rullani, 2006; for a discussion of this process). In order not to
induce any subjective bias into the analysis, the methodology applied to cope with this specific
behavior of the data was introducing the time variable DEVEL EXPER, as a control into the
regressions. A robustness check can then be performed excluding the first two periods form the
analysis. Again, all the results are confirmed.

8. Discussion and conclusion

Science, Technology (Dasgupta and David, 1987, 1994), Hierarchies (Williamson, 1975) and
Collective Inventions (Allen, 1983; Nuvolari, 2004, 2005) are provided with institutional structures
able to solve the contradiction between the incentives to invest in knowledge production and its
sequent diffusion (Arrow, 1962). On the contrary, there is no widespread agreement on the
mechanisms at the basis of knowledge-based communities (David and Foray, 2003). The present
paper has taken into account the institutional dimension of the Free/Libre/Open Source Software
(FLOSS), one of the most interesting cases of knowledge-based communities, precisely to
contribute to this debate.

In the literature the FLOSS community is perceived as able to solve the aforementioned
contradiction mainly thanks to its members’ exogenously determined preferences, counterbalancing
the loss due to the “free” diffusion of their code. Moreover, these preferences have been usually
considered as static. This creates room for the investigation of the dynamic side of developers’
motivations. The first part of the paper tried to walk along this path, pointing out how the involved
sets of incentives change their relative importance over time. The result is that a dynamic structure
clearly emerged.

In the second part of the paper, this structure has been connected to the specificities of each

21

particular incentive. The aim was to find a possible principle running through all the incentives
categories and sustaining developers’ contribution beyond the level granted by their predetermined
preferences. It has been found that the exposure to the social environment of the community
activates a series of mechanisms which tie developers to the community activities, and enhances
their contribution.

In the third part of the paper this hypothesis has been proved through a series of different regression
models applied to data from SourceForge.net, where proxies for developers’ contribution have been
related to the level of the communication the community members where exposed to. Problems of
endogeneity and robustness checks have also been taken into account. The results are in favor of the
tested hypothesis.

This conclusion allows for a series of further observations.

First of all, the analysis has highlighted the necessity of conceiving developers’ incentives as
dynamic (Ghosh et al., 2002; Glott et al. 2004). The definition of the different “motivational fields”
has to be translated according to their evolving structures. Career concerns and other monetary
gains, own-use and learning, have to be imagined as exploration processes of unexpected
opportunities. Developers gradually learn that their involvement in FLOSS production can generate
a series of economic earnings. At the same time, the community stimulates their needs
continuously, making them uncover new consumption opportunities and better specify the particular
uses they can make of the knowledge and skills they acquire. This process of gradual involvement
is particularly evident when social and psychological motivations are considered. Entering the
community developers are engaged in the construction of shared identity, where social norms are
discussed, challenged or internalized. Their very preferences become to a certain extent endogenous
to this process, and their identity, vision of the world, and behavior change accordingly. This affects
also their psychological dimension, and shapes the specific space where intrinsic motivations acts.
In nuce, motivations have to be conceived as ‘discovery processes’ relating the community to each
one of its members and vice versa.

Second, the specific role of each motivation uncovered by the previous analysis sheds light on the
mechanisms at work in different phases of developers’ experience in the FLOSS environment. On
the one hand, the results provided by the FLOSS surveys (Ghosh et al., 2002; David et al., 2003)
have shown that the decision to join the FLOSS community is mainly due to learning, own-use and
social and psychological incentives. On the other hand, the same data lead to the conclusion that
developers’ retention is mainly obtained through the gradual discovery of unexpected monetary
gains and the acquisition of social norms, shared identity, community values, etc. brought about by
the developers’ exposure to the community social environment. Thus, the community itself is
endowed with a mechanism (embodied in its social environment) enhancing cooperation and
participation.

Eventually, combining the tested hypothesis with the previous discussion on motivations leads
directly leads to the conclusion that the exposure to the community social environment is able to
increase developers’ participation because that environment is itself the locus where individuals
discover unexpected extrinsic (consumption and monetary-related) or intrinsic (e.g. enjoyment)
opportunities or participate in a social process combining mutual learning and the construction of a
“thick” social space where identities, social ties and common rules becomes fundamental
determinants of the behaviors. Thus, as long as the community is alive, it seems to have the
capability to sustain developers’ participation through the “supply” of new social spaces,
challenges, experiments and opportunities. Keeping in mind that “self-maintenance of
organizational forms and institutions [...] are partly the result of directed (purposeful) action by the
agents but also, partly, the unintentional outcome of the interplay of agent learning and collective
interactions” (Dosi and Winter, 2000, p. 6), this result leads to a further confirmation of the

22

hypothesis affirming the sustainability of the FLOSS production process as a model for innovation
(David and Rullani, 2006).

23

References

Allen R.C. (1983), Collective invention, Journal of Economic Behaviour and Organization 4 (1), 1—
24.

Arrow K. (1962), Economic Welfare and the Allocation of Resources for Invention, in Nelson R.R.
(Ed.), The rate and direction of inventive activity. Economic and social factors, Princeton
University Press, Princeton.

Benussi L. (2005) General Public License model of IPR: a localized technological knowledge
approach, FGA project — preliminary draft, University of Turin

Bitzer, J., Schrettl W., Schroder P. (2004), Intrinsic Motivation in Software Development, Free
University of Berlin Discussion Paper 2004/19.

Bagozzi R.P, Dholakia U.M. (2006) Open Source Software User Communities: A Study of
Participation in Linux User Groups, Management Science, Vol. 52, No. 7, July, p. 1099—
1115.

Bonaccorsi A., Rossi C. (2006), Comparing Motivations of Individual Programmers and Firms to
Take Part in the Open Source Movement: From Community to Business, Knowledge,
Technology and Policy, Volume 18, Number 4, p. 40 - 64.

Cohendet P., Creplet F., Dupouét O. (2000), Organisational innovation, communities of practice
and epistemic communities: the case of Linux, in Kirman A., Zimmermann J.B. (Ed),
Economics with Heterogeneous Interacting agents. Springer, Berlin.

Comino S., Manenti F.M., Parisi M.L. (2005), From Planning to Mature: on the Determinants of
Open Source Take Off, Discussion paper 2005-17, Universita degli Studi di Trento.

Dalle J.-M., David P.A., (2005), The Allocation of Software Development Resources in ‘Open
Source’ Production Mode, in J. Feller, et al. (eds), Making Sense of the Bazaar: Perspectives
on Open Source and Free Software, Cambridge MA: MIT Press, 2005. Preprint available at:
http://siepr.stanford.edu/papers/pdt/02-27.pdf.

Dalle J.-M., David P.A., Ghosh R.A., Wolak F.A. (2004), Free & Open Source Software
Developers and ‘the Economy of Regard’: Participation and Code-Signing in the Modules of
the Linux Kernel, presented at The Oxford Workshop on ‘Libre Source’ convened at the
Oxford Internet Institute, 25-26" June.

Dasgupta P., David P.A. (1987), Information Disclosure and the Economics of Science and
Technology. Ch. 16 in Arrow and the Ascent of Modern Economic Theory, in Feiwel G. (ed.),
New York University Press, New York, p. 519-542.

Dasgupta P., David P.A. (1994), Toward a new economics of science, Research Policy, vol. 23 (5),
p. 487-521.

David P.A., Foray D. (2003), Economic fundamentals of the knowledge society, Policy Futures in
Education - An e-journal, Special Issue: "Education and the Knowledge Economy", 1 (1),
January, at http://www-econ.stanford.edu/faculty/workp/swp02003.pdf.

24

David, P.A, Rullani F. (2006), Launching Open Source software projects. How many entrepreneurs
on the SourceForge.net platform?, SIEPR Open Source Economics Project Working Paper,
Stanford University (May). To be presented at 11" International J.A. Schumpeterian Society
Conference “Innovation, competition and growth: Schumpeterian perspectives”, 2006, June
22nd -24th, Sophia-Antipolis, France.

David P.A., Waterman A., Arora S. (2003), The free/libre/open source software survey for 2003,
preliminary draft, September 2003, quoted with authors’ permission, at
http://www.stanford.edu/group/floss-us/report/FLOSS-US-Report.pdf.

Dosi, G. Winter, S. (2000), Interpreting Economic Change: Evolution, Structures and Games, LEM
Working Paper 2000/08, July.

Edwards K. (2001), Epistemic communities, situated learning and open source software
development, Department of Manufacturing Engineering and Management, Technical
University of Denmark, at http://opensource.mit.edu/papers/kasperedwards-ec.pdf.

Franke N., von Hippel E. (2003), Satisfying Heterogeneous User Needs via Innovation Toolkits:
The Case of Apache Security Software, Research Policy, Vol 32, No. 7, (July) p.1199-1215.

Frederiksen L. (2006), User communication driving firm innovation: A communication patterns
perspective on personal attributes and communication types in a user community. Lessons
from the software music instrument industry, presented at the DRUID Summer Conference
2006, June 18 - 20, Copenhagen, Denmark.

Gambardella, A. and Hall, B., 2006, Proprietary vs Public Domain Licensing of Software and
Research Products, Research Policy, Vol. 35(6), pp.875-892

Ghosh R.A., Krieger B., Glott R., Robles G. (2002), Free/Libre and Open Source Software. Part
1V: Survey of Developers, International Institute of Infonomics, Berlecom Research GmbH, at
http://www.infonomics.nl/FLOSS/report/Final4.pdf

Ghosh R.A. and Glott R. (2005), The Open Source Community as an environment for skills
development and employment generation, Proceedings of the FEuropean Academy of
Management (EURAM) Conference, Munich, May 4-7. Related presentation available at:
http://flossproject.org/papers/20051110/rishabGHOSH-icos05.pdf.

Ghosh R.A. (1998), Cooking Pot Markets: An Economic Model for the Trade in Free Goods and
Services on the Internet, First Monday, vol.3 number 3, March, at
http://www.firstmonday.dk/issues/issue3 3/ghosh/index.html;

Ghosh R.A. (2003a), Licence fees and GDP per capita: The case for open source in developing
countries, First Monday, volume 8, number 12 (December 2003), at
http://firstmonday.org/issues/issue8_12/ghosh/index.html

Ghosh R.A. (2003b), Understanding Free Software Developers: Findings from the FLOSS Study,
presented at the Conference "New Models of Software Development”, Harvard Business

School/MIT Sloan Free/Open Source Software, June 19-20.

Giddens P. (1991), Modernity and Self-identity, Cambridge, Polity Press.

25

Giuri P., Ploner M., Rullani F., Torrisi S. (2005), Skills, Division of Labor and performance in
collective inventions. Evidence from the open source software, paper presented at the EARIE
Conference, Porto, Portugal, 1-4 September.

Giuri P., Rocchetti G., Torrisi S. (2002), Open source software: from open science to new
marketing models an enquiry into the economics and management of open source software,
LEM Working Paper 2002/23, July.

Glott, R., Ghosh R.A., Krieger B. (2004), Motivations of free/libre and open source developers,
International Infonomics Institute Working Paper, University of Maastricht (May). See the
presentation by R. Glott, Towards integration of research approaches to FLOSS
communities, Oxford Workshop on Libre Software (OWLS), Oxford Internet Institute, June
25-26, 2004, at: www.oii.ox.ac.uk/fiveowlsgohoot/postevent/owls-presentation_r.glott.pdf.

Hertel G., Niedner S., Herrmann S. (2003). Motivation of software developers in open source
projects: an internet-based survey of contributors to the Linux kernel, Research Policy, 32,
p. 1159-1177.

Himanen P., Torvalds L., Castells M., (2001), The hacker ethic and the spirit of the information
age, Secker & Warburg, London;

Howison, J., Crowston, K. (2004), The perils and pitfalls of mining sourceforge, in Proceedings of
Workshop on Mining Software Repositories at the International Conference on Software
Engineering ICSE.

Jeppesen, L.B. and Frederiksen, L. (2006), Why firm-established user communities work for
innovation? The personal attributes of innovative users in the case of computer-controlled
music instruments, Organization Science, 17(1), p.45-64.

Kirman A., Teschl (2006), Searching for identity in the capability space, Journal of Economic
Methodology 13:3, 299-325, September.

Krishnamurthy S. (2002), Cave or Community?: An Empirical Examination of 100 Mature Open
Source Projects, First ~ Monday, volume 7, number 6, June, at
http://firstmonday.org/issues/issue7 6/krishnamurthy/index.html

Kuk G. (20006), Strategic Interaction and Knowledge Sharing in the KDE Developer Mailing List,
Management Science, Vol. 52, No. 7, July 2006, p. 1031-1042

Kuran T. (1989), Sparks and prairie fires: A theory of unanticipated political revolution, Public
Choice 61(1), p. 41-74.

Kuran T. (1995), The inevitability of future revolutionary surprises, American Journal of Sociology,
100, May, p. 1528-51.

Kuran T. (1998) Social mechanisms of dissonance reduction, in Hedstrom P., Swedberg R. (eds.),
Social Mechanisms: An Analytical Approach to Social Theory, Cambridge University Press,
1998, pp. 147-71.

Lakhani K.R., von Hippel E. (2003), How open source software works: "free" developer-to-
developer assistance, Research Policy, 32, p. 923-943.

Lakhani K.R., Wolf R.G. (2005), Why hackers do what they do: understanding motivations and
effort in Free/Open Source Software Projects, in Feller J., Fitzgerald B., Hissam S., Lakhani
K.R., eds., Perspectives on Free and Open Source Software, MIT Press.

26

Lakhani K.R., Wolf R., Bates J., Di Bona C. (2002), Hacker Survey (Release 0.73), The Boston
Consulting Group, presented at the "O’Reilly Open Source Conference", July 24, 2002. at
http://www.osdn.com/bcg/.

Lerner J., Tirole J. (2002), Some simple economics of Open Source, The Journal of Industrial
Economics, vol. L number 2, p. 197-234.

Lerner J., Tirole J. (2005), The Scope of Open Source Licensing, Journal of Law, Economics, and
Organization, 21, 20-56.

Lindgren, M. and N. Wéhlin, (2001), Identity construction among boundary-crossing individuals,
Scandinavian Journal of Management, Vol 17:3, p 357-377.

Lin Y. (2004), Contextualising knowledge—making in Linux developer groups, First Monday,
volume 9, number 11, November, at http:/firstmonday.org/issues/issue9 11/lin/index.html.

Luthiger B. (2005), Fun and sofiware development, in Scotto M., Succi G. (eds.), Proceedings of
the First International Conference on Open Source Systems, Genova, 11-15 July, p. 273-278.

Mateos Garcia J., Steinmueller W. E. (2003), The Open Source Way of Working: A New Paradigm
for the Division of Labour in Software Development?, Brighton: SPRU, Science and
Technology Policy Research, Open Source Movement Research, INK, Working Paper number
1(January), at http://www.sussex.ac.uk/spru/publications/imprint/sewps/sewp92/sewp92.pdf.

Narduzzo A., Rossi A. (2004), The Role of Modularity in Free/Open Source Software Development,
Ch. 10 in Koch S. (ed.), Free/Open Source Software Development. Hershey, Idea group.

Nuvolari A. (2004), Collective invention during the British Industrial Revolution: the case of the
Cornish pumping engine, Cambridge Journal of Economics, Oxford University Press, vol.
28(3), pages 347-363, May.

Nuvolari A. (2005), Open Source Software Development: Some Historical Perspectives, First
Monday, volume 10, number 10 (October), at
http://firstmonday.org/issues/issue10_10/nuvolari/index.html

Osterloh M., Rota S. G. (2004) Open Source Software Development - Just Another Case of
Collective Invention?, March. Available from the SSRN at http://ssrn.com/abstract=561744.

Raymond E. (1998), Homesteading the Noosphere, First Monday, vol. 3, number 10, October, at
http://www.firstmonday.dk/issues/issue3 _10/raymond/#d12

Roberts J.A., Hann 1.-H., Slaughter S.A. (2006), Understanding the Motivations, Participation, and
Performance of Open Source Software Developers: A Longitudinal Study of the Apache
Projects, Management Science, Vol. 52, No. 7, July, pp. 984-999

Rullani F. (2006), The debate and the community. ‘Reflexive identity’ in the FLOSS community,
LEM Working Paper N. 2005/18, November 2006.

Shah S. (2006), Motivation, Governance & the Viability of Hybrid Forms in Open Source Sofiware
Development, Management Science, Vol. 52, No. 7, July, p. 1000-1014.

27

Torvalds L., Diamond D. (2001), Just for Fun: The Story of an Accidental Revolutionary, Texere,
New York, NY.

von Hippel, E. (2002), Open Source Projects as Horizontal Innovation Networks - By and For
Users, MIT Sloan Working Paper No. 4366-02, June.

von Hippel, E. von Krogh G. (2003), Open Source Sofiware and the 'Private-Collective’ Innovation
Model: Issues for Organization Science, Organization Science, vol. 14, number 2, March—
April.

von Krogh G., Haefliger S., Spaeth S. (2003a), Collective Action and Communal Resources in Open
Source Software Development: The Case of Freenet, Presented at Academy of Management,

2003, Seattle.

von Krogh G., Spaeth S., Lakhani K. R. (2003b), Community, joining, and specialization in open
source software innovation: a case study, Research Policy, 32, p. 1217-1241.

Weber S. (2000), The political economy of open source software, BRIE working paper n. 140, June.
Weber S. (2004), The Success of Open Source, Harvard University Press, Cambridge, USA.
Wenger E. (1998), Community of practice; learning as a social system, Systems Thinker, June.

Williamson O. (1975) Markets and Hierarchies: Analysis and Antitrust Implications. Free Press,
New York, NY.

Zeitlyn D. (2003), Gift economies in the development of open source software: Anthropological
reflections. Research Policy 32(7), p. 1287-1291.

28

Appendix

Table 6a. Descriptive Statistics.

Variabl Aggregation Sample (71,728 developers) Estimation Sample (14497 devel.)
ariaote
level Min Max Mean St.dev. Obs. Min Max Mean St dev. Obs.

overall (N) 0 14 0.045 0.230 1040727 0 14 0.092 0.328 244509
FOUNDED PRJ; between (n) 0.160 71728 0.116 14497

within (T) 0.217 0.318

overall (N) 0 1 0.076 0.264 1040727 0 1 0.141 0.348 244509
CONTRIBUT; between (n) 0.177 71728 0.148 14497

within (T) 0.238 0.323

overall (N) 0 358 0.143 1.934 1040727 0 356 0213 2.185 244509
DEVEL MSGS,;, between (n) 1.362 71728 1.388 14497

within (T) 1.496 1.821

overall (N) 0 38 0.039 0.349 1040727 0 38 0.088 0.530 244509
DEVEL NEWS; between (n) 0.232 71728 0.269 14497

within (T) 0.302 0.470

overall (N) 0 53 0.961 0.807 1040727 0 31 1.152 1.180 244509
DEVEL PRJ IN;, between (n) 0.643 71728 0.946 14497

within (T) 0.408 0.646

overall (N) 0 1 0.000 0.013 1040727 0 1 0.000 0.016 244509
DEVEL PRJ 1, between (n) 0.012 71728 0.014 14497

within (T) 0.005 0.007

overall (N) 1 28 14.500 8.078 2008384 1 27 10.252 6.502 244509
DEVEL EXPER; between (n) 0.000 71728 3.335 14497

within (T) 8.078 5.855

Table 6b. Descriptive Statistics.

. Aggregation Sample (71,728 developers) Estimation Sample (14,497 devel.)
Variable level St St

eve Min Max Mean Obs. Min Max Mean ‘ Obs.

dev. dev.
COLLEAGUE MSG,, overall (N) 0 31 0.122 0566 1040727 0O 17 0.092 0512 244509
between (n) 0.458 71728 0326 14497

within (T) 0.436 0.399
COLLEAGUE _SURYV; overall (N) 0 60 0.122 0.780 1040727 0O 35 0.088 0.616 244509
between (n) 0474 71728 0291 14497

within (T) 0.709 0.555
PRJ COLLEAGUES;, overall (N) 0 382 4205 9.430 1040727 0 190 2.653 8225 244509
between (n) 8.643 71728 6.618 14497

within (T) 4.909 4.786
PRJ AGE;, overall (N) 0 39 16.099 10.904 1040727 0 38 15610 11.432 244509
between (n) 11.109 71728 8.489 14497

within (T) 5.926 8.698
PRJ GPL; overall (N) 0 40 0.679 0.731 1040727 0 20 0.818 0976 244509
between (n) 0.633 71728 0.816 14497

within (T) 0.321 0.504
PRJ _LINKS; overall (N) 0 27 1.155 0959 1040727 0 27 1162 1.110 244509
between (n) 0.822 71728 0.909 14497

within (T) 0.489 0.626
PRJ FILE REL; overall (N) 0 118 0.151 0.868 1040727 0 118 0.124 0702 244509
between (n) 0.689 71728 0346 14497

within (T) 0.736 0.631

30

Table 7a. Correlation Matrix.

Variable
[11 FOUNDED_PRJ; (1] (2] (3] [4] (5] [6] (7] (8]
[2] CONTRIBUT 0.6890% I
[8] PRI_COLLEAGUES: 4 gsasx 0117+ 1
[4] PRJ_AGE, 0.1192* 0.1368* 0.1106* 1
6] PRJ_GPL; 0.0705% 0.0858* 0.2036* 0.4104* 1
6] PRJ_LINKS; 0.0280* 0.0635% 0.3193* 0.4744% 0.5225% 1
[7] PRJ_FILE REL; 0.0481% 0.1162* 0.1584* 0.0819% 0.0394* 0.0883* 1
[8] DEVEL_MSGS, 0.0259* 0.1090* 0.0401* 0.0268* 0.0286* 0.0248% 0.0536* 1
[9] DEVEL_NEWS; 0.1657* 0.3902* -0.0015 0.0831* 0.0726* 0.0635* 0.1572% 0.1410*
[10] DEVEL_PRJ_IN; 0.0863* 0.1221* 0.3195% 05186% 0.7231* 0.7469%* 0.0604* 0.0355*
[11] DEVEL_PRJ_li 0.0024* 0.0040% 0.0343* -0.0083* -0.0003 0.0707% -0.0015 0.0009
[12] DEVEL_EXPER; 0.1771% -0.1605% 0.0448* -0.0750% 0.1190* 0.1445% -0.0528* -0.0191*
[13] COLLEAGUE_MSGy o110« 00234* 05074* 00622% 0.1361% 02404% 0.1167% 0.0664%
[14] COLLEAGUE SURVi (p0px o054 03379% 00817% 00859% 0.0972% 0.0966* 0.1007*
* Significant at 5%.
Table 7b. Correlation Matrix.

Variable

[9] DEVEL_NEWS;) [10] [11] [12] [13]

[10] DEVEL PRJ IN; 0.0978% |

[11] DEVEL_PRJ_I; 0.0003 0.0242% 1

[12] DEVEL_EXPER; 0.0441% 0.1629% -0.0015 1

[13] COLLEAGUE_MSGi (g1« 01992¢ 00789* -0.0176* 1

[14] COLLEAGUE SURVi (o451« 01103 00186* -0.0957* 0.3596*

31

* Significant at 5%.

Table 8. Negative Binomial and Logit regression models (fixed effect).

Negative Binomial — FE Logit— FE
FOUNDED PRJ,, (Incidence Rates Ratio) CONTRIBUT;, (Odds Ratio)

COLLEAGUE MSGyviy (ggaapws (0024 0O (o0t
COLLEAGUE_SURV 1) (0.(1)'1034)2** (o.éioziz** (0.<l)i11())1** (0.<l)i111)9<**
DEVEL_NEWS i) (o.éiosi;i** (o.<l)i06())i** (o.<l)i06i€)1**
DEVEL_MSGS i (0004 (0.004 000 OB QOBN (0003
DEVEL_PRJ_IN OO QOIS OIS QOIS 0IHM (0018
DEVEL_PRJ_I w1 (6.75:22)6** (6.7122)2** (9.181(53)2*‘7** 3 12?6234)1** (282.2991())1** (35%6165)3‘**
DEVEL_EXPER w1y (0.(1)6025)3** (0.(1)6025)16** (0.(1)6025)16** (0.(1)6010)2** (0.(1)6010)2** (0.(1)6010)2**
PRJ_COLLEAGUES i) (0.(1)6022)1** (0.(1)6022;** (0.(1)6022)2** (0.(1)6011)2** (0.(1)6011)%5** (0.(1)6011)15**
PRI_AGE i¢y) (0.86911)?*** (0.86911)1** (0.86911)1** (0.86916)2** (0.86917)2** (0.86916)2**
PRJ_GPL 1) (0.8i83())i** (0.8é83())1** (0.8é83())3<** (0.8i881)3<** (0.8i881)?<** (0.8i881)3<**
PRJ_LINKS i) (0.(1)310())2** (0.(11310())2** (0.(11320())2** (8:3(1)5) (8:3(1)8) (8:3?3)
PRJ_FILE_REL i) (o.(l)iooé)lf** (0.(l)i006)2** (0.(1)'1006)15** (0.(l)i211)1** (0.(1)'1212)15** (0.(l)i211)§f**
Log Likelihood -41371.808 -41378.421 -41386.907 -62409.652 -62457.345 -62412.383
Wald 11373.81 11363.56 11345.13
LRy 6135.07 6039.69 6129.61
Prob > 2 0.000 0.000 0.000 0.000 0.000 0.000
Observations 244,509 244,509 244,509 244,509 244,509 244,509
(groups) (14,497) (14,497) (14,497) (14,497) (14,497) (14,497)

32

* Significant at 10%.
** Significant at 5%.
**% Significant at 1%.

